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Abstract

Telomeres cap chromosome ends, protecting them from degradation, double-strand breaks, and 

end-to-end fusions. Telomeres are maintained by telomerase, a reverse transcriptase encoded by 

TERT, and an RNA template encoded by TERC. Loci in the TERT and adjoining CLPTM1L 
region are associated with risk of multiple cancers. We therefore investigated associations between 

variants in 22 telomere structure and maintenance gene regions and colorectal, breast, prostate, 

ovarian, and lung cancer risk. We performed subset-based meta-analyses of 204,993 directly-

measured and imputed SNPs among 61,851 cancer cases and 74,457 controls of European descent. 

Independent associations for SNP minor alleles were identified using sequential conditional 

analysis (with gene-level P-value cutoffs ≤3.08×10−5). Of the thirteen independent SNPs observed 

to be associated with cancer risk, novel findings were observed for seven loci. Across the TERT-
CLPTML1 region, rs12655062 was associated positively with prostate cancer, and inversely with 

colorectal and ovarian cancers, and rs115960372 was associated positively with prostate cancer. 

Across the TERC region, rs75316749 was positively associated with colorectal, breast, ovarian, 

and lung cancers. Across the DCLRE1B region, rs974404 and rs12144215 were inversely 

associated with prostate and lung cancers, and colorectal, breast, and ovarian cancers, respectively. 

Near POT1, rs116895242 was inversely associated with colorectal, ovarian, and lung cancers, and 

RTEL1 rs34978822 was inversely associated with prostate and lung cancers. The complex 

association patterns in telomere-related genes across cancer types may provide insight into 

mechanisms through which telomere dysfunction in different tissues influences cancer risk.
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Introduction

Telomeres are complex nucleoprotein structures that cap chromosome ends (1,2), protecting 

them from degradation, double strand breaks, and end-to-end fusions (1,2). Thus, telomeres 

play an essential role in preserving genomic stability. Telomeres are maintained by the 

enzyme telomerase, which is made up of a reverse transcriptase encoded by TERT, and an 
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RNA template encoded by TERC (1,2), with several other associated proteins encoded by 

DKC1, NOP10, NHP2, NAF1, and GAR1 (1). The telomere structure itself is composed of 

simple tandem TTAGGG repeats bound by six proteins (encoded by TERF1, TERF2, 
TINF2, TERF21P, ACD, and POT1), termed shelterin. Other proteins that interact with 

shelterin are encoded by OBFC1, RTEL1, DCLRE1B, TNKS, PINX1, and TEP1 (1). 

Germline SNPs in TERC, TERT, RTEL1, NAF1 (3), and OBFC1 (3,4) have been associated 

with telomere length in genome-wide association studies (GWAS). Additional genes 

associated with telomere length include: BICD1 (5), ACYP2, ZNF208, MPHOSPH6 (3), 

and DCAF4 (6).

Susceptibility loci for multiple cancer types have been identified in the TERT and adjoining 

CLPTM1L gene region in GWAS. Both increased and decreased risk associations have been 

reported for some loci for different cancers (7–9), suggesting complex patterns of 

associations across cancer types which could be due to tissue specificity or interactions with 

risk factors. Because properly functioning telomeres are vital for genomic stability and 

chromosomal integrity, genetic variants in other telomere structure and maintenance genes 

may affect cancer risk. Therefore, we sought to examine whether pleiotropic associations for 

variants in telomere structure and maintenance genes are observed across cancer types 

within the Genetic Associations and Mechanisms in Oncology Network (GAME-ON) (10) 

and the Genetic and Epidemiology of Colorectal Cancer Consortium (GECCO) (11).

GAME-ON was established by the National Cancer Institute (NCI) to foster collaborative 

post-GWAS research across consortia of colorectal, breast, prostate, ovarian, and lung 

cancers (10). The extensive genomic data available through GAME-ON and GECCO, 

including over 61,000 cases and 74,000 controls, were utilized to identify and systematically 

characterize patterns of associations between independent variants in 22 telomere structure 

and maintenance gene regions and risk of colorectal, breast, prostate, ovarian, and lung 

cancers.

Materials and Methods

Study Population

Our analysis included 61,851 cancer cases and 74,457 controls of European descent from 45 

GWAS (12) (Table 1). Details of each study have been described previously (10–19) 

(Supplementary Table 1); at minimum, cases were frequency-matched to controls on age and 

sex. Each study obtained informed consent from participants; study procedures including 

certifications required for data sharing in accordance with National Institutes of Health 

policies were approved by all Institutional Review Boards.

