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ABSTRACT 

Testicular Germ Cell Tumour (TGCT), the most common cancer in young men, has a 

significant heritable basis, which has long raised the question of existence of underlying 

major high-penetrance susceptibility gene(s). To determine the contribution of rare gene 

mutations to the inherited risk of TGCT, we analysed germline whole-exome data from 919 

TGCT cases and 1,609 cancer-free controls. We compared frequencies between TGCT cases 

and controls of rare (<1%) and low frequency (1-5%) coding variants (i) individually and (ii) 

collapsed at gene level by burden testing (T1 disruptive, T2 all deleterious, T3 all non-

synonymous), using Fisher’s exact test with Bonferroni correction of significance thresholds. 

No individual variant or individual gene demonstrated significant association with TGCT 

after correction for multiple testing. In the largest whole-exome sequencing study of 

testicular cancer reported to date, our findings do not support existence of a major high-

penetrance TGCT susceptibility gene (of odds ratio > 10 and allele frequency (combined) > 

0.01%). Due to power, this study cannot exclude existence of susceptibility genes 

responsible for occasional TGCT families, or rare mutations which confer very modest 

relative risks. In concert with findings of GWAS, our data support inherited susceptibility 

largely being polygenic with substantial contribution from common variation. 

PATIENT SUMMARY 



In the largest study of its kind, sequencing ~20,000 genes in 919 men with TGCT and 1609 

TGCT-free individuals, we find no evidence for a single major gene underlying predisposition 

to TGCT (in manner of BRCA1 for breast cancer). Instead, familial risk of TGCT is likely to be 

due to varying dosages of hundreds of minor genetic factors. 

MAIN TEXT 

Testicular germ cell tumour (TGCT), the most common cancer affecting young men, has a 

strong heritable basis as evidenced by the 4-8 fold increased risk of TGCT seen in brothers of 

TGCT patients [[1],[2]]. High heritability and observation of multiplex TGCT families have 

long fuelled anticipation that there may exist a ‘major’ TGCT-susceptibility gene suitable for 

clinical testing, analogous to BRCA1/BRCA2 in breast cancer. Early genetic linkage studies 

however proved unfruitful but were very much limited in power by the modest size and low 

frequency of multiplex TGCT families [3].  

We previously reported whole exome case-control segregation analysis of 150 TGCT families 

focusing just on gene-level analysis of rare (<1%) disruptive (truncating) mutations [4]. 

Although, after correcting for exome-wide analysis, no gene was significant based on 

segregation analysis alone, using a range of functional analyses we demonstrated 

association with familial TGCT of the strongest candidate, DNAAF1, and related cilia-

microtubule genes (CMGs). However, mutations in each of those genes were infrequent and 

none would constitute a ‘major’ TGCT susceptibility gene [4]. Here we present more 

comprehensive germline WES analysis of the contribution of rare variants to TGCT 

susceptibility, examining multiple different types of rare coding alleles (disruptive, damaging 

and otherwise) and presenting primary analysis of the full cohort of 919 TGCT cases 



(comprising 613 unselected TGCT cases in addition to the previously reported 306 familial 

TGCT cases), comparing these data to 1,609 healthy controls (see Supplementary Methods).  

We first examined individual nonsynonymous coding variants, both rare (MAF < 1%) and 

low-frequency (MAF 1-5%), for association with TGCT. A total 966,695 rare and 4,994 low 

frequency variants were detected, and a Bonferroni-corrected threshold of p < 5 × 10−8 (i.e. 

p < 0.05/~1 M variants) was imposed. No variant demonstrated an association with TGCT 

above this significance threshold (Table 1). 

We next analysed rare nonsynonymous variants collapsed at gene level and organised into 

three groups: (T1 disruptive, T2 all deleterious, and T3 all non-synonymous). A Bonferroni-

corrected threshold of p < 8 × 10−7 (i.e. p < 0.05/(20,000 genes, 3 tiers)) was imposed. No 

gene was significant within any variant group at the exome-wide level (Table 2). We 

assessed the distribution of test statistics compared to a null model using quantile-quantile 

plots (Supplementary Fig. 1) and found inflation statistics to be in the range of λ = 0.75 to 

1.0, suggesting the data fitted a null distribution overall. 

