Chapter 5

Identifying Genetic Dependencies in Gancer by Analyzing
siRNA Screens in Tumor Cell Line Panels

James Campbell, Colm J. Ryan, and Christopher J. Lord

Abstract

Loss-of-function screening using RNA interference or CRISPR approaches can be used to identify genes
that specific tumor cell lines depend upon for survival. By integrating the results from screens in multiple
cell lines with molecular profiling data, it is possible to associate the dependence upon specific genes with
particular molecular features (e.g., the mutation of a cancer driver gene, or transcriptional or proteomic
signature). Here, using a panel of kinome-wide siRNA screens in osteosarcoma cell lines as an example, we
describe a computational protocol for analyzing loss-of-function screens to identify genetic dependencies
associated with particular molecular features. We describe the steps required to process the siRNA screen
data, integrate the results with genotypic information to identify genetic dependencies, and finally the
integration of protein-protein interaction data to interpret these dependencies.

Key words Cancer, siRNA screening, Synthetic lethality

1 Introduction

Recent large-scale sequencing projects and decades of small-scale
studies have led to the identification of hundreds of “driver” genes
in cancer—genes whose alteration through genetic or epigenetic
means provides a growth or survival advantage for tumor cells
[1,2]. Akey remaining challenge is to understand how these driver
mutations alter cellular states to promote tumor progression and
how this altered state may be exploited for the development of
targeted therapeutics [3]. Identifying the set of genes that are
required for growth in a given tumor cell line provides both an
insight into the cellular state and suggests genes whose products
may be targeted therapeutically. Toward this end, a number of
laboratories have used loss-of-function screening to generate
resources describing the genetic requirements of panels of tumor
cell lines [4-11]. The majority of these resources use either

James Campbell and Colm J. Ryan contributed equally to this work.

Louise von Stechow (ed.), Cancer Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1711,
https://doi.org/10.1007/978-1-4939-7493-1_5, © The Author (s) 2018

83

https://doi.org/10.1007/978-1-4939-7493-1_5

84

James Campbell et al.

genome-scale shRNA screens carried out in a pooled format [6, 7,
10] or siRNA screens carried out in an arrayed format [4, 5, 11] to
identify genetic dependencies. In the near future CRISPR-based
approaches will likely be used for similar purposes, although to date
the number of cell lines profiled by genome-wide CRISPR libraries
remains small (e.g., five cell lines in [8]). Regardless of the experi-
mental methodology used, the goal of loss-of-function screens is
largely the same—the identification of genes required for growth in
specific cancer cell lines. By integrating the results of these screens
with genotypic data, it is possible to identify genes that appear
specifically required for growth in the presence of a particular driver
gene mutation. In some cases the driver gene mutation results in an
increased dependency upon the gene itself, a phenomenon known
as “oncogene addiction” [12]. Examples of this include an
increased sensitivity of ERBB2-amplified breast cancer cell lines to
siRNA reagents targeting ERBB2 [4], and an increased sensitivity
of KRAS mutant cell lines to shRNA reagents targeting KRAS
[7]. More frequent are instances where the driver gene and the
resulting dependency gene are different, often termed
non-oncogene addictions or synthetic lethalities [12, 13]. Examples
of non-oncogene addictions identified from loss-of-function
screens include a dependence of ARIDIA mutant cell lines upon
the ARIDIA paralog ARIDIB [14], an increased sensitivity of
PTEN mutant breast cancer cell lines to inhibition of the mitotic
kinase TTK [4], and an increased sensitivity of MYC amplified
breast cancer cell lines to inhibition of multiple spliccosome com-
ponent coding genes [15]. Ultimately both oncogene addictions
and synthetic lethalities identified in these screens may be exploited
for the development of novel targeted therapeutics in cancer [13].
When these screens are analyzed, statistical approaches are used
to identify significant associations between the mutation of a driver
gene and an increased sensitivity to the inhibition of another gene.
The interpretation of the resulting associations remains challeng-
ing—the statistical tests provide information on which genes are
required in the presence of specific driver genes, but not the mech-
anistic explanation as to why these dependencies exist. Inspired by
approaches initially developed for the interpretation of genetic
interactions in yeast [16], we have recently used the integration of
functional interaction networks to aid the interpretation of depen-
dencies identified in loss-of-function screens in cancer cell lines
[5]. For instance in ERBB2-amplified cell lines we see an increased
dependency upon ERBBZ2 itself and also the ERBB2 protein-
interaction partners ERBB3 and PIK3CA [5]. This suggests that
ERBB2 amplified cell lines are frequently “addicted” to the func-
tionality of ERBB2, the binding of ERBBZ2 to its interaction partner
ERBB3, and the function of the downstream eftector PIK3CA.
Here, we describe a protocol for the analysis of loss-of-function
screens in a panel of cancer cell lines. We use as example data a

Analyzing siRNA Screens in Tumor Cell Line Panels 85

recent kinome-wide siRNA screen performed in a panel of osteo-
sarcoma cell lines [5]. Our analysis protocol involves three main
steps:

1.

