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ABSTRACT 
Ras GTPases convey signals from different types of membranes. At these locations, 
different Ras isoforms, interactors and regulators generate different biochemical signals 
and biological outputs. The study of Ras localisation-specific signal transduction 
networks has been hampered by our inability to specifically activate each of these Ras 
pools. Here, we describe a new set of site-specific tethered exchange factors, engineered 
by fusing the RasGRF1 CDC25 domain to sub-localisation-defining tethers, whereby 
Ras pools at specific locations can be precisely activated. The CDC25 domain has a high 
specificity for activating HRas but no NRas and KRas. This unexpected finding means 
that the CDC25 tether constructs mainly activate endogenous H-Ras. Hence, the use of 
these constructs enabled us to identify distinct pathways regulated by HRas in 
endomembranes and plasma membrane microdomains. Importantly, these new 
constructs unveil different patterns of HRas activity specified by their subcellular 
localisation. Overall, the targeted GEFs described herein constitute ideal tools for 
dissecting spatially-defined HRas biochemical and biological functions 
 
 
KEYWORDS  
Ras, localisation, Ras-GEF, CDC25 domain, oncogene, signalling network. 
 
 
Abbreviations: 
ER: endoplasmic reticulum 
GC: Golgi complex 
DM: disordered membrane 
LR: Lipid Rafts 
GEF: Guanine exchange factor 
GAP: GTPase activating protein 
PM: Plasma membrane 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
INTRODUCTION 

The proteins of the Ras family of small GTPases, including HRas, KRas4A, KRas4B and 

NRas, function as molecular switches1. Mutations in these proteins occur in over 30% of 

human tumours and Ras oncogenic mutants are some of the main drivers of cancer2, 3. Under 

physiological conditions, Ras cycles between an active state, bound to GTP, and an inactive 

state, bound to GDP. The Ras activation/deactivation cycle is tightly regulated by two classes 

of proteins, Guanine Exchange Factors (GEFs), which facilitate Ras activation, and GTPase 

Activating Proteins (GAPs), which increase Ras GTPase activity, leading to Ras 

inactivation2. Ras proteins regulate a complex signalling network mediated by several 

effectors including the Raf family kinases, phosphoinositide-3 Kinase (PI3K) and Ral 

exchange factors. Ras signalling networks ultimately regulate multiple biological responses, 

including key events such as proliferation, differentiation, migration or survival2. Thus, a 

refined control of the activity of Ras proteins is crucial for eliciting the correct cell fate 

decision. Control mechanisms operate at different tiers in order to orchestrate specific Ras-

dependent responses, through differential interaction with different effector and regulatory 

proteins4. Another important mechanism for regulating Ras signalling is the localisation-

specific control of Ras activation at different membrane domains within the cell, due to the 

spatially-defined participation of certain exchange factors5, 6. 

 

Previous studies have unveiled the importance of the site from which Ras signals originate. 

Initially, it was thought that Ras was functional only at the peripheral plasma membrane, 

where GEFs would be  active7, but in recent years it has been demonstrated that Ras can also 

signal from internal localizations such as endoplasmic reticulum (ER)5, Golgi complex (GC)8, 

9, endosomes10 or mitochondria11. The different Ras isoforms show specific localisation 



patterns. HRas and NRas signal from the ER and the GA while KRas signalling is mainly 

evoked from plasma membrane and mitochondria12. Although some Ras interactors are 

present in all known Ras localisations, a substantial body of data indicates that Ras proteins 

interact with diverse sets of proteins at distinct sub-localisations, thereby eliciting specific 

signals from different platforms12. Unfortunately, a clear notion of the contribution of the 

different spatially-defined Ras pools to specific functions is limited by the technical inability 

to activate the endogenous Ras proteins at, and only at, a specific location. Thus, most of the 

work done to decipher Ras spatial signalling has been performed by overexpressing tagged 

constitutively-activated Ras proteins sent to the desired sub-localisations using specific 

localisation tethers. Such an approach has caveats, since overexpression of these constructs 

may lead to signal distortions resulting from alterations in Ras regulatory mechanisms such 

as negative feedback loops. 13  

 

In this respect, we have previously reported a comprehensive analysis of HRas site specific 

signalling by using the constitutively activated mutant HRasG12V, which led us to identify 

several HRas-dependent functions that are mediated by different spatially-defined HRas 

pools8, 14, 15. However, such an approach has pitfalls, since in that scenario negative and 

positive feedback loops modulating Ras signalling may be lost. In addition, HRas-V12 may 

exhibit different affinity and kinetics for Ras interacting protein compared to wild type 

HRas16. Thus, signals triggered by mutant Ras at specific locations may differ from those 

evoked by wt HRas due to their different affinities for GEFs5, 6, 17 and GAPs18-20, scaffold 

proteins21 and effectors5, 6, 22, 23. Therefore, there is an urgent need to develop new methods 

and strategies in order to characterise local signalling networks activated by Ras under 

physiological settings.  



