Table S1. Example of the original/reverse coding direction of inheritance mode on recessive-dominant SNP-SNP interaction models using the two SNPs (rs2075110-rs7538029) associated with prostate cancer aggressiveness (n=21,314)

rs2075110-rs7538029	Coding direction ¹ p-value of the interaction								
Model type	Original-original (oo)	Reverse-original (ro)	Original-reverse (or)	Reverse-reverse (rr)					
RD_Full	0.011	0.011	0.011	0.011					
RD_M1_int	0.526	3.5x10 ⁻⁵	0.526	3.5x10 ⁻⁵					
RD_M2_int	0.247	0.247	0.008	0.008					
_RD_int	0.829	0.0007	0.155	2.6x10 ⁻⁵					

¹original mode is based on the minor allele. Unique p-values in each model type are bold.

Table S2. Power comparisons of SIPI and other four statistical approaches¹ in detecting SNP-SNP interactions for Models 1-3

Model 1 ²	P(outco	(outcome)=(0.30,0.30,0.20,0.30,0.30,0.20,0.20,0.20,												
sample size				1000							5000			
MAF (SNP1, SNP2)	(0.5,0.3)	(0.5,0.2)	(0.5,0.05)	(0.3,0.3)	(0.3,0.1)	(0.3,0.05)	(0.1,0.05)	(0.5,0.3)	(0.5,0.2)	(0.5,0.05)	(0.3,0.3)	(0.3,0.1)	(0.3,0.05)	(0.1,0.05)
SIPI	0.537	0.493	0.493	0.280	0.103	0.102	0.007	1.000	0.998	0.998	0.997	0.946	0.938	0.014
MDR	0.497	0.502	0.627	0.170	0.109	0.122	0.050	0.998	1	0.999	0.838	0.595	0.594	0.067
AA_Full	0.052	0.057	0.036	0.044	0.044	0.040	0.040	0.144	0.088	0.037	0.078	0.044	0.031	0.043
Geno_Full	0.085	0.081	0.046	0.071	0.062	0.049	0.055	0.134	0.271	0.143	0.078	0.074	0.053	0.046
SNPassoc	0.071	0.056	0.023	0.048	0.048	0.027	0.022	0.201	0.100	0.040	0.119	0.042	0.040	0.024
Model 2 ²	P(outco	ome)=(0.	20,0.20,0.	0,0.30)										
sample size				1000							5000			
MAF (SNP1, SNP2)	(0.5,0.3)	(0.5,0.2)	(0.5,0.05)	(0.3,0.3)	(0.3,0.1)	(0.3,0.05)	(0.1,0.05)	(0.5,0.3)	(0.5,0.2)	(0.5,0.05)	(0.3,0.3)	(0.3,0.1)	(0.3,0.05)	(0.1,0.05)
SIPI	0.654	0.579	0.160	0.554	0.224	0.096	0.037	0.998	0.996	0.872	1.000	0.952	0.722	0.242
MDR	0.651	0.586	0.105	0.498	0.192	0.077	0.077	1	0.997	0.563	0.995	0.701	0.276	0.107
AA_Full	0.161	0.187	0.089	0.280	0.231	0.144	0.125	0.663	0.662	0.352	0.888	0.812	0.559	0.480
Geno_Full	0.181	0.224	0.107	0.292	0.202	0.139	0.161	0.759	0.755	0.399	0.911	0.739	0.520	0.383
SNPassoc	0.150	0.188	0.074	0.283	0.177	0.107	0.071	0.713	0.706	0.317	0.923	0.777	0.500	0.324
Model 3 ²	P(outco	ome) 1=(0	0.30,0.20,0	0.20,0.30	,0.20,0.2	20,0.20,0.2	20,0.20)							
sample size				1000							5000			
MAF (SNP1, SNP2)	(0.5,0.3)	(0.5,0.2)	(0.5,0.05)	(0.3,0.3)	(0.3,0.1)	(0.3,0.05)	(0.1,0.05)	(0.5,0.3)	(0.5,0.2)	(0.5,0.05)	(0.3,0.3)	(0.3,0.1)	(0.3,0.05)	(0.1,0.05)
SIPI	0.643	0.659	0.577	0.699	0.454	0.265	0.108	0.998	0.999	1.000	0.995	0.998	1.000	0.950
MDR	0.651	0.698	0.667	0.78	0.494	0.268	0.243	0.999	1	1	1	1	0.964	0.906
AA_Full	0.200	0.211	0.080	0.100	0.084	0.066	0.042	0.698	0.667	0.317	0.286	0.213	0.120	0.050
Geno_Full	0.186	0.187	0.092	0.120	0.092	0.065	0.080	0.756	0.697	0.343	0.382	0.228	0.146	0.069
SNPassoc	0.170	0.170	0.057	0.074	0.073	0.043	0.030	0.740	0.687	0.278	0.252	0.144	0.099	0.027