Consortium-based Imputation and Meta-analysis

Genotyping was performed using Illumina and Affymetrix GWAS platforms. Each 

consortium imputed unmeasured single nucleotide polymorphisms (SNPs) for their GWAS 

data from the 1000 Genomes (Phase 1) March 2012 Build 37 reference panel using MACH, 

IMPUTE, or Minimac (10–19) Supplementary Table 2. Within each consortium, per-allele 

odds ratios (ORs) and 95% confidence intervals (CIs) for each SNP and cancer risk were 

Karami et al. Page 2

Int J Cancer. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



calculated using unconditional logistic regression. Study-specific results were combined 

using fixed-effects meta-analysis.

Gene Selection

We examined 204,993 SNPs within one mega-base upstream and downstream of the 

transcription start and end sites of the following genes, selected either because of their 

relevance to telomere structure and maintenance, or telomere length: ACD, ACYP2, BICD1, 
DCLRE1B, GAR1, MPHOSPH6, NAF1, NHP2, NOP10, OBFC1, PIK3C3, PINX1-TNKS, 

POT1, RTEL1, TEP1, TERC, TERF1, TERF2, TERF2IP, TERT-CLPTM1L, TINF2, and 

ZNF208. The chromosomal location and number of SNPs evaluated in each gene is in 

Supplementary Table 3 (20).

Cross-Cancer Association Analysis

ASSociation analysis based on SubSET (ASSET) meta-analysis allows for identification of 

associations that may be in the same, or opposite, direction for some cancer types versus 

others (21). We performed one-sided and two-sided ASSET analyses using summary data 

for each of the five cancer types, and repeated analyses additionally including the following 

cancer subtypes: estrogen receptor (ER) negative breast; aggressive prostate (defined as 

Gleason score ≥8, disease stage ‘distant’, prostate-specific antigen level >100 ng/ml, or 

death from prostate cancer (17)); endometrioid and serous ovarian; and adenocarcinoma and 

squamous lung. Other tumor subtypes were not independently evaluated due to low 

frequencies. ASSET takes into account matrices of overlapping cases and controls across 

datasets including overlap between cancer types and subtypes (Supplementary Table 4), and 

adjusts for correlations across studies. ASSET groups cancer types by the direction of their 

associations and identifies the strongest associations, so multiple testing penalties may be 

incurred, widening the CIs of summary results (21). A Manhattan plot of P-values from our 

two-sided unconditional ASSET analysis was produced in R Studio [http://

www.rstudio.com]. Forest plots of two-sided unconditional ASSET meta-analysis results for 

individual SNPs were generated by cancer type and subtype. Because ASSET takes into 

account overlap between cancer types and subtypes, associations appearing statistically 

significant for a given cancer type (or subtype) may be included in the “null” category if the 

association is actually driven by that cancer’s subtype(s) included in the ‘positive” or 

“inverse” category. Statistically significant positive or inverse associations are only 

interpretable within ASSET if the overall one-sided (positive or negative) test is statistically 

significant.

Gene-level association tests to evaluate all SNPs within a gene and cancer risk after taking 

linkage disequilibrium (LD) into account were performed using VEGAS2 (22) on the overall 

two-sided unconditional ASSET meta-analysis P-values for all SNPs +/−50kb of each gene.

Identifying SNPs in Linkage Disequilibrium

Because GAME-ON and GECCO data included summary statistics for each SNP, not 

individual-level data, we could not calculate LD directly. Instead, we determined LD using 

individual-level data from European ancestry subjects in the Cancer Genetic Markers of 

Susceptibility (CGEMS) Project (23) and the Environmental and Genetics in Lung Cancer 
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Etiology (EAGLE) study (24). To be comparable to the summary data used for our analyses, 

we imputed SNPs with IMPUTE2 (25) from 1000 Genomes (Phase 3) October 2014 Build 

37 in CGEMS and EAGLE (26). Of 204,718 SNPs in the summary data, 7,015 SNPs could 

not be imputed in CGEMS and EAGLE because they were not present in 1000 Genomes 

(Phase 1) data used to impute the GAME-ON and GECCO data (12,13). Additionally, 8,977 

SNPs failed quality-control measures (information score <0.3) and 96 were multi-allelic, 

leaving 188,630 markers in CGEMS and EAGLE for analysis. We identified sets of SNPs 

with r2>0.70 in CGEMS and EAGLE using Haploview (27). Given the complicated LD 

patterns in TERT-CLPTM1L and TERC, we generated LD plots of all significant SNPs from 

ASSET analyses, to the extent possible, with r2<0.70 (27).