Here, we present a new set of molecular tools that enable the study of the signalling pathways 

triggered by endogenous Ras at specific sub-localisations. We demonstrate that these 

constructs preferentially activate endogenous HRas. Importantly, the signalling networks 

activated by endogenous HRas reveal similarities but also remarkable differences with those 

networks evoked by ectopic, site-specific-HRasV12 constructs.  

 

RESULTS   

Engineering site-specific Ras activator constructs. 

In order to study the signals generated by endogenous Ras populations present at their 

physiological localisations, we engineered a novel set of molecular utensils based on the 

RasGRF1 CDC25 catalytic domain. It is known that overexpression of an isolated CDC25 

domain targeted to the plasma membrane (PM) is sufficient for activating endogenous Ras24. 

Indeed, we ascertained that the expression of CDC25 caused an increase of RAS-GTP levels 

similar to those elicited by the whole RasGRF1 protein (Figure 1A). We reasoned that the 

CDC25 domain specifically targeted to different types of membranes, would be capable of 

specifically activating the endogenous Ras pools therein, while  unaltering physiological 

regulatory mechanisms acting on RAS signals, such as negative and positive feedbacks or 

GAPs  intervention. To this end, the CDC25 domain was fused to the site-specific tethers 

previously used to successfully target wt HRas and HRas-V12 to different cellular 

compartments14. These cues comprised: the avian infectious bronchitis virus M protein 

(referred as M1-CDC25 hereafter) to target CDC25 to the endoplasmic reticulum (ER)25. For 

stable expression at the Golgi complex (GC) we used KDEL receptor D193N mutant6, 26 

(KDEL-CDC25).  At the PM we analysed two different domains: disordered membrane 

(DM), using the transmembrane region of the CD8α receptor 27 (CD8-CDC25), and we 



anchored the CDC25 domain to lipid rafts (LR) using LCK myristoylation signal28, 29 (LCK-

CDC25). A FLAG tag was included to enable the detection of the targeted proteins. 

To test that the constructs were correctly expressed and localised to the desired locations they 

were transiently transfected in HEK293T cells and their expression was monitored by 

western blot (Fig. 1B upper panel). In parallel, we ascertained their localisation by 

immunofluorescence using anti-FLAG staining in transfected Cos-1 cells by testing their co-

localisation with targeted HA-HRas- wt or specific localisation markers. We observed that 

the targeted CDC25 proteins specifically localised at the desired localisations with similar 

expression patterns as those previously described for the HRAS V12 constructs 5 (Fig. 1C). 

In addition, we generated HeLa cell lines stably expressing the different site–specific GEFs. 

In these, the expression levels were lower than those obtained by transient expression. In fact, 

expression was only detectable by previously performing an anti-FLAG 

immunoprecipitation. (Fig. 1B lower panel).   

Altogether, these results indicated that the CDC25 tagged constructs were properly expressed 

and specifically localized to those compartments where they were aimed at.  

 

Sublocalisation-targeted GEFs specifically activate HRas at different compartments. 

Previous studies have shown that RasGRF1 specifically activates HRas, but not NRas and 

KRas30, 31. However, it is unclear why Ras-GRF1 shows such preferences. Structural studies 

comparing the CDC25 domains of Ras-GRF and SOS1, suggest that such affinity is not 

dictated by this domain, requiring the participation of other regulatory motifs present in the 

GEF 32. For this reason, we expected our constructs to activate the three Ras isoforms. To 

confirm this, we analysed the ability of untethered, “global” FLAG-CDC25 to activate the 

three RAS isoforms, by performing Ras-GTP pull down assays in HEK293T cells transiently 

expressing the  GEF plus   wild-type versions of H, K and NRas (Figure 2A). As expected, 



EGF treatment activated the three Ras isoforms while RasGRF1 only activated H-Ras. 

Surprisingly, we found that CDC25 prominently activated HRas but not NRAS or KRas (Fig 

2A upper panel). Interestingly, only a minimal activation of NRas or KRas could be detected 

when we doubled the amount of transfected DNA for FLAG-CDC25 (Figure 2A lower 

panel). This could indicate that the CDC25 can also activate these Ras isoforms, though with 

diminished efficiency. Though an alternative explanation could be that CDC25-evoked 

hyperactivation of HRas could promote the activation of the other members of the family, as 

previously demonstrated33. Importantly, this data indicated that the CDC25 domain can 

contribute to isoform specificity in vivo. These data demonstrated that the CDC25-based 

constructs are particularly suited for the study of HRas, and therefore we focused on this 

isoform for the rest of the study.  