¹SIPI: SNP Interaction Pattern Identifier; MDR: Multifactor Dimensionality Reduction (test an <u>overall association allowing an interaction</u>); AA_Full and Geno_Full: full interaction logistic model with additive and genotypic SNPs, respectively, and SNPassoc: SNP interaction approach in SNPassoc R package ²Percentages of the outcome event in the nine genotype combinations (TL, TM, TR, ML, MM, MR, BL, BM, BR). T: top, M: middle, B: bottom, L: left, R: right; MAF=minor allele frequency

Table S3. Power comparisons of SIPI and other four statistical approaches¹ in detecting SNP-SNP interactions for Models 4-6

Model 4 ²	P(outco	me)= (0.	20,0.20,0	.20,0.30,	0.40,0.40	0,0.30,0.4	0,0.40)							
sample size				1000							5000			
MAF (SNP1, SNP2)	(0.5,0.3)	(0.5,0.2)	(0.5,0.05)	(0.3,0.3)	(0.3,0.1)	(0.3,0.05)	(0.1,0.05)	(0.5,0.3)	(0.5,0.2)	(0.5,0.05)	(0.3,0.3)	(0.3,0.1)	(0.3,0.05)	(0.1,0.05)
SIPI	0.726	0.744	0.594	0.612	0.811	0.781	0.563	1.000	0.999	0.918	0.984	0.929	0.880	0.909
MDR	0.928	0.862	0.685	0.986	0.942	0.903	0.757	1	1	1	1	1	1	1
AA_Full	0.117	0.141	0.068	0.235	0.173	0.110	0.121	0.513	0.527	0.260	0.786	0.667	0.432	0.391
Geno_Full	0.148	0.169	0.089	0.221	0.158	0.127	0.123	0.602	0.583	0.266	0.773	0.573	0.376	0.319
SNPassoc	0.126	0.144	0.069	0.223	0.132	0.074	0.054	0.546	0.525	0.216	0.831	0.625	0.357	0.253
Model 5 ²	P(outco	me)= (0.	08,0.13,0	.21,0.13,	0.33,0.62	2,0.21,0.6	2,0.91)							
sample size				1000							5000			
MAF (SNP1, SNP2)	(0.5,0.3)	(0.5,0.2)	(0.5,0.05)	(0.3,0.3)	(0.3,0.1)	(0.3,0.05)	(0.1,0.05)	(0.5,0.3)	(0.5,0.2)	(0.5,0.05)	(0.3,0.3)	(0.3,0.1)	(0.3,0.05)	(0.1,0.05)
SIPI	0.760	0.774	0.986	0.727	0.911	0.952	0.784	1.000	1.000	0.794	1.000	0.951	0.730	0.793
MDR	1	1	0.982	1	0.989	0.938	0.685	1	1	1	1	1	1	1
AA_Full	0.915	0.831	0.437	0.877	0.595	0.367	0.203	1.000	1.000	0.984	1.000	1.000	0.963	0.732
Geno_Full	0.755	0.656	0.333	0.718	0.423	0.288	0.196	1.000	1.000	0.928	1.000	0.988	0.883	0.603
SNPassoc	0.801	0.709	0.285	0.742	0.404	0.223	0.105	1.000	1.000	0.932	1.000	0.990	0.887	0.556
Model 6 ²	P(outco	me)= (0.	18,0.18,0	.18,0.18,	0.18,0.18	3,0.18,0.2	9,0.29)							
sample size				1000							5000			
MAF (SNP1, SNP2)	(0.5,0.3)	(0.5,0.2)	(0.5,0.05)	(0.3,0.3)	(0.3,0.1)	(0.3,0.05)	(0.1,0.05)	(0.5,0.3)	(0.5,0.2)	(0.5,0.05)	(0.3,0.3)	(0.3,0.1)	(0.3,0.05)	(0.1,0.05)
SIPI	0.397	0.290	0.055	0.124	0.047	0.013	0.006	0.999	0.988	0.456	0.799	0.321	0.113	0.010
MDR	0.267	0.183	0.07	0.088	0.065	0.045	0.056	0.884	0.644	0.124	0.211	0.079	0.073	0.044
AA_Full	0.254	0.271	0.125	0.128	0.109	0.084	0.046	0.842	0.833	0.520	0.406	0.348	0.203	0.055
Geno_Full	0.234	0.263	0.132	0.142	0.111	0.088	0.075	0.883	0.864	0.499	0.514	0.380	0.242	0.073
SNPassoc	0.211	0.233	0.082	0.101	0.060	0.045	0.027	0.871	0.845	0.476	0.360	0.262	0.143	0.025

