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SUMMARY 

Tumor necrosis factor (TNF) is an inflammatory cytokine that can signal cell survival or 

cell death. The mechanisms that switch between these distinct outcomes remain 

poorly defined. Here we show that the E3 ubiquitin ligase Mind Bomb-2 (MIB2) 

regulates TNF-induced cell death by inactivating RIPK1 via inhibitory ubiquitylation. 

While depletion of MIB2 has little effect on NF-B activation, it sensitizes cells to 

RIPK1- and caspase-8-dependent cell death. We find that MIB2 represses the cytotoxic 

potential of RIPK1 by ubiquitylating lysine residues in the C-terminal portion of RIPK1. 

Our data suggest that ubiquitin conjugation of RIPK1 interferes with RIPK1 

oligomerization and RIPK1-FADD association. Disruption of MIB2-mediated 

ubiquitylation, either by mutation of MIB2’s E3 activity or RIPK1’s ubiquitin-acceptor 

lysines, sensitizes cells to RIPK1-mediated cell death. Together, our findings 

demonstrate that Mind Bomb E3 ubiquitin-ligases can function as additional 

checkpoint of cytokine-induced cell death, selectively protecting cells from the 

cytotoxic effects of TNF.  
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INTRODUCTION 

TNF functions as a master regulator of the cytokine network that coordinates defense of 

homeostasis via controlling inflammation, cell proliferation, differentiation, survival and death 

(Balkwill, 2009). Ubiquitylation has emerged as a crucial mediator of signal transduction in 

inflammation, stress responses, and defense of homeostasis (Dikic et al., 2009). The 

formation of atypical Ubiquitin (Ub) chains produce robust signaling ‘hubs’ that are recognized 

by specialized Ub-binding proteins (Husnjak and Dikic, 2012), which subsequently coordinate 

tissue repair and adaptation to tissue stress. The signaling pathways emanating from TNF 

receptor-1 (TNF-R1) represent some of the best models to study the role of Ub in the 

regulation of homeostasis. In mammals, binding of TNF to TNF-R1 triggers either pro-

survival/inflammatory or pro-death signaling pathways (Walczak, 2013). TNF regulates tissue 

homeostasis by orchestrating three distinct signals: 1) The activation of NF-B-dependent 

and MAPK/JNK-dependent transcriptional programs, 2) induction of caspase-8-dependent 

apoptosis and 3) stimulation of Receptor interacting protein kinase (RIPK)-mediated necrosis 

(necroptosis) (Declercq et al., 2009).  

 

Binding of TNF to TNF-R1 results in the sequential formation of two signaling complexes 

(Walczak, 2011). The rapidly forming complex-I is assembled at the receptor’s cytoplasmic 

tail and consists of the adaptor TRADD, RIPK1, TRAF2, cIAP1 and cIAP2. Within this 

complex, RIPK1 and other proteins are rapidly conjugated with Ub chains of various types. 

Using Jurkat, L929 cells and MEFs, it was established that ubiquitylation of RIPK1 at K377 is 

indispensable for TNF-induced activation of NF-B (Ea et al., 2006; Grunert et al., 2012; 

Vanlangenakker et al., 2011; Zhang et al., 2011). Since then many additional studies have 

refined this view point, demonstrating that the requirement of RIPK1 for NF-B activation is 

cell type dependent (Blackwell et al., 2013; Suda et al., 2016; Wong et al., 2010). Together 

with LUBAC (linear ubiquitin chain assembly complex (Tokunaga et al., 2009)), complex-I 

signals inflammation and cell survival through TAK1 and IB kinase (IKK)-dependent 

activation of NF-B, which drives production of cytokines as well as pro-survival genes such 

as cFlip.  
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Through a process still ill defined, complex-I dissociates from the receptor, and RIPK1 

together with TRADD associates with the adaptor protein FADD and pro-caspase-8 (casp-8) 

to form complex-II (Micheau and Tschopp, 2003). The formation and activity of this signaling 

platform, which has the potential to initiate apoptosis or necroptosis, is tightly regulated by 

anti-apoptotic proteins such as cFLIP (Micheau et al., 2001; Panayotova-Dimitrova et al., 

2013). In addition, NEMO and TAK1 also act as regulators of TNF-induced cell death, partly 

independent of their role in NF-B activation (Bettermann et al., 2010; O'Donnell et al., 2007). 

The molecular mechanism underpinning the suppression of TNF-mediated complex-II 

formation is still poorly characterized. The current dogma dictates that ubiquitylation of RIPK1 

mediates activation of NF-B, cell survival and tissue repair, and its deubiquitylation, by de-

ubiquitylating enzymes (DUBs) such as CYLD, enhances complex-II formation and casp-8-

mediated apoptosis or necroptosis (Walczak, 2011). It is believed that the Ub chains 

conjugated to RIPK1 by cIAP1/2 and LUBAC in complex-I constitute the decisive factor 

preventing RIPK1 from forming complex-II, and limiting its killing potential (Bertrand et al., 

2008; Gerlach et al., 2011; Haas et al., 2009). However, this was recently challenged by the 

observations that formation of complex-II also occurs under conditions where cIAPs and 

LUBAC are fully functional, and following inhibition of TAK1 as well as loss of NEMO 

(Dondelinger et al., 2013; Kondylis et al., 2015; O'Donnell et al., 2007; O'Donnell and Ting, 

2011; Panayotova-Dimitrova et al., 2013). Under such conditions, complex-II assembles 

despite RIPK1 ubiquitylation in complex-I. We and others have also recently identified MK2 

as an additional checkpoint that regulates RIPK1 entry into complex-II. MK2 phosphorylates 

RIPK1 at Ser320 and Ser335 upon TNF stimulation to limit cell death downstream of TNF-R1  

(Dondelinger et al., 2017; Jaco et al., 2017; Menon et al., 2017).  

 

Because an inflammatory microenvironment can dictate the aggressiveness of certain 

tumors, and influence the response to therapy, a better understanding of the complex 

relationship between cell death and inflammation is critical. This is an important issue as its 

resolution, and putative therapeutic intervention, would allow the diversion of cancer-related 

inflammation into activation of cell death. Here we report that Mind Bomb E3 Ub-ligases 
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contribute to the regulation of TNF-induced cell death by inactivating RIPK1 via inhibitory 

ubiquitylation. 
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RESULTS 

Identification of MIB2 as a RIPK1-binding protein  

To elucidate what determines whether an inflammatory signal instructs either an innate 

immune response or triggers cell death, we undertook a proteomic-based approach using 

components of the TNF-R signaling complex (TNF-RSC) as affinity reagents. Proteins of the 

TNF-RSC were fused to 2x-HA tags and expressed in Flp-InTMT-RExTM-HEK293 cells that 

allow for single-copy insertion of these components under the control of doxycycline (Dox). 

HA-tagged proteins were purified and the presence of co-purified proteins was determined via 

mass spectrometry. In addition to known constituents of the native TNF-RSC, we identified 

the RING-type Ub-E3 ligase Mind Bomb-2 (MIB2) as a RIPK1-interacting protein (Figure 1A). 

Notably, MIB2 consistently co-purified with RIPK1 in six independent mass spectrometric 

experiments. We next verified the interaction of MIB2 with RIPK1 via co-immuno-precipitation, 

and demonstrated that MIB2 readily interacted with RIPK1 (Figure 1B). MIB1, which shares 

42% sequence homology with MIB2, also associated with RIPK1 under these conditions.  

 

MIB2 is a constituent of the native TNF-receptor signaling complex  

Consistent with the notion that MIB2 is part of complex-I, and in agreement with a recent 

mass spectrometry study (Wagner et al., 2016), we found that endogenous MIB2 was readily 

recruited to the TNF-RSC in a ligand- and time-dependent manner in a range of cell types, 

including MDA-MB-231, HT1080 and 786-0 (Figure 1C, 1D, and 1E). MIB2 recruitment was 

mainly RIPK1-dependent (Figure 1E), and occurred in the same dynamic manner as 

described for other components of complex-I (Gerlach et al., 2011; Haas et al., 2009; 

Micheau and Tschopp, 2003), peaking at 15 minutes. Reciprocal immuno-precipitation of 

endogenous MIB2, using MIB2-specific antibodies, likewise co-purified ubiquitylated RIPK1 

and other components of complex-I such as TRADD, TNF-R1 and SHARPIN, in a TNF- and 

time-dependent manner in multiple cell types (Figure 1F and 1G). This demonstrates that 

MIB2 is recruited to the initial complex-I that forms directly upon TNF stimulation. Although 

MIB2 is recruited to complex-I, our data indicated that, in the cell lines tested, MIB2 had no 

role in TNF-induced activation of NF-B, induction of NF-B target genes such as A20, and 

the production of cytokines (Figure S1A-G). 
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MIB2 protects cells from TNF-induced and RIPK1-dependent cell death 

Given that MIB2 did not modulate TNF-induced activation of NF-B in the cell lines tested, we 

explored the role of this E3 ligase in regulating TNF-induced and RIPK1-dependent cell 

death. We tested a range of different cell lines that exhibit diverse sensitivities to TNF-

induced cell death (Figure S2A-C) (Tenev et al., 2011; Vince et al., 2007). Specifically, we 

tested two paradigms of TNF-induced and RIPK1-dependent cell death, one that relies on the 

inhibition of TAK1, and one that occurs upon inactivation of IAPs with SMAC mimetic (SM) 

compounds. While many cells are sensitive to TNF in the presence of the TAK1 kinase 

inhibitor 5Z-7-Oxozeaenol (hereafter referred to as TAK1i), we focused our attention on a cell 

line that is largely resistant to this treatment combination, namely the renal cell 

adenocarcinoma 786-0. Intriguingly, depletion of MIB2, but not MIB1, dramatically sensitized 

786-0 cells to treatment with TNF in the presence of TAK1i, in both short-term cell death 

experiments and long-term clonogenic survival assays (Figure 2A-C and S2D). Cell death 

under these conditions was entirely RIPK1- and caspase-8-dependent as co-depletion of 

MIB2 and RIPK1 or CASPASE-8 protected cells from the cytotoxic effects of TNF/TAK1i, and 

treatment with z-VAD-FMK completely suppressed cell death, corroborating the notion that 

these cells die by apoptosis (Figure 2B and S2D). In agreement with MIB2 limiting RIPK1- 

and caspase-8-dependent apoptosis, formation of complex-II was also enhanced upon MIB2 

knockdown (Figure 2D, top panel, compare lane 9 with 10). MIB2 depletion also sensitized 

cells under conditions in which expression of NF-B target genes were blocked by expressing 

a dominant-negative form of IB (Super-Repressor, IBSR), and to a lesser extent upon 

treatment with cycloheximide (CHX) (Figure S2E and S2F). Moreover, CRISPR/Cas9-

mediated deletion of MIB1 and MIB2 also sensitized the triple negative breast cancer cell line 

MDA-MB-231 to TNF/TAK1i in a RIPK1-dependent manner (Figure 2E).  

