
   

 

Non-coding RNAs and resistance to
anticancer drugs in gastrointestinal
tumours

  Jens C. Hahne1, Nicola Valeri1, 2*

 

1Institute of Cancer Research (ICR), United Kingdom, 2Department of Medicine, Royal Marsden NHS
Foundation Trust, United Kingdom

  Submitted to Journal:

  Frontiers in Oncology

  Specialty Section:

  Cancer Molecular Targets and Therapeutics

  Article type:

  Review Article

  Manuscript ID:

  376456

  Received on:

  20 Mar 2018

  Revised on:

  23 May 2018

  Frontiers website link:
  www.frontiersin.org

In review

http://www.frontiersin.org/


   

  Conflict of interest statement

  The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest

   

  Author contribution statement

  NV and JH idea, conception and writing parts of the review.
   

  Keywords

 
non-coding RNA, lncRNA, microRNA, anticancer drugs, gastrointestinal tumour, cancer therapy, Resistance

   

  Abstract

Word count: 135

 

Non-coding RNAs are important regulators of gene expression and transcription. It is well established that impaired non-coding
RNA expression especially the one of long non-coding RNAs and microRNAs is involved in a number of pathological conditions
including cancer. Non-coding RNAs are responsible for the development of resistance to anticancer treatments as they regulate
drug resistance-related genes, affect intracellular drug concentrations, induce alternative signalling pathways, alter drug
efficiency via blocking cell cycle regulation and DNA damage response. Furthermore, they can prevent therapeutic-induced cell
death and promote epithelial-mesenchymal transition and elicit non-cell autonomous mechanisms of resistance.
In this review we summarise the role of non-coding RNAs for different mechanisms resulting in drug resistance (e.g. drug
transport, drug metabolism, cell cycle regulation, regulation of apoptotic pathways, cancer stem cells and epithelial-mesenchymal
transition) in the context of gastrointestinal cancers.

   

  Funding statement

 
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

In review



  

 

Non-coding RNAs and resistance to anticancer drugs in 1 

gastrointestinal tumours 2 

 3 

Jens C. Hahne
1
, Nicola Valeri

1,2,*
 4 

1
 Division of Molecular Pathology, The Institute of Cancer Research London & Sutton, UK 5 

2 
Department of Medicine, The Royal Marsden NHS Trust, London & Sutton, UK.

  6 

 7 

 8 

 9 

 10 

 11 

Correspondence:  

Dr. Nicola Valeri 

Centre for Molecular Pathology 12 

The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust 13 

Cotswold Road, Sutton, Surrey, SM2 5NG, UK 14 

Telephone: +44 0208 915 6634 15 

Email: nicola.valeri@icr.ac.uk 16 

 17 

 18 

 19 

Keywords: non-coding RNA, lncRNA, microRNA, anticancer drugs, gastrointestinal  20 

        tumour, cancer therapy, resistance 21 

 22 

 23 

Word counts:  9117 – this article is written in British English 24 

 7 Figures 25 

 3 Tables  26 

In review

mailto:nicola.valeri@icr.ac.uk


Non-coding RNAs and anticancer drugs

 

 
Abstract: 27 

Non-coding RNAs are important regulators of gene expression and transcription. It is well 28 

established that impaired non-coding RNA expression especially the one of long non-coding 29 

RNAs and microRNAs is involved in a number of pathological conditions including cancer. 30 

Non-coding RNAs are responsible for the development of resistance to anticancer treatments 31 

as they regulate drug resistance-related genes, affect intracellular drug concentrations, induce 32 

alternative signalling pathways, alter drug efficiency via blocking cell cycle regulation and 33 

DNA damage response. Furthermore, they can prevent therapeutic-induced cell death and 34 

promote epithelial-mesenchymal transition and elicit non-cell autonomous mechanisms of 35 

resistance.  36 

In this review we summarise the role of non-coding RNAs for different mechanisms resulting 37 

in drug resistance (e.g. drug transport, drug metabolism, cell cycle regulation, regulation of 38 

apoptotic pathways, cancer stem cells and epithelial-mesenchymal transition) in the context 39 

of gastrointestinal cancers. 40 

 41 

Introduction: 42 

Gastrointestinal (GI) cancer encompasses a heterogeneous group of tumours that affect the 43 

digestive tract system (Pourhoseingholi et al., 2015). These include cancers of the 44 

oesophagus, stomach, gallbladder, liver and biliary tract, pancreas, small intestine, colon, 45 

rectum and anus. GI cancer is the most common form of cancer responsible for nearly 25% of 46 

all new cancer diagnosis and responsible for most of cancer related death (around 30% of all 47 

cancer related death) worldwide (Siegel et al., 2015;Torre et al., 2015).   48 

Chemotherapy is, alongside with surgery and radiation therapy, one of the main treatments 49 

for cancer (Hung et al., 2006;Chan et al., 2016;Ismael et al., 2016;Jakhetiya et al., 50 

2016;Murphy, 2016;Olcina and Giaccia, 2016;Rautio et al., 2016;Ristamaki and Algars, 51 

2016;Rutkowski and Hompes, 2016). Many chemotherapeutic agents have successfully 52 

prolonged overall and progression-free survival of GI cancer patients (Slamon et al., 53 

2001;Motzer et al., 2007;Blanke et al., 2008;Maemondo et al., 2010;Chapman et al., 2011). 54 

In addition, a better understanding of the biology and mechanism underpinning GI cancer 55 

initiation and progression is leading to more personalised treatments. Indeed, identification of 56 
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well-defined molecular subtypes and/or molecular profiling of somatic mutations offer the 57 

opportunity to further optimize the efficacy of treatments through tailored approaches (Kwak 58 

et al., 2010;Douillard et al., 2013;Korpanty et al., 2014;Siroy et al., 2015).  59 

Despite major improvements in the management of GI cancer patients, resistance to  60 

therapies arises almost inevitably at some point during the treatment and chemo-resistance is 61 

one of the main challenges in cancer therapy (Housman et al., 2014). Drug resistance can be 62 

caused by gene mutations, abnormal DNA repair, alteration in cell cycle regulation, cell death 63 

inhibition (mostly caused by deregulated apoptotic signalling pathways), reduced drug 64 

efficacy as well as enhanced drug clearance (Zahreddine and Borden, 2013;Housman et al., 65 

2014). Furthermore, the epithelial-mesenchymal transition (EMT) process and the presence 66 

of tumour stem cells have been identified as causes of drug resistance (Shang et al., 2013;Xia 67 

and Hui, 2014;Mitra et al., 2015;Prieto-Vila et al., 2017). The complex molecular 68 

mechanisms of chemo-resistance have not been fully elucidated yet and a better 69 

understanding of drivers of primary and secondary resistance to chemotherapy will likely 70 

result into improved patients’ survival. Increasing evidence points towards the role of non-71 

coding RNAs as a central hub for treatment resistance. Therefore, this review outlines the 72 

role of non-coding RNAs for the different drug resistance mechanisms involved in GI cancer 73 

therapy failure. Table 1 summarised the non-coding RNAs discussed in this review and in 74 

figure 1-6 the role for each of these non-coding RNAs in the context of the different GI 75 

tumours is illustrated. 76 

 77 

Non-coding RNAs: 78 

In human tissues the amount of non-coding RNAs is more than three times higher compared 79 

to the amount of protein-coding RNAs (Geisler and Coller, 2013). Non-coding RNAs are a 80 

large family that includes more than 16 categories of long and short RNA molecules (Table 81 