¹SIPI: SNP Interaction Pattern Identifier; MDR: Multifactor Dimensionality Reduction (test an <u>overall association allowing an interaction</u>); AA_Full and Geno_Full: full interaction logistic model with additive and genotypic SNPs, respectively, and SNPassoc: SNP interaction approach in SNPassoc R package ²Percentages of the outcome event in the nine genotype combinations (TL, TM, TR, ML, MM, MR, BL, BM, BR). T: top, M: middle, B: bottom, L: left, R: right; MAF=minor allele frequency

Table S4. Comparisons of type I errors of SIPI and other four statistical approaches¹ in detecting SNP-SNP interactions in the null model

Null Model ²	P(out	come)= (0.2,0.2, 0	0.2,0.2,0.	2,0.2,0.2	2,0.2,0.2)								
sample size				1000							5000			
MAF (SNP1, SNP2)	(0.5,0.3)	(0.5,0.2)	(0.5,0.05)	(0.3,0.3)	(0.3,0.1)	(0.3,0.05)	(0.1,0.05)	(0.5,0.3)	(0.5,0.2)	(0.5,0.05)	(0.3,0.3)	(0.3,0.1)	(0.3,0.05)	(0.1,0.05)
SIPI	0.017	0.017	0.006	0.013	0.007	0.004	0.005	0.015	0.017	0.011	0.021	0.010	0.009	0.011
MDR	0.056	0.056	0.045	0.053	0.055	0.052	0.055	0.031	0.045	0.053	0.06	0.051	0.068	0.047
AA_Full	0.051	0.061	0.048	0.043	0.048	0.041	0.038	0.047	0.056	0.044	0.042	0.042	0.048	0.034
Geno_Full	0.046	0.063	0.042	0.064	0.051	0.043	0.061	0.054	0.066	0.061	0.053	0.064	0.054	0.052
SNPassoc	0.046	0.057	0.041	0.043	0.029	0.025	0.026	0.035	0.043	0.040	0.029	0.033	0.037	0.021

¹SIPI: SNP Interaction Pattern Identifier; MDR: Multifactor Dimensionality Reduction (test an <u>overall association allowing an interaction</u>); AA_Full and Geno_Full: full interaction logistic model with additive and genotypic SNPs, respectively, and SNPassoc: SNP interaction approach in SNPassoc R package ²Percentages of the outcome event in the nine genotype combinations (TL, TM, TR, ML, MM, MR, BL, BM, BR). T: top, M: middle, B: bottom, L: left, R: right; MAF=minor allele frequency

Table S5. Main effect tests and minor allele frequency (MAF) of the eight SNPs with a promising interaction