Next, we investigated the ability of the different site-specific CDC25 constructs to activate 

the corresponding pools of endogenous HRas. To this end, we utilized the stable HeLa cell 

lines in which we analysed HRAS activation by Ras-GTP pull-down using GST-Raf-RBD. 

We found that, compared to parental cells, endogenous HRas activation was augmented in all 

cases, though to different extents. In this cellular context, the ER and DM exhibited the 

highest levels of Ras activation (Figure 2B). These results could reflect that, in HeLa cells, 

HRas is enriched at those sub-localisations where activation is more prominent. 

Unfortunately, as of today, there is no reliable methodology to quantitate and compare the 

levels of endogenous Ras proteins existing at different sub-localisations. 

It was important to verify that the thethered-CDC25 constructs activated HRas only at the 

desired localisation and not unspecifically at other localisations. To test this, the location-

specific HRAS wild-type versions: M1-HA-HRas (ER-R), LCK-HA-HRas (LR-R), CD8-

HA-HRas (DM-R), or KDEL-HA-HRas (GC-R), were co-transfected with the targeted 

CDC25 proteins. Analysis of their activation in serum deprived HEK293 cells, confirmed 



that they were highly GTP-loaded when co-expressed with the CDC25 construct bearing the 

same tether.  

Interestingly, we found that globally expressed CDC25 (TOT-CDC25) activated endogenous 

Ras to a lesser extent than the site-specific CDC25 constructs (Fig. 2B), except when targeted 

to LRs (Fig. 2C), suggesting that untargeted CDC25 mainly activates HRas at this 

sublocalisation. 

Noticeably, some unspecific activation was apparent, especially in the case of PM 

microdomains (Fig. 2C). This could be due to the cross-activation of HRas pools located at 

the boundaries of DM and LR microdomains. In addition, vesicle trafficking between 

endomembranes and the peripheral PM may also contribute to some unspecific activation of 

HRas by reshuffling the localisation of the CDC25 constructs.  

In summary, these experiments strongly indicated that the location-specific CDC25 

constructs mainly activate the HRas pool located at the specific sublocalisation where these 

proteins are expressed.  

 

Ras effectors are differentially regulated depending on the subcellular localization 

where endogenous Ras is activated. 

Next, we tested whether the activation of endogenous HRas at different subcellular 

compartments could differentially activate known Ras effector pathways. Our previous 

studies of KRas-dependent regulation of RASSF1A/MST2 demonstrated the importance of 

the differences on the activation kinetics of oncogenic vs wild-type Ras in the regulation of 

cell death and proliferation16, 34. This study also demonstrated that the dynamics and 

magnitude of Ras signalling network could be cell type specific. Therefore, we compared 

effector usage in response to endogenous, site-specific HRas activation, as evoked by the 

tethered CDC25 constructs, to that elicited by the presence of ectopic HRasV12 at the same 



sites. We performed these experiments in NIH-3T3 cells, previously used to characterise 

effector pathway activation by tethered HRasV12 constructs14. We found that both sets of 

constructs elicited a similar pattern of ERK1/2 activation (Fig. 3A). Interestingly, in the case 

of ER-emanating signals, endogenous HRAS was more efficient than its oncogenic version 

for triggering ERK activation. Overall, notwithstanding expected differences in intensities, 

endogenous RAS activation, as evoked by site-specific GEFs, and site-restricted HRasV12 

oncoproteins elicit similar patterns of ERK activation. 

We extended our analyses to other well-characterised Ras effectors, by monitoring the 

changes on AKT phosphorylation, one of the key components of the PI3K cascade. The 

phosphorylation status of AKT exhibited remarkable differences when elicited by 

endogenous HRas activated by the targeted GEFs at different locations. Interestingly, the two 

phosphorylatable residues needed for full activation of the kinase35-37, threonine 308 (T308) 

and serine 473 (S473), exhibited distinct phosphorylation patterns depending on the sub-

localisation where HRas was activated (Fig 3B). While PDK1-dependent T308 

phosphorylation38 was mainly evoked from LR, where PDK1 is located39, S473 

phosphorylation mainly resulted as a consequence of HRas signals coming from disordered 

membrane and endomembranes but not from LR (Fig. 3B upper panel). Since AKT-S473  is 

phosphorylated by mTORC2 36, our results are in line with previous reports indicating that 

AKT-T308 and S473 residues may be phosphorylated in different cell compartments due to 

differential localisation of PDK1 and mTORC2 40, 41. In the case of mTORC2 which localises 

to endomembranes, and possibly at some specific PM domains, it suggests that this kinase 

could be activated by HRas-induced mechanisms at these locations. Thus, these results shed 

light on the relevance of mTORC2 localization at the PM, hitherto not well characterised. It 

has been proposed that mTORC2 is recruited to LR by AKT and that this complex may 

translocate to disordered membrane upon activation to allow its dephosphorylation40, 41. Our 



results would confirm that mTORC2 is differentially activated at PM microdomains, but 

contrary to previous reports, they strongly indicate that the activation of mTORC2 induced 

by HRas 42 occurs at the DM.  