2.

The conversion of siRNA screening results into gene-sensitivity
scores.

The integration of these sensitivity scores with genotypic data
to identify statistical associations between driver genes and
sensitivity to the inhibition of particular genes.

. The integration of additional data such as protein-protein

interactions to interpret these associations.

Only the first step is specific to arrayed siRNA screens—we have

successfully applied the latter analysis scripts to data resulting from
additional screen types (e.g., pooled shRNA screens) (Fig. 1).

2 Materials

2.1 Software (See
Notes 1 and 2)

2.2 Input Files

P

. R (available from https: //www.r-project.org/).
. R-packages:

(a) Gplots (see Note 3).
(b) cellHTS2 (see Note 4).

. Python programming language (available from https://www.

python.org/).

. git repository containing the statistical analyses, code, and data

resources discussed in the text (see Note 5) https://github.
com/GeneFunctionTeam /identifying-genetic-dependencies

. Plate files (txt) contain the output from a loss of function

screen. These each comprise three tab-separated columns of
data containing the plate number (numeric), well position
(e.g., BO7), and the response value for the cell (e.g., luminosity
readout). See the CellHTS2 documentation for further
information.

. Plate file list. This file contains three tab-separated columns

with a header row listing “Filename,” “Plate,” and “Replicate.”
Filenames correspond to each plate file. The plate column
defines which plate in the plate configuration file the data
correspond to. The replicates column defines, which replicate
a plate represents. See the CellHTS2 documentation for fur-
ther information.

. Plate configuration file. The first line defines the number of

wells in each plate (e.g., “Wells: 384”). The second line defines
the number of plates in the library (e.g., “Plates: 3”). The third
line is a header associated with the subsequent columns (e.g.,

https://www.r-project.org/
https://www.python.org/
https://www.python.org/
https://github.com/GeneFunctionTeam/identifying-genetic-dependencies
https://github.com/GeneFunctionTeam/identifying-genetic-dependencies

86 James Campbell et al.

A . I
— ¥ :i:,_ 2% — 3 Kinase1 -3
: Kinase2 0 1 2 0
e Arroved Prbcess using Kinase N 05 2 1 5
ate Arraye
siRNA Scrgens C?gtlll;s?’z 1/)R Z-score Table (Step 3.1)

B l-ﬂlllil IEEHEEIEH

NIEEE = al 4 R8I 10100000
Kinase2 0 1 -2 0

CDKN2A 001011100
Kinase N 0.5 -2 1 -5

Mutati Tabl
Z-score Table utations Table

Perform association
analysis using R (Step 3.2)

| Marker | Target | _P-value |

RB1 DYRK1A 0.005
CDKN2A BRAF 0.600

Associations Table

C
| Marker | _Target | P-value |
RB1 DYRK1A 0.005 - Protein-protein
CDKN2A BRAF 0.600 Interaction Network

Associations Table

Annotate dependencies
using Python (Step 3.3)

| Marker | _Target | P-value | __PPI_|

RB1 DYRK1A 0.005 True
CDKN2A BRAF 0.600 False

Annotated Associations Table

Fig. 1 Analyzing siRNA screens in Tumor Cell Line Panels. (a) Luminescence values derived from pooled siRNA
screens are converted into Z-scores using CellHTS2 and custom R scripts. (b) Z-score profiles for each cell line
are integrated with mutational profiles for the same set of cell lines using R. Custom R scripts are used to
identify associations between the presence of particular mutations (e.g., in the RB1 gene) with increased

Analyzing siRNA Screens in Tumor Cell Line Panels 87

“Plate,” “Well,” “content”). The remaining lines define the
wells containing samples and controls. An asterisk character
(*) can be used to mean “all plates or wells.” E.g., “* * sample”
indicates that the all plates and all wells are “sample” unless
otherwise stated. Subsequent more specific lines update the
contents of other wells. E.g. “* [A-P]01 empty” indicates
that on all plates (*), every row ([A-P]) of the first column
(01) is marked as “empty.” When defining wells as containing
controls, ensure the case of the text used matches that used
elsewhere. For further details on the plate configuration file,
see the cellHTS2 documentation.