associated with prostate cancer aggressiveness in the PRACTICAL study

						Combined set	
	Minor <major< td=""><td>Discovery</td><td>Validation</td><td>Combined</td><td>Best</td><td>OR (95% CI)²</td><td>p-value</td></major<>	Discovery	Validation	Combined	Best	OR (95% CI) ²	p-value
SNP	allele	MAF	MAF	MAF	Mode ¹		
rs10488141	T <a< td=""><td>0.196</td><td>0.198</td><td>0.197</td><td>Rec</td><td>1.14 (0.96-1.36)</td><td>0.145</td></a<>	0.196	0.198	0.197	Rec	1.14 (0.96-1.36)	0.145
rs6994019	A <c< td=""><td>0.253</td><td>0.255</td><td>0.254</td><td>Dom</td><td>0.98 (0.92-1.06)</td><td>0.659</td></c<>	0.253	0.255	0.254	Dom	0.98 (0.92-1.06)	0.659
rs2058502	A <g< td=""><td>0.498</td><td>0.501*</td><td>0.499</td><td>Dom</td><td>1.10 (1.02-1.20)</td><td>0.020</td></g<>	0.498	0.501*	0.499	Dom	1.10 (1.02-1.20)	0.020
rs4947972	C <g< td=""><td>0.278</td><td>0.275</td><td>0.276</td><td>Rec</td><td>1.13 (1.00-1.29)</td><td>0.058</td></g<>	0.278	0.275	0.276	Rec	1.13 (1.00-1.29)	0.058
rs723527	G <a< td=""><td>0.432</td><td>0.433</td><td>0.432</td><td>Rec</td><td>1.14 (1.04-1.24)</td><td>0.004</td></a<>	0.432	0.433	0.432	Rec	1.14 (1.04-1.24)	0.004
rs845555	A <g< td=""><td>0.464</td><td>0.453</td><td>0.458</td><td>Add</td><td>1.05 (1.00-1.10)</td><td>0.048</td></g<>	0.464	0.453	0.458	Add	1.05 (1.00-1.10)	0.048
rs2075110	G <a< td=""><td>0.476</td><td>0.478</td><td>0.477</td><td>Rec</td><td>1.06 (0.97-1.15)</td><td>0.183</td></a<>	0.476	0.478	0.477	Rec	1.06 (0.97-1.15)	0.183
rs7538029	A <c< td=""><td>0.211</td><td>0.207</td><td>0.209</td><td>Add</td><td>1.11 (1.05-1.18)</td><td>0.0004</td></c<>	0.211	0.207	0.209	Add	1.11 (1.05-1.18)	0.0004

^{*}G allele became a minor allele in the validation set

1 Mode with the smallest p-value

2 Odds ratio (95% confidence interval)

Figure S1. Nine models of SNP1 and SNP2 with the dominant-dominant mode (part1)

Model structure Model label (details) ¹	Number of sub-groups	Interaction patterns $logit(Y)_{i} = \beta_{0} + \beta_{1}SNP_{1i} + \beta_{2}SNP_{2i} + \beta_{3}SNP_{1i} \times SNP_{2i} + \epsilon_{i}$			Note
Full interaction DD_Full (dSNP1, dSNP2,	4	SNP ₂		g(odds) Bb/bb (1)	Significant test of interaction has the same results regardless the
dSNP1xdSNP2)		AA (0)	β ₀	β ₀ +β ₂	original or reverse coding of the inheritance mode
		Aa/aa (1)	β ₀ +β ₁	$\beta_0+\beta_1+\beta_2+\beta_3$	
Main1+int DD_M1_int_o ₁	3	SNP ₂	Log BB (0)	g(odds) Bb/bb (1)	The original or reverse coding only matters for the SNP with an main
(dSNP1, dSNP1*dSNP2)		AA (0)	β ₀	β_0	effect in this model
		Aa/aa (1)	β ₀ +β ₁	β_0 + β_1 + β_3	
DD_M1_int_r ₁ (rdSNP1, <u>r</u> dSNP1*dSNP2)		SNP ₂	Log BB (0)	g(odds) Bb/bb (1)	
		AA (1)	β ₀ +β ₁	β_0 + β_1 + β_3	
		Aa/aa (0)	β_0	β_0	
Main2+int DD_M2_int_o ₂ (dSNP2, dSNP1*dSNP2)	3	SNP ₂	Log BB (0)	g(odds) Bb/bb (1)	The original or reverse coding only matters for the SNP with an main
(USINEZ, USINET USINEZ)		AA (0)	β ₀	β ₀ +β ₂	effect in this model
		Aa/aa (1)	β_0	β_0 + β_2 + β_3	
DD_M2_int_r ₂ (<u>r</u> dSNP2, dSNP1* <u>r</u> dSNP2)		SNP ₂	Log BB (1)	g(odds)) Bb/bb (0)	
		AA (0)	β_0 + β_2	β_0	
		Aa/aa (1)	$\beta_0 + \beta_2 + \beta_3$	β_0	