 

SM compounds block IAP proteins and trigger cytokine-dependent apoptosis in cancer cells. 

However, only a subset of cancer cells appears to be sensitive to SM treatment, and even 

sensitive cells can develop resistance. We, therefore, established the role of MIB proteins in 

modulating the therapeutic potential of SM compounds. Intriguingly, RNAi-mediated depletion 



Feltham et al., 2018 

 8 

or CRISPR/Cas9-mediated deletion of MIB2 significantly enhanced activation of caspase-8 

and the sensitivity of cells to TNF-induced cell death in the presence of SM in multiple cell 

types (Figure 2F-L). While RNAi-mediated knockdown of MIB2 exacerbated the cytotoxic 

effects of TNF/SM, depletion of MIB2 was somewhat sufficient to sensitize cells to TNF alone 

(Figure 2G and 2I). Interestingly, inhibiting the kinase activity of RIPK1 partially protected 

HT1080 and 786-0 cells from TNF-mediated cell death upon MIB2 depletion (Figure S2G and 

S2H). While the kinase activity of RIPK1 contributes to apoptosis in these cells, RIPK1’s 

scaffolding function seemed to play the predominant role as depletion or genetic deletion of 

RIPK1 blocks cell death in these cells (Figure 2B, 2E, 2F, 2H, 2K and S2K, S2L). Together, 

our data suggest that MIBs and IAPs both suppress TNF-dependent and RIPK1-mediated cell 

death.  

 

Depletion of MIB2 not only sensitized cells to exogenous TNF, but also to auto/paracrine 

TNF, produced in response to treatment with LPS that activates TLR4 and drives TLR4-

mediated and NF-B-dependent production of TNF (Figure 2K). Consistent with an increase 

in caspase activity (data not shown), we found that activation/cleavage of caspase-8 was 

enhanced upon knockdown of MIB2 under these conditions (Figure 2J and 2K). Additionally, 

we found that MIB2 co-purified with complex-II (Figure 2L). 

 

Some cells, such as the rhabdomyosarcoma cell line Kym1, were exclusively reliant on MIB2 

as mere knockdown of MIB2, using two independent siRNA oligos, induced cell death and 

loss of clonogenic growth potential (Figure S2I and S2J). Depletion of MIB2 resulted in 

RIPK1-mediated formation of complex-II and activation of caspase-8 (Figure S2K-L). Genetic 

deletion of TNF-R1 almost completely abrogated the sensitivity of Kym1 cells to depletion of 

MIB2 (Figure S2M). Together, these data indicate that MIB2 protects Kym1 cells from the 

cytotoxic potential of RIPK1.  

 

To address the role of MIB2 in regulating necroptosis, we used murine SWISS-3T3 cells that 

can die by apoptosis or necroptosis. Of note, all other cell lines used in our study do not 

express detectable levels of RIPK3, and hence are refractory to necroptosis triggers. While 
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depletion of Mib2 sensitized SWISS-3T3 cells to caspase-mediated and RIPK1 kinase-

dependent apoptosis upon treatment with TNF/SM, knockdown of Mib2 had no effect on 

necroptosis induced by TNF/SM/zVAD (Figure S2N-O). This suggests that, at least in 

SWISS-3T3 cells, MIB2 selectively regulates apoptosis. It is important to note that in these 

cells, TNF/SM-mediated activation of caspases requires RIPK1 kinase activity. This is evident 

as co-treatment with a selective RIPK1 kinase inhibitor blocks caspase activation upon 

TNF/SM treatment. 

 

MIB2 binds the linker region of oligomeric RIPK1 

Our data are consistent with the notion that MIB2 is a component of the TNF-RSC that 

contributes to the regulation of TNF-induced cell death. To further characterize the interaction 

of MIB2 with RIPK1 we generated a panel of deletion constructs for MIB2 (Figure 3A). We 

found that the N-terminal MZM region of MIB2 was necessary and sufficient for the interaction 

of MIB2 with RIPK1 (Figure 3B), and that deletion of the MZM region of MIB2 (Figure 3B), or 

mutation of the coordinating cysteine residue of the ZZ fold within the MZM region of MIB2 

(Figure 3C), abrogated the interaction with RIPK1. We next generated deletion constructs for 

RIPK1 and tested their ability to bind to MIB2’s MZM domain (Figure 3D). Of note, RIPK1 

oligomerization is mediated by either the RHIM or DD domain. Deletion of both these 

oligomerization domains is required to interfere with RIPK1 homo-oligomerization (Figure 

S3A-F). We found that combined deletion of RIPK1’s oligomerization surfaces (RHIM domain 

and DD, 1-510) abrogated the interaction of MIB2 with RIPK1 (Figure 3E). Deletion of either 

the DD domain (1-581) on its own, or removal of the RHIM in isolation (RHIM) had no effect 

on the binding (Figure 3E and 3F). While MIB2 did not bind to the kinase domain, it appeared 

to interact with the linker region of oligomerized RIPK1. Consistently, deletion of the linker 

region of RIPK1 abrogated MIB2 association (Figure 3F and Figure S3D). Recombinant MIB2 

and RIPK1 also bound to one another under in vitro conditions, indicating that this interaction 

is direct (Figure 3G and S3G). Under these conditions, in vitro translated RIPK1 oligomerized 

and was active (auto-phosphorylated at S166) (Figure S3H-J). Further, we found that in vitro 

translated MIB2 was capable of purifying RIPK1 from cellular extract, particularly following 
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treatment with TNF/SM (Figure 3H). Taken together, our data suggest that MIB2 interacts 

with the linker region of oligomerized RIPK1 (Figure 3I).  

 

MIB2 prevents RIPK1-induced death in a RING- and binding-dependent manner 

While knockdown or genetic deletion of MIB2 sensitized cells to caspase-8-mediated cell 

death, reconstitution with wild-type MIB2 suppressed the cytotoxic effects of TNF, as 

measured by caspase-8 maturation, generation of caspase activity (DEVDase assay), PARP 

cleavage, formation of complex-II and viability assays (Figure 4A-F). Reconstitution with 

MIB2ZZ, which carries a mutation in the ZZ domain required for RIPK1 binding (Figure 4B, 4C 

and 4E), failed to suppress TNF-induced caspase activation and cell death. Importantly MIB2 

with an amino acid substitution of the second-last Phe residue (MIB2F>A) that abrogates its E3 

ligase activity, likewise failed to suppress TNF-induced cell death. Absence or mutational 

inactivation of MIB2 resulted in enhanced complex-II formation, caspase-8 activation and cell 

death. Hence, physical association between MIB2 and RIPK1 is necessary, but not sufficient 

to regulate RIPK1. This is evident because MIB2 RING finger mutants can still bind to RIPK1 

(Figure 3B) but fail to regulate RIPK1-mediated activation of caspase-8 and cell death (Figure 

4A-F). These data suggest that after binding, MIB2 inhibits RIPK1 through a mechanism that 

is dependent on the E3 ligase activity of MIB2.  

 

MIB2 ubiquitylates RIPK1 upon TNF stimulation independently of cIAPs 

Our data indicate that MIB2 is recruited to complex-I, and suppresses the cytotoxic effect of 

RIPK1 in a RING finger dependent manner. Consistent with the notion that RIPK1 is a 

physiological substrate of MIB2, we found that depletion or genetic deletion of MIB2 resulted 

in a reduction in ubiquitylation of RIPK1 in complex-I in both MDA-MB-231 and 786-0 cells 

(Figure 5A and S4A). Although RNAi-mediated depletion or genetic deletion of MIB2 resulted 

in reduced levels of ubiquitylated RIPK1 in complex-I, this had no apparent effect on the 

kinetics of the recruitment of other components of the TNF-RSC (Figure S4A), and neither 

affected TNF-induced activation of NF-B (Figure 5B and S4B). Of note, MDA-MB-231, 786-

0, and Kym-1 cells do not rely on RIPK1 for NF-B activation and cytokine production (Figure 

5B-C, S4B and S4D), corroborating the notion that the requirement of RIPK1 for NF-B 
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activation is cell type dependent (Blackwell et al., 2013; Suda et al., 2016; Wong et al., 2010). 

Moreover, RIPK1 is not required for ERK, p38 and JNK activation downstream of TNF in 786-

0 cells (Figure S4C). While RIPK1 is required for NF-B activation in Jurkat cells (Figure S4E, 

and (Ea et al., 2006)), we were unable to investigate the role of MIB2 in RIPK1-mediated 

signaling downstream of TNF in Jurkat cells because these cells do not survive long-term loss 

of MIB2, and are not sufficiently transfectable with siRNA oligos (data not shown). Following 

stimulation with TNF, MIB2 ubiquitylated RIPK1 in complex-I in a manner that was 

independent of IAPs. This is evident as the polyUb-smearing pattern of RIPK1 reproducibly 

increased in an IAP-independent yet MIB2-, TNF- and time-dependent manner (Figure 5D, 

5E and 5F). Using the reconstitution system described in Figure 4A, we examined the 

requirement of the RING finger of MIB2 to promote RIPK1 ubiquitylation. While wild-type 

MIB2 readily ubiquitylated RIPK1, the E3-Ub deficient MIB2 mutant MIB2F>A failed to 

ubiquitylate RIPK1 (Figure 5E and 5F). MIB2 also ubiquitylated RIPK1 with the help of 

UbcH5a in an in vitro ubiquitylation assay (Figure 5G and S4G). Although MIB1 also 

ubiquitylated RIPK1, it was somewhat less efficient than MIB2 (Figure S4F). 

 

MIB2 conjugates different types of Ub chains to RIPK1  

To determine the Ub linkage types that are conjugated to RIPK1 by MIBs, we used UbiCRest 

(Ub chain architecture using Ub chain restriction (Hospenthal et al., 2015)) analysis of RIPK1 

in complex-I in the presence and absence of MIB1/2. While the overall intensity of the 

ubiquitylation smearing pattern of RIPK1 was enhanced in the presence of endogenous MIB2 

(Figure 6A), there was no apparent change in the Ub linkage repertoire. Accordingly, 

incubation with the respective DUBs resulted in a reduction of the Ub smearing pattern, 

indicating that K11-, K48- and K63-linkage types were present. This demonstrates that K63-, 

K48- and K11-linked chains were present in both MIB1/2 proficient as well as deficient cells, 

but are more abundant when MIBs are present. This suggests that endogenous MIBs can 

conjugate K11-, K48- and K63-linked Ub chains to RIPK1. Using K-only Ub, we confirmed 

that MIB2 was indeed capable of conjugating K11-, K48- and K63-linked polyUb chains to 

RIPK1 (Figure 6B).  
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MIB2 ubiquitylates RIPK1 at multiple sites 

To identify the lysine (K) residue/s of RIPK1 that are ubiquitylated by MIB2 we used a semi-

quantitative mass spectrometry-based approach. In total, 14 K residues of RIPK1 were found 

to be modified by Ub (Figure 6C). These included previously reported K residues (green dots) 

(Ofengeim and Yuan, 2013) as well as several additional ubiquitylation sites on RIPK1 

(yellow) (Figure 6C). The identified K residues of RIPK1 clustered into three regions: i) kinase 

domain, ii) region surrounding K377, and iii) death domain (DD). Of the Ub-modified K 

residues, only 4 sites were specifically enriched by MIB2WT versus MIB2F>A (K316, K571, 

K604, and K634) (Figure 6D). K377 of human RIPK1, previously reported to be crucial for 

TNF induced cell death (Ea et al., 2006; Li et al., 2006; O'Donnell et al., 2007), was not 

detected by mass spectrometry because the tryptic digest generates peptide fragments that 

are too long for analysis. To address this issue, we conducted targeted mass spectrometry 

using double-digestion with Trypsin and GluC. While this approach successfully identified 

K377 of human RIPK1 as being ubiquitylated (Figure 6E), this approach did not allow 

accurate quantification of this ubiquitylation event. Whereas MIB2 readily ubiquitylated wild-

type RIPK1, mutating K377 to R significantly reduced MIB2-mediated ubiquitylation of RIPK1 

(Figure S5A). As expected, the ability of MIB2 to ubiquitylate K377 was critically dependent 

on MIB2’s own RING finger activity as the E3-deficient MIB2F>A mutant failed to ubiquitylate 

RIPK1 (Figure S5A). While RIPK1K377R was less ubiquitylated in complex-I (Figure 6F), this 

mutant was significantly more auto-phosphorylated at S166 (Figure 6G). This indicates that 

ubiquitylation at K377 represses RIPK1’s kinase activity. RIPK1K377R interacted with MIB2 as 

efficiently as RIPK1WT, indicating that deregulation of RIPK1K377R was not due to impaired 

MIB2-binding (Figure S5B).  

 

MIB2-mediated ubiquitylation of K377 and K634 suppresses RIPK1’s cytotoxic 

potential 

Of the identified residues, K604 and K634 are positioned at the interface between two RIPK1 

DD (type-I and -II interfaces) (Figure 7A-D). Given their position, ubiquitylation of these 

residues is predicted to affect RIPK1 self-association. K634 also locates between RIPK1’s DD 

and FADD’s DD (type-II interface), which is predicted to directly affect the interaction if 
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ubiquitylated. Consistent with the structural prediction, we found that reconstituted RIPK1K634R 

cells were considerably more sensitive than RIPK1WT cells when challenged with TNF/TAK1i 

(Figure 7E, 7F and S6). RIPK1K634R was as cytotoxic as RIPK1K377R, indicating that 

ubiquitylation of either of these two sites represses the killing potential of RIPK1. Consistent 

with the notion that MIB2 regulates RIPK1 by targeting multiple K residues, depletion of MIB2 

further reduced ubiquitylation of RIPK1K634R and RIPK1K377R (Figure S7A and S7B), and 

further sensitized RIPK1K377R cells to TNF killing (Figure 7G). Together, these data indicate 

that MIB2 antagonizes the lethal effects of TNF by attaching Ub chains to the linker and C-

terminal portion of RIPK1, thereby skewing TNF’s signaling potential towards pro-survival and 

pro-inflammation rather than cell death.  
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DISCUSSION 

Ub-mediated inactivation of RIPK1 has long been postulated to contribute to the regulation of 

cytokine-induced cell death (Ea et al., 2006; Moquin et al., 2013; O'Donnell et al., 2007). 

cIAP- and LUBAC-mediated ubiquitylation of RIPK1 are decisive factors in limiting the 

formation of complex-II (Bertrand et al., 2008; Gerlach et al., 2011; Haas et al., 2009). In the 

absence of either cIAPs or LUBAC or inhibition of the TAK1-IKKß axis, TNF fails to activate 

canonical NF-κB effectively, and consequently, the levels of NF-κB target genes that limit 

complex-II activity, such as cFLIPL, are insufficient to prevent caspase-8-mediated cell death. 

Primarily this occurs via the induction of NF-κB and the upregulation of cFLIP, however, 

recent evidence suggests that TAK1 and IKK can regulate TNF killing independent of their 

role in NF-κB activation (Bettermann et al., 2010; Dondelinger et al., 2015; O'Donnell et al., 

2007). In the absence of functional TAK1 and IKK, lethal levels of complex-II assemble 

despite RIPK1 ubiquitylation in complex-I (Dondelinger et al., 2013; Dondelinger et al., 2015; 

Legarda-Addison et al., 2009). Under these conditions, TNF-mediated RIPK1-dependent 

apoptosis was shown to rely on the kinase activity of RIPK1 (Dondelinger et al., 2013; Wang 

et al., 2008). Thus, cells regulate TNF-induced cell death through multiple mechanisms. 

 

Here we have identified MIB2 as an E3 ligase that can regulate TNF killing. We find that it 

selectively regulates TNF-induced cell death, while it plays no role in NF-B activation in the 

systems tested. MIB2 directly binds to RIPK1 and conjugates inhibitory Ub chains to the linker 

and the C-terminal portion of RIPK1. While it remains to be determined how ubiquitylation of 

K377 suppresses RIPK1 kinase activity (auto-phosphorylation), ubiquitylation of K604 and 

K634 is predicted to affect RIPK1 self-association as these residues are positioned at the 

interface between two RIPK1 death domains. Moreover, K634 is located between RIPK1’s 

DD and FADD’s DD, which is predicted to directly affect the interaction if ubiquitylated.  

 

Different cells have different sensitivities to modulation of cIAPs and MIB2. Some cells are 

acutely sensitive to TNF-induced cell death in the absence of cIAPs or MIB2, while others are 

not. Consistently, while RNAi-mediated knockdown of MIB2 exacerbates the cytotoxic effects 

of TNF/SM, depletion of MIB2 is sufficient to sensitize certain cells to TNF alone (Figure 2G 
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and 2I). The efficiency with which TNF/siMIB2 induces cell death is comparable to the one 

triggered by TNF/SM (Figure 2G and 2I). As cIAPs not only control TNF killing, but also are 

key mediators of TNF-induced activation of NF-B and the expression of pro-survival genes 

(Silke and Meier, 2013), their role clearly extends beyond simple regulation of RIPK1’s 

cytotoxic potential. In contrast, MIB2 appears to exclusively inhibit RIPK1’s killing potential. 

The notion that MIB2 contributes to the resistance to RIPK1-mediated cell death is also 

supported by the observation that high levels of MIB2 inhibit cell death triggered by TNF, SM, 

TNF/SM or TNF/TAK1i. Since pharmacological inhibitors of IAPs are in clinical testing, our 

data suggest that targeting the MIB2 Ub ligase might improve the efficacy of SMs for the 

treatment of cancer. However, it should be noted that resistance to SM treatment can occur in 

multiple ways. While levels of MIB2 clearly matter with regards to SM sensitivity, cells can 

also become resistant to SM by loss of autocrine-TNF, TNF-R1, RIPK1, FADD, caspase-8 

and other mechanisms.  

 

The importance of the E3 ligase activity of MIB2 in regulating RIPK1, and TNF-induced cell 

death, is highlighted by MIB2 variants bearing RING mutations. The ability of MIB2 to protect 

from the cytotoxic effects of TNF is strictly dependent on MIB2 neutralizing RIPK1 in a 

binding- and Ub-dependent manner. MIB2 mutations that selectively abrogate binding or 

ubiquitylation of RIPK1 cause loss of MIB2 function. The ability of MIB2 to bind to RIPK1 

depends on activation of TNF-R1. This may be due to the fact that TNF-mediated clustering 

of TNF-R1 results in oligomerization of RIPK1, which in turn is essential for MIB2 to bind and 

ubiquitylate RIPK1. In the absence of TNF-R1 activation, MIB2 does not associate with 

RIPK1, potentially because HSP90 sequesters RIPK1 in its monomeric, kinase inactive state 

(Lewis et al., 2000). Thus, under resting conditions, RIPK1 seems to reside in an inactive 

configuration that precludes MIB2 binding. Only when it is recruited to TNF-R1 can it bind 

tightly to MIB2. In this respect, MIB2 may sense the activity status of RIPK1. This is similar to 

cIAPs, which also only regulate RIPK1 upon cytokine stimulation (Varfolomeev et al., 2007; 

Vince et al., 2007).  
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The question remains why there is an apparent overlap in the functions of MIB2 and cIAPs.  

One possible scenario might be that MIB2 and cIAPs target different K residues of RIPK1. It 

is interesting that MIB2 preferentially ubiquitylates the linker and the C-terminal portion of 

RIPK1, while other E3 ligases prefer to ubiquitylate the kinase domain (Figure 6C), albeit 

TRAF2/cIAPs also reportedly ubiquitylate K377 (O'Donnell et al., 2007), which seems to be a 

prominent Ub acceptor K. MIB2-mediated ubiquitylation of RIPK1 appears to interfere with 

RIPK1 oligomerisation (DD-DD interactions), while cIAP-dependent RIPK1 ubiquitylation may 

suppress its kinase activity, which is required for complex-II formation in some cell types 

(Dondelinger et al., 2013; Wang et al., 2008). 

 

Together, our data demonstrate that MIB2 contributes to inhibiting the pro-apoptotic activity of 

RIPK1. While MIB2 is clearly not the only E3 ligase that can target RIPK1 for ubiquitylation, it 

is unique in its ability to selectively limit TNF-induced killing without affecting activation of 

TAK1, IKK, p38, JNK and NF-B in our system. Other E3 ligases in complex-I, such as cIAPs 

or LUBAC influence TAK1 and IKK activation. Through ubiquitylation of RIPK1, MIB2 seems 

to consolidate the ubiquitylation status of RIPK1 in complex-I, thereby suppressing its 

transition to complex-II. The absence of MIB2, therefore, specifically converts the 

predominant survival signal that originates from TNF-R1 into a death signal, a situation that 

might be relevant upon viral infection (pattern recognition receptor activation) or engagement 

of multiple cytokine receptors (Geserick et al., 2009; Tenev et al., 2011).  
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EXPERIMENTAL PROCEDURES   

Further details and an outline of resources used in this work can be found in Supplemental 

Experimental Procedures.  

 

Cell Culture  

HT1080IkB-SR, Kym1, HT1080, MDA-MB-231, Jurkat, SWISS-3T3, HEK293T and Flp-InTMT-

RExTM-HEK293 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM). 786-0 

were cultured in RPMI-1640 medium. Culture media were supplemented with 10% fetal 

bovine serum (Gibco), penicillin and streptomycin (Gibco) and all cells were cultured at 37°C 

with 10% CO2 in a humidified incubator. 

 

Generation of CRISPR Cells  

Guide RNAs were designed according to the Church lab (Mali et al., 2013) or Zhang lab (Ran 

et al., 2013). Prior to CRISPR-Cas9 editing, cells were FACS-sorted and single clones were 

isolated and characterized. Single cell clones were then transfected with Cas9 and gRNA 

targeting the gene of interest using Invitrogen reagents. Three days after transfection cells 

were FACS sorted and single clones were isolated and screened for the deletion of the gene 

of interest. MIB2 knockout clones or were further used to generate MIB1/2 knockout cells. 

Positive clones were characterized. Guide sequences are available upon request. 

 

Immuno-Precipitation Assays 

Immuno-Precipitation assays were performed as previously described (Jaco et al., 2017). For 

all immuno-precipitation assays cells were treated as indicated and lysed on ice in DISC lysis 

buffer supplemented with protease inhibitors. Cell lysates were rotated at 4 °C for 20 mins 

then clarified at 4 °C at 14,000 rpm for 10 mins. 20 μl of anti-FLAG M2 beads (SIGMA), 20 μl 

of anti-HA beads (SIGMA) or 20 μl of protein A/G agarose (Pierce) + MIB2 antibody (Bethyl 

Laboratories) or RIPK1 BD antibody; 1 μg antibody/mg protein lysate were rotated with 

cleared protein lysates overnight at 4 °C. 4x washes in wash buffer (50 mM Tris pH 7.5, 150 

mM NaCl, 0.1% Triton X-100, and 5% glycerol) were performed, and samples eluted by 

boiling in 50 μl 1x SDS loading dye. 

  

Statistics 

Statistical analysis was performed using GraphPad Prism V6.0. Unless otherwise specified, 

data are presented as mean ± SEM. Comparisons were performed with a Student’s t test 

whose values are represented in the figures as *p < 0.05, **p < 0.01, and ***p < 0.001. 
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FIGURE LEGENDS 

Figure 1. Identification of MIB2 as a novel component of TNF receptor complex-I 

(A) Schematic representation of the RIPK1-bound target proteins that were identified by mass 

spectrometry. The table specifies the sum of the spectral counts across six independent 

immuno-precipitations for each target protein with a minimum SAINT score probability of 0.86. 

(B) HA-GFP, HA-MIB1 or HA-MIB2 was co-expressed with untagged RIPK1 in 293T cells. 

HA-immuno-precipitation was performed and RIPK1 interaction was assessed via western 

blot. 

(C-E) TNF-induced complex-I immuno-precipitation. MDA-MB-231 cells (C) or HT1080 cells 

(D) or WT 786-0 or RIPK1 KO 786-0 cells (E) were treated with FLAG-hTNF (0.8g/ml) for 

the indicated time points, followed by FLAG immuno-precipitation and western blot analysis. 

(F-G) Western blot analysis of MDA-MB-231 cells (F) or 786-O cells (G) either left untreated 

or treated with FLAG-hTNF (0.8 μg/ml) for the indicated time points followed by MIB2 

immuno-precipitation.  

 

Figure 2. Depletion of MIB2 sensitizes cells to TNF-induced and RIPK1-dependent cell 

death 

(A) FACS analysis of PI positive 786-0 cells subjected to siRNA knockdown of MIB2. After 

siRNA knockdown cells were treated with the indicated agents for 48 hours. Error bars 

represent SD.   

(B) FACS analysis of PI positive 786-0 cells subjected to siRNA knockdown of indicated 

genes. After siRNA knockdown cells were treated with the indicated agents for 48 hrs. Error 

bars represent SD.   

(C) Clonogenic growth assay of 786-0 cells subjected to siRNA knockdown of indicated 

genes. 40 hrs post siRNA, 1000 cells were re-plated, treated with TNF/TAK1i and left in 

treated medium to form colonies. Error bars represent SEM. Western blot analysis 

corresponding to Figure 2C of 786-0 cells subjected to MIB1, MIB2 or MIB1/2 knockdown. 

(D) Immuno-precipitation of complex-II following TNF stimulation. Cells were pre-treated with 

TAK1i and zVAD for 1 hr (zVAD and TAK1i also added to 0 hr) followed by treatment with 

FLAG-hTNF (0.8 µg/ml) for the indicated time points. Caspase-8 immuno-precipitation was 



Feltham et al., 2018 

 23 

performed followed by western blot analysis. Quantification of RIPK1 bound to caspase-8 is 

shown. 

(E) FACS analysis of PI positive MIB1/2 DKO MDA-MB-231 cells subjected to siRNA 

knockdown of RIPK1 followed by treatment with TNF (10 ng/ml) or TAK1i (1 µM) alone or in 

combination for 16 hrs. Error bars represent SD. 

(F) Western blot analysis of activated caspase-8 (P41/43 cleavage product) following siRNA-

mediated knockdown of CTRL, RIPK1 or MIB2 in HT1080 cells and treatment with TNF/SM 

for 3 hrs.    

(G) FACS analysis of PI/AnnexinV positive HT1080 cells subjected to siRNA knockdown of 

the indicated genes followed by treatment with TNF (10 ng/ml) or SM (100 nM) alone or in 

combination for 6 hrs. Error bars represent SEM. 

(H) FACS analysis of PI positive MIB1/2 DKO or RIPK1 KO MDA-MB-231 cells treated with 

SM (100 nM) for 16 hrs. Error bars represent SD. 

(I) FACS analysis of PI positive 786-0 cells treated with TNF (10 ng/ml) or SM (100 nM) or in 

combination for 48 hrs. 

(J) MTT-cell viability assay of MDA-MB-231 cells subjected to siRNA-mediated knockdown of 

MIB2. After siRNA-mediated knockdown cells were treated with SM (100 nM) or LPS (10 

μg/ml) alone or in combination for 3 hrs. Error bars represent SD. 

(K) Western blot analysis of activated caspase-8 (P41/43 cleavage product) following siRNA-

mediated knockdown of CTRL, RIPK1 or MIB2 in MDA-MB-231 cells and treatment with 

LPS/SM for 4.5 hrs.  

(L) TNF-induced complex-II immuno-precipitation. MDA-MB-231 cells were treated with the 

indicated agents for 4 hrs. Caspase-8 immuno-precipitation was performed followed by 

western blot analysis. An asterisk indicates cross reactive bands. 

 

Figure 3. MZM domain of MIB2 is required for binding to oligomeric RIPK1 

(A) Domain organization of MIB2. The MZM, REP, ANK and RING regions of the protein are 

indicated. The numbers depict the position of the amino acid of the indicated deletion 

constructs used.  
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(B) HA-MIB2 deletion constructs were co-expressed with untagged RIPK1 in 293T cells. HA-

immuno-precipitation was performed and RIPK1 interaction was assessed via western blot.  

(C) HA-vector control, HA-MIB2WT or HA-MIB2ZZ (carrying a single point mutation in the ZZ-

domain) was co-expressed with untagged RIPK1 in 293T cells. HA-immuno-precipitation was 

performed and RIPK1 interaction was assessed via western blot. 

(D) Schematic representation of RIPK1 constructs used in the binding studies. 

(E-F) HA-RIPK1 deletion constructs were co-expressed with FLAG-MIB2 MZM domain in 

293T cells. HA-immuno-precipitation was performed and interaction with MIB2 MZM was 

assessed via western blot.  

(G) In vitro binding assay with recombinant MIB2 and in vitro translated RIPK1.  

(H) Binding assay with MIB2 (in vitro translated) and RIPK1 (from cellular extract). MDA-MB-

231 cells were left untreated or treated with TNF/SM/zVAD-fmk for 4 hrs and lysates were 

incubated with in vitro translated FLAG-MIB2.  

(I) Schematic representation of the interaction between MIB2 and oligomerized RIPK1. 

 

Figure 4. MIB2 protects cells to TNF-induced and RIPK1-dependent cell death, in a 

RING and RIPK1-binding dependent manner 

(A) Schematic diagram of the reconstitution system using MDA-MB-231 cells. Doxycycline 

treatment induces simultaneous knockdown of endogenous MIB2 and expression of shRNA 

resistant wildtype MIB2, MIB2ZZ, MIB2F>A or RFP. TRE, tetracyclin response element; UBC, 

ubiquitin promoter; rtTA3, reverse Tet transactivator. 

(B-C) MTT-cell viability assay of the indicated stable cells following induction of the target 

genes with Doxycycline (500 ng/ml) for 64 hrs, and treatment with TNF (10 ng/ml) + SM (100 

nM) for 3 hrs (B) or with LPS (10 μg/ml) + SM (100 nM) for 5 hrs (C). Error bars represent SD. 

(D) Western blot analysis of activated caspase-8 (P41/43 cleavage product) using stable cells 

described in. Cells were induced for 64 hrs with 500 ng/ml of Doxycycline and treated +/- LPS 

(10 μg/ml) + SM (100 nM) for 5 hrs.  

(E) DEVDase activity analysis using stable cells described in. Cells were induced for 64 hrs 

with 500 ng/ml of Doxycycline and treated with LPS (10 μg/ml) or SM (100 nM) alone or in 

combination for 3 hrs. Error bars represent SD. 
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(F) TNF-induced complex-II immuno-precipitation. Stable cells described in were induced with 

doxycycline for 64 hrs and treated with the indicated agents for 4 hrs. Caspase-8 immuno-

precipitation was performed followed by western blot analysis.  

 

Figure 5. MIB2 ubiquitylates RIPK1 in a TNF dependent manner 

(A) TNF-induced complex-I immuno-precipitation depicting the ubiquitylation of RIPK1. WT 

and MIB1/2 DKO MDA-MB-231 cells were treated with FLAG-TNF (0.8g/ml) for the 

indicated time-points, followed by FLAG immuno-precipitation and western blot analysis. 

Quantification for ubiquitylation is shown at 15 mins time point.  

(B) Comparison of TNF induced NF-B activation in parental and RIPK1 KO MDA-MB-231 

cells. Cells were either left untreated or treated with TNF (10 ng/ml) for indicated times and 

lysates were analyzed by western blotting 

(C) The presence of cytokines in the culture media of parental and RIPK1 KO MDA-MB-231 

cells was determined by ELISA. Cells were stimulated with TNF for 6 hrs. Error bars 

represent SD. 

(D) TUBE affinity purification of lysates from WT and MIB1/2 DKO MDA-MB-231 cells pre-

treated with SM (100 nM) for 10 mins, followed by TNF (10 ng/ml) for the indicated time 

points. 

(E) TUBE affinity purification of lysates from reconstituted MDA-MB-231 cells. Expression of 

the indicated proteins was induced with Doxycycline (500 ng/ml) for 64 hrs followed by pre-

treatment with SM (100 nM) for 10 mins, after which TNF (100 ng/ml) was added for the 

indicated times. Quantification of ubiquitylated RIPK1 above the dotted line at 15 and 30 

mins. 

(F) Western blot analysis of reconstituted MDA-MB-231 cells. Prior treatment, expression of 

the indicated proteins was induced with doxycycline (500 ng/ml) for 60 hrs. Cells were either 

left untreated or treated with TNF (100 ng/ml) in presence or absence of SM (100 nM) for 30 

mins followed by MIB2 immuno-precipitation.  

(G) In vitro ubiquitylation assay using the indicated purified proteins. The presence of 

ubiquitylated RIPK1 was evaluated by immunoblotting the reaction with an anti-RIPK1 

antibody. 
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Figure 6. MIB2 ubiquitylates the linker and the C-terminal portion of RIPK1 with 

different types of linkages. 

(A) UbiCRest analysis of ubiquitylated RIPK1 associated to complex-I. WT and MIB1/2 DKO 

MDA-MB-231 cells were treated with FLAG-TNF (0.8g/ml) for 10 mins, and complex-I was 

immuno-precipitated using FLAG-beads. Beads were aliquoted and treated with the indicated 

DUBs in parallel reactions for 30 mins at 37 °C. The ubiquitylation status of RIPK1 was 

analyzed by western blot.  

(B) MIB2 can target RIPK1 for ubiquitylation with K11-, K48- and K63-linked chains. The 

indicated constructs were co-expressed in HEK293T cells, and lysates were immunoblotted 

with an anti-RIPK1 antibody.  

(C) Schematic representation of all ubiquitylation sites of RIPK1 identified by mass 

spectrometry-based experiments. Each circle indicates an independent experiment. Green 

marks previously identified residues.  

(D) Schematic representation of the ubiquitylation sites of RIPK1 that are mediated by MIB2. 

Fold ubiquitin enrichment of RIPK1 sites in MIB2WT compared to MIB2F>A is shown. 

(E) diGly MS/MS spectra of K377 of human RIPK1 (precursor ion 688.00783+, error -0.58 

ppm, ion score 21.8). For clarity, only prominent fragment ions are marked.  

(F) Ubiquitylation of RIPK1 in complex-I. RIPK1 KO MDA-MB-231 cells reconstituted with 

either RIPK1WT or RIPK1K377R were treated with FLAG-hTNF for the indicated time-points, 

followed by FLAG immune-precipitation and western blot analysis. Quantification for RIPK1 

ubiquitylation is shown.  

(G) Immunoprecipitation of RIPK1 from RIPK1 KO MDA-MB-231 cells reconstituted with 

either RIPK1WT or RIPK1K377R
. Quantification for RIPK1 phosphorylation is shown. 

 

 
Figure 7. MIB2 ubiquitylates RIPK1 at lysine K377 and K634 

(A-D) A homology model of human RIPK1 Death Domain (DD) (583-669) was generated by 

the SWISS-MODEL server. The PIDD DD (PDB 2OF5) was used as homology template. 

RIPK1 DD model was aligned to Fas DD in Fas/FADD complex structure (PDB code 3OQ9). 

Residues K604 and K634 are found at the interface between two RIPK1 DD (Type I and II 
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interfaces) (B, C), which should affect RIPK1 self-association if ubiquitinated. K634 also 

locates between RIPK1 DD and FADD DD (Type II interface) (C), which is predicted to 

directly affect the interaction if ubiquitylated. 

(E) DEVDase activity assay of RIPK1 KO MDA-MDA-MB-231 cells reconstituted with either 

RFP, RIPK1WT, RIPK1K377R or RIPK1K634R and treated with TNF/TAK1i for 3 hrs. Expression of 

RFP, RIPK1WT, RIPK1K377R or RIPKK634R was induced with doxycycline for 3 hrs. 

(F) FACS analysis of PI positive Ripk1 KO MDA-MB-231 cells reconstituted with either RFP, 

RIPK1WT, RIPK1K377R or RIPK1K634R and treated with TNF/TAK1i for 3 hrs. Error bars 

represent SD. 

(G) FACS analysis of PI positive MDA-MB-231 RIPK1 KO cells reconstituted with RIPK1WT or 

RIPK1K377R following MIB2 knockdown. Cells were stimulated with TNF/TAK1i for 3 hrs. Error 

bars represent SD. 
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Supplementary Figure S1. MIB2 is not required for TNF-induced NF-κB activation and cytokine 

secretion, Related to Figure 1  

(A) Western blot analysis of the indicated cell line subjected to RNAi-mediated knockdown of MIB1, 

MIB2 or MIB1/2. Cells were either left untreated or treated with TNF (10 ng/ml) for 15 mins. (B) The 

presence of cytokines in the culture media of the indicated cell line was determined by ELISA. Cells 

were subjected to siRNA knockdown of MIB2 or p65 followed by stimulation with TNF at increasing 

concentrations (0.2-5 ng/ml) for 6 or 24 hrs. Error bars represent SD. (C) Comparison of TNF induced 

NF-κB activation in parental and MIB1/2 DKO MDA-MB-231 cells. Cells were either left untreated or 

treated with TNF (10 ng/ml) for indicated times and lysates were analyzed by western blotting. (D) 

qRT-PCR analysis of mRNA from WT MDA-MB-231 and MIB1/2 DKO MDA-MB-231 cells. 

Relative A20 mRNA levels before and after 3 hrs of stimulation with 10 ng/ml TNF. (E-F) Comparison 

of TNF induced NF-κB activation in parental and MIB1/2 DKO HEK293 cells (E) or 786-0 cells (F). 

Cells were either left untreated or treated with TNF (10 ng/ml) for indicated times and lysates were 

analyzed by western blotting. (G) The presence of cytokines in the culture media of HeLa cells was 

determined by ELISA. HeLa cells were subjected to siRNA-mediated knockdown of MIB2 or p65 

followed by stimulation with TNF at increasing concentrations (0.2-5 ng/ml) for 6 or 24 hrs. Error bars 

represent SD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S2 

 

Supplementary Figure S2. MIB2 is required for TNF induced apoptosis, Related to Figure 2  

(A) Schematic depicting the sensitivities of various cell lines to negative regulators of RIPK1. (B) 

FACS analysis of PI positive HT1080 and 786-0 cells treated with TNF (10 ng/ml), SM (100 nM), 

TNF/SM or TNF/TAK1i (1 µM) for 24 hrs. Error bars represent SD. (C) Crystal violet cell survival 

assay of Kym1 and MDA-MB-231 cells treated with SM (100 nM) or TNF (10 ng/ml)/SM (100 nM) 



for 24 hrs. Error bars represent SD. (D) FACS analysis of PI positive 786-0 cells subjected to siRNA-

mediated knockdown of MIB2. Following RNAi-mediated knockdown, cells were treated with DMSO 

or zVAD-FMK (10 µM) for 1 hr followed by treatment with TNF/TAK1i for 48 hrs. Error bars 

represent SD.  (E) FACS analysis of PI positive HT1080 IkBSR cells in which MIB2 was knocked down 

by RNAi. Cells were treated with TNF (10ng/ml) for 24 hrs. Error bars represent SD. (F) FACS 

analysis of PI positive 786-0 cells subjected to siRNA-mediated knockdown of MIB2. Following 

RNAi-mediated knockdown, cells were treated with TNF (10 ng/ml) + CHX (10 µg/ml) for 24 or 48 

hrs. Error bars represent SD. (G) Cell death analysis by Celigo of PI positive HT1080 cells subjected to 

siRNA-mediated knockdown of MIB2. Following RNAi-mediated knockdown, cells were treated with 

DMSO, zVAD-FMK (10 µM) or RIPK1i-GSK’963 (100 nM) for 1 hr followed by treatment with 

TNF/SM. Error bars represent SD. (H) Cell death analysis by Celigo of PI positive 786-0 cells 

subjected to siRNA-mediated knockdown of MIB2. Following RNAi-mediated knockdown, cells were 

treated with DMSO, zVAD-FMK (10 µM) or RIPK1i-GSK’963 (100 nM) for 1h followed by treatment 

with TNF/SM. Error bars represent SD. (I) FACS analysis of Kym1 cells treated with control siRNA 

oligos, or two independent oligos targeting MIB2. (J) Clonogenic growth assay using Kym1 cells 

subjected to siRNA knockdown of MIB2. 64 hrs post siRNA, 1000 cells were re-plated and left to form 

colonies. Error bars represent SEM. (K) Proximity ligation assay between RIPK1 and caspase-8 

performed in Kym1 cells upon treatment with SM (100 nM) for 5 hrs or siRNA knockdown of MIB1, 

MIB2, MIB2/RIPK1 for 96 hrs. All samples were treated with zVAD-FMK (10 µM) in fresh medium 

16 hrs after transfection and then spiked with zVAD-FMK (10 µM) again at 48 hrs. (L) Western blot 

analysis of activated caspase-8 (p20 cleavage product) following siRNA knockdown of the indicated 

targets in Kym1 cells for 64 hrs. (M) DEVDase activity analysis of parental or TNF-R1 KO Kym1 cells 

subjected to siRNA-mediated knockdown of MIB2. Following RNAi-mediated knockdown, cells were 

lysed and caspase activity was measured. (N) DEVDase assay using extracts from SWISS-3T3 cells 

subjected to siRNA knockdown of Mib2. Following RNAi-mediated knockdown, cells were treated 

with TNF/SM in presence or absence of RIPK1i-GSK’963 (100 nM) for 24 hrs. Error bars represent 

SD. (O) Cell death analysis by Celigo of PI positive SWISS-3T3 cells subjected to siRNA knockdown 

of Mib2. Following RNAi-mediated knockdown, cells were treated with the indicated agents for 17 hrs. 

Error bars represent SD. 

 

 

 

 

 

 

 

 

 

 



Figure S3 

Supplementary Figure S3. MIB2 binds to oligomeric RIPK1, Related to Figure 3  

(A-E) The indicated constructs were co-expressed in 293T cells. Immuno-precipitation was performed 

and interaction was assessed via western blot. (F) Schematic representation and summary of the results 

regarding MIB2 binding and RIPK1 homo-oligomerization. Indicated are the oligomerization and 

MIB2 binding capabilities of the various deletion constructs. (G) In vitro binding assay with 



recombinant MIB2 and in vitro translated RIPK1. H) Western blot analysis of in vitro synthesized 

RIPK1 using the indicated antibodies. An asterisk indicates cross reactive bands. (I) Western blot 

analysis of in vitro synthesized RIPK1 treated with λ phosphatase as indicated.  (J) In vitro binding 

assay of the indicated constructs. Left panel: input proteins. Middle panel: binding assay. FLAG-

immuno-precipitation was performed and homo-oligomerization of in vitro synthesized RIPK1 proteins 

was assessed by Western blot. Right panel depicts the summary of the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S4 

 

Supplementary Figure S4. RIPK1 is a substrate for MIB2, Related to Figure 5  

(A) 786-0 cells were subjected to siRNA of MIB2 followed by TNF-induced complex-I immuno-

precipitation. Cells were treated with FLAG-hTNF (0.8 µg/ml) for 0, 5, 15 and 30 mins followed by 

FLAG immuno-precipitation and western blot analysis. (B) Comparison of TNF induced NF-κB 



activation in parental and RIPK1 KO 786-0 cells. Cells were either left untreated or treated with TNF 

(10 ng/ml) for indicated times and lysates were analyzed by western blotting. (C) Comparison of TNF-

induced activation of ERK, p38 and JNK in parental and RIPK1 KO 786-O cells. Cells were either left 

untreated or treated with TNF (10 ng/ml) for indicated times and lysates were analyzed by western 

blotting. (D) Comparison of TNF induced NF-κB activation in parental, RIPK1 KO and TNF-R1 KO 

Kym1 cells. Cells were either left untreated or treated with TNF (10 ng/ml) for indicated times and 

lysates were analyzed by western blotting. (E) Comparison of TNF induced NF-κB activation in 

parental and RIPK1 KO Jurkat cells. Cells were either left untreated or treated with TNF (10 ng/ml) for 

indicated times and lysates were analyzed by western blotting. (F) Untagged GFP, MIB1, MIB2WT, 

MIB2F>A or MIB2R2 was co-expressed with HA-Ub and untagged RIPK1 in 293T cells. HA-immuno-

precipitation was performed and ubiquitylation of RIPK1 was assessed via western blot. (G) Yeast-

two-hybrid assay screening the interaction of the RING finger of MIB2 (encoding amino acids 843-

1000) with 22 human E2s and 6 human Ub-conjugating E2 variants (TSG101, Uev1a, Uev1b, Mms2, 

Ube2v3, Ft1). 

 

 

  



Figure S5 

Supplementary Figure S5. RIPK1K377R mutation does not abrogate binding to MIB2, Related 

to Figure 6 

(A) RIPKWT and RIPK1K377R were co-expressed with the indicated constructs in 293T cells. HA-

immuno-precipitation was performed and ubiquitylation of RIPK1 was assessed via western blot. (B) 

FLAG MIB2 was co-expressed with untagged RIPK1WT or RIPK1K377R in 293T cells. FLAG-immuno-

precipitation was performed and interaction with RIPK1 was assessed via western blot. 

 

 

  

IP
: 
α

-F
L

A
G

 (
M

IB
2
)

In
p

u
t

RIPK1

WB:

α-FLAG

WB:

α-RIPK1

(kDa)

1 2

100

75

75

MIB2

RIPK1:

W
T

K
3
7
7
R

RIPK1

WB:

α-RIPK1

MIB2FLAG tag:

IP
: 
α

-H
A

 (
U

b
)

In
p

u
t

RIPK1

MIB2WB:

α-MIB2

MIB2
WT

MIB2
F>A

WB:

α-RIPK1

WB:

α-RIPK1

(kDa)

1 2 3 4

100

75

75

100

RIPK1

K
3

7
7

R

W
T

K
3

7
7

R

W
T

RIPK1:

U
b. R

IPK1

Ub pulldown BA

HEK293THEK293T



Figure S6 

Supplementary Figure S6. Expression of RIPK1 mutants in MDA-MB-231 cells, Related to 

Figure 6  

Western blot analysis of lysates from parental and RIPK1 KO MDA-MB-231 cells reconstituted with 

either RIPK1WT, RIPK1K377R and RIPK1K377R were induced with doxycycline for 6 hrs.  
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Figure S7 

 

Supplementary Figure S7. MIB2 ubiquitylates RIPK1 at multiple lysine residues, Related to 

Figure 7 

(A-B) Ubiquitylation of RIPK1 in complex-I. RIPK1 KO MDA-MB-231 cells were reconstituted with 

either RIPK1WT or RIPK1K377R (A) or RIPK1K634R (B). Cells were subjected to RNAi-mediated 

knockdown of MIB2. 48 hrs later cells were treated with FLAG-hTNF (0.8 µg/ml) for the indicated 

time-points post 5 hrs doxocycline induction, followed by FLAG immune-precipitation and western 

blot analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Supplemental Experimental Procedures  

Resource Table  

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
α-RIPK1 (N-terminal) Cell Signaling  Cat#3493 
α-HA Roche  Cat#11867423001 
α-MIB2 Bethyl Laboratories Cat#A301-414A 
α-MIB1 Gift from Patricia J. 

Gallagher 
N/A 

α-CYLD Cell Signaling Cat#8462; D1A10 
α -SHARPIN Proteintech Cat#14626-1-AP 
α-HOIL Gift from Henning 

Walczak 
N/A 

α-HOIP Bethyl Laboratories Cat#A303-560A 
α-NEMO Santa Cruz Biotechnology Cat#sc-8330 
α-TRADD BD Biosciences Cat#610572 

 
α-cIAP1 Enzo Life Sciences  Cat#ALX-803-335-

C100 
α-TAK1 Cell Signaling Cat#4505 
α-TNF-R1 Abcam Cat#19139 
α-TNF-R1 Santa Cruz Biotechnology Cat#sc-8436 
α-ACTIN Sigma Cat#A5441 
α-P-p65 Cell Signaling Cat#3033 
α-p65 Cell Signaling Cat#8242 
α-IκBα Santa Cruz Biotechnology Cat#sc-371 
α-P-IκBα Cell Signaling Cat#2859 
α-P-p38 Cell Signaling Cat#9215 
α-p38 Cell Signaling Cat#9212 
α-P-JNK Cell Signaling Cat#4668 
α-JNK Santa Cruz Biotechnology Cat#sc-571 
α-P-ERK Cell Signaling Cat#9101 
α-CASPASE-8 - for WB - post IP MBL Cat#M032-3 
α-CASPASE-8 - for IP [C-20] Santa Cruz Biotechnology Cat#sc-6136 
α-CASPASE-8 for cleavage R&D Cat#AF1650 
α-FLAG [M2] Sigma  Cat#F3165 
α-Ub Dako Cat#Z0458 
α-PARP1 [F2] Santa Cruz Biotechnology Cat#sc-8007 
α-FLIP Enzo Life sciences  Cat#ALX-804-428-

C050 
α-GFP Santa Cruz Biotechnology Cat#sc-8334 
α-MYC Sigma Cat#M5546 
α-HSP90 Santa Cruz Biotechnology Cat#sc-7947 
α-A20 Cell Signaling Cat#5630 
α-TRAF2 Santa Cruz Biotechnology Cat#sc-876 
α-ERK Gift from Chris Marshall N/A 
α-pERK Sigma M8159 
Chemicals, Peptides, and Recombinant Proteins 
Enbrel Wyeth N/A 
Biotin-AHX-Ub-PA (UbiQ) Cat#UbiQ-076 
FLAG-hTNF Enzo Life Sciences  Cat#ALX-804-034-

C050 



FLAG-hTNF Gift from Henning 
Walczak 

N/A 

(5Z)-7-Oxozeaenol (TAK1 inhibitor) Tocris  Cat#3604 
zVAD-FMK Apex Bio Cat#A1902 
QVD Apex Bio Cat#A1901 
SM-164 Gift from Shaomeng 

Wang 
N/A 

LPS Invivogen Cat#TLRL-PEKLPS 
Ac-DEVD-AMC Cambridge Bio 

 
Cat#CAY14986 

Hoechst Thermo Scientific  Cat#33342 
Propidium iodide solution (PI) Sigma Cat#P4864 
MTT reagent Sigma  Cat#M5655 
Protein A/G agarose Thermo Scientific 20423 
Halt Protease and phosphatase inhibitor  Thermo Scientific 78443 
PR619 2B Scientific SI9619 
GSK’963 (RIPK1 inhibitor) Gift from GSK N/A 
Human TaqMan A20 Probe Hs00234713_m1 Thermo Scientific Cat#4331182 
Human TaqMan ACTIN Probe Hs01060665_g1 Thermo Scientific Cat#4331182 
Critical Commercial Assays 
RNAEasy Qiagen  Cat#74106 
QuantiTech reverse transcription Qiagen Cat#205314 

 
Duolink In Situ Detection Reagents Green Sigma DUO92014 
Experimental Models: Cell Lines 
HT1080IkB-SR Gift from O. Micheau 

(Dijon, France) 
N/A 

Kym1 Gift from John Silke 
(Melbourne, Australia) 

N/A 

HT1080 ATCC Cat#CCL-121 
MDA-MB-231 In house  N/A 
HEK293T In house N/A 
Flp-InTMT-RExTM-HEK293 Termo Scientific  Cat#R78007 
786-0 In house N/A 
SWISS-3T3 In house N/A 
Oligonucleotides 
shRNA Mib2 Thermo Scientific Clone ID: 

V3THS_324301 
siMIB2_1 [Hs_ZZANK1_4 (hMib2)] Qiagen Cat#SI00779688 
siMIB2_4 [hs_Mib2_4] Qiagen  Cat#SI04369778 

 
siMIB2_6 [hs_Mib2_6] Qiagen  Cat#SI05126436 

 
siALL*Control  Qiagen  Cat#1027281 
Recombinant DNA 
Cas9-plasmid Addgene Cat#41815 or 48138 
Mib2 cDNA Gift from Vanessa 

Redecke 
N/A 

pcDNA3 Thermo Scientific Cat#V79020 
Deposited Data   
http://dx.doi.org/10.17632/52t6f2m8k5.1   
Software and Algorithms 



CRISPR design http://crispr.mit.edu (Ran et al., 2013) 
CRISPR design http://www.addgene.org/cr

ispr/church/ 
(Mali et al., 2013) 

SAINT analysis http://saint-
apms.sourceforge.net/ 

(Choi et al., 2011) 

Swiss-Prot https://www.ebi.ac.uk/uni
prot 

 

Proteome Discoverer v1.4 Thermo Scientific Cat#IQLAAEGABSF
AKJMAUH 

Image Lab V5.2.1. Bio-Rad laboratories  
Sequence alignment http://benchling.com  
GraphPad Prism v6.0 http://www.graphpad.com

/ 
 

 

CONTACT FOR REAGENTS AND RESOURCE SHARING 

Further information and requests for reagents may be directed to Pascal Meier (pmeier@icr.ac.uk). 

 

Plasmids 

The MIB2 cDNA (kind gift from Vanessa Redecke) was altered by mutagenesis to correspond to 

Q96AX9-2 - MIB2_human (UniProt). All constructs used for transient transfection experiments were 

cloned into pcDNA3 mammalian expression vector (Invitrogen) and sequence verified. For generation 

of stable cell lines Lentiviral tet-On inducible vector pTRB3A1 was used and cells were selected in the 

presence of Blasticidin. 

 

RNA Interference, Transfections and Infections 

Unless otherwise indicated, all siRNA assays were performed using a total of 50 nM – 100 nM of 

siRNA. When multiple siRNAs were combined, each siRNA was used at 25 nM and control siRNA 

was used where required to balance siRNA concentrations so equal amounts were transfected. All 

siRNA transfections unless otherwise stated were performed using DharmaFECT4 transfection reagent 

(GE Healthcare) and Opti-MEM (Life Technologies). All siRNA transfections unless otherwise stated 

were performed using retro transfection and left for 40 hrs from the time of transfection to facilitate 

knockdown. Unless otherwise indicated siMIB2 refers to the combination of hs_ZZANK1_4 (25 nM) 

+ hs_MIB2_2 (25 nM) + hs_MIB2_4 (25 nM) + siCtrl (25 nM). For experiments where siMIB1 and 

siMIB2 are co-knocked down, siMIB2 refers to the combination of hs_MIB2_2 (25 nM) + hs_MIB2_4 

(25 nM) + siCtrl (50 nM) or siMIB1 (50 nM). For all ELISA experiments 5x105 cells were 

electroporated with 10 µl of 20 µM siRNA then seeded at 3x104 in 24-well plates for 48 hrs. 

Generation of lentiviral particles was conducted as described previously (Vince et al., 2008; Vince et 

al., 2007).  

Caspase-8 Cleavage Assays 

Cells were seeded in 6-well plates and treated as indicated. Cells were lysed in 200 µl of DISC lysis 

buffer supplemented with 2% SDS, protease and phosphatase inhibitors. Cell lysates were passed 

through 0.8 ml columns (Pierce) to shred genomic DNA. Proteins lysates were quantified before 

separating samples by SDS-PAGE using NuPAGE Novex 4-12% Bis-Tris 1.0 mm 12 well precast 



protein gels (Invitrogen) in MES buffer. Caspase-8 cleavage antibody [AF1650] (R&D) was used to 

detect cleavage products.   

 

Cell Death (FACS) and MTT assays 

Cells were plated in 96-well plates and retro siRNA transfection was performed for 40 hrs. Cells were 

treated as indicated in 150 µl for indicated times. Medium containing dead cells was transferred to a 

round bottom 96 well plate, live cells were trypsinized in 50 µl, live cells were harvested with 100 µl of 

medium containing 1 µg/ml PI with 2.5 mM CaCl2 and 2.5 µl/ml AnnexinV antibody (BD Biosciences) 

and combined with dead cells (total volume 300 µl). 96-well plate was analyzed by FACS using a plate 

reader. Data shown are from 5000 cells per condition. For CeligoS assays, 5 x104 786-O or HT1080 

cells were seeded in 96-well plates and 24 h later cells were treated as indicated for the indicated times. 

Hoechst (0.5 µg/ml) and PI (1 µg/ml) were added and the percentage of dead cells was measured using 

the CeligoS image cytometer (Nexcelon Bioscience). For MTT assays 5x104 cells were seeded in 24-

well plates. Cells were treated as indicated in 500 µl for indicated times, after which 50 µl of MTT 

reagent re-suspended in H20 to a concentration of 5 mg/ml was added to the cells and left to develop 

for 2 hrs. Media was removed and 500 µl DMSO added to solubilize the crystals. Absorbance was read 

on a spectrometer at 570 nm.  

 

Crystal Violet Cell Survival Assays 

Cells were seeded in a 6-well plate. The following day the indicated treatments were added in 2 ml of 

DMEM and the cells were left for 24 hrs in treated medium. Cells were fixed in 3.7% 

formaldehyde/PBS for 10 mins and stained with crystal violet/PBS for 10 mins. Colonies were either 

dissolved in 1 ml of 10% acetic acid and the absorbance read on a spectrometer at 595 nm.  

 

Clonogenic Assays 

Cells were seeded in a 6-well plate and retro siRNA transfection was performed. After 40 hrs (786-0) 

or 64 hrs (Kym1) cells were trypsinized, counted and 1000 viable cells were re-plated into a 6-well 

plate. The following day the indicated treatments were added in 2 ml of DMEM and the cells were left 

for approximately 9 days in treated medium. Cells were fixed in 3.7 % formaldehyde/PBS for 10 mins 

and stained with crystal violet/PBS for 10 mins. Colonies were either dissolved in 1 ml of 10% acetic 

acid and the absorbance read on a spectrometer at 595 nm, or the colonies were counted and recorded 

using Image J.     

 

Caspase activity assays (DEVDase) 

DEVDase assay was performed as previously described (Jaco et al., 2017). In brief, cells were plated in 

96-well plates and retro siRNA transfection was performed for 40 hrs. After treatment, medium was 

removed and 1 % DISC lysis buffer (20 mM Tris-HCL pH7.5, 150 mM NaCl, 2 mM EDTA, 1 % 

Triton X-100, 10 % Glycerol, H20) was added to each well. Plates were placed at -80 °C to aid cell 

lysis. Plates were thawed at room temperature for 15 mins, after which DEVDase assay mix was added 

to each well (NB: cell lysates were not cleared). The plates were wrapped in foil and the reaction was 



incubated at room temperature for up to 24 hrs. DEVDase activity was read at 380 nM excitation/460 

nM emission. 

 

TUBE Assays  

Cells were lysed in DISC lysis buffer (20 mM Tris-HCL pH7.5, 150 mM NaCl, 2mM EDTA, 1% 

Triton X-100, 10% Glycerol, H20) supplemented with protease inhibitors, 1 mM DTT, PR619 (10 µM), 

GST-TUBE (50 µg/ml; 50 µg TUBE/mg protein lysate). Cell lysates were rotated at 4 °C for 20 mins 

then clarified at 4 °C at 14,000 rpm for 10 mins. 20 µl GST beads were added and immuno-

precipitation was performed overnight. 4x washes in wash buffer (50 mM Tris pH 7.5, 150 mM NaCl, 

0.1 % Triton X-100, and 5 % glycerol) + PR619 (10 µM) were performed, and samples eluted by 

boiling in 50 µl 1x SDS loading dye. 

 

Homology Modeling 

A homology model of human RIPK1 Death Domain (DD, 583-669) was generated by the SWISS-

MODEL server using PIDD DD structure as the template (PDB code 2OF5). Then modeled RIPK1 DD 

structure was aligned to FAS DD in FAS/FADD complex structure (PDB code 3OQ9) to form a RIPK1 

DD/FADD DD complex structure. The alignment was performed by Coot and figures were made by 

PyMol. 

 

Complex-I/II Purification 

Complex-I/II purification was essentially performed as previously described (Jaco et al., 2017). In 

brief, cells were seeded in 15 cm dishes and treated as indicated using pre-warmed media containing 

3xFLAG-hTNF (0.8 µg/ml). After stimulation media was removed and plates were washed with ice 

cold PBS to stop stimulation and frozen at -80 °C. Plates were thawed and cells were lysed in DISC 

lysis buffer supplemented with protease inhibitors and PR619 (10 µM). Cell lysates were rotated at 4 

°C for 20 mins then clarified at 4 °C at 14,000 rpm for 10 mins. 20 µl of anti-FLAG M2 beads 

(SIGMA) were rotated with cleared protein lysates overnight at 4 °C. 0 hr sample: 0.8 µg/ml of FLAG-

TNF was added post-lysis. 4x washes in DISC buffer with PR619 (10 µM) were performed, and 

samples eluted by boiling in 50 µl 1x SDS loading dye. For complex-II purification cells were seeded 

in 10 cm dishes and treated as indicated in figure legends. Cells were lysed on ice as above. Cell 

lysates were rotated at 4 °C for 20 mins then clarified at 4 oC at 14,000 rpm for 10 mins. 20 µl of 

protein G sepharose (SIGMA) with Caspase-8 (C20) antibody (Santa Cruz Biotechnology) (1.5 µg 

antibody/mg protein lysate) were rotated with cleared protein lysates overnight at 4 °C. 4x washes in 

wash buffer (50 mM Tris pH 7.5, 150 mM NaCl, 0.1% Triton X-100, and 5% glycerol) were 

performed, and samples eluted by boiling in 50 µl 1x SDS loading dye. 

 

Ubiquitylation Assays 

0.4 µg of plasmids expressing HA-Ub or Myc-Ub was transfected into 293T cells in combination with 

the indicated constructs. Transfection was left for 16 hrs after which cells were lysed with DISC lysis 

buffer supplemented with protease inhibitors and PR619 (10 µM). Cell lysates were rotated at 4 °C for 



20 mins then clarified at 4°C at 14,000 rpm for 10 mins. 20 µl anti-HA beads (SIGMA) or 20 µl of 

protein G sepharose (SIGMA) + 3 µl anti-Myc were rotated with cleared protein lysates overnight at 4 

°C. 4x washes in wash buffer (50 mM Tris pH 7.5, 150 mM NaCl, 0.1% Triton X-100, and 5% 

glycerol) supplemented with PR619 (10 µM) were performed, and samples eluted by boiling in 50 µl 

1x SDS loading dye. 

 

In vitro Binding and Ubiquitylation Assay  

All constructs for in vitro translation assays were cloned into pcDNA3 and translated using the 

Promega TNT Coupled Reticulocyte Lysate System. For production of GST-tagged proteins, MIB2 

constructs were expressed from pGEX6p-1 in BL21(DE3)/pLysS strain and purified with GST beads. 

All in vitro binding assays were conducted in the presence of DISC buffer overnight at 4 °C. Beads 

were washed 4 times with the same buffer and protein complexes were eluted by boiling the beads in 

1x SDS loading dye. For the in vitro assay shown in Fig 5G, purified Strep-tagged MIB2 was 

incubated with recombinant GST-tagged full length RIPK1 (Abnova), E1 enzyme preloaded with Ub 

(Boston Biochem), UbcH5a (Boston Biochem) and ATP in Ub assay buffer (40 mM Tris-HCL pH 7.5, 

10 mM MgCl2, 0.6 mM DTT) at 37 °C for 90 mins. Reactions were stopped by adding SDS loading 

dye and samples were analysed by Western blot with the indicated antibodies.   

 

UbiCRest  

The UbiCRest analysis with linkage selective DUBs was performed essentially as previously described 

(Hospenthal et al., 2015). Briefly, the release fraction (see above) was incubated with the following 

DUBs: 1 µM OTULIN, 0.2 µM OTUD1, 1 µM CEZANNE, 0.2 µM OTUB1, 1.5 µM USP21, 0.5 µM 

vOTU. The reaction was conducted in the presence of 1 mM DTT for 30 min at 37 °C. Reactions were 

stopped with loading buffer, and the ubiquitylation status analyzed by western blotting. 

 

Proximity Ligation Assay 

PLA was performed according to the manufacturer’s protocol using the Duolink Detection Kit 

(SIGMA). Cells were examined with a confocal microscope (objective x 40, Zeiss LSM 710).  

 

Directed Yeast Two-Hybrid Assays  

The yeast strain Y2HGold (Clontech) was co-transformed with pGBT9-MIB2 (encoding amino acids 

843-1000) as a bait and the respective prey plasmids encoding 22 human E2s and 6 human Ub-

conjugating E2 variants. Positive transformants were selected on minimal SD-Leu-Trp medium 

(Formedium). Three single colonies for each bait and prey co-transformation were patched out on fresh 

SD-Leu-Trp plates and grown for 2 days at 30 °C. Each patch was re-suspended in 180 µl of sterile 

water in a 96 well plate and plated in replicate onto non-selective (SD-Leu-Trp) or selective medium 

(SD-Leu-Trp-His, containing 5 mM of 3-amino-1,2,4-triazole (3-AT, Formedium)). Yeasts were 

incubated at 30ºC for 1 week. The E2s/UEVs library was kindly provided by Rachel Klevit. 

 

qRT-PCR  



qRT-PCR was performed as previously described (Morris et al., 2016), with some modifications. 

MDA-MB-231 parental and MIB1/2 DKO were treated with TNF (10 ng/ml) for 3 hrs and immediately 

frozen. qRT-PCR was performed using Taqman gene expression mastermix (Thermo Fisher Scientific) 

and the QuantStudio 6 Flex Real-Time PCR System. The amount of mRNA detected was normalized 

to control ACTIN mRNA values. The relative ΔCt sample/ΔCtr Actin ratios of WT controls were set at 

100%, and the fold differences were calculated using the ΔΔCt method.   

 

Mass Spectrometry  

Prior to mass spectrometry analysis of RIPK1 interactors, eluted protein complexes were digested with 

Trypsin and peptides were purified using C18 Microspin columns (Harvard Apparatus) according to 

the manufactures instruction. LC-MS/MS analysis was performed on a dual pressure LTQ-Orbitrap 

mass spectrometer (Thermo Scientific), which was connected to an electrospray ion source (Thermo 

Scientific). Peptide separation was carried out using an easy nano-LC systems (Proxeon Biosystems) 

equipped with an RP-HPLC column packed with C18 resin (Magic C18 AQ 3 µm; Michrom 

BioResources). A 0.3 µl/min linear gradient from 96 % solvent A (0.15 % formic acid, 2 % 

acetonitrile) and 4 % solvent B (98 % acetonitrile, 0.15 % formic acid) to 40 % solvent B over 40 min. 

The data acquisition mode was set to obtain one high-resolution MS scan in the FT part of the mass 

spectrometer at a resolution of 60,000 FWHM followed by MS/MS scans in the linear ion trap of the 

20 most intense ions. Raw files were converted to the mzXML format, and searched against the human 

swissprot protein database. Further data processing including SAINT was carried out as described 

previously (Choi et al., 2011). For the identification of ubiquitylated sites on RIPK1 by MIB2, 293T 

cells were transfected with 3xHA-RIPK1, MIB2 and Ub or 3xHA-RIPK1, MIB2F>A and Ub for 48 

hrs. After lysis with DISC lysis buffer in the presence of protease inhibitors and PR619, HA affinity 

purification was performed. Bound complexes were eluted with 5 % formic acid and then submitted for 

analysis by LC-MS/MS using a tryptic digestion workflow. Specific accurate mass (+/- 10 ppm) and 

retention time (AMRT) profiles were determined for the peptides of interest, accounting for the 

following variable modification states: unmodified and diGly-modification of lysine. Additionally, the 

sum value of four RIPK1 peptides was calculated relative to the data from the RIPK1 sample. The four 

peptides were selected as proxies to indicate the level of RIPK1 in the two samples. LC-MS/MS 

analysis of ubiquitylated peptides was performed after immuno-precipitation. Elutes were dried in 

vacuo and reconstituted in 50 mM triethylammonium bicarbonate. Samples were then reduced with 5 

mM tris(2-carboxyethyl)phosphine, free cysteines were alkylated with 10 mM chloroacetamide or 

chloroacetic acid and protein was digested with trypsin. For the targeted analysis of residue K377, a 

second digestion was performed using endoproteinase Glu-C. The resulting peptides were analysed by 

direct injection on an Agilent 1200 nanoLC (Agilent Technologies) in-line with an LTQ Velos Orbitrap 

mass spectrometer (Thermofisher Scientific) with the following modifications: Peptides were resolved 

over 30 mins using a linear gradient of 96:4 to 50:50 buffer A:B (buffer A: 1% acetonitrile/3 % 

dimethyl sulfoxide/0.1 % formic acid; buffer B: 80 % acetonitrile/3 % dimethyl sulfoxide/0.1 % formic 

acid) at 250 nL/min. The ion at 401.922718 m/z was used for FT-MS internal lock mass calibration. 

Peak lists were extracted using Proteome Discoverer v1.4 and interrogated using Mascot v2.3 against 



the Swissprot 2015_04 Homo Sapiens subset database (20,273 sequences) customized to include 

construct sequences as required. Residual Ub signatures GG and LRGG were included as variable 

modifications at lysine residues. 
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