The suitability of the site-specific GEFs for deciphering localized HRas signalling, was 

further confirmed when we studied the activation of the stress activated kinase JNK1. We 

observed that JNK was differentially regulated, to some extent, from all locations. Although 

the site-related difference on JNK activation are small, we consistently observed that 

activation from GC significantly evoked higher levels of phosphorylated JNK (Fig. 3B 

middle) while JNK activity by HRas activation at ER and DM was less potent. In addition, 

we analysed STAT3 phosphorylation (Y705) after local HRas activation. This 

phosphorylation has been reported to be responsible for its dimerization, translocation to the 

nucleus and DNA binding, which is essential for STAT3-dependent regulation of cell cycle 

and survival genes43-45. We found that site-specific GEFs induced STAT3 phosphorylation, 

preferentially from the GC (Fig. 3B lower panel). 

The above results confirmed that endogenous HRas activates different signalling pathways at 

distinct cellular localisation. Importantly, these results showed some differences on the 

pattern of activation of HRas signalling pathways compared to what we observed in our 

previous studies using constructs expressing site-specific HRasV1214. The fact that we did 

not find the same pattern of effector activation suggest that wild-type and oncogenic HRas 

are not equivalent in their regulation of effector networks, something that could be related to 

cellular transformation and other cancer-related processes. Altogether, our data demonstrate 

that our site-specific GEFs are useful tools for the study of HRas signalling variability as 

orchestrated by space. 

 

Regulation of proliferation and survival by Ras activity induced by site-specific GEFs. 



We next used the CDC25 targeted constructs to investigate the contribution of the different 

subcellular pools of endogenous HRas to several biological outcomes.  

Our previous studies using NIH3T3 stable cell lines expressing targeted HRasV12 proteins, 

demonstrated that proliferation was differentially regulated depending on localisation14. For 

this reason, we analysed if activation of endogenous HRas by the site-specific GEFs followed 

the same pattern. We found that Ras signalling from PM microdomains (LR and DM) had the 

highest impact on proliferation (Fig. 4A). This result was identical to that we had previously 

observed when using targeted-HRasV1214. It confirmed that constant HRas activation from 

the PM evokes a proliferative advantage, regardless whether the HRas activation is caused by 

mutation or chronic GEF stimulation.  

Next, we examined cell survival using two different assays. First, we measured the bulk 

survival rates of confluent cells expressing the different targeted CDC25 constructs under 

conditions of serum depravation (Fig. 4B).  In this case, we did not observe significant 

differences. However, when we measured clonal survival by colony formation assays, where 

cells are evaluated for their capacity to survive and form colonies originating from single 

cells. Our data showed that CDC25 chronic activation of HRas provided pro-survival signals 

from LR, DM and GA but not from the ER (Fig. 4C). Significantly, this result is very 

different from our previous observations using the oncogenic HRas constructs, where we saw 

a clear pro-survival advantage emanating from the ER and no regulation from the GA14. This 

difference suggested the existence at the ER of a down-regulatory mechanism of HRas 

signals that modulates this biological function. Interestingly, the results might indicate that 

oncogenic HRasV12 is insensitive to such feedback regulation triggering pro-survival signals 

from the ER that may contribute to HRasV12-dependent transformation. Distinguishing 

between these possibilities will require the identification of the feedback loop in future 

studies.  



 

Targeted-CDC25 overexpression does not confer transforming properties. 

Constitutively active HRas-V12 is a driver of cell transformation1, primarily due to aberrant 

regulation of the activation status of its effector pathways46. It has also been reported that 

expression of full length RasGRF1 and the isolated CDC25 catalytic domain could transform 

NIH3T3 cells due to hyperactivation of HRas signalling24, 47. For this reason, we next 

examined whether CDC25-induced transformation was differentially regulated by specific 

HRas pools. To this end, we performed focus formation assays in NIH3T3 fibroblasts using 

the bona fide oncogene HRasV12 as positive control1. Surprisingly, contrary to previous 

studies demonstrating that the expression of an isolated CDC25 domain induces 

transformation in NIH3T3 cells7, our results clearly showed that overexpression of the 

CDC25 GEF motif did not result in cellular transformation (Fig. 5). The discrepancy between 

both studies is likely due to differences on the sequences spamming by the CDC25 domain 

on both cases. Similarly, no transformation of NIH3T3 was observed when we expressed the 

site-specific constructs.   