¹dSNP1 denote a dominant mode of SNP1 based on the minor allele, rdSNP1 denotes SNP1 with a reverse dominant mode

Figure S2. Nine models of SNP1 and SNP2 with the dominant-dominant mode (part 2)

Figure S2. Nine models of S	NP1 and S	NP2 with the	dominant-	dominant mode	
Model structure	Number	Inte	raction pat	tterns	Note
unique model ¹	of sub-	logit(Y)	$\beta_i = \beta_0 + \beta_0$	$B_1SNP_{1i} +$	
	groups	$\beta_2 SNP_{2i} +$	$\beta_3 SNP_{1i} \times$	$SNP_{2i} + \epsilon_i$	
Int-only	2	SNP ₂	Log(odds)		the original or reverse
DD_int_oo		SNP ₁	BB (0)	Bb/bb (1)	coding of both SNPs
(dSNP1*dSNP2)			_		matter for the interaction
		AA (0)	β_0	β_0	significance test
		Aa/aa (1)	β_0	β_0 + β_3	
DD_int_ro		SNP ₂	Log	g(odds)	
(<u>r</u> dSNP1*dSNP2)		SNP ₁	BB (0)	Bb/bb (1)	
		AA (1)	β ₀	β_0 + β_3	
		Aa/aa (0)	β_0	$oldsymbol{eta}_0$	
DD : /			ı		
DD_int_or		SNP ₂		g(odds)	
(dSNP1* <u>r</u> dSNP2)		SNP ₁	BB (1)	Bb/bb (0)	
		AA (0)	β_0	$oldsymbol{eta}_0$	
		Aa/aa (1)	β_0 + β_3	β_0	
DD_int_rr					
(<u>r</u> dSNP1* <u>r</u> dSNP2)		SNP ₂	Loc	g(odds)	
		SNP ₁	BB (1)	Bb/bb (0)	
		AA (1)	$\beta_0 + \beta_3$	$oldsymbol{eta}_0$	
		Aa/aa (0)	β_0	$oldsymbol{eta}_0$	

¹dSNP1 denote a dominant mode of SNP1 based on the minor allele, rdSNP1 denotes SNP1 with a reverse dominant mode

Figure S3. Interpretation of the designed and sister pattern¹ in the SNP Interaction Pattern Identifier (SIPI) for a

SNP with a minor allele frequency (MAF) close to 0.5

SN Des		SNP1 (G <a)<sup>2, SNP2 (C<g) pattern:="" rd_int_or<="" sister="" th=""></g)></a)<sup>							
SNP1\ SNP2 GG AG AA	GG Low risk	CG	CC	SNP1\ SI AA AG GG		GG Low risk	CG	CC	

¹ The 3x3 table is with the homozygous major genotypes on the left top corner in SIPI. The correct pattern is (GG+ GG) as the low-risk group.

² (A<G) means "G" is the major allele and "A" is the minor allele. When SNP1 MAF~0.5, half of the simulation runs treated "G" as the major allele, and the other half treated "A" as the major allele.