4. Plate annotation file. Contains at least three columns with a
header. The first two columns list the plate and well IDs used in
the library. The third and subsequent columns list annotations
(such as the ID of the gene targeted by an siRNA). For further
details on the plate configuration file, see the cellHTS2
documentation.

5. File containing functional relationships between genes (see
Note 6).

3 Methods

3.1 Processing
SiRNA Screen Data
Using CellHTS2

A

Typically, siRNA screens are conducted in multiwell tissue culture
plates. The process of transfecting a cancer cell line with siRNAs is
optimized prior to screening and once optimal conditions have
been selected (described in [17]), cells are dispensed into multiwell
plates containing growth media, transfection reagents, and siRNAs.
The data in the example provided represent a screen of a single
osteosarcoma tumor cell line using an siRNA library targeting
714 kinase and kinase-related genes. Positive and negative controls
are included on each plate—typically non-targeting siRNA as a
negative control and an siRNA pool targeting PLKI as a positive
control. The full experimental protocol for this screen has been
described elsewhere [4, 5]. Briefly, following siRNA transfection,
the cells were cultured for 5 days, after which a luminescence assay
measuring cellular ATP was used to estimate cell viability. A Victor
X5 platereader was used to read luminescence values, resulting in
data files in Microsoft Excel format. Prior to the analysis in R, these
data files were converted to plain text plate files. Each plate file
contains the luminescence reading from each well in one 96 or

Y

Fig. 1 (continued) sensitivity to siRNAs targeting specific genes (e.g., DYRK1A). (c) The associations table is
integrated with a data file describing known protein-protein interactions using Python. This results in a table of
annotated dependencies—indicating whether a given association occurs between a pair of genes whose
protein products are known to physically interact

88

James Campbell et al.

384 multiwell plate. Where an siRNA library is larger than the plate
format used in the screen, several plates are required for a single
screen. Additionally, multiple replicate screens are typically con-
ducted for a given cell line and siRNA library. The organization of
plates into segments of an siRNA library and replicate screens is
described in a plate list file. A plate list file contains the file names of
the plate files, the replicate numbers, and plate numbers in a multi-
plate screen. Annotations indicating the genes targeted by siRNAs
in the library across multiple plates as well as the positions of
control wells are provided in separate plain text files. The analysis
protocol set out below uses the cellHTS2 [18] R package devel-
oped by Huber and Boutros to combine data from the plate files,
the plate list file, the plate configuration file, and the annotation file.
The luminescence data are normalized to produce Z-scores by first
log, transforming the values and subtracting the median log lumi-
nescence value on a plate-by-plate basis. The plate-centered data are
then scaled to the median absolute deviation (MAD) value calcu-
lated across the entire siRNA library to produce Z-scores.

An R script named “run_cellHTS.R” in the R-scripts directory
contains the following commands. The first command loads the
cellHTS2 R package that provides the functions required for the
analysis.

require (cellHTS2)

With cellHTS2 loaded, we then use the readPlateList() func-
tion to read the plate list file which in turn creates a cellHTS object
containing the luminescence data from the plate files (see Note 7).

x <- readPlateList(
filename=" platelist_p3r3.txt",
name="CGDsExample"
path="./"
)

We next use the configure() function to add information from
the plate configuration file and (optionally) the screen log and
description file to the cellHTS object. The plate configuration
defines the locations of samples, controls and empty wells.

x <- configure(
X,
descripFile="screen_description.txt",
confFile="plateconf_384.txt",
logFile="Screenlog.txt",
path="./"
)

Analyzing siRNA Screens in Tumor Cell Line Panels 89

We use the annotate() function to define the genes targeted by
siRNAs in each well of the plate. This information is located in the
“kinome_library.txt” file.

x <- annotate(
X,
geneIDFile="kinome_library.txt",
path="./"
)

We now process the luminescence data in the cellHTS object to
normalize data values across the plates in the screen. This is done by
log, transforming the luminescence values and subtracting the
median value within a plate from all the values of wells in that
plate. The parameters passed to the normalizePlates() function are
described in Note 8. The original cellHTS object “x” is passed to
the normalizePlates() function and the result is saved into a new
cellHTS object called “xn.”