Determining Gene-level P-value Thresholds

We used the Genetic type 1 Error Calculator (GEC) to calculate the effective number of 

independent tests (Me) and statistical significance P-value threshold for each gene (28). This 

method, developed to address the issue of multiple testing with SNPs in LD, utilizes 

eigenvalues derived from matrices of association test P-values between SNPs to calculate 

Me. For each gene, the P-value threshold required to keep type I error at 5% equals alpha 

divided by Me. Before applying the GEC, for simplicity we removed redundant SNPs 

(r2>0.98) from CGEMS and EAGLE using gPLINK version 1.07 [http://

pngu.mgh.harvard.edu/purcell/plink/] ensuring that directly measured SNPs in our dataset 

were not eliminated, leaving 98,783 markers. Me and P-value thresholds for each gene are in 

Supplementary Table 3.

Conditional Analysis

To identify independent associations, we performed sequential conditional analysis using 

Yang et al.’s method for summary-level data (29). For each gene, SNPs were ranked by P-

value, and in each step, a single SNP was added to the ASSET analysis, conditioning on 

SNPs that were most significantly associated in previous steps. This process was repeated 

until the two-sided P-value for the most significant SNP for a step remained below the Me P-

value. To avoid collinearity, in each step, the program assesses r2 between the next SNP to 

add and the SNPs that are already included in the model, and skips SNPs that are correlated 

(in this case, r2>0.80). To evaluate if this resulted in over-fitting, we performed a sensitivity 

analysis by conducting sequential conditional analysis of TERT-CLPTM1L using pruned 

variants with r2≤0.70. No evidence of over-fitting was observed (data not shown).

For SNPs with two-sided P-values that reached multiple comparison-adjusted gene-level 

significance, we assessed whether both the positive and inverse results contributed to the 

association (versus the association being driven primarily by one-sided results) by evaluating 

whether the two-sided P-value was smaller than the most significant one-sided P-value. We 

used an arbitrary P-value cutoff of 0.01 for the contributing one-sided associations, and 

considered P-values between 0.01–0.05 as suggestive.

Functional annotations for SNPs with observed associations that have not been previously 

reported were obtained from HaploReg Version 4.1 on June 14th, 2016 (30). HaploReg is a 

data repository which integrates information on sequence conservation, regulatory protein 
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binding, epigenomic evidence, expression quantitative trait loci, and regulatory motifs from 

several sources including the ENCODE project, the GRASP database, GTEx, SiPhy, and 

multiple other studies (30).

Results

We examined 204,993 SNPs in 22 telomere structure and maintenance gene regions and 

colorectal, breast, prostate, ovarian, and lung cancer risk in 61,851 cancer cases and 74,457 

controls (Table 1). ASSET unconditional two-sided analysis combined P-values for each 

SNP are shown in the Manhattan plot (Supplementary Figure 1). VEGAS2 gene-based 

association tests evaluating all SNPs in each gene in aggregate and cancer risk were 

statistically significant for DCLRE1B (P=1.1×10−5), TERT-CLPTM1L (P=1.0×10−6), and 

RTEL1 (P=9.4×10−4). Using the per-gene P-value threshold for the effective number of 

independent tests, we observed significant associations with cancer risk for 89 DCLRE1B, 

153 TERC, 1 GAR1, 95 TERT-CLPTM1L, 2 POT1, 1 TERF2, and 7 RTEL1 SNPs 

(Supplementary Table 5). After removing SNPs in LD at r2>0.70 with the lead SNP, 3 

DCLRE1B, 19 TERC, 1 GAR1, 23 TERT-CLPTM1L, 2 POT1, 1 TERF2, and 2 RTEL1 
SNPs remained (Table 2). Correlations between these SNPs (r2 and D′) are in 

Supplementary Table 6. Supplementary Table 7 includes r2 correlations between these SNPs 

and all other significantly associated SNPs by gene. Even after pruning, 3 SNP pairs in 

TERC remained correlated with r2>0.70 (rs75982374 and rs76925190; rs80304993 and 

rs969217; rs59758024 and rs9865021), as did 2 SNP pairs in TERT (rs35953391 and 

rs37004; rs3816659 and rs37005). LD between these highly correlated SNPs and the 

variants retained is in Supplementary Figure 2.

For GAR1 and TERF2, only single SNPs reached gene-level significance, and the 

associations were entirely driven by prostate cancer. However, data were available only for 

prostate and ovarian cancers for the SNP in GAR1, and for colorectal, prostate, ovarian, and 

lung cancers for the SNP in TERF2. These two SNPs are “very rare” variants with minor 

allele frequencies (MAF) of 0.3%, making them difficult to impute. For POT1 and RTEL1, 

only one SNP in each gene was significantly associated in sequential conditional analyses. 

RTEL1 rs34978822 was associated with prostate and lung cancers (and was not investigated 

in breast cancer). rs34978822, and two SNPs in LD with it, are associated with chromatin 

structure changes in a large number of cell lines reported in HaploReg (30). POT1 
rs116895242 was associated with colorectal, ovarian, and lung cancers (Table 2); this SNP 

creates six motif changes that may affect transcription factor binding (30).