Figure S4. Pattern identification rate by minor allele conditions for Models 1-3

	rn identification rate by minor allele conditions					
Model	SNP1 and SNP2	SNP1 and SNP2				
Design (sister) ^a	MAF=(0.5, 0.3)	MAF=(0.3, 0.3)				
Pattern						
Model 1						
	1.0	1.0				
RR_int_rr		1.0				
(DR_int_or)	<u>u</u> 0.9	υ 0.9				
(DIX_IIII_OI)	te 0.8	0.8				
	0.7	<u> </u>				
	0.35	; 0.6				
	0.5	0.99				
	တ္တီ 0.4 ———————————————————————————————————	9 0.4				
	0.3	0.74 0.3				
	0.49 0.7 0.6 0.5 0.7 0.7 0.6 0.35 0.4 0.30 0.50 0.50					
	0.1	# 0.2 — — — — — — — — — — — — — — — — — — —				
	0.0	0.1				
		0.0				
	n=1000 n=5000	n=1000 n=5000				
	☐ Design ☐ Sister pattern					
	Design Dister pattern	□ Design				
Model 2						
DD_int_oo	1.0	1.0				
(RD_int_ro)	0.9	0.9				
	9 0.8	9.0.8 ———————————————————————————————————				
	9 0.8 0.7 0.6 0.5 0.49 0.49 0.49 0.49 0.49	9 0.8 0.7 0.6 0.5 0.5 0.4 0.7 0.3 0.73				
		50.7				
	9 0.6 0.37	ig 0.6				
	<u>0</u> 0.5	<u>0.97</u> 0.5				
	S 0.4	9.73 0.4 0.73				
	ē 0.3 — — — — — — — — — — — — — — — — — — —	ē 0.3 — — — — — — — — — — — — — — — — — — —				
	0.49	E 0.2 —				
		0.1				
	0.1					
	0.0	0.0				
	n=1000 n=5000	n=1000 n=5000				
		□Design				
	☐ Design ☐ Sister pattern	□ Design				
Model 3	4.0					
RD_int_rr	1.0	1.0				
(DD_int_or)	0.9	0.9				
	8.0 %	8.0 g				
	0.49	ž 0.7				
	0.38	9.0				
	5.0	0.0				
	0.5	0.99				
	0.49 0.7 0.6 0.6 0.38 0.7 0.9 0.5 0.4 0.3 0.3 0.49 0.50	0.8 attern 0.7 o.99 o.99 o.99 o.99 o.99				
	و م ق م م م م م	0.3				
	0.50	to 0.2				
	0.1	0.1				
	0.0	0.0				
		n=1000 n=5000				
	n=1000 n=5000					
	☐ Design ☐ Sister pattern	□ Design				
^a Ciotor pottorn io	only for a SND pair with a MAE_(0.5, 0.2)					

^a Sister pattern is only for a SNP pair with a MAF=(0.5, 0.3)

Figure S5. Pattern identification rate by minor allele conditions for Models 4-6

Figure S5. Patte	rn identification rate by minor allele conditions	
Model	SNP1 and SNP2	SNP1 and SNP2
Design (sister) ^a	MAF=(0.5, 0.3)	MAF=(0.3, 0.3)
Pattern		
Model 4		
DD_M1_int_o ₁	1.0	1.0
$(RD_M1_int_r_1)$	0.9	0.9
	# 0.8 — — — — — — — — — — — — — — — — — — —	8.0 day
	0.49	<u>~</u> 0.7
	j 0.6	÷ 0.6
	0.49 0.7 0.6 0.5 0.4 0.3 0.2 0.50	0.8
	9.0.4	9 0.4 1.00
	£ 0.4	£ 0.4
	0.50	j 0.3 ———————————————————————————————————
		g 0.2
	0.1 0.08	0.10
	0.0	0.0
	n=1000 n=5000	n=1000 n=5000
	□ Design □ Sister pattern	□Design
Model 5		
AA_Full	1.0	1.0
	0.9	0.9
	0.99 O.8 O.99 O.99 O.99 O.99 O.99 O.99 O.	0.7 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.2
	<u>~</u> 0.7 —	<u>~</u> 0.7
	0.0 Q	Ö 0.6
	0.99	<u>0</u> 0.5 1.00
	S 0.4	Ø 0.4
	2 0.3	Ę 0.4
	0.3	ē 0.3 ———————————————————————————————————
	0.2	₹ 0.2
	0.1	0.1
	0.0	0.0
	n=1000 n=5000	n=1000 n=5000
	□Design	□ Design
Model 8		
RD_int_oo	1.0	1.0
(DD_int_ro)	0.9	0.9
	9.0 at a state of the state of	0.8 ————————————————————————————————————
	ر ق 0.7 (0.49)	G 0.7
	ij 0.6	9.0 0.0
	0.41	9 0.5
	9 0.4	0.91
	0.3	Ø 0.4
	# 0.49	0.8
	0.36	0.2
	0.1	0.1
	0.0	0.0
	n=1000 n=5000	n=1000 n=5000
	□ Design □ Sister pattern	□ Design
a O'-1		

^a Sister pattern is only for a SNP pair with a MAF=(0.5, 0.3)

PRACTICAL Consortium:

Information of the PRACTICAL consortium can be found at http://practical.ccge.medschl.cam.ac.uk/.