xn <- normalizePlates(
X,
scale="multiplicative",
1log=TRUE,
method="median",
varianceAdjust = "none",
negControls="neg",
posControls="pos"

)

The normalized data stored in “xn” are then scaled by dividing
each well’s value by the median absolute deviation (MAD) calcu-
lated from the normalized values across the whole siRNA library.
Control wells are excluded from the estimation of the MAD. Scal-
ing the plate median centered normalized data by the MAD pro-
duces the robust equivalent of Studentized values or Z-scores (see
Note 9).

xsc <- scoreReplicates(
xn,
method="zscore",
sign="+4"
)

For later statistical analyses, it may be preferable to summarize
the values of replicate wells targeting a specific gene as a median or
some other summary statistic. This can be performed using the
summarizeReplicates() function in cellHTS2.

90

James Campbell et al.

xsc <- summarizeReplicates(
Xsc,
summary="median"

)

CellHTS2 also provides a function called getTopTable() that
writes a plain text file containing the well annotation data as well as
the luminescence data at each stage of processing. Here, we write
this information to a file called “TopTable.txt.”

summary_info <- getTopTable(
list(
"raw"=x,
"normalized"=xn,
"scored"=xsc
)
file="TopTable.txt"
)

An HTML formatted report can also be generated describing
the screen and the processing steps applied to it using the commands
below. This HTML report provides information on the positive and
negative controls included, the distribution of the resulting scores,
and details of the quality of the screen (Z scores, see below).

The contents of the HTML report can be modified using the
setSettings() function. Here, we turn on the reproducibility and inten-
sities reports (producing heatmap visualizations of well values) and set
the range of heatmap colors for the screen summary scores report.

setSettings (
list(
plateList=1ist(
reproducibility=1ist(
include=TRUE,
map=TRUE
)
intensities=1ist(
include=TRUE,
map=TRUE)
)
screenSummary=1ist (
scores=1list(
range=c (-20, 10),
map=TRUE
)

Analyzing siRNA Screens in Tumor Cell Line Panels 91

We then use the writeReport() function to generate the HTML
report.

writeReport (
raw=x,
normalized=xn,
scored=xsc,
outdir=./report,
force=TRUE,
posControls="pos",
negControls="neg",
mainScriptFile="../R-scripts/run_cellHTS.R"

)

The outputs from this cellHTS2 analysis so far have been a
TopTable plain text file and a folder containing an HTML report. It
is possible to extract any data in the cellHTS objects using accessor
methods in order to produce customized outputs. Here, we extract
information on the targeted genes, the plate numbers, well num-
bers, and median Z-scores and combine this into a data frame
(“combinedz”) containing four columns (compound, plate, well,
and zscore).

genes <- geneAnno (xXsc)

plates <-plate(xsc)

wells <- well (xsc)

scores <- Datal(xsc)[,1,1]

combinedz <- data.frame(
compound=compounds,
plate=plates,
well=wells,
zZscore=scores

)

We can then write out the “combined” data frame to a text file.
A use case for this is to enable joining data from multiple screens
into a single file for analysis.

write.table(
combinedz,
"zscore.txt",
sep="\t",
quote=FALSE,
row.names=FALSE

)

This analysis needs to be performed for each screen in the
experiment. Typically, multiple distinct screens would represent

92 James Campbell et al.

3.2 Identification

of Kinase
Dependencies
Associated with Driver
Gene Mutation or Copy
Number Alteration

multiple tumor cell lines screened with a specific library of siRNAs.
Quality control steps need to be applied on a screen-by-screen
basis. We expect siRNA screen replicates to be strongly correlated
and reject screens where no pairs of replicates have a correlation
coefficient greater than 0.7 (see Note 10).

In an earlier step, we saved the output from the getTopTable()
function to a data frame called “summary_info.” We can extract the
replicate normalized luminescence values from this data frame and
calculate the Pearson correlation coefficients for each pair of repli-
cates using the following command.

cor (
summary_infol[, c(
"normalized_rl_chl",
"normalized_r2_chl",
"normalized_r3_chl"
)1,
use="pairwise.complete.obs"

)

A further quality control step that is reccommended is to exam-
ine the Z-prime (Z') values for each screen [19]. Z scores provide a
measure of the separation of the positive and negative control
siRNAs included in a screen and so can be considered an estimate
of how much it is possible for the individual “sample” wells to vary
in Z-scores. Larger values of Z indicate better screens. Screens with
Z values >0.5 are considered excellent. Those with Z values <0 are
considered unusable and should be rejected and the experiments
should be repeated. CellHTS2 calculates Z scores for each replicate
and these can be found in the HTML report under the “plate
summaries” section.

We next integrate the processed results from multiple siRNA
screens with data describing the genetic alterations present in each
sample. For this tutorial we use the siRNA data from 18 osteosar-
coma tumor cell lines and a mutations file that describes the pres-
ence or absence of genetic alterations in different members of the
Retinoblastoma (RB1) pathway. In the git repository downloaded,
there is a set of directories containing pre-formatted siRNA and
mutation datasets as well as R scripts to process the data. Open the
script ~ R-scripts/identifying CGDs_RB1_osteosarcoma.R and
examine its contents. The first command sets the working directory
to the top level of the git repository we cloned /downloaded earlier.
Modification of the path given to the setwd() function is required
to point to the appropriate location on your local system.

setwd ("~/software/identifying-genetic-dependencies")

Analyzing siRNA Screens in Tumor Cell Line Panels 93

The next command runs R code contained in a second file in
the R-scripts directory. The dot at the beginning of the path
indicates that the path is relative to the current working directory.
The file “identifying_ CGDs_library.R” contains a set of functions
that abstract the process of loading mutation and siRNA datasets as
well as running a set of statistical tests. Readers familiar with R can
examine the code in this file to understand the individual analysis
steps in more detail.

source("./R-scripts/identifying_CGDs_library.R")

We next define the paths to the siRNA and mutation data files
used in the analysis. It is a helpful to define this kind of information
near the top of scripts so that in the future the files can be changed
without having to find the commands where these values are used.

sirna_screens_file <- "./siRNA-data/Osteosarcoma_kinome_sc-
reens. txt"

rb_pathway_ func_muts_file <- "./mutation-data/combined_exo-
me_cnv_func_muts_RBpathway_160418.txt"
rb_pathway_all_muts_file <- "./mutation-data/combined_exo-

me_cnv_all_muts_RBpathway_160418.txt"

The next command reads the siRNA and mutation datasets,
identifies cell lines in common between each dataset, and returns an
R list object containing analysis-ready tables. The input files com-
prise tab-separated data where the first row and first column repre-
sent column and row names respectively. Aside from the first row
(column headings), each row contains data for a single-cell line.
Each column represents a property measured across each cell line.
In the “sirna_screens_file,” these properties are the Z-scores repre-
senting the relative viability of cells treated with siRNAs targeting
specific genes. In the case of the mutation datasets (rb_pathway_-
func_muts_file and rb_pathway_all_muts_file), these properties
represent the presence or absence of a driver gene alteration. The
file rb_pathway_func_muts_file contains a “1” where a cell line is
considered to contain a likely functional cancer driver gene alter-
ation (mutation or copy number alteration) and a “0” where such a
change is absent. Similarly, the file rb_pathway_all_muts_file con-
tains a “1” or “0” to indicate the presence of any driver gene
alteration found in a cell line irrespective of presumed functional
impact. These two files are used to identify sets of cell lines where a
driver gene is considered to be functionally altered (the mutant
group) or where alterations to the driver gene are entirely absent
(the wild-type group) (see Note 11).

kinome_rb_muts <- read_rnai_mutations (

rnai_file=sirna_screens_file,

94 James Campbell et al.

3.3 Annotating
Molecular
Dependencies
According to Known
Functional
Relationships

func_muts_file=rb_pathway_func_muts_file,
all_muts_file=rb_pathway_all muts_file
)

With the siRNA and mutation data tables organized within
kinome_rb_muts, we now run association tests between mutations
or copy number alterations in RB1 pathway genes and test depen-
dency on each gene targeted in the kinome siRNA library. The
function run_univariate_tests() performs Wilcoxon Rank Sum
tests between siRNA Z-scores of cell lines in the mutant and wild-
type groups and returns a table of these test results as well as other
information such as descriptive statistics (including the median Z-
score of the mutant and wild-type group and the difference
between those two values).

kinome_rb_mut_associations <- run_univariate_tests(
zscores=kinome_rb_muts$rnai,
mutations=kinome_rb_muts$func_muts,
all_variants=kinome_rb_muts$all_muts,
alt="less"

)

We write out the results of the association tests to a text file that
can be opened in a spreadsheet application or used as input for
other programs such as the annotate_dependencies.py python pro-
gram described in Subheading 3.3.

write.table(
kinome_rb_mut_associations,
"./results/kinome_rb_mut_associations.txt",
sep="\t",
col.names=TRUE,
row.names=FALSE,
quote=FALSE
)