2); among them transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small nucleolar RNAs 82 

(snoRNAs), endogenous small interfering RNAs (endo-siRNAs), sno-derived RNAs 83 

(sdRNAs), transcription initiation RNAs (tiRNAs), miRNA-offset-RNAs (moRNAs), circular 84 

RNAs (circRNAs), vault RNAs (vRNAs), microRNAs, small interfering RNAs (siRNAs), 85 

small nuclear RNAs (snRNAs), extracellular RNAs (exRNAs), piwi-interacting RNAs 86 

(piRNAs), small Cajal body RNAs (scaRNAs), long intergenic non-coding RNAs 87 
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(lincRNAs) and long non-coding RNAs (lncRNAs), all of which are not coding for known 88 

proteins (Taal et al., 1993;Eddy, 2001;He and Hannon, 2004;Guttman et al., 89 

2009;Langenberger et al., 2009;Taft et al., 2009a;Taft et al., 2009b;Wilusz et al., 90 

2009;Choudhuri, 2010;Ling et al., 2013;Claycomb, 2014;Guo et al., 2014;An et al., 91 

2016;Azlan et al., 2016;Beermann et al., 2016;de Almeida et al., 2016;Evans et al., 92 

2016;Geiger and Dalgaard, 2016;Granados-Riveron and Aquino-Jarquin, 2016;Khurana et 93 

al., 2016;Qi et al., 2016;Quinn and Chang, 2016).  94 

Long non-coding RNAs (lncRNAs) and microRNAs are the most studied non-coding RNAs 95 

playing a role in anticancer drug resistance and will be covered in this review.  96 

LncRNAs are composed of more than 200 nucleotides. They are important regulators during 97 

development and pathological processes (Guttman et al., 2011;Sauvageau et al., 98 

2013;Herriges et al., 2014;Li et al., 2014a;Ounzain et al., 2014). LncRNAs are pivotal in 99 

regulating gene expression by binding to chromatin regulatory proteins and they are able to 100 

alter chromatin modification as well as transcriptional or post-transcriptional gene regulation 101 

by interacting with other RNAs and proteins (Moran et al., 2012;Kornienko et al., 2013;Han 102 

and Chang, 2015). Recently, a crosstalk and strong linkage between lncRNA and microRNAs 103 

has been identified (Yoon et al., 2014). It has been shown that lncRNA stability can be 104 

reduced by interaction with specific microRNAs and, vice versa, lncRNAs act as microRNA 105 

decoys sequestering microRNAs from the intra-cellular cytosol and leading to re-expression 106 

of microRNA target genes (Yoon et al., 2014). Furthermore, lncRNAs can promote gene 107 

expression by competing with microRNAs for specific binding sites in the non-coding 108 

regions of mRNAs and prevent the transcriptional repression caused by microRNAs (Yoon et 109 

al., 2014). Interestingly some lncRNAs can be processed into microRNAs (Yoon et al., 2014) 110 

suggesting a plastic interaction among different classes of non-coding RNAs.  111 

MicroRNAs are short RNA transcripts of 18–24 nucleotides. They are responsible for fine 112 

tuning cell homeostasis by controlling gene expression at post-transcriptional level, (Fabbri et 113 

al., 2009;Valeri et al., 2009;Winter et al., 2009). Due to the fact that each microRNAs can 114 

have several target mRNAs the interaction of one microRNA with various target mRNAs 115 

results in direct deregulation of different target proteins acting simultaneously in regulation of 116 

diverse cellular pathways (Macfarlane and Murphy, 2010;Pasquinelli, 2012). Therefore, 117 

variation in microRNA expression can result in reduced mRNA levels ultimately resulting in 118 
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changes in protein levels within the cell (von Schack et al., 2011;Pasquinelli, 2012). 119 

MicroRNAs expression patterns are tissue-specific (Lagos-Quintana et al., 2002) and often 120 

define the physiological status of the cell (Lim et al., 2005). Strong clinical and pre-clincial 121 

evidence suggests that microRNA aberrant expression plays a role in several diseases 122 

including cancer, infectious, neurodegenerative and immune-related diseases. (Murakami et 123 

al., 2006;Mitchell et al., 2008;O'Connell et al., 2010;Esteller, 2011;Ha, 2011b;a;c;Grasedieck 124 

et al., 2012;Iorio and Croce, 2012;Acunzo et al., 2015;Balatti et al., 2015;Gardiner et al., 125 

2015). Analysis of microRNA expression patterns represents a promising tool for cancer 126 

diagnosis, prognosis and treatment prediction.  MicroRNAs have been extensively studied in 127 

monitoring treatment resistance in consideration of their high stability in tissues and body 128 

fluids. In blood, microRNAs are included in RNA-binding multiprotein complexes and/or 129 

exosomes and their short length makes microRNAs less prone to degradation and improves 130 

their stability under different sample storage conditions in blood (Mitchell et al., 131 

2008;Macfarlane and Murphy, 2010;Grasedieck et al., 2012;Gardiner et al., 2015) . 132 

 133 

General principles of drug resistance: 134 

Drug resistance is classified into intrinsic and acquired. Primary drug resistance is pre-135 

existing and renders cancer cells immune against the therapy from the very beginning. In 136 

contrast, acquired (secondary) drug resistance develops during therapy due to adaptive 137 

processes of the tumour (Gottesman et al., 2002;Longley and Johnston, 2005;Rodrigues et al., 138 

2012a;Holohan et al., 2013;Housman et al., 2014). Different mechanisms are involved in 139 

primary and acquired drug resistance and relate to non-coding RNAs dysregulation.  140 

 141 

 142 

Deregulation of proteins involved in drug metabolism 143 

One reason for drug resistance can be found on the level of drug transport. Reduced influx or 144 

increased efflux of chemotherapeutics result in lower intracellular drug concentrations and 145 

promotes therapy failure (Gottesman et al., 2002). Altered drug metabolism is another 146 

possible cause for drug resistance. Drug metabolism is a complex pathway composed of 147 
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multiple proteins for detoxification of foreign compounds (e.g. chemotherapeutics) normally 148 

neither produced nor present in a cell (Michael and Doherty, 2005). This pathway can be 149 

subdivided into modification (phase I reaction), conjugation (phase II reaction) and excretion 150 

(phase III reaction) (Park, 2001). Several drug-metabolizing enzymes, especially members of 151 

the cytochrome P450 family, together with drug transporters increase the polarity of the drugs 152 

during phase I (Shimada et al., 1989;Guengerich and Shimada, 1991) . In the following phase 153 

II the polarity of the drugs is further increased by conjugation reactions (Shea et al., 154 

1988b;McLellan and Wolf, 1999b). Finally, in phase III the resulting drug metabolites are 155 

exported by transmembrane transporter like ATP-binding cassette (ABC) proteins and solute 156 

carrier (SLC) transport proteins (Dean et al., 2001;Kathawala et al., 2015;Lin et al., 157 

2015;Colas et al., 2016).  158 

 159 

The vaults are known to contribute to drug resistance by transporting drugs away from their 160 

intracellular targets and vaults are involved in drug sequestration (Mossink et al., 2003). The 161 

vRNAs hvg-1 and hvg-2 that are present in the vaults (Table 2) interact with drugs via 162 

specific binding sites (Gopinath et al., 2010). In agreement with their role in regard to drug 163 

resistance the number of vaults are increased in cancer patients who developed resistance 164 

under chemotherapy (Mossink et al., 2003).  In addition, the vRNAs are producing several 165 

small RNAs among them is svRNAb which down-regulates the key enzyme in drug 166 

metabolism CYP3A4 and accounts so for multidrug resistance in GI cancers (Persson et al., 167 

2009). 168 

Furthermore, lncRNA H19 was identified as another non-coding RNA involved in drug 169 

resistance. The oncogenic potential of lncRNA H19 was demonstrated in different tumour 170 

types (e.g. liver and oesophageal cancer) and over-expression of lncRNA H19 was observed 171 

in parallel with up-regulation of the membrane glycoprotein p95 in multidrug-resistant 172 

tumours (Tsang and Kwok, 2007;Matouk et al., 2013). In liver tumour cells resistant to 173 

doxorubicin, etoposide, paclitaxel and vincristine lncRNA H19 expression was increased 174 

(Tsang and Kwok, 2007). LncRNA H19 participate in the regulation of MDR1 gene (also 175 

known as ABCB1 gene) expression and modulate the drug transport out of the cell (Tsang and 176 

Kwok, 2007). In-vitro models of hepatocellular carcinoma suggest that lncRNA H19 can alter 177 
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MDR1 promoter methylation and, in doing so, increases the transcription of P-glycoprotein 178 

(Tsang and Kwok, 2007).  179 

Similarly, in gastric cancer, lncRNA MRUL (MDR-related and up-regulated lncRNA) acts as 180 

an enhancer for transcription of P-glycoprotein (MDR1) (Wang et al., 2014) increasing the 181 

number of transmembrane transporters on the tumour cell membrane and fosters the drug 182 

export (Wang et al., 2014). As we described above, different non-coding RNAs can merge 183 

onto the same pathway: this is the case of lncRNA AK022798 whose expression is induced 184 

by  NOTCH-1 over-expression during gastric cancer progression (Hang et al., 2015). 185 

LncRNA AK022798 in turn up-regulates the expression of P-glycoprotein and is responsible 186 

for increased cisplatin resistance in gastric cancer patients (Hang et al., 2015). Similarly, in 187 

cisplatin and 5-fluorouracil resistant gastric cancer patients the expression of lncRNA PVT-1 188 

(plasmacytoma variant translocation 1) and lncRNA ANRIL (antisense to CDKN2B locus) 189 

are also increased and these non-coding RNAs promote MDR1 up-regulation and drug 190 

resistance (Zhang et al., 2015b;Lan et al., 2016).  191 

Non-coding RNA dysregulation is tissue specific, indeed Wnt-β-catenin pathway activation 192 

triggers the expression of a different lncRNA, CCAL (colorectal cancer-associated lncRNA. 193 

The effect on phenotype is the same as in other cancers given CCAL in turn up-regulates P-194 

glycoprotein expression and causing chemotherapy resistance (Ma et al., 2016b).  195 

Additional to the regulation via lncRNAs ABC transporter expression levels are also 196 

controlled by miRNAs (Haenisch et al., 2014;Ikemura et al., 2014).  197 

In colon cancer, P-glycoprotein expression was found to be directly deregulated at post-198 

transcriptional level by binding of miR-145 to the 3`-UTR of the MDR1 gene transcript 199 

(Ikemura et al., 2013). Down-regulation of miR-145 results in increased ABCB1 protein level 200 

(Ikemura et al., 2013). Analogously miR-297 binds to the 3´-UTR of ABCC2 mRNA and 201 

supresses the expression of ABCC2 transporter (Xu et al., 2012). In chemo-resistant 202 

colorectal carcinoma, miR-297 is often down-regulated and consequently ABCC2 is 203 

expressed on a higher level compared to the surrounding colon tissue (Xu et al., 2012). 204 

Interestingly, in-vitro and in-vivo models suggest that resistance to vincristine and oxaliplatin 205 

could be overcome by restoring miR-297 expression in therapy resistant cells (Xu et al., 206 

2012). Virtually expression of all the transporters can be affected by microRNA 207 

dysregulation; ABCB5 transporter is highly expressed in colon cancer cell lines with down-208 
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regulated miR-522 expression and renders these cells resistant to doxorubicin treatment 209 

(Yang et al., 2015). MiR-522 binds to the ABCB5 mRNA 3´-UTR and over-expression of 210 

miR-522 reverse chemo-resistance to doxorubicin  (Yang et al., 2015). Similarly, 5-211 

fluorouracil resistance in microsatellite instable colon cancer (caused by deregulated miR-21 212 

or miR-155 (Valeri et al., 2010a;Valeri et al., 2010b) as mentioned in detail later) can be 213 

enhanced by down-regulation of miR-23a resulting in higher expression of the direct target 214 

ABCF1 (Li et al., 2015d). 215 

Similar examples exist across the board: in gastric cancer for example, down-regulation of 216 

miR-508-5p was identified as a reason for multidrug resistance (Shang et al., 2014). MiR-217 

508-5p represses the expression of P-glycoprotein and the transcription factor zinc ribbon 218 

domain-containing 1 (ZNRD1) that is an important factor for MDR1 gene translation (Shang 219 

et al., 2014). Loss of miR-508-5p decreased drug sensitivity in gastric cancer in-vitro and in-220 

vivo, whereas ectopic expression of miR-508-5p overcomes drug resistance (Shang et al., 221 

2014). 222 

 223 

In pancreatic cancer cell lines, expression of the transporter ABCC1 is controlled by miR-224 

1291 binding to the 3´-UTR (Pan et al., 2013). MiR-1291 is often down-regulated in 225 

pancreatic cancer resulting in an increased expression of ABCC1 that finally leads to higher 226 

efflux rate of toxic substances (Munoz et al., 2007;Tu et al., 2016). This is the reason for 227 

resistance to many chemotherapeutics, such as anthracyclines (e.g., doxorubicin), platinum 228 

derivates and the folate antagonist methotrexate (Munoz et al., 2007;Tu et al., 2016). Another 229 

transporter, called ATP7A (ATPase Cu
2+

 transporting alpha polypeptide), is up-regulated in 230 

in-vitro models of resistant pancreatic tumours due to decreased expression of miR-374b 231 

(Schreiber et al., 2016) and increased ATP7A protein expression is at least partially 232 

responsible for cisplatin resistance in pancreatic cancer model systems (Schreiber et al., 233 

2016).  234 

Down-regulation of miR-122 in liver tumours results in high expression of ABC transporter 235 

proteins and causes increased drug export of doxorubicin in liver cancer patients (Xu et al., 236 

2011). Similarly, ABCB1 transporter expression is up-regulated in hepatocellular cancer cells 237 

when the post-transcriptional regulator miR-223 is down-regulated and the result is again 238 

resistance to doxorubicin treatment (Yang et al., 2013b). 239 
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Down-regulation of microRNAs let-7g and let-7i results in increased expression of ABCC10 240 

that in turn is responsible for resistance to cisplatin therapy in oesophageal cancer patients 241 

(Wu et al., 2016a). 242 

An important barrier for oral anticancer drugs is represented by intestinal epithelial cells of 243 

the GI tract (Ikemura et al., 2014;Peterson and Artis, 2014). The absorption of most nutrient 244 

components as well as drugs is related to a variety of influx transporters such as members of 245 

the SLC transporter family (Ikemura et al., 2014). The expression pattern of the SLC 246 

transporter varied according to the differentiation status of intestinal epithelial cells which is 247 

controlled by microRNAs (McKenna et al., 2010). Therefore, changes in the expression level 248 

of microRNAs have most probably an important influence on the drug up-take rate 249 

(McKenna et al., 2010). Up to now the role of microRNAs for the expression level of SLC 250 

transporter have been studied only in cell culture models for colon carcinoma, liver, 251 

pancreatic and gastric tumours (Dalmasso et al., 2011;Pullen et al., 2011). In colon cancer 252 

cells expression of miR-92b reduce the amount of SLC15A and SLC15A1 transporter 253 

resulting in decreased drug absorption (Dalmasso et al., 2011). In the context of liver and 254 

pancreatic tumours miR-29a, miR-29b and miR-124 target SLC16A1 and reduce the 255 

expression of this transporter (Pullen et al., 2011). Recently it was shown that miR-939 256 

targets direct SLC34A2 in gastric cancer (Zhang et al., 2017). In 5-fluorouracil resistant 257 

gastric cancer miR-939 is down-regulated and results in increased expression level of 258 

SLC34A2. The transport protein SLC34A2 acts as mediator of miR-939 and activates the 259 

Ras/MEK/ERK pathway which is known to be deregulated often in cancer and to cause 260 

resistance to chemotherapy (Zhang et al., 2017). In in-vitro models of gastric cancer over-261 

expression of miR-939 strongly decreased MEK1/2 phosphorylation as well as Raf-1 level, 262 

whereas SLC34A2 restoration rescued these effects (Zhang et al., 2017).  263 

Also for some drug-metabolizing enzymes post-transcriptional regulations by miRNAs have 264 

been proven (Tsuchiya et al., 2006;Koturbash et al., 2012;Ikemura et al., 2014). Due to their 265 

pivotal role in maintaining chemical and functional homeostasis of cells, cytochrome P450 266 

enzymes are strictly controlled. Under physiological conditions, cytochrome P450 enzymes 267 

are involved in the regulation of endogenous molecules like bile acids and steroids and under 268 

pathological conditions in the case of chemotherapy these enzymes are important in regard to 269 
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drug metabolism. De-regulated expression of cytochrome P450 enzymes is linked to drug 270 

resistance and therapy failure (Rendic and Guengerich, 2015).  271 

For example, miR-378 targets mRNA coding for CYP2E1 and reduces the expression level of 272 

CYP2E1 protein in cell culture models of liver tumours (Mohri et al., 2010;Zhou et al., 273 

2016). In liver cancer patients CYP2E1 expression is increased while miR-378 is down-274 

regulated (Mohri et al., 2010;Zhou et al., 2016). Also, a direct regulation of CYP1B1 by miR-275 

27b was demonstrated in hepatocellular cancer cell lines (An et al., 2017). Decreased 276 

expression of miR-27b results in high expression level of CYP1B1 and renders by this liver 277 

tumour resistant to docetaxel treatment (An et al., 2017).  278 

In pancreatic cancer cells over-expression of miR-27b leads to down-regulation of CYP3A4 279 

protein and results in drug resistance to cyclophosphamide because CYP3A4 is necessary for 280 

drug activation (Pan et al., 2009). MicroRNA-based regulation of enzymes involved in phase 281 

II reactions are less analysed but nevertheless, in the context of oesophageal cancer, 282 

regulation of glutathione S-transferase P1 (GSTP1) was found to be regulated by miR-133a 283 

(Kano et al., 2010). Reduced expression of the tumour suppressor miR-133a resulted in 284 

increased level of GSTP1 protein (Kano et al., 2010). In phase II detoxification reactions -285 

including inactivation of platinum derivates and alkylating reagents -GSTP1 catalyses the 286 

addition of glutathione to the drug activated during phase I reactions with electrophiles (Shea 287 

et al., 1988a;McLellan and Wolf, 1999a).  288 

A more specific influence of non-coding RNAs on drug metabolism was demonstrated for 5-289 

fluorouracil in liver and colon tumours (Offer et al., 2014;Chai et al., 2015). 290 

Dihydropyrimidine dehydrogenase, an important enzyme in 5-fluorouracil metabolism, is 291 

repressed by miR-494 in colon tumours and by miR-27a as well as miR-27b in liver cancer 292 

(Offer et al., 2014;Chai et al., 2015). The fact that the translation of one and the same enzyme 293 

in two different tissues is under the control of different miRNAs underlines the tissue-specific 294 

regulation and fine-tuning of protein expression that is exerted by miRNAs.  295 

In liver cancer the translation of two of the most important targets of chemotherapeutic 296 

agents, dihydrofolate reductase and thymidylate synthase, are repressed by up-regulation of 297 

miR-215 (Wang et al., 2015b). Reduced expression of dihydrofolate reductase and 298 

thymidylate synthase leads to the development of insensitivity to doxorubicin treatment 299 

(Wang et al., 2015b). 300 
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Thymidylate synthase is the target of 5-fluoruracil therapy and this enzyme is down-regulated 301 

by increased expression of miR-192 and miR-215 in colon cancer patients (Boni et al., 2010). 302 

In this case altered microRNA expression results in down-modulation of the drug target and 303 

leads to therapy failure. In addition, miR-192 and miR-215 alter the cell-cycle control at 304 

multiple levels and prevent progression into the S-phase leading to 5-fluorouracil resistance 305 

(Boni et al., 2010).  306 

A similar case was observed in pancreatic tumours where RRM2 (ribonucleotide reductase 307 

regulatory subunit M2) the target of gemcitabine is under direct control of miR-211 and let-308 

7a (Bhutia et al., 2013;Maftouh et al., 2014). Decreased expression of miR-211 and let-7a 309 

results in higher RRM2 protein level and renders the tumours resistant to gemcitabine (Bhutia 310 

et al., 2013;Maftouh et al., 2014). 311 

 312 

Deregulation of cell-cycle, DNA repair pathways and alteration in death pathways 313 

Impaired cell cycle regulation and alteration of cell death pathways are common causes of   314 

drug resistance (Helleday et al., 2008;Rodrigues et al., 2012b). Increased cell cycle 315 

progression and reduced cell death rate lead to accumulation of mutations and uncontrolled 316 

cell proliferation, a hallmark of tumour cells (Hanahan and Weinberg, 2011). Errors in the 317 

DNA-damage response program pathways [nuclear excision repair (NER), base excision 318 

repair (BER), DNA mismatch repair (MMR)] play an important role in cancer progression 319 

and chemo-resistance (Hoeijmakers, 2001;Harper and Elledge, 2007;Jackson and Bartek, 320 

2009;Pearl et al., 2015). A complex interaction interplay exists between non-coding RNAs 321 

and the DNA-damage pathways: on one hand the DNA-damage pathway induces the 322 

expression of several non-coding RNAs especially of microRNAs and on the other hand non-323 

coding RNAs regulate directly the expression of several genes involved in DNA-damage 324 

pathway. This interaction is cell type specific and dependent on the intensity and nature of 325 

DNA damage (Pothof et al., 2009;Wouters et al., 2011;Chowdhury et al., 2013;Sharma and 326 

Misteli, 2013;Bottai et al., 2014).  327 

LncRNA HOTAIR (HOX transcript antisense RNA) is highly expressed in a broad variety of 328 

solid tumours including liver, colorectal, pancreatic and gastrointestinal stromal tumours 329 

(Geng et al., 2011;Kogo et al., 2011;Niinuma et al., 2012). LncRNA HOTAIR reprogram 330 
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chromatin organization together with the polycomb repressive complex PRC2 (Kogo et al., 331 

2011). Up-regulation of lncRNA HOTAIR results in higher expression level of members of 332 

the PRC2 complex (SUZ12, EZH2, and H3K27me3) (Kogo et al., 2011). Therefore, 333 

increased lncRNA HOTAIR expression is associated with a genome-wide reprogramming via 334 

PRC2 mediated epigenetic silencing of chromatin (Kogo et al., 2011). In addition lncRNA 335 

HOTAIR down-regulates cyclin-dependent kinase inhibitor 1 (p21(WAF/CIP1)) (Liu et al., 336 

2013) causing the loss of an important regulator of the  G1 and S phase progression (el-Deiry 337 

et al., 1993;Waldman et al., 1995;Bunz et al., 1998). Due to the fact that p21(WAF/CIP1) 338 

represents a major target of p53 activity DNA damage in lncRNA HOTAIR expressing 339 

tumour cells don´t go into cell cycle arrest and this promote cisplatin resistance (el-Deiry et 340 

al., 1993;Waldman et al., 1995;Bunz et al., 1998;Liu et al., 2013). 341 

In oesophageal, gastric, colorectal and hepatocellular cancer as well as cholangiocarcinomas, 342 

lncRNA TUG1 (taurine-up-regulated gene 1) is involved in causing resistance to 343 

chemotherapy (Huang et al., 2015;Dong et al., 2016;Jiang et al., 2016;Li et al., 2016b;Wang 344 

et al., 2016a;Zhang et al., 2016a;Xu et al., 2017c). In tumour tissue lncRNA TUG1 is up-345 

regulated and promotes cell growth by increased transcription of the Bcl-2 gene and 346 

epigenetic silencing of cyclin-dependent protein kinase inhibitors (p15, p16, p21, p27 and 347 

p57) and pro-apoptotic genes (caspase-3, caspase-9 and Bax) (Huang et al., 2015;Dong et al., 348 

2016;Jiang et al., 2016;Li et al., 2016b;Wang et al., 2016a;Zhang et al., 2016a;Xu et al., 349 

2017c). Therefore, lncRNA TUG1 is an excellent example for the fact that non-coding RNAs 350 

target simultaneously the expression of different genes; beside increasing the expression level 351 

of the anti-apoptotic protein Bcl-2, expression of key players in the caspase-mediated 352 

apoptosis pathway are inhibited together with different cyclin-dependent protein kinase 353 

inhibitors. This results in decreasing the G0/G1 arrest during cell cycle and reduces the 354 

apoptosis rate of the tumour cells. Most probably lncRNA TUG1 has also a role in the 355 

epithelial-mesenchymal transition (Wang et al., 2016a;Xu et al., 2017c) that increases 356 

resistance to drug treatments further as outlined in detail below. 357 

Also, the lncRNA PANDAR (promoter of CDKN1A antisense DNA damage-activated RNA) 358 

is often deregulated in different GI tumours like gastric, colorectal and hepatocellular cancer 359 

as well as cholangiocarcinoma (Peng and Fan, 2015;Ma et al., 2016a;Lu et al., 2017a;Xu et 360 

al., 2017b). In all these tumours up-regulation of lncRNA PANDAR results in increased 361 
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proliferation rate and reduced apoptosis (Peng and Fan, 2015;Ma et al., 2016a;Lu et al., 362 

2017a;Xu et al., 2017b). LncRNA PANDAR interacts with the transcription factor NF-YA, 363 

an important regulator for transcription of pro-apoptotic genes (Hung et al., 2011). This 364 

interaction between lncRNA PANDAR and NF-YA results in decreased expression of pro-365 

apoptotic genes and eventually leads to drug resistance (Peng and Fan, 2015;Ma et al., 366 

2016a;Lu et al., 2017a;Xu et al., 2017b). 367 

LncRNA UCA1 (urothelial carcinoma associated1) mediates resistance to doxorubicin 368 

treatment in gastric cancer (Shang et al., 2016). In in-vitro systems knockdown of lncRNA 369 

UCA1 overcomes the doxorubicin resistance due to an increased expression of PARP and 370 

reduced expression of Bcl-2 resulting in higher apoptosis rate (Shang et al., 2016).  371 

Furthermore, it was shown that lncRNA UCA1 sequesters miR-204-5p in colorectal cancer 372 

and reduces the level of this microRNA in cancer cells (Bian et al., 2016). The consequence 373 

is enhanced cell proliferation and 5-fluorouracil resistance (Bian et al., 2016). 374 

Another example of non-coding RNAs influencing cell-cycle is lncRNA ARA (adriamycin 375 

resistance associated) (Jiang et al., 2014;Cox and Weinman, 2016). LncRNA ARA was found 376 

to be over-expressed in doxorubicin resistant liver cancer cell lines compared to the parental 377 

cell lines (Jiang et al., 2014). Down-regulation of lncRNA ARA results in cell-cycle arrest in 378 

G2/M phase, suppressed proliferation, increased apoptotic cell death and, as expected, a 379 

reduced resistance against doxorubicin (Jiang et al., 2014;Cox and Weinman, 2016). 380 

Furthermore, lncRNA ARA is involved in the regulation of multiple signalling pathways 381 

including the MAPK-pathway (Jiang et al., 2014;Cox and Weinman, 2016). Beside lncRNA 382 

ARA the lncRNA URHC (up-regulated in hepatocellular carcinoma) is found among the 383 

most up-regulated lncRNAs in hepatocellular carcinoma. One target of lncRNA URHC is the 384 

tumour-suppressor ZAK (Xu et al., 2014b). Down-regulation of ZAK via lncRNA URHC 385 

results in increased cell proliferation and inhibits apoptosis (Xu et al., 2014b). 386 

In pancreatic cancer lncRNA HOTTIP (HOXA transcript at the distal tip) up-regulates the 387 

homeobox-transcription factor HOX13 resulting in de-regulation of the cell cycle as well as 388 

gemcitabine resistance (Wang et al., 2011;Li et al., 2015e).  389 

Down-regulation of lncRNA LOC285194 in oesophageal cancer results in resistance to 390 

chemoradiotherapy (radiation in combination with platinum- or paclitaxel-based 391 
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chemotherapy) by influencing cell-cycle progression and non-apoptotic cell death pathway 392 

via regulating VEGF receptor 1 (Tong et al., 2014). 393 

In contrast, lncRNA MALAT-1 is strongly over-expressed in oesophageal tumour tissue and 394 

binds miR-107 and miR-217 (Lin and Xu, 2015;Wang et al., 2015c). MiR-107 and miR-217 395 

decoy translates in reduced activity of the ATM-CHK2 signalling pathway leading to reduced 396 

cell-cycle arrest and cell death as response to DNA damage (Smith et al., 2010;Wang et al., 397 

2015c) and over-expression of the transcription factor B-Myb – an important regulator for 398 

G1/S and G2/M cell-cycle progression and cell survival (Lin and Xu, 2015;Wang et al., 399 

2015c).  400 

In addition, several microRNAs have been identified as regulators for cell cycle progression 401 

and induction of cell death pathways. Therefore, deregulated microRNA expression pattern is 402 

often a reason for drug resistance in GI tumours.  403 

Colorectal cancers with up-regulated mir-203 are resistant to oxaliplatin (Zhou et al., 2014). 404 

Failure of oxaliplatin therapy is caused by miR-203 mediated down-regulation of the 405 

important mediator protein for DNA damage response ATM (Zhou et al., 2014). As reaction 406 

to DNA damage, ATM induces the expression of DNA repair proteins, interrupts the cell 407 

cycle and induces cell death in the case of extended DNA damage (Choy and Watters, 2018). 408 

Oxaliplatin resistance can also be caused by up-regulation of miR-503-5p in colorectal cancer 409 

(Xu et al., 2017a). Increased expression of miR-503-5p results in down-regulation of the 410 

apoptotic protein PUMA (p53 upregulated modulator of apoptosis) and leads to resistance to 411 

oxaliplatin-induced apoptosis (Xu et al., 2017a). In colon cancer tissues down-regulation of 412 

miR-320 is linked to resistance to 5-fluorouracil therapy (Wan et al., 2015). Among the 413 

targets for miR-320 is the transcription factor SOX4 which is involved in inhibition of p53-414 

mediated apoptosis as well as the cell cycle regulators FOXM1 and FOXQ1 both known to 415 

have oncogenic potential (Wan et al., 2015;Vishnubalaji et al., 2016). 416 

In colorectal cancer cells miR-21 over-expression results in inhibition of the MMR proteins 417 

MSH2 and MSH6, two important proteins for DNA damage recognition and repair (Valeri et 418 

al., 2010a). Inhibition of MSH2 and MSH6 leads to reduced G2/M cell-cycle arrest caused by 419 

5-fluorouracil induced DNA damage and lower apoptosis rate in-vitro and in-vivo (Valeri et 420 

al., 2010a). Therefore, miR-21 over-expression reduces the therapeutic efficacy of 5-421 

fluorouracil-based chemotherapy in colorectal cancer treatment (Valeri et al., 2010a). 422 
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Furthermore, it was proven that the core mismatch repair proteins MSH2, MSH6 and MLH1 423 

are also down-regulated by miR-155 potentially contributing to drug resistance (Valeri et al., 424 

2010b). According to another study, 5-fluorouracil resistance in colorectal cancer cells can 425 

also be mediated by increased expression of miR-31 causing cell cycle deregulation and 426 

reduced apoptosis rate (Wang et al., 2010b;Cekaite et al., 2012). Efficacy of 5-fluorouracil 427 

treatment in colorectal cancer patients can also be limited due to up-regulation of anti-428 

apoptotic proteins like XIAP (X-linked inhibitor of apoptosis) and UBE2N (ubiquitin-429 

conjugating enzyme E2N) as a consequence of decreased miR-96 expression (Kim et al., 430 

2015) or due to up-regulation of the anti-apoptotic proteins Bcl-2, Bcl-2-like protein 11 431 

(BIM) or Bcl-2-like protein 2 (Bcl2L2) by reduced expression of miR-129, miR-10b or miR-432 

195, respectively (Nishida et al., 2012;Karaayvaz et al., 2013;Qu et al., 2015). In other colon 433 

cancer studies reduced expression levels of miR-365, miR-1915 and miR-34a have been 434 

described as reason for increased expression of BCL-2 (Wang et al., 2010a;Nie et al., 435 

2012;Xu et al., 2013).  436 

Increased Bcl-2 expression has been identified as a reason for resistance to 5-fluorouracil in 437 

other GI tumours, too, but the posttranscriptional regulation of mRNA coding for Bcl-2 is 438 

under the control of different miRNAs; e.g. in gastric cancer diminished expression of miR-439 

204 is the reason (Sacconi et al., 2012). According to another study up-regulation of Bcl-2 is 440 

caused by lower miR-15b and miR-16 expression level and leads to drug resistance in gastric 441 

cancer cells due to reduced apoptosis (Xia et al., 2008). MiR-25 over-expression was related 442 

to cisplatin resistance in gastric cancer cells (He et al., 2017). MiR-25 targets directly 443 

mRNAs coding for tumour suppressors like FOXO3a, ERBB2, FBXW7 (Zhao et al., 444 

2014a;Gong et al., 2015;Li et al., 2015a;He et al., 2017). All these proteins are involved in 445 

cell cycle regulation and apoptosis (Huang and Tindall, 2006;Nho and Hergert, 2014;He et 446 

al., 2017). Up-regulation of miR-223 targets FBXW7 (F-box/WD repeat-containing protein 447 

7) and leads to cell-cycle deregulation and cisplatin resistance in gastric tumours (Zhou et al., 448 

2015). Furthermore, up-regulation of miR-103/107 results in decreased expression of 449 

caveolin-1 in gastric cancer cells (Zhang et al., 2015d). The tumour suppressor caveolin-1 is a 450 

counter regulator for the Ras-p42/p44 MAP kinase pathway and due to the down-regulation 451 

by miR-103/107 increased activity of the Ras-p42/44 Map kinase pathway results in 452 

increased cell cycle progression and reduced cell death (Le Gall et al., 2000;Mebratu and 453 

Tesfaigzi, 2009). In gastric cancer increased cell cycle progression is also caused by 454 
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increased expression of miR-215 resulting in reduced expression of the tumour suppressor 455 

retinoblastoma 1, an important cell cycle regulator (Deng et al., 2014;Xu and Fan, 2015). Up-456 

regulation of miR-106a targets FAS and inhibits the extrinsic apoptotic pathway in gastric 457 

cancer (Xiao et al., 2009;Wang et al., 2013c). In turn, reduced amount of FAS leads to 458 

increased cell proliferation, reduced apoptosis rate and drug resistance (Xiao et al., 459 

2009;Wang et al., 2013c). 460 

Over-expression of miR-21 inhibits cell cycle arrest resulting in increased cell proliferation, 461 

reduced apoptotic rate, gemcitabine and 5-fluorouracil resistance in pancreatic cancer 462 

(Moriyama et al., 2009;Park et al., 2009;Donahue et al., 2014). Similarly, in other pancreatic 463 

cancer studies, miR-21 over-expression results in reduced level of PTEN and Bcl-2 leading to 464 

activation of AKT-mTOR pathway, reduced apoptosis and resistance against gemcitabine 465 

treatment (Giovannetti et al., 2010;Dong et al., 2011). Increased expression of miR-214 466 

represses directly ING4 in pancreatic tumour (Zhang et al., 2010). This impairs cell-cycle 467 

arrest, DNA repair as well as apoptosis and results in resistance to gemcitabine treatment 468 

(Zhang et al., 2010). The expression of the important pro-apoptotic protein BIM is reduced 469 

by miR-17-5p in pancreatic cancer and results in decreased apoptotic rate leading to 470 

resistance to gemcitabine treatment (Yan et al., 2012). Therapy failure is also caused by the 471 

repression of a tumour suppressor network involved in cell cycle and apoptosis regulation 472 

composed of PDCD4, BTG2 and NEDD4L by the combined action of miR-21, miR-23a and 473 

miR-27a (Frampton et al., 2014a;Frampton et al., 2014b). Furthermore, over-expression of 474 

miR-1246 results in decreased expression of cyclin-G2 and impairs the cell cycle regulation 475 

resulting in resistance to gemcitabine (Hasegawa et al., 2014). Recently miR-1307 was 476 

identified to be responsible for FOLFIRINOX resistance in pancreatic cancer (Carotenuto et 477 

al., 2018). MiR-1307 is up-regulated in in-vitro models of FOLFIRINOX resistant pancreatic 478 

cancer as well as in patient derived material compared to the surrounding tissue (Carotenuto 479 

et al., 2018). Reduced apoptosis rate and an extended acceptance of DNA damage seems to 480 

be the consequence of higher miR-1307 expression (Carotenuto et al., 2018).  481 

In hepatocellular carcinoma the liver specific miR-122 is down-regulated and as consequence 482 

the expression of the target gene CCNG1 is increased (Fornari et al., 2009). High level of 483 

cyclin G1 protein is found in several human tumours and results in reduced cell cycle control 484 

in the G2/M phase and modulation of p53 activity (Fornari et al., 2009;Xu et al., 2011). This 485 
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results in reduced DNA-repair and diminished apoptotic rate (Fornari et al., 2009;Xu et al., 486 

2011). As already mentioned above, ABC transporter proteins are highly expressed in liver 487 

tumours due to the missing post-transcriptional regulator miR-122 (Xu et al., 2011). All these 488 

effects caused by miR-122 down-regulation promote doxorubicin resistance in liver cancer 489 

patients (Fornari et al., 2009;Xu et al., 2011). Another reason for doxorubicin resistance in 490 

liver cancer is based on reduced expression of miR-26b (Fan et al., 2008). Among the miR-491 

26b targets in liver are the NF-ϰB activating proteins TAB3 and TAK1 (Fan et al., 2008;Zhao 492 

et al., 2014b). Therefore, a reduced expression of miR-26b results in increased activation of 493 

NF-ϰB and promotes drug resistance (Fan et al., 2008;Zhao et al., 2014b). Also, down-494 

regulation of miR-101 is described as reason for resistance to doxorubicin in hepatocellular 495 

carcinoma (He et al., 2016). The anti-apoptotic protein Mcl-1 is among the targets of miR-496 

101 and high levels of Mcl-1 renders liver tumour cells resistant to doxorubicin treatment (He 497 

et al., 2016). Furthermore, doxorubicin treatment failure in liver cancer patients has been 498 

connected to down-regulation of miR-199a-3p (Fornari et al., 2010). Besides targeting mTOR 499 

and c-Met, miR-199a-3p influences cell cycle regulation (Fornari et al., 2010). Decreased 500 

miR-199a-3p level results in down-regulation of the G1-checkpoint CDK inhibitors p21 501 

(CDKN1A) and p27 (CDKN1B) and abrogate the G1 arrest following damage to DNA 502 

(Abukhdeir and Park, 2008;Fornari et al., 2010). In another study down-regulation of the G1 503 

inhibitor CDKN1A in hepatocellular carcinoma was linked to up-regulation of miR-519d 504 

(Fornari et al., 2012). Consequently the apoptotic rate is reduced due to down-regulated miR-505 

199a-3p as well as up-regulated miR-519d expression (Fornari et al., 2010;Fornari et al., 506 

2012). 507 

 508 

Another important tumour suppressor protein involved in resistance to anti-cancer drugs is 509 

PTEN because it is a main regulator for PI3K-AKT-mTOR pathway which is often 510 

hyperactivated in cancer and is one of the drivers for tumour growth and survival (Khan et 511 

al., 2013;LoRusso, 2016). PTEN itself is regulated by different microRNAs in different GI 512 

tumours, e.g.by miR-21 in liver and gastric cancer, miR-22 in p53-mutated colon cancer and 513 

mir-17-5p in colorectal cancer (Meng et al., 2007;Li et al., 2011;Zhang et al., 2012;Yang et 514 

al., 2013a;Fang et al., 2014). In all cases up-regulation of microRNAs results in decreased 515 

PTEN level in the tumour cell and subsequent activation of AKT-mTOR pathways resulting 516 
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in resistance to cisplatin (gastric cancer), paclitaxel (p53-mutated colon tumour) and 517 

FOLFOX (colorectal cancer) (Meng et al., 2007;Li et al., 2011;Zhang et al., 2012;Yang et al., 518 

2013a;Fang et al., 2014). Down-regulation of PTEN due to over-expression of miR-19a and 519 

miR-19b in gastric cancer results in multi-drug resistance (Wang et al., 2013a). 520 

Furthermore, mTOR is an important regulator under physiological as well as pathological 521 

conditions. In p53 mutant colorectal cancer mTOR is down-regulated by miR-338-3p and 522 

results in resistance to 5-fluorouracil treatment (Han et al., 2017). Indeed, inhibition of miR-523 

338-3p in cell culture models restored sensitivity to 5-fluorouracil (Han et al., 2017) likely 524 

due to increased autophagy and reduced apoptosis following decrease in mTOR expression 525 

(Gonzalez et al., 2014;Han et al., 2017). 526 

Autophagy is a further mechanism for chemoresistance (Song et al., 2009;Huang et al., 527 

2016;Gozuacik et al., 2017;Xiong et al., 2017). In liver cancer up-regulation of lncRNA 528 

HULC activates autophagy by increasing the expression of ubiquitin-specific peptidase 22 529 

(USP22) which in turn prevents the ubiquitin-mediated degradation of silent information 530 

regulator 1 (SIRT1) by removing the conjugated polyubiquitin chains from SIRT1 (Xiong et 531 

al., 2017). Autophagy causes resistance to oxaliplatin, 5-fluorouracil and epitubicin 532 

treatments in liver tumours (Xiong et al., 2017). In addition, lncRNA HULC down-regulates 533 

the expression of microRNAs that target directly the 3´-UTR of USP22 (miR-6825-5p, miR-534 

6845-5p and miR-6886-3p) in liver cancer cells and prevents by this inhibition of USP22 at 535 

translational level (Xiong et al., 2017). 536 

LncRNA MALAT-1 is highly expressed in gastric cancer cells resistant to 5-fluoruracil and 537 

cis-platin, respectively, compared to parental gastric cancer cells (YiRen et al., 2017). 538 

LncRNA MALAT-1 quenches miR-23b-3p and subsequently increases the expression of 539 

ATG12, an important regulator of autophagy (YiRen et al., 2017). 540 

In oxaliplatin resistant colon cancer miR-409-3p is down-regulated so that the direct target 541 

Beclin-1 is expressed and induces autophagy (Tan et al., 2016). Over-expression of miR-409-542 

3p results in low autophagic activity and overcomes oxaliplatin resistance in model systems 543 

of colon cancer (Tan et al., 2016). 544 

 545 

Induction of epithelial-mesenchymal transition 546 
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Drug resistance can be caused by epithelial-mesenchymal transition (EMT) (Bedi et al., 547 

2014;Heery et al., 2017). Several EMT-related signalling pathways are well known to be 548 

involved in mediating drug resistance in tumours (Nurwidya et al., 2012;Housman et al., 549 

2014;Du and Shim, 2016;Heery et al., 2017). Cells undergoing EMT have several features in 550 

common with cancer stem cells (e.g. increased drug efflux pumps and anti-apoptotic effects) 551 

and furthermore EMT is instrumental for generation and maintenance of cancer stem cells 552 

(Housman et al., 2014;Du and Shim, 2016;Heery et al., 2017). 553 

The lncRNA PVT1 (plasmacytoma variant translocation 1) has been found to be elevated in 554 

nearly all GI tumours including gastric, oesophageal, pancreatic, colon and liver cancers 555 

(Zheng et al., 2016;Wu et al., 2017;Zeng et al., 2017;Zhou et al., 2017). Increased expression 556 

of lncRNA PVT1 results in EMT and drug resistance (Zheng et al., 2016;Wu et al., 557 

2017;Zhou et al., 2017). 558 

The tumour suppressor lncRNA LEIGC prevents normal cells to undergo EMT. Therefore, 559 

the reduced expression of lncRNA LEIGC in gastric cancer fosters EMT and results in 560 

resistance to 5-fluorouracil treatment (Han et al., 2014b;Fang et al., 2015).  561 

Up-regulation of lncRNA HULC has been correlated to induced EMT and suppressed 562 

apoptosis in gastric tumours leading to cisplatin resistance (Zhao et al., 2014c;Zhang et al., 563 

2016b). 564 

Increased expression of lncRNA-ATB (lncRNA-activated by TGF-β) in liver cancer results 565 

in competition with members of the miR-200 family for binding sites in the 3´-UTR of 566 

mRNAs coding for the transcription factors ZEB1 and ZEB2 (Yuan et al., 2014). In turn, 567 

high expression of ZEB1 and ZEB2 causes EMT and increased drug resistance (Yuan et al., 568 

2014).  569 

In pancreatic cancer the lncRNA MALAT-1 is a regulator of EMT (Ying et al., 2012;Jiao et 570 

al., 2014). In addition, the lncRNA MALAT-1 suppress G2/M cell cycle arrest and apoptosis 571 

leading to resistance to gemcitabine treatment (Jiao et al., 2014). As demonstrated by this 572 

example, the same lncRNA can induce resistance to chemotherapy by regulating different 573 

mechanisms at the same time.  574 

Induction of EMT and resistance to gemcitabine treatment in pancreatic cancer cells can also 575 

be caused by miR-223 over-expression (Ma et al., 2015). Inhibition of miR-223 restored the 576 
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sensitivity of pancreatic cancer cell lines to gemcitabine treatment (Ma et al., 2015). 577 

Similarly, gemcitabine resistance in pancreatic cancer can also be caused by down-regulation 578 

of microRNAs as demonstrated for miR-200 (miR-200a, miR-200b and miR-200c) and let-7 579 

family resulting in EMT (Li et al., 2009;Yu et al., 2010).  580 

In colon cancer cells down-regulation of miR-147 results in EMT and increases the 581 

phosphorylation rate of AKT (Lee et al., 2014). Beside the activation of the PI3K-AKT 582 

pathway, the lower expression level of miR-147 also activates the TGF-β pathway and 583 

eventually leads to resistance to gefitinib treatment (Lee et al., 2014). Increased expression of 584 

miR-224 in colon cancer tissue was identified as another reason for resistance to 5-585 

fluorouracil treatment. Increased miR-224 expression translates in increasing phosphorylation 586 

rate of extracellular signal-regulated kinase (ERK) and AKT, resulting in activation of both 587 

pathways (Amankwatia et al., 2015). In addition, miR-224 seems to activate also EGFR 588 

dependent- and NF-ϰB-signalling pathway leading to EMT (Amankwatia et al., 2015). 589 

 590 

Cancer cell stemness 591 

A further reason for drug resistance is the presence of cancer stem cells. Cancer stem cells are 592 

well known for being refractory to chemotherapies and therefore cause therapy failure and 593 

tumour recurrence or progression (Reya et al., 2001;Ischenko et al., 2010;Li et al., 594 

2010;Shankar et al., 2011;Srivastava et al., 2011;Nguyen et al., 2012;Pattabiraman and 595 

Weinberg, 2014). Once again non-coding RNAs especially lncRNAs and microRNAs are 596 

involved in sustaining the cancer stem cell niche (Tay et al., 2008;Liu and Tang, 2011;Sun et 597 

al., 2014;Garg, 2015;Chen et al., 2017).  598 

The lncRNA UCA1 (urothelial carcinoma associated 1; identical with lncRNA CUDR 599 

(cancer up-regulated drug resistant)) is strongly expressed in different tumours; among these,  600 

gastric, hepatocellular,  pancreatic, colorectal cancers and oesophageal squamous cell 601 

carcinoma (Han et al., 2014a;Li et al., 2014b;Wang et al., 2015a;Chen et al., 2016;Shang et 602 

al., 2016;Chen et al., 2017;Li et al., 2017;Wang et al., 2017). LncRNA UCA1 binds to 603 

several microRNAs in different tumours (e.g. miR-216b in liver cancer, miR-204 in 604 

oesophageal and colon cancer, miR-27b in gastric cancer) and influences entire 605 

transcriptional programs as well as response towards therapy (Wang et al., 2015a;Bian et al., 606 
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2016;Fang et al., 2016b;Jiao et al., 2016;Wang et al., 2017). Well-established up-regulated 607 

targets of lncRNA UCA1 are members of the Wnt-ß-catenin signalling pathway, several 608 

transcription factors and cell division regulators (Wang et al., 2008;Li and Chen, 2016). For 609 

cell stem cells the Wnt-ß-catenin pathway is of pivotal importance for cell self-renewal and 610 

mediating drug resistance (Taipale and Beachy, 2001;Fan et al., 2014a). Over-expression of 611 

lncRNA UCA1 results in resistance to cancer treatments with tamoxifen, 5-fluorouracil, 612 

gemcitabine, cisplatinum, doxorubicin, imatinib and tyrosine-kinase inhibitors targeting 613 

EGFR (Bian et al., 2016;Shang et al., 2016;Li et al., 2017;Wang et al., 2017).  614 

Silencing of lncRNA UCA1 in in-vitro and in-vivo systems proved the oncogenic role of 615 

lncRNA UCA1 in gastric cancer (Shang et al., 2016;Li et al., 2017). Reduced expression 616 

level of lncRNA UCA1 results in reduced proliferation rate, increased apoptosis rate and 617 

overcomes the resistance to doxorubicin (Shang et al., 2016;Li et al., 2017). Furthermore, 618 

lncRNA UCA1 is a direct regulator of the PI3K-AKT-mTOR pathway (Li et al., 2017) which 619 

is often found to be deregulated in human cancers and is known to contribute to chemo-620 

resistance of cancer cells (Xia and Xu, 2015;Safa, 2016). In another study over-expression of 621 

lncRNA UCA1 was shown to cause reduced miR-27 expression causing diminished 622 

apoptosis of gastric cancer cells due to increased Bcl-2 protein level in combination with 623 

reduced cleaved caspase-3 (Fang et al., 2016b). This results in multidrug resistance of gastric 624 

tumours (Fang et al., 2016b). 625 

Over-expression of lncRNA UCA1 is also a reason for chemo-resistance against 5-626 

fluorouracil treatment in colon cancer (Bian et al., 2016). LncRNA UCA1 causes resistance 627 

by binding miR-204-5p and consequently up-