Whilst TGCT has yet to be implicated in any established cancer susceptibility syndrome, it is 

feasible that association of TGCT with a cancer susceptibility gene (CSG) may have gone 

undetected due to its rarity. Gene burden testing of 114 established high/moderate 

penetrance CSGs provided no evidence for association between any CSG and TGCT, after 

correcting for multiple testing (i.e. p < 0.0001 (p < 0.05/(114*3))) (Supplementary Table 1) 

[5]. Across all 114 CSGs, 4.9% of TGCT cases carried a T1 mutation, compared to 5.5% of 

controls (p > 0.5), providing no evidence of global enrichment. Similarly, there was no 

difference in the proportion of cases and controls carrying a T2 or T3 mutation.  



Causal variants responsible for GWAS signals largely map to non-coding regulatory regions, 

presumed to be influencing gene expression. However, non-synonymous variants in these 

same genes have also been shown to influence cancer risk [6]. Gene burden testing of 64 

genes positioned within the 49 established TGCT loci provided no evidence for association 

with TGCT of any GWAS-associated gene, after correction for multiple testing (i.e. p < 0.0003 

(p < 0.05/(64*3))), and there was no difference in the proportion of cases and controls with 

a T1/T2/T3 mutation (Supplementary Table 2) [[7],[8],[9]]. 

We then proceeded to undertake additional analyses of the 150 TGCT families. First we 

focused on the 12 ‘large’ pedigrees (eleven three-case families and one four-case family), on 

the presumption that family clustering of a rare cancer is unlikely to occur by chance. There 

were no genes for which rare T1 variants were found to segregate with TGCT in more than 

one family. For the singular four case pedigree (PED-269), the only rare variant segregating 

fully with TGCT was the missense variant BOLL c.62C>A;p.Ser21Tyr (MAF = 0.001). Given the 

role of BOLL in germ cell development [10], we then genotyped c.62C>A;p.Ser21Tyr in 3,999 

unselected TGCT cases and 4,011 controls, but found no evidence of association (p > 0.5, 

Supplementary Table 3). Assessing low-frequency variants (MAF = 1-5%, T1/T2/T3) across 

the full set of families for evidence of segregation, we found strongest evidence for a 

haplotype in cilia gene DNAH7 (c.1895C>G;p.Ser632Cys and c.6340A>G;p.Thr2114Ala (R2 = 

0.9, D’ = 1.0, population MAF = 0.04)). This haplotype showed full segregation in two ‘large’ 

pedigrees PED-269, PED-251 and in 8/138 two-case pedigrees (Supplementary Table 4) but 

analysis in the full case-control series did not support association with disease (Case MAF = 

0.05, control MAF = 0.04, p > 0.1). 



Finally, we undertook simulations to evaluate the power our analyses had to detect TGCT 

predisposition genes. We modelled a hypothetical TGCT predisposition gene for which the 

frequency of the summed pathogenic mutations (MAFcombined) ranged from 0.01% to 1% and 

for which the effect size (odds ratio, OR) ranged from 2 to 10 (Supplementary Fig. 2). Our 

study was shown to be well-powered (> 0.9) to detect a high risk ‘major TGCT gene” (OR > 

10, MAFcombined > 0.01%) had one existed. For intermediate effect size (OR = 5) power 

remains good down to MAFcombined = 0.05% but plummets to zero at 0.01%. For lower risk 

effect size (OR = 2) the power is far more limited, dropping below 0.3 for MAFcombined < 0.5%. 

These power analyses are therefore consistent with existence of multiple additional 

‘undiscovered’ rare variants/susceptibility genes, of modest effect size and/or very low 

frequency. However, in the current analyses, the signal of association for such 

variants/genes would be indistinguishable above noise from innocuous background 

variation. To improve power to > 0.9 for detection of such variants down to MAFcombined < 

0.01% for medium (OR > 5) or low (OR > 2) effect sizes, sequencing of > 10,000 TGCT cases 

would be required (along with a comparable number of controls). Thus, as for other 

common cancers, to significantly advance rare variant discovery for TGCT, studies at least 

ten-fold larger in scale are required, in conjunction with advances in in-silico prediction tools 

to better predict disease pathogenicity of non-synonymous variants. Functional analyses can 

also assist in identifying the true biologically impactful genomic variants, as demonstrated in 

our CMG studies [[4],[8],[9]].  

In summary, our findings indicate that there is unlikely to exist a ‘major’ high penetrance 

TGCT susceptibility gene suitable for clinical pre-symptomatic testing. In conjunction with 



the 49 TGCT-associated common alleles identified through recent GWAS [7], these analyses 

serve to underscore a highly polygenic model of genomic TGCT susceptibility.  
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TABLES 
 



Table 1 – Top 25 most significant individual variants 

    Case Alleles Controls Alleles   

Gene cDNA Protein Group 
Alt 
no. 

Total MAF 
Alt 
no. 

Total MAF OR (95% CI) p value* 

PGP c.859G>A p.Gly287Arg T3 98 1718 0.057 97 3088 0.031 1.87 (1.40-2.49) 3 x 10
-5

 

FAM160A2 c.2195C>T p.Pro732Leu T3 11 1692 0.007 55 2594 0.021 0.30 (0.16-0.58) 7 x 10
-5

 

MLXIP c.1240G>A p.Asp414Asn T3 84 1786 0.047 71 2844 0.025 1.93 (1.40-2.66) 7 x 10
-5

 

OR1N2 c.709C>T p.Arg237Cys T3 34 1846 0.018 20 3162 0.006 2.95 (1.69-5.14) 1 x 10
-4

 

OR10C1 c.169C>T p.Pro57Ser T2 11 1846 0.006 1 3138 0.000 18.8 (2.43-145) 1 x 10
-4

 

PLK1 c.1388T>A p.Leu463His T3 37 1782 0.021 24 3058 0.008 2.68 (1.60-4.50) 2 x 10
-4

 

ADAMTS18 c.3565G>A p.Val1189Ile T3 2 1706 0.001 27 2732 0.010 0.12 (0.03-0.50) 2 x 10
-4

 

EPB41L5 c.82C>T p.Arg28Cys T2 18 1864 0.010 6 3126 0.002 5.07 (2.01-12.8) 2 x 10
-4

 

JMJD4 c.1024T>C p.Phe342Leu T3 103 1848 0.056 101 3036 0.033 1.72 (1.30-2.27) 2 x 10
-4

 

SKIV2L c.2749G>A p.Val917Met T2 118 1778 0.066 127 3044 0.042 1.63 (1.26-2.11) 2 x 10
-4

 

ARHGEF17 c.1571C>T p.Ala524Val T3 12 1806 0.007 2 3000 0.001 10.0 (2.24-44.8) 3 x 10
-4

 

SH3TC1 c.2429C>T p.Thr810Met T3 2 1640 0.001 27 2702 0.010 0.12 (0.03-0.51) 3 x 10
-4

 

MPDZ c.2194T>A p.Ser732Thr T2 10 1656 0.006 1 2840 0.000 17.3 (2.21-134) 3 x 10
-4

 

PALB2 c.2014G>C p.Glu672Gln T3 80 1662 0.048 85 3066 0.028 1.77 (1.30-2.42) 3 x 10
-4

 

EHBP1L1 c.2683A>T p.Ser895Cys T2 15 1836 0.008 4 3152 0.001 6.48 (2.15-19.6) 4 x 10
-4

 

ABCC4 c.1141G>A p.Val381Ile T3 11 1676 0.007 2 3060 0.001 10.1 (2.24-45.6) 4 x 10
-4

 

R3HCC1 c.500C>T p.Thr167Ile T2 36 1798 0.020 111 2906 0.038 0.51 (0.35-0.75) 4 x 10
-4

 

VPS16 c.1561G>A p.Asp521Asn T3 10 1802 0.006 1 2970 0.000 16.6 (2.12-129) 4 x 10
-4

 

P2RX7 c.827G>A p.Arg276His T3 56 1792 0.031 50 3160 0.016 2.01 (1.36-2.95) 4 x 10
-4

 

OR1N1 c.680G>A p.Arg227Gln T3 33 1800 0.018 22 3112 0.007 2.62 (1.52-4.51) 5 x 10
-4

 

DEFB132 c.277G>A p.Val93Ile T3 37 1832 0.020 27 3166 0.009 2.40 (1.45-3.95) 6 x 10
-4

 

ALPK1 c.2042G>A p.Gly681Asp T3 47 1870 0.025 38 3164 0.012 2.12 (1.38-3.27) 6 x 10
-4

 

IYD c.794G>A p.Cys265Tyr T3 78 1824 0.043 77 3108 0.025 1.76 (1.28-2.42) 7 x 10
-4

 

ZYG11A c.1027A>G p.Met343Val T3 15 1846 0.008 5 3154 0.002 5.16 (1.87-14.2) 7 x 10
-4

 

POLI c.1595T>C p.Phe532Ser T2 78 1816 0.043 79 3164 0.025 1.75 (1.27-2.41) 7 x 10
-4

 

* Bonferroni-corrected threshold of p < 5 × 10−8 for significance. MAF, minor allele frequency. OR, odds ratio.  



 
Table 2 – Top ranked genes by variant group 

T1 - Disruptive  T2 - Deleterious  T3 – Non-synonymous 

Gene Ca Co OR (95% CI) 
p 

value* 
 Gene Ca Co OR (95% CI) 

p 
value* 

 Gene Ca Co OR (95% CI) 
p 

value* 
THADA 6 0 NA 1 x 10

-3
 

 
CDHR4 11 3 6.40 

(1.80-23.1) 
5 x 10

-3
 

 
GFAP 10 1 17.5 

(2.24-136) 
9 x 10

-5
 

PLA2G3 16 10 2.80 
(1.27-6.20) 

2 x 10
-3

 
 

CSF2RB 9 2 7.90 
(1.70-36.5) 

1 x 10
-3

 
 

XPO6 10 1 17.5 
(2.24-136) 

9 x 10
-5

 

OR5AU1 7 2 6.13 
(1.27-29.6) 

7 x 10
-3

 
 

FCHSD1 1 25 0.10 
(0.00-0.50) 

1 x 10
-3

 
 

ZKSCAN3 16 6 4.67 
(1.82-12.0) 

1 x 10
-4

 

IQGAP3 0 14 NA 7 x 10
-3

 
 

GFAP 6 0 NA 1 x 10
-3

 
 

RNF213 80 100 1.40 
(1.03-1.90) 

3 x 10
-4

 

MYO1A 15 11 2.39 
(1.09-5.22) 

1 x 10
-2

 
 

NTRK3 6 0 NA 1 x 10
-3

 
 

GTF3A 3 36 0.15 
(0.04-0.48) 

4 x 10
-4

 

C4orf21 4 0 NA 1 x 10
-2

 
 

FOXM1 10 3 5.84 
(1.60-21.3) 

1 x 10
-3

 
 

MAN2B2 44 44 1.75 
(1.14-2.68) 

4 x 10
-4

 

EIF2A 4 0 NA 1 x 10
-2

 
 

LLGL1 10 3 5.84 
(1.60-21.3) 

1 x 10
-3

 
 

KCNA7 11 3 6.42 
(1.79-23.1) 

5 x 10
-4

 

FASTKD1 4 0 NA 1 x 10
-2

 
 

COL9A1 15 8 3.28 
(1.39-7.77) 

1 x 10
-3

 
 

KRTAP13-2 19 11 3.02 
(1.43-6.38) 

5 x 10
-4

 

MIS12 4 0 NA 1 x 10
-2

 
 

KARS 24 19 2.21 
(1.20-4.06) 

1 x 10
-3

 
 

C10orf12 31 27 2.01 
(1.19-3.39) 

9 x 10
-4

 

NDUFV3 4 0 NA 1 x 10
-2

 
 

KDM5A 13 6 3.79 
(1.44-10.0) 

2 x 10
-3

 
 

ENO3 14 6 4.09 
(1.56-10.7) 

1 x 10
-3

 

* Bonferroni-corrected threshold of p < 8 × 10−7 for significance. Ca, number of cases with a variant. Co, number of controls with a variant. OR, 

odds ratio. CI, confidence interval.
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