In the absence of additional information, interpreting an associa-
tion between the mutation of a driver gene and sensitivity to RNAi
reagents targeting another gene can be difficult. One approach to
aiding the interpretation of these associations is the integration of
orthogonal data, including known functional relationships between
genes or their protein products. We provide a simple Python script
(annotate_dependencies.py) that can be used to integrate known
functional relationships (e.g., protein-protein, kinase-substrate, or
gene-regulatory interactions) with the associations generated by
the R scripts described in Subheading 3.2. This script adds an
additional column to the associations file indicating whether or

Analyzing siRNA Screens in Tumor Cell Line Panels 95

not the marker-target gene pair has a known functional relationship
according to a user-supplied source of interactions.

1. Create a file containing functional relationships between genes
(see Note 6 for potential sources of these relationships). Each
line of this file should contain two gene symbols (HUGO gene
names) separated by a tab. Alternatively, files in the BioGRID
Tab 2.0 Format, such as those downloaded from the BioGRID
database [20], can be used as input.

2. Open a command prompt/terminal and run the script as
follows:

python annotate_dependencies.py -a <associations> -o <output>

-1 <interactions> -n <column_name>

where <associations> is the name of the associations file cre-
ated using the R scripts above, <output> is the name of the file
where the annotated associations will be output to, <interactions>
is the name of the file containing known functional relationships,
and <column_name>> is an optional name for the column where
the functional annotation will be stored. If the interactions file is in
the BioGRID Tab 2.0 format then add the optional “~b” argument
to this command. See Note 12 for additional parameters of this file.

3. View the resulting output in a text editor or spread sheet
application. There should be an additional column in the file
named using the <column_name> argument, with True or
False values indicating whether each marker-target association
involves a gene pair with a known functional relationships
according to the <interactions> file

4. Additional columns can be added (e.g., to annotate the asso-
ciations according to a different source of interactions) by
running the script again using the output file (<output>) of
the first run as input to a subsequent run. For this step it is
necessary to set the <column_name> parameter to avoid over-
writing previous results.

The end result of this analysis is a file containing an annotated
list of associations between a particular genomic feature (indicated
in the “marker” column) and increased sensitivity to siRNA
reagents targeting a particular gene (indicated in the “target” col-
umn). The column titled “PPI” in this file indicates whether the
marker gene and the target have a known functional relationship
(e.g., protein-protein interaction) while the column “wilcox.p”
gives an indication of the statistical significance of the association.
These p-values, together with the annotation of known functional
relationships, may be used to prioritize candidate genetic depen-
dencies (synthetic lethalities) for follow-up experiments. At a mini-
mum these follow-up experiments should involve using orthogonal

96 James Campbell et al.

means to test the observed association (e.g., alternative siRNA
reagents or a small molecule targeting the protein product of the
gene of interest) [21]. Ideally, the follow-up validation would test
the association in additional cell lines harboring the mutation of
interest. In the example provided, we found that RBI mutation is
associated with increased sensitivity to siRNA targeting the kinase
DYRKIA, aknown RBI binding partner. In Campbell et al. [5] we
validated this in a larger panel of osteosarcoma cell lines using four
distinct siRNA reagents targeting the DYRKIA gene suggesting
that the initial observation represents a real dependency.

4 Notes

1. All the analyses can be performed on a desktop computer. A
recent version of the R statistical programming environment
(available from https: //www.r-project.org/) and the Python
programming language (available from https: //www.python.
org/) are required. The Python scripts presented here have
been tested with Python versions 2.7 and 3.4, while R scripts
have been tested with version 3.2.5.

2. Note that we provide extensive code samples throughout this
document. In these samples the tilde character (~) is used as a
short cut to the user’s home directory on Unix-like systems.
On Microsoft Windows, the forward slash characters (/) separ-
ating the file paths will need to be substituted with back slashes

(V-

3. Gplots is provided on the Comprehensive R Archive Network
(CRAN) and can be installed by starting an R session and enter
the following code:

install.packages (
"gplots v,
dependencies=TRUE,
)

4. CellHTS2 [18] is an R package used to process RNAI screen
data and can be installed using the following command:

source ("https://bioconductor.org/biocLite.R")

biocLite("cellHTS2")

5. This repository can be downloaded as a zip file by navigating to
the above URL and choosing “download ZIP.” Alternatively
install git (software available from https: //git-scm.com), open

https://www.r-project.org/
https://www.python.org/
https://www.python.org/
https://git-scm.com

Analyzing siRNA Screens in Tumor Cell Line Panels 97

a console window, change directory to a suitable path that must
exist (e.g., cd ~/software), and enter the following command:

git clone https://github.com/GeneFunctionTeam/identifying-

genetic-dependencies

This command should create a new directory (e.g., ~/soft-
ware /identifying-genetic-dependencies) containing data and
scripts. The data files include a file containing viability data
from an siRNA screen of osteosarcoma cell lines [5] and driver
gene mutation datasets compiled from publicly available com-
pendia of mutations in tumor cell lines [22].