Additional members from the consortium are: Margaret Cook ¹, Angela Morgan ², Artitaya Lophatananon ^{3,4}, Cyril Fisher ², Daniel Leongamornlert ², Edward J. Saunders ², Emma J. Sawyer ², Koveela Govindasami ², Malgorzata Tymrakiewicz ², Michelle Guy ², Naomi Livni ², Rosemary Wilkinson ², Sara Jugurnauth-Little ², Steve Hazel ², Tokhir Dadaev ², Melissa C. Southey ⁵, Liesel M. Fitzgerald ⁶, John Pedersen ⁷, John Hopper ⁸, Robert MacInnis ^{6,8}, Robert Szulkin ⁹, Ami Karlsson ⁹, Carin Cavalli-Bjoerkman ⁹, Jan-Erik Johansson ⁹, Jan Adolfson ⁹, Markus Aly ^{9,10}, Michael Broms ⁹, Paer Stattin ⁹, Brian E. Henderson ¹¹, Fredrick Schumacher ⁵¹, Anssi Auvinen ¹², Kimmo Taari ¹³, Liisa Maeaettaenen ¹⁴, Paula Kujala ¹⁵, Teemu Murtola ^{16,17}, Teuvo LJ Tammela ¹⁷, Csilla Sipeky ¹⁸, Andreas Roder ¹⁹, Peter Iversen ¹⁹, Peter Klarskov ²⁰, Sune F. Nielsen ^{21,22}, Tim J. Key ²³, Hans Wallinder ²⁴, Sven Gustafsson ²⁴, Jenny L. Donovan ²⁵, Freddie Hamdy ²⁶, Angela Cox ²⁷, Anne George ²⁸, Athene Lane ²⁸, Gemma Marsden ²⁶, Michael Davis ²⁵, Paul Brown ²⁵, Paul Pharoah ²⁹, Lisa B. Signorello ^{31,30}, Wei Zheng ³², Shannon K. McDonnell ³³, Daniel J. Schaid ³³, Liang Wang ³³, Lori Tillmans ³³, Shaun Riska ³³, Antje Rinckleb ³⁴, Kathleen Herkommer ³⁵, Manuel Luedeke ³⁴, Walther Vogel ³⁶, Dominika Wokolorczyk ³⁷, Jan Lubiski ³⁷, Wojciech Kluzniak ³⁷, Kai-Uwe Saum ³⁹, Christa Stegmaier ⁴⁰, Babu Zachariah ⁴¹, Hyun Park ⁴¹, James Haley ⁴¹, Maria Rincon ⁴¹, Selina Radlein ⁴¹, Chavdar Slavov ⁴², Aleksandrina Vlahova ⁴³, Atanaska Mitkova ⁴⁴, Darina Kachakova ⁴⁴, Elenko Popov ⁴², Svetlana Christova ⁴³, Tihomir Dikov ⁴³, Vanio Mitev ⁴⁴, Allison Eckert ⁴⁵, APCB BioResource ^{45,46}, Amanda Spurdle ⁴⁷, Angus Collins ⁴⁵, Glenn Wood ⁴⁵, Gramen Jerónimo⁴⁶, Paula Paulo ⁴⁸, Pedro Pinto ⁴⁸, Rui Henrique ⁴⁸, Sofia Maia ⁴⁸, Agnieszka Michael ⁴⁹, Andrzej Kierzek ⁴⁹, Huihai Wu ⁴⁹,