Table 3 presents results from unconditional and sequential conditional analysis of 

DCLRE1B, TERC, and TERT-CLPTM1L gene regions, including all SNPs with ASSET 

two-sided results that reached gene-level P-value cutoffs. Sequential conditional analysis 

identified 11 independent SNPs associated with risk of multiple cancers. For all conditional 

results, two-sided P-values are smaller than one-sided P-values (data not shown).

In TERC, three independent loci were identified (Table 3). We observed highly significant 

inverse associations with prostate cancer risk for the A allele of rs80304993 (P=1.51×10−15), 

and the T allele of rs62293480, particularly after conditioning on rs80304993 
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(Pconditional=1.44×10−14). Forest plots by cancer type and subtype (Figures 1A and 1B) show 

that these inverse associations were driven solely by overall prostate cancer (OR=0.82, 95% 

CI=0.78–0.86). In our sequential analysis, the next SNP (ranked by unconditional P-value) 

to add to the model conditioning on both rs80304993 and rs62293480 was rs4420873, but it 

was excluded due to collinearity (r2>0.80). Therefore, the next SNP, rs75316749, was 

evaluated in the model conditioning on rs80304993 and rs62293480, and had a combined 

conditional P-value of 1.46×10−6. Unlike the two other SNPs in TERC, rs75316749 was not 

associated with prostate cancer. The G allele was positively associated in conditional and 

unconditional analyses with colorectal, breast, ovarian, and lung cancers (Table 3), driven 

specifically by ER-negative breast cancer, and lung adenocarcinoma and squamous cancers, 

but not lung cancer overall (P=2.9×10−4; OR=1.17 95%CI=1.07–1.27; Figure 1C). While 

rs75316749 has been reported to result in a motif change and enhancer histone changes in 

breast and fat cell lines, SNPs in very high LD including rs115002293 and rs75963875 are 

associated with enhancer histone changes in a wide variety of cell lines, including breast and 

lung fibroblast cells (30).

In the TERT-CLPTM1L region, six independent loci were identified (Table 3). The T allele 

of the SNP with the lowest P-value, rs37004, was inversely associated with lung cancer 

overall and specifically lung adenocarcinoma (P=2.2×10−11; OR=0.83 95%CI=0.79–0.88; 

Figure 2A). After conditioning on rs37004, rs7717443 had the lowest combined P-value 

(Pconditional=1.26×10−7). The T allele was associated with increased ovarian and lung cancer 

risks, and suggestive decreased colorectal and prostate cancer risks in conditional and 

unconditional analyses. The unconditional ASSET forest plot by cancer type and subtype for 

rs7717443 (Figure 2B) illustrates that the positive associations apply to serous and 

endometrioid ovarian cancer subtypes (but not overall ovarian cancer) and lung 

adenocarcinoma only (P=2.0×10−8; OR=1.20 95%CI=1.13–1.28), and inverse associations 

are for overall colorectal and prostate cancers, and aggressive prostate cancer (P=3.3×10−2; 

OR=0.94 95%CI=0.89–1.00). Next, after conditioning on both rs37004 and rs7717443, the 

combined P-value for rs10866498 was highly significant (9.27×10−18). In conditional and 

unconditional analyses, the T allele of rs10866498 was associated positively with colorectal 

and prostate cancers, and inversely with ovarian and lung cancers (Table 3). Associations 

with colorectal cancer, and with both overall and aggressive prostate cancers (P=0.01; 

OR=1.06 95%CI=1.01–1.10) were positive, and inverse associations were observed with 

overall lung cancer and lung adenocarcinoma, and serous ovarian cancer (P=4.6×10−7; 

OR=0.88 95%CI=0.83–0.92; Figure 2C). After conditioning on the top 3 TERT-CLPTM1L 
SNPs, rs12655062 was the next most significant (Pconditional=1.13×10−6). In both 

unconditional and conditional analyses, the rs12655062 A allele was associated positively 

with prostate and inversely with colorectal and ovarian cancers (Table 3). Positive 

associations were driven by both overall prostate cancer and aggressive prostate cancer 

(P=1.7×10−4; OR=1.14 95%CI=1.06–1.21), and inverse associations by overall colorectal 

cancer and endometrioid and serous ovarian cancers (P=4.1×10−2; OR=0.95 95%CI=0.90–