. BioGRID is a database of experimentally determined molecular
interactions [20]. The web interface to BioGRID allows users
to download the entire database in Tab 2.0 format, and also the
interactions associated with a specific gene. An alternative
source is PathwayCommons [23], which integrates protein-
protein, gene-regulatory, kinase-substrate, and other molecular
relationships. More specialized data sources include Phospho-
SitePlus [24] (kinase-substrate relationships) and HINT (high-
confidence protein-protein interactions) [25].

. Detailed instructions on how to use cellHTS2 can be found in
an R vignette titled “End-to-end analysis of cell-based
screens.” Once the cellHTS2 package is installed, the com-
mand ‘browseVignettes("cellHTS2")’ can be entered into the
R console to reveal links to this and other relevant vignettes.

. In our experience, luminescence values from multiwell siRNA
screens tend to be positively skewed and show a log-normal
distribution. It is thus preferable to log transform values prior
to normalization. Setting the “log” argument of the “normal-
izePlates” function to “TRUE” and the “scale” argument to
“multiplicative” instructs cell HTS2 to first log transform the
luminescence values and then subtract the plate median values
from each value on a plate.

. Z-normalization in the classical sense refers to adjusting a set of
normally distributed values such that they have a mean value of
zero and a standard deviation equal to one. For idealized
normally distributed Z-scores, 95% of the values are expected
to fall between Z= —2 and Z= +2 and 99.1% of the values are
expected to fall between Z= —3 and Z= +3. Log-transformed
and plate-centered luminescence values from siRNA screens
often have negatively skewed distributions that are not well
described by statistics such as the mean and standard deviation.
As an alternative to standard Z-score normalization we use
robust Z-normalization where the median value is subtracted
from all log-transformed plate-centered values and these values

98 James Campbell et al.

References

1. Davoli T et al (2013) Cumulative haploinsuffi-

10

11.

12.

are then divided by the median absolute deviation (MAD) of
the distribution. This results in approximately 95% of the values
falling between Z = —2 and Z = +2. Thus, siRNAs that
produce a Z-score of <—2 (or more stringently, <—3) are
interpreted as causing a decrease in viability.

. At least two replicates are required for each screen in order to

assess the overall reproducibility of the screen. We typically
perform screens using three replicates and take the median
value for each siRNA to further minimize noise.

Defining functional mutations in cancer driver genes can be
difficult. In some cases (e.g., amplification of a gene such as
ERBB2) the functional relevance of an alteration is well estab-
lished. In many cases however, especially those involving mis-
sense mutations, the functional relevance of an alteration is
uncertain. In [5] we developed a simple pipeline to classify
mutations and copy number changes as either of likely func-
tional relevance or of uncertain relevance [5]. For tumor
suppressor genes we classify homozygous deletions, muta-
tions predicted to cause a truncation (frame shift, nonsense,
or splice site alteration) or missense mutations found to occur
recurrently in tumors as functionally relevant. For oncogenes,
we classify amplification events or recurrent missense muta-
tions as functionally relevant. Mutations other than these are
classified as of uncertain relevance and cell lines harboring
these mutations are excluded from our association tests.

By default the “annotate_dependencies.py” script assumes
that the interactions provided in the input file are undirected
(i.e., the interaction (a, b) is the same as the interaction (b, a)).
Using the argument “-d” changes this default behavior such
that a directed network is utilized. This may be more appro-
priate for directed networks—e.g., for RB1 associated depen-
dencies it may make sense to highlight associations between
RB1 and genes that it regulates, but not associations involving
genes that regulate RB1.

4. Brough Retal (2011) Functional viability pro-

ciency and triplosensitivity drive aneuploidy files of breast cancer. Cancer Discov 1

patterns and shape the cancer genome. Cell
155(4):948-962

2. Lawrence MS et al (2014) Discovery and satu-
ration analysis of cancer genes across 21 tumour
types. Nature 505(7484):495-501

3. Yaffe MB (2013) The scientific drunk and the
lamppost: massive sequencing efforts in cancer
discovery and treatment. Sci Signal 6(269):e13

(3):260-273

. Campbell J et al (2016) Large-scale profiling of

kinase dependencies in cancer cell lines. Cell
Rep 14(10):2490-2501

. Cheung HW et al (2011) Systematic investiga-

tion of genetic vulnerabilities across cancer cell
lines reveals lineage-specific dependencies in
ovarian cancer. Proc Natl Acad Sci U S A 108
(30):12372-12377

10.

11.

12.

13.

14.

15.

16.

Analyzing siRNA Screens in Tumor Cell Line Panels

. Cowley GS et al (2014) Parallel genome-scale

loss of function screens in 216 cancer cell lines
for the identification of context-specific genetic
dependencies. Sci Data 1:140035

. Hart T et al (2015) High-resolution CRISPR

screens reveal fitness genes and genotype-
specific cancer liabilities. Cell 163
(6):1515-1526

. Kim HS et al (2013) Systematic identification

of molecular subtype-selective vulnerabilities in
non-small-cell lung cancer. Cell 155
(3):552-566

Marcotte R et al (2016) Functional genomic
landscape of human breast cancer drivers, vul-
nerabilities, and resistance. Cell 164
(1-2):293-309

Moser R et al (2014) Functional kinomics
identifies candidate therapeutic targets in head

and neck cancer. Clin Cancer Res 20
(16):4274-4288

Luo J, Solimini NL, Elledge SJ (2009) Princi-
ples of cancer therapy: oncogene and
non-oncogene addiction. Cell 136
(5):823-837

Lord CJ, Tutt AN, Ashworth A (2015) Syn-
thetic lethality and cancer therapy: lessons
learned from the development of PARP inhibi-
tors. Annu Rev Med 66:455—470

Helming KC et al (2014) ARID1B is a specific
vulnerability in ARID1A-mutant cancers. Nat
Med 20(3):251-254

Hsu TY et al (2015) The splicecosome is a ther-
apeutic vulnerability in MYC-driven cancer.
Nature 525(7569):384-388

Kelley R, Ideker T (2005) Systematic interpre-
tation of genetic interactions using protein net-
works. Nat Biotechnol 23(5):561-566

17.

18.

19.

20.

21.

22.

23.

24.

25.

99

Lord CJ et al (2008) A high-throughput RNA
interference screen for DNA repair determi-
nants of PARP inhibitor sensitivity. DNA
Repair (Amst) 7(12):2010-2019

Boutros M, Bras LP, Huber W (2006) Analysis
of cell-based RNAI screens. Genome Biol 7(7):
R66

Zhang JH, Chung TD, Oldenburg KR (1999)
A simple statistical parameter for use in evalua-
tion and validation of high throughput screen-
ing assays.] Biomol Screen 4(2):67-73
Chatr-Aryamontri A et al (2015) The Bio-
GRID interaction database: 2015 update.
Nucleic Acids Res 43(Database issue):
D470-D478

Jackson AL, Linsley PS (2010) Recognizing
and avoiding siRNA off-target effects for target
identification and therapeutic application. Nat
Rev Drug Discov 9(1):57-67

Forbes SA et al (2015) COSMIC: exploring
the world’s knowledge of somatic mutations
in human cancer. Nucleic Acids Res 43(Data-
base issue):D805-D811

Cerami EG et al (2011) Pathway Commons, a
web resource for biological pathway data.
Nucleic Acids Res 39(Database issue):
D685-D690

Hornbeck PV et al (2015) PhosphoSitePlus,
2014: mutations, PTMs and recalibrations.
Nucleic Acids Res 43(Database issue):
D512-D520

Das J, Yu H (2012) HINT: high-quality pro-

tein interactomes and their applications in
understanding human disease. BMC Syst Biol
6:92

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses /by,/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Chapter 5: Identifying Genetic Dependencies in Cancer by Analyzing siRNA Screens in Tumor Cell Line Panels
	1 Introduction
	2 Materials
	2.1 Software (See Notes 1 and 2)
	2.2 Input Files

	3 Methods
	3.1 Processing siRNA Screen Data Using CellHTS2
	3.2 Identification of Kinase Dependencies Associated with Driver Gene Mutation or Copy Number Alteration
	3.3 Annotating Molecular Dependencies According to Known Functional Relationships

	4 Notes
	References