Hence, our findings showed that the targeted CDC25-GEF domains can induce activation of 

endogenous HRas but, unlike hyperactive HRasV12 this does not result in cellular 

transformation.  

 

Discussion. 

Our understanding of the functional differences among Ras isoforms has increased since the 

seminal studies by Mark Phillips and John Hancock demonstrated that Ras are active in 

endomembranes and in different PM microdomains 48, 49, where they have different sets of 

interactors. Unfortunately, despite the growing importance of space as a regulator of Ras 

signalling, we still lack the technology to specifically and physiologically activate 



compartmentalised pools of Ras. For this reason we must rely on the use of different 

molecular tools to decipher Ras spatial regulation. Therefore, the CDC25-based site-specific 

constructs described herein are valuable tools for this purpose. These constructs are an 

important addition to the series of molecular tools that we and others have developed in the 

past, to understand the role of the different cellular pools of Ras in the diverse plethora of 

biological outcomes regulated by these proteins5, 11, 13, 14.  Unexpectedly, we found that the 

CDC25 domain cloned here shows strong specificity for HRas and only when the constructs 

were expressed and high levels in the cells we could see a modest activation of the 

endogenous NRas and KRas. It is also important to note that the CDC25 construct generated 

seems to have different properties than the construct previously described by Der’s group7. 

This is clearly illustrated by one of the most surprising observation presented here, the lack of 

transforming properties of the CDC25 constructs that we generated does not induce cell 

transformation in clear contrast with previous reports. This is likely explained because the 

RasGRF region cloned by us is shorter than the construct utilized by Der’s group which 

included an 84 extra N-terminal amino acids while our construct is restricted exclusively to 

the canonical CDC25 domain. Our results indicate that such 84 amino-is essential for 

conferring transforming properties to the CDC25 domain via Ras activation. This observation 

is in line with previous findings showing that different regions and domains of RasGRF are 

necessary for mediating its transformative effect and deletion of RasGRF domains such us 

the DH and PH domains prevent NIH-3T3 transformation47.  

Using these set of constructs we demonstrate that expression of site-specific CDC25 

constructs trigger differential HRas-dependent functions summarised in Figure 6. 

Remarkably, these findings indicate that site-specific CDC25 constructs are appropriate tools 

for the study of spatially-defined HRas signalling, by generating a response closer to 

physiology than that obtained by the use of site-specific HRasV12 constructs, utilized in 



previous studies. Thus, our biochemical experiments results indicate that the targeted CDC25 

constructs described herein can constantly activate HRas and differentially trigger location 

specific activation of Ras effector pathways such as the MAPK and AKT without inducing 

transformation. The difference between the endogenous activated HRas and HRasV12 

tethered constructs could be explained by two scenarios. One possibility would be that 

although the site-specific GEFs can constantly activate HRas and induce proliferative and 

survival advantages, their effect on local HRas pools is not strong enough to induce cellular 

transformation. A second, and not mutually exclusive possibility would be that HRas-

mediated signals, as induced by site-specific GEFs, remain under the control of negative 

feedback loops that preclude transforming capacity.  

Finally, the current study demonstrates that the combination of these tools in comparative 

studies can be used to gain insights into the regulatory mechanisms regulating spatially-

defined Ras signals, and will help to decipher the spatial cues regulating oncogenic RAS 

transforming properties. These studies will help in completing our understanding of Ras-

dependent signalling networks that have not been fully characterised despite intensive work 

in the last three decades. 

 
METHODS 

Constructs 

pGEX-Raf-RBD, HA-RasGRF1, pCEFL-FLAG-RasV12 and the RasV12 plasmids targeted 

to be expressed at different compartments were previously used and described5, 14, 31. CDC25 

domain from the RasGRF1 plasmid described before47(only RasGEF motif containing 

nucleotides 947-1273) was amplified by PCR and cloned into pCEFL-FLAG vector, 

sequences of the oligonucleotides utilized are available upon request. The same epitopes and 

localization signals used for pCEFL-FLAG-HRasV12 14 were used for the generation of M1-

FLAG-CDC25, LCK-FLAG-CDC25, CD8-FLAG-CDC25 and KDEL-FLAG-CDC25 by 



cloning the newly generated FLAG-CDC25 in the C-terminal of the different localisation-

targeting vectors. All sequences were verified by DNA sequencing. 

 

Cell culture 

HEK293T, NIH3T3, HeLa and COS-1 cells were grown in Dulbecco modified Eagle 

medium (DMEM) supplemented with 10% FBS (foetal bovine serum) and L-glutamine (2 

mM) at 37 ºC and 5% CO2. Cells were transfected with Lipofectamine 2000 (Invitrogen) 

according with manufacturer’s instruction and the amount of DNA indicated in each 

experiment. For the generation of HeLa stable cell lines, the targeted CDC25 plasmids were 

transfected in HeLa cells and selection of clones expressing the different CDC25 was 

performed by G418 (750 μg/ml) treatment during 2 weeks. Hereto, HeLa stable cell lines are 

named as ER-, LR-, DM- and GC-Flag-CDC25 whereas transiently transfected cells are 

named as M1-, LCK-, CD8- and KDEL-Flag-CDC25. 

 

Cell lysis and immunoblotting 

Total cellular extracts were obtained after cell lysis with HEPES pH 7.5 20 mM, NaCl 

150mM, 1% NP-40 and proteases and phosphatases inhibitors. Total lysates were analysed 

by SDS-polyacrylamide gel electrophoresis and transferred to PVDF membranes. The 

following antibodies were used for immunoblotting: HA (sc-7392) and total AKT1 (sc-5298) 

from Santa Cruz; FLAG-M2 (A8592 mouse), FLAG (7425 rabbit), phospho-ERK1/2 

(M8159) and total ERK1/2 (M5670) from Sigma; pan-Ras (op40) from Calbiochem; α1 

Sodium potassium APTase (AB7671) from Abcam; GM130 (610822) from BD; phospho-

AKT T308 (9275), phospho-AKT S473 (9271), phospho-JNK (9251), total JNK1 (9252), 

phospho-STAT3 (9131), total STAT3 (9132) and GADPH (2118) from Cell Signalling, 



secondary mouse (7076) and rabbit (7074) peroxidase-conjugated antibodies from Cell 

Signalling. EGF was from Upstate Biotechnology Inc. 

 

Immunofluorescence 

COS-1 cells were plated and transfected with TransIT-X2 (Mirus) following manufacturer’s 

instruction. Cells were fixed and immunostained as previously described14. Briefly, cells 

were fixed with 3.7% formaldehyde in BS for 10min. Subsequently the fixed cell were 

permiabilized with 0.5% Triton X-100-PBS (15 min), followed by 0.1 M glycine-PBS 

(30min). After blocking with 1% BSA-0.01% Tween 20 in PBS (5 min) the cell were 

incubated with the primary antibodies for an hour. GM130 (mouse) and Na/K ATPase 

(mouse) specific antibodies were used for the detection of endogenous markers and HA- 

(mouse) and FLAG- (Rabbit)   tagged constructs. Next the cells were wash and incubated 

with Alexa secondary antibodies conjugated to fluorophores for 45 min. The localisation was 

determined by confocal microscopy (Leica TCS SP5) at excitation wavelengths of 488 nm 

(green) and 594 nm (red). 

 

Ras activity assays 

Ras activity assays were performed by Raf-RBD pull-down as previously described14. 

Briefly, cell were lysed usig magnesium rich lysis bugger (25 mM HEPES, pH 7.5, 10 mM 

MgCl2, 150 mM NaCl, 0.5 mM EGTA, 20 mM _-glycerophosphate, 0.5% Nonidet-P40, 10% 

glycerol, 2 mM sodium orthovanadate, 1, 25 _g/ml leupeptin, and 25 _g/ml aprotinin). Cell lyses were 

incubated rotating for 1 hour at 4ºC with glutathione agarose beads conjugated with GST-RBD, which 

contains Raf’s Ras binding domain. Ras-GTP bound to the GST-RBD beads was pulled-down by 

short centrifugations. The beads were washed three times using lysis buffer without glycerol. 

Laemmli buffer was added to the dry beads and the proteins were denaturalised by boiling the 

samples which were next analysed by western blot.  RasGTP fraction was detected with panRas 



antibody for the endogenous Ras or HA antibody for the transfected Ras isoforms. RasGTP 

levels were normalised against determined total levels of Ras in the corresponding total 

lysates. 

 

Proliferation assays 

Proliferation analysis was performed as previously described14. Briefly, NIH3T3 cells were 

plated at a density of 50,000 cells per well in a six-well plate in duplicates and grown in 5% 

FBS containing media. Every 24 hours, cells were detached and resuspended using 0.5 ml of 

trypsin and counted using the Countess Automated Cell Counter (Life Technologies) 

following manufacturer’s instructions. 

 

Survival curves 

To estimate survival rates NIH3T3 cells were plated at high density in a six-well plate in 

duplicates and grown in 1% FBS containing media. Cells were counted every 24 hours for 3 

days by standard cell counting techniques as indicated above. 

 

G418-resistant colonies formation 

Colony formation assays were performed as described previously in Matallanas et al.14 

NIH3T3 cells were plated at low confluence and transfected with 0.5 µg of the indicated 

plasmids. Cells were grown in DMEM supplemented with 10% calf serum in the presence of 

G418 (750 μg/ml) for 10-15 days to allow the formation of discrete colonies. For scoring, 

cells were fixed, stained with GIEMSA, and colonies with a diameter bigger than 1 mm were 

counted. 

 

Transformation assays 



Focus formation assay was performed as established by Aaronson et al 50. Briefly, 30% 

confluent NIH3T3 were plated and transfected using Lipofectaine with the low amounts of 

the indicated plasmids and grown for 3 weeks in DMEM supplemented with 10% calf serum. 

The media was changed every 3days and transformation of cells and the formation of foci 

was monitored using microscopy and visual inspection. When the focus were 

macroscopically detected by eye the cells were fixed and stained, and foci scored. 
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FIGURE LEGENDS 
 
Figure 1. Validation of the constructs for the expression of CDC25 at different 
compartments within the cell. A. Expression of RasGRF1 CDC25 domain activates Ras. 
HEK293 cells were transfected with 0.5 μg of HA-RasGRF1 or FLAG-CDC25 or stimulated 
with EGF (100 ng/ml) for 5 minutes. Cell were serum deprived for 16h. Cell lysates were 
incubated with GST-Raf-RBD and the activation of endogenous Ras was determined by pull-
down assays. Activation of Ras and ERK was monitored using the indicated antibodies. The 
figure is representative of 3 independent experiments.   B. Expression of targeted CDC25 
domain at different sub-localisations. HEK293T cells were transiently transfected with 0.5 
μg of DNA with FLAG-CDC25 (TOTAL), M1-FLAG-CDC25 (ER), LCK-FLAG-CDC25 
(LR), CD8-FLAG-CDC25 (DM) and KDEL-FLAG-CDC25 (GC). Protein expression was 
tested by anti-FLAG immunoblotting in total lysates from the transiently transfected 
HEK293T cells (upper) and from FLAG immunoprecipitates from the stable HeLa cell lines 
(lower). C. Cellular sub-localisation of targeted CDC25 domain. COS-7 cells were co-
transfected with 0.5 μg of each CDC25 plasmid and HA-LCK-HRas, HA-M1-Hras or mock 
plasmid as indicated. Fixed cells were stained with anti-FLAG antibody to detect CDC25 
constructs and co-immunostained with anti-HA antibody or the indicated markers of 
subcellular membranes. Co-localisation was analysed by confocal imaging. 
 
Figure 2. The CDC25 domain is able to activate HRas at different subcellular 
compartments. A. Ras activation by CDC25 domain expression is isoform specific. (Upper 
panel) HEK293 cell were co-transfected with 0.5µg HA-HRas, HA-KRas, HA-NRas, HA-
RasGRF1(0.5 µg), FLAG-CDC25 (0.5 µg) or treated with EGF (100 ng/ml) for 5 min as 
indicated;  (Lower panel) KEK293 cells were transfected with mock DNA (-) or co-
transfected with 0.5 μg of HA-HRas wt, HA-NRas wt or HA-KRas wt and 1μg of FLAG-
CDC25 or 1 μg of mock DNA as indicated. 24 hours after transfection the cells were serum 



deprived (16 hours), and Ras activation was analysed by pulldown assays using the GST-Raf-
RBD recombinant protein. Activation of the different isoforms was measured by Western-
blot with anti-HA antibody in the pulled-down fraction and in the total lysates. The data 
shows HA-Ras-GTP levels normalised to the total HA-Ras, and represented as fold induction 
relative to the Ras-GTP levels in control cells (in absence of FLAG-CDC25) for each 
isoform. The data shows the average of two independent experiments and error bars represent 
standard deviation (SD). Anti-FLAG blot upper panel was spliced from the same gel B. 
Activation of endogenous Ras by targeted CDC25 domain at different sub-localisation. HeLa 
stable cell lines expressing CDC25 at different subcellular compartments were lysed 16 hours 
after serum starvation. Total lysates were incubated with GST-Raf-RBD recombinant protein 
for pulling down active Ras (Ras-GTP). Total Ras levels were determined by 
immunoblotting. Ras activation was normalised against the total Ras, and is represented as 
fold induction relative to the Ras-GTP levels in control cells (ST). The data shows the 
average ± the SD of two independent experiments. C. Targeted CDC25 domain specifically 
activates Ras at each subcellular site. Activated Ras at different compartments was analysed 
using pulldown assays with GST-Raf-RBD recombinant protein and further anti-Ras 
immunoblotting. HEK293 cells were transfected with 0.5μg of M1-HA-HRas wt, LCK-HA-
HRas wt, CD8-HA-HRas wt, or KDEL-HA-HRas wt, in addition to 0.5μg of empty vector (-
), FLAG-CDC25 (TOT), M1-FLAG-CDC25 (ER), LCK-FLAG-CDC25 (LR), CD8-FLAG-
CDC25 (DM) and KDEL-FLAG-CDC25 (GA) where indicated. After 24 hours cells were 
serum deprived for 16 hours and lysed. Active Ras was pulled down using Raf-RBD. The 
figures are representative of 3 independent experiments.  
 
Figure 3. Biochemical characterisation of Ras effector pathways activation. A. ERK 
phosphorylation pattern is similar by comparing HRasV12 expression and HRas activation 
by CDC25. NIH3T3 cells were co-transfected in parallel with targeted FLAGRasV12 or 
targeted FLAGCDC25 (0.5 μg) to different subcellular sites, M1 for ER, LCK for LR, CD8 
for DM and KDEL for GC. Cells were serum deprived for 16 hours and the lysates were 
analysed by western blot by using specific antibodies. The blots were quantified using 
ImageJ and the graph shows ERK phosphorylation normalized with respect to total ERK and 
relative to the negative control (empty vector) in this experiment; n=3. B. Ras activation from 
different localisation results on distinct level of Ras targets phosphorylation. NIH3T3 cells 
were transfected with 0.5μg of empty vector, FLAG-CDC25 (TOT), M1-FLAG-CDC25 
(ER), LCK-FLAG-CDC25 (LR), CD8-FLAG-CDC25 (DM) and KDEL-FLAG-CDC25 
(GC). 24 hours post-transfection, the cells were starved for 7 hours and then lysed. 
Phosphorylation of the indicated proteins was determined by blotting with the indicated 
phospho-specific antibodies Corresponding total protein antibodies (anti-AKT, anti-JNK1 
and anti-STAT3) were used for the normalization of the data. The blots where quantify using 
ImageJ and the numbers show fold of phosphorylation normalised with the control (-); n=3. 
 
Figure 4. Biological characterisation of Ras activation. A. Compartmentalised CDC25 
expression has an effect on cellular proliferation. NIH3T3 cells were seeded (50,000 
cells/well) in six-well plate and transfected with 0.5 μg of the indicated CDC25 constructs. 
The proliferation rate of transfected cells, growing in media supplemented with 5% FBS, was 
monitored counting cells every 24 hours during 3 days. Data shows the average of three 
independent experiments, error bars show SD. B. CDC25 domains do not confer bulk 
survival capacity. Cells were seeded at high confluence (200,000 cells/well) in six-well plates 
and transfected with 0.5 μg of the indicated CDC25 constructs. Survival curves were 
monitored by counting cells every 24 hours for 3 days. Data shows the average of three 
independent experiments, error bars show SD C. Colonies formation capacity is decrease by 



expression of targeted CDC25 in the endoplasmic reticulum. NIH3T3 were transfected with 
FLAG-CDC25, M1-FLAG-CDC25, LCK-FLAG-CDC25, CD8-FLAG-CDC25 or KDEL-
FLAG-CDC25 (0.5 μg/plate). Transfected cells were selected in the presence of G418 (750 
μg/ml). After 12-14 days in culture, colonies were Giemsa stained, and colonies with a 
diameter bigger than 0.5 mm were scored. Data shows the survival as the average of number 
of colonies ± SD of two independent experiments. 
  
Figure 5. Physiological activation of Ras by CDC25. Analysis of the transforming 
capacities of the CDC25 proteins. NIH3T3 cells were seeded in low density and transfected 
with 0.5 μg/plate FLAG-CDC25 (TOT), M1-FLAG-CDC25 (ER), LCK-FLAG-CDC25 
(LR), CD8-FLAG-CDC25 DM), KDEL-FLAG-CDC25 (GC) or 0.25 μg of FLAG-HRasV12. 
Transfected cells with HRas V12 (100 ng/plate) were used as positive control of foci 
formation. Foci were stained and scored after 3 weeks in culture. Numbers indicate average 
number of foci per μg of DNA ± SD of three independent experiments. 
 
Figure 6. Summary of Ras effector pathway activation, and changes in phenotype 
mediated by endogenous HRas from different subcellular localisation. The scheme 
represents the HRas location specific activation effects observed in the current study. Font 
letter size indicates stronger effect.   
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