1.00; Figure 2D). The rs12655062 A allele is associated with reduced expression of IRX4 
and CTD02194D22.3 in prostate tissue (31), alters six motifs, and results in enhancer 

histone changes in breast and gastrointestinal cell lines (30). The next most significant SNP 

in sequential analysis after conditioning on the top four TERT-CLPTM1L SNPs was 
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rs115960372 (Pconditional=3.12×10−6). The T allele was associated positively with prostate 

cancer and suggestively inversely associated with lung cancer in conditional and 

unconditional analyses (Table 3). This SNP results in changes to chromatin structure in 

several cell lines (including fetal, adult, and carcinoma lung cell lines) and two motif 

changes (30). The unconditional ASSET forest plot by cancer type and subtype revealed that 

positive associations were driven by overall prostate cancer (OR=1.19 95%CI=1.09–1.29); 

however, inverse associations were not significant in cancer subtype analyses (P=7.5×10−2; 

Figure 2E). The last significant SNP identified from sequential conditional analysis after 

conditioning on the above five TERT-CLPTM1L variants was rs2736098 

(Pconditional=5.36×10−6). The T allele was suggestively positively associated with prostate 

and lung cancers, and inversely associated with colorectal, breast, and ovarian cancers, in 

both conditional and unconditional analyses (Table 3). Positive associations were driven not 

only by overall prostate and lung cancers, but also lung adenocarcinoma (P=1.9×10−3; 

OR=1.09 95%CI=1.03–1.16; Figure 2F).

In DCLRE1B, rs974404 had the lowest combined P-value (P=9.19×10−6). The G allele was 

inversely associated with prostate and lung cancers, and suggestively positively associated 

with breast and ovarian cancers. The inverse associations were driven by overall prostate 

cancer and lung adenocarcinoma (P=1.3×10−3; OR=0.93 95%CI=0.88–0.97), but not by 

overall lung cancer, or squamous cell lung cancer; positive associations were no longer 

significant in analyses by cancer subtype (P=0.23) (Figure 3A). Considerable evidence 

supports that rs974404 and correlated SNPs alter gene function. rs974404 results in 27 

altered motifs (30), and twelve SNPs in LD with rs974404 are associated with increased 

expression of DCLRE1B in whole blood (30).

After conditioning on rs974404, the most significant SNP in DCLRE1B was rs12144215 

(Punconditional=1.50×10−5; Pconditional=2.07×10−5). In unconditional analyses, the rs12144215 

T allele was inversely associated with colorectal and prostate cancers, and after conditioning 

on rs974404, a suggestive positive association with lung cancer and a significant inverse 

association with breast cancer were additionally observed (Table 3). The unconditional 

inverse association was driven by overall colorectal and prostate cancers and the ovarian 

cancer endometrioid subtype (P=1.1×10−5; OR=0.90 95%CI=0.86–0.94; Figure 3B); the 

positive association with lung cancer observed in conditional analyses was no longer 

observed in unconditional analyses by cancer subtype (P=1.00). Several SNPs in LD with 

rs12144215 change chromatin structure in multiple cell lines, including mammary epithelial 

and lung (30).

Discussion

Our conditional subset-based meta-analysis of GWAS data from five different cancer types 

identified 13 independent SNPs in DCLRE1B, TERC, TERT-CLPTM1L, RTEL and POT1 
gene regions that are associated with risk of multiple cancers. Across the DCLRE1B region, 

we identified two novel loci: rs974404, which is associated with increased DCLRE1B 
expression (30) and was associated with prostate and lung cancer risk, and rs12144215, 

which may be associated with chromatin structure alterations and was associated with 

colorectal, breast, and ovarian cancers risk. While the observed associations between two 
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SNPs near the TERC gene, rs80304993 and rs62293480, and prostate cancer risk have been 

reported in GWAS previously (32), we show that the association between rs62293480 and 

prostate cancer is much more significant after conditioning on rs80304993 

(Punconditional=1.35x−06, Pconditional=2.16x−13). We also report a novel finding in the TERC 
region; after conditioning on both rs80304993 and rs62293480, rs75316749 was associated 

with colorectal, breast, ovarian, and lung cancer risk. There is some evidence that this SNP 

and/or others in LD with it result in enhancer histone changes (30). Across the TERT-
CLPTML1 regions, we detected six susceptibility loci where strong associations with lung 

and/or prostate cancer risk were generally observed. We report similar associations 

previously observed in GWAS for four TERT-CLPTM1L SNPs and lung and prostate cancer 

(7,9), but observe novel findings for two SNPs, rs12655062 and rs115960372. The 

rs12655062 variant is associated with reduced expression of the gene IRX4 in prostate 

tissue, and rs115960372 may alter chromatin structure in multiple tissue types (30). Our 

study demonstrated that for rs10866498, after controlling for the top two hits in TERT-
CLPTM1L, the p-value for the inverse association with lung and ovarian cancer was even 

more significant (Punconditional=6.36×10−8, Pconditional=9.27×10−18). We also observed 

associations between rs116895242 in the POT1 region and colorectal, ovarian and lung 

cancer risk, and between rs34978822 in RTEL1 and prostate and lung cancer. There is 

limited evidence to support that these SNPs alter gene function (30).

DCLRE1B plays an important role in protecting telomeres by interacting with the shelterin 

complex to suppress DNA damage-sensing machinery during and after replication (20,33). 

The SNPs that we observed to be associated with risk of prostate and lung cancers (rs974404 

in PTPN22), and colorectal, breast, and ovarian cancers (rs12144215 in MAGI3), have been 

previously associated in GWAS with rheumatoid arthritis and Grave’s disease, respectively 

(34,35). To date, only one SNP in the DCLRE1B gene, rs11552449, has been shown to be 

associated with breast cancer risk in a meta-analysis of nine GWAS and 41 studies in the 

Breast Cancer Association Consortium (P-value=1.8×10−8) (16). However, this SNP did not 

reach gene-level statistical significance in our analyses.

TERC is essential for telomerase expression because it encodes the RNA component of 

telomerase required for elongation of telomeric repeats (1,20). Variants in the 3q26 TERC 
region have been associated with risk of several different cancers in GWAS, including 

melanoma, glioma, bladder, colorectal, nasopharyngeal, chronic lymphatic leukemia, and 

multiple myeloma (36–42). In a GWAS of >25,000 prostate cancer cases and controls, Kote-

Jarai et al. reported that rs10936632 was associated with a 10% decrease in prostate cancer 

risk (P-value 1.0×10−13) (32). In our unconditional ASSET analysis we also observed that 

rs10936632, which is in high LD (r2=0.97) with rs55953261, was significantly associated 

with reduced prostate cancer risk. It should be noted that 27% of prostate cancer cases and 

26% of controls in Kote-Jarai et al. (32) were also included in our investigation.

Our additional TERC findings for rs80304993 and rs62293480 and prostate cancer risk have 

been observed previously in a multi-ethnic meta-analysis of GWAS (43). These SNPS are 

located in the SKIL gene, which regulates cell growth and differentiation (20). Our study 

findings for SNP rs75316749 and colorectal, breast, ovarian, and lung cancer risk are novel. 

SNP rs75316749 lies approximately 40kb 3′ of the MECOM gene which encodes a protein 
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involved in hematopoiesis, apoptosis, development, and cell differentiation and proliferation 

(20).

The TERT gene, at 5p15.33, encodes the catalytic subunit of telomerase (1,20,33) and thus 

plays a vital role in maintaining telomerase expression and facilitating elongation of 

telomeric repeats. The 5′-end of TERT adjoins CLPTM1L, which is overexpressed in lung 

and pancreatic cancers (9,44,45). There is extensive LD between the two genes, and 

susceptibility loci in this combined gene region have been associated with multiple cancer 

types (7–9,46–48). The most commonly associated risk variants in the TERT-CLPTM1L 
regions are rs2736100 and rs401681, respectively. In GWAS, rs2736100 has been associated 

with lung, glioma, and testicular cancer risk (9,45) while rs401681 has been linked to lung, 

bladder, pancreas, prostate, and skin cancer risk (9,45). Our unconditional ASSET analyses 

corroborate the associations observed between these variants and lung cancer risk.

Mocellin et al. performed a systematic review of TERT-CLPTM1L polymorphisms and 

cancer risk in 85 studies including 27 GWAS of predominantly individuals of European 

ancestry (87%) (9). Of the 67 SNPs and 24 tumor types examined, statistically significant 

associations were reported for 22 SNPs, 19 of which were linked to lung cancer. In our 

investigation, unconditional ASSET analysis confirmed associations with lung cancer for 13 

of these at our gene level cutoff (P-value <1.32×10−5) and for four more at P-value<0.05. Of 

particular interest from Mocellin et al.’s study was the highly significant association 

reported between rs2736098 and lung (4 studies, P-value=2.2×10−13) and bladder (3 studies, 

P-value=8.6×10−10) cancer risk and the association between rs451360 and lung cancer risk 

(2 studies, P-value=4×10−3) (9). Our findings are in agreement with these observations. In 

our analysis, rs37004, 2kb 5′ of CLPTM1L and in high LD (r2=0.89) with rs451360, was 

the SNP in the TERT-CLPTM1L region with the lowest P-value, due entirely to its 

association with lung cancer risk; rs2736098, located within TERT, was associated with 

lung cancer risk as well as prostate, colorectal, breast, and ovarian cancer. However, we did 

not observe the lung cancer association reported by Mocellin et al. for rs1801075 and we 

could not evaluate the association with rs4246742 because no data on lung cancer were 

available for this SNP.

Similar results were reported for these variants by Wang et al., who utilized the same 

ASSET meta-analytic approach that we used to examine common susceptibility alleles in 

TERT-CLPTM1L across six cancer types (lung, prostate, pancreatic, testicular, glioma, and 

bladder), in 34,248 cases and 45,036 controls (7). A large proportion of prostate (60.3%) and 

lung (46.9%) cancer cases from that study were also included in our investigation. Using 

sequential conditional ASSET analyses, Wang et al. identified five independent risk loci in 

individuals of European ancestry. These loci are included in the LD plot of our significant 

unconditional ASSET two-sided SNPs retained following LD pruning at r2>0.70 

(Supplementary Figure 2). In one region, rs13170453 was associated positively with 

pancreatic and testicular cancer (P-value=4.38×10−13) and inversely with lung cancer risk 

(P-value=9.5×10−8). Our conditional ASSET findings for rs37004, which is in high LD 

(r2=0.88) with rs13170453, confirm the lung cancer association observed by Wang et al. for 

this SNP. In a second region, Wang et al. observed that rs2736098 was associated positively 

with lung, prostate, and bladder cancer (P-value=2.58×10−8) and inversely with pancreatic 
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and testicular cancer (P-value=4.89×10−6). In our investigation, rs2736098, located within 

TERT, was similarly positively associated in conditional analyses with lung and prostate 

cancer, but inversely with colorectal, breast, and ovarian cancer. In a third region, Wang et 

al. reported rs4449583 as being associated positively with glioma, and inversely with 

testicular, prostate, and pancreatic cancers. In our unconditional ASSET analysis, this SNP 

was associated positively with ovarian and lung cancer, and inversely with prostate cancer. 

Cancer associations for the remaining two TERT-CLPTM1L regions including rs10069690 

and rs13172201 in Wang’s study were not replicated in our investigation. Associations for 

these regions were also not confirmed in supplementary analyses conducted by Wang et al. 

across additional cancer types (esophageal, gastric, breast, endometrial, prostate, 

osteosarcoma, ovarian, renal, and additional prostate cancers) including 11,385 cases and 

18,322 controls (7). We examined a larger region around TERT-CLPTM1L than did Wang et 

al. (chr5: 1,250,000–1,450,000), thus they did not assess rs12655062 and rs115960372 

which lie outside of that region. Our significant conditional ASSET associations between 

TERT SNPs rs7717443 and rs10866498 and colorectal, prostate, ovarian, and lung cancer 

risk, which are not highly correlated with variants observed in Wang et al. have not been 

previously reported. In summary, our study confirms the Wang et al. findings for three of the 

five significant TERT-CLPTM1L SNPs that they reported among European subjects 

(conditionally for rs2736098 and rs37004 (r2=0.88 with rs13170453), and unconditionally 

for rs4449583); however, our study did not corroborate their findings for rs10069690 or 

rs13172201. Additionally, in our study, of the six conditionally significant TERT-CLPTM1L 
risk loci detected among European subjects, Wang et al. did not report findings for SNPs 

rs7717443 and rs10866498 nor did they examine associations for SNPs rs12655062 and 

rs115960372 which lied outside of the regions that they evaluated. Nonetheless, a Japanese 

fine-mapping study of 1,583 prostate cancer cases and 2,480 controls reported a highly 

significant association with rs115960372, (OR=1.31, P-value=7.76×10−10) which is in the 

LPCAT1 gene (49). The association between rs12655062, which is in the CTD-2194D22.4 
gene, and colorectal, breast, and prostate cancer risk has not been previously reported.

Because associations with cancer risk may vary by histology, some studies have assessed 

SNPs across TERT-CLPTMIL in relation to cancer subtypes. Of particular interest were the 

lung cancer ASSET meta-analytic results reported by Wang et al. (50). Based on data from 

five GWAS, highly significant associations were reported between TERT-CLPTMIL 
rs7717443 (OR=1.24, P-value=4.90×10−10), rs10866498 (OR=0.81, P-value=3.28×10−11) 

and rs37004 (OR=0.78, P-value=2.52×10−12) and lung adenocarcinoma risk; an association 

between rs37004 (OR=0.82, P-value=7.94×10−8) and squamous lung cancer risk was also 

observed. In on our unconditional ASSET forest plot analysis, we observed similar 

associations between these variants and lung adenocarcinoma, but not with squamous lung 

cancer.

The associations reported here for variants in the GAR1, TERF2, POT1 and RTEL1 gene 

regions and colorectal, lung, breast, ovarian, and/or prostate cancers have not been reported 

in GWAS of these cancers. We advise caution in interpreting results for GAR1 and TERF2 
variants with low MAF (0.3%). Although these SNPs passed imputation accuracy cutoffs in 

some consortium-specific meta-analyses, SNPs with such low MAFs are known to be 

difficult to impute accurately. The RTEL1 gene at 20p13.3 encodes a DNA helicase involved 
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in stabilization, protection and elongation of telomeres (9,20). This gene interacts with 

shelterin complex proteins and variants in this gene have been associated in previous GWAS 

with high-grade glioma risk (37). POT1 at 7q31.33 and TERF2 at 16q22.1 are protein-

coding genes that are components of the shelterin complex (20,33). Variants in POT1 have 

been previously associated with risk of chronic lymphocytic leukemia in GWAS (41).

To our knowledge, this is the largest meta-analysis of GWAS data on telomere structure and 

maintenance genes and cancer risk. With over 61,000 cancer cases and nearly 75,000 

controls, our study is highly powered to detect significant associations for variants with 

common allele frequencies. Our study is unique in that we evaluated risk of multiple cancer 

types as well as risk of specific histologic or molecular subtypes of cancer and subtypes 

related to aggressiveness. Our subset-based meta-analysis also permitted us to examine the 

magnitude and direction of genetic associations allowing for heterogeneity of associations 

across cancer sites. Compared to traditional methods, ASSET helps minimize false-positives 

through multiple testing penalties and improves detection power (21). We were able to 

determine independent associations between SNPs and cancer types by conditioning on the 

effects of SNPs with lower P-values. Because there is considerable evidence linking TERT-
CLPTM1L variants to risk of many different cancer types, and several other telomere 

structure and maintenance genes have been implicated in GWAS of various cancer types, we 

used gene-level P-value thresholds to define statistical significance. Although we were able 

to interrogate a very large number of SNPs in telomere structure and maintenance genes, we 

did not assess SNPs across all known telomere structure and maintenance genes, and most of 

the SNPs (97.5%) we examined were imputed. Our study was not well-designed to examine 

imputed rare variants since these SNPs may be poorly represented or poorly tagged on 

genotyping arrays. While we were able to use the available aggregate data to evaluate 

whether variation in all SNPs combined in each gene was associated with risk, we could not 

evaluate haplotypes.

In summary, our results indicate that patterns of association in telomere structure and 

maintenance genes observed across cancer types and subtypes are complex. These findings 

may provide insight into the mechanisms through which telomere dysfunction in different 

tissues influences cancer risk. In our investigation, seven of the thirteen conditional 

associations identified were novel. While we observed suggestive pleiotropic associations 

within the DCLRE1B, TERC, TERT-CLPTM1L, POT1 and RTEL1 gene regions, fine-

mapping studies with the ability to assess haplotypes are needed to evaluate the relationship 

between alleles at different loci in order to help identify potential variants that may have 

gone undetected. Replication and mechanistic studies are also needed to help provide insight 

regarding the function and variability of risk across cancers for these telomere structure and 

maintenance SNPs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Novelty & Impact Statements

Utilizing the novel ASSociation analysis based on SubSET (ASSET) meta-analytic 

approach, we examined associations between >200,000 variants in 22 telomere structure 

and maintenance gene regions and colorectal, breast, prostate, ovarian, and lung cancer 

risk. We observed pleiotropic associations across cancer types in the DCLRE1B, TERC, 
TERT-CLPTM1L, POT1, and RTEL1 gene regions. Additional studies clarifying the 

mechanisms through which these complex association patterns in telomere-related genes 

influence cancer risk are needed.
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Figure 1. Unconditional ASSET forest plots by cancer type and subtype for TERC SNPs 
rs80304993, rs62293480, and rs75316749
(A) Forest plot associations for the A allele for rs80304993. (B) Forest plot associations for 

the T allele for rs62293480. (C) Forest plot associations for the G allele for rs75316749.
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Figure 2. Unconditional ASSET forest plots by cancer type and subtype for TERT-CLPTM1L 
SNPs rs37004, rs7717443, rs10866498, rs12655062, rs115960372, and rs2736098
(A) Forest plot associations for the T allele for rs37004. (B) Forest plot associations for the 

T allele for rs7717443. (C) Forest plot associations for the T allele for rs10866498. (D) 

Forest plot associations for the A allele for rs12655062. (E) Forest plot associations for the T 

allele for rs115960372. (F) Forest plot associations for the T allele for rs2736098.
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Figure 3. Unconditional ASSET forest plots by cancer type and subtype for DCLRE1B SNPs 
rs974404 and rs12144215
(A) Forest plot associations for the G allele for rs974404. (B) Forest plot associations for the 

T allele for rs12144215.
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