¹ Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK, ² The Institute of Cancer Research, Sutton, UK, ³ Institute of Population Health, University of Manchester, Manchester, UK, ⁴ Warwick Medical School, University of Warwick, Coventry, UK, ⁵ Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia. 6 Cancer Epidemiology Centre, The Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, Australia. 7 Tissupath Pty Ltd., Melbourne, Victoria 3122, Australia, 8 Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia, 9 Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden, ¹⁰ Department of Clinical Sciences at Danderyds Hospital, Stockholm, Sweden, ¹¹ Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, USA, ¹² Department of Epidemiology, School of Health Sciences, University of Tampere, Tampere. Finland, ¹³ Department of Urology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland, ¹⁴ Finnish Cancer Registry, Helsinki, Finland, ¹⁵ Fimlab Laboratories, Tampere University Hospital, Tampere, Finland, ¹⁶ School of Medicine, University of Tampere, Tampere, Finland, ¹⁷ Department of Urology, Tampere University Hospital and Medical School, University of Tampere, Finland, ¹⁸ Department of Medical Biochemistry and Genetics, Institute of Biomedicine, Kiinamyllynkatu 10, FI-20014 University of Turku, Finland, ¹⁹ Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, Copenhagen University Hospital, Tagensvej 20, 7521, DK-2200 Copenhagen, Denmark, ²⁰ Department of Urology, Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 75, DK-230 Herlev, Denmark, ²¹ Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 75, DK-230 Herlev, Denmark, ²² Faculty of Health and Medical Sciences, University of Copenhagen, ²³ Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK, ²⁴ Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK, ²⁵ School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK, ²⁶ Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK, Faculty of Medical Science, University of Oxford, John Radcliffe Hospital, Oxford, UK, ²⁷ CR-UK/YCR Sheffield Cancer Research Centre, University of Sheffield, Sheffield, UK, ²⁸ University of Cambridge, Department of Oncology, Box 279, Addenbrooke's Hospital, Hills Road Cambridge CB2 0QQ, UK, ²⁹ Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, UK, 30

International Epidemiology Institute, 1555 Research Blvd., Suite 550, Rockville, MD 20850, USA, 31 Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA, ³² Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN 37232 USA, ³³ Mayo Clinic, Rochester, Minnesota, USA, ³⁴ Department of Urology, University Hospital Ulm, Germany, ³⁵ Department of Urology, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Munich, Germany, ³⁶ Institute of Human Genetics, University Hospital Ulm, Germany, ³⁷ International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland, ³⁹ Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany, 40 Saarland Cancer Registry, 66119 Saarbruecken, Germany, ⁴¹ Department of Cancer Epidemiology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA, 42 Department of Urology and Alexandrovska University Hospital, Medical University, Sofia, Bulgaria, 43 Department of General and Clinical Pathology, Medical University, Sofia, Bulgaria, 44 Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University, Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria, ⁴⁵ Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, Australia, ⁴⁶ Australian Prostate Cancer BioResource, Brisbane, QLD, ⁴⁷ Molecular Cancer Epidemiology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia, 48 Department of Genetics, Portuguese Oncology Institute, Porto, Portugal, ⁴⁹ The University of Surrey, Guildford, Surrey, GU2 7XH, UK, ⁵⁰ Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109-1024, USA, ⁵¹ Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106-4945, USA, ⁵² Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, P. R. China.

Funding for the CRUK study and PRACTICAL consortium:

This work was supported by the Canadian Institutes of Health Research, European Commission's Seventh Framework Programme grant agreement n° 223175 (HEALTH-F2-2009-223175), Cancer Research UK Grants C5047/A7357, C1287/A10118, C5047/A3354, C5047/A10692, C16913/A6135, and The National Institute of Health (NIH) Cancer Post-Cancer GWAS initiative grant: No. 1 U19 CA 148537-01 (the GAME-ON initiative).

COGS acknowledgement:

This study would not have been possible without the contributions of the following: Per Hall (COGS); Douglas F. Easton, Paul Pharoah, Kyriaki Michailidou, Manjeet K. Bolla, Qin Wang (BCAC), Andrew Berchuck (OCAC), Rosalind A. Eeles, Douglas F. Easton, Ali Amin Al Olama, Zsofia Kote-Jarai, Sara Benlloch (PRACTICAL), Georgia Chenevix-Trench, Antonis Antoniou, Lesley McGuffog, Fergus Couch and Ken Offit (CIMBA), Joe Dennis, Alison M. Dunning, Andrew Lee, and Ed Dicks, Craig Luccarini and the staff of the Centre for Genetic Epidemiology Laboratory, Javier Benitez, Anna Gonzalez-Neira and the staff of the CNIO genotyping unit, Jacques Simard and Daniel C. Tessier, Francois Bacot, Daniel Vincent, Sylvie LaBoissière and Frederic Robidoux and the staff of the McGill University and Génome Québec Innovation Centre, Stig E. Bojesen, Sune F. Nielsen, Borge G. Nordestgaard, and the staff of the Copenhagen DNA laboratory, and Julie M. Cunningham, Sharon A. Windebank, Christopher A. Hilker, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility

Funding for the iCOGS infrastructure came from: the European Community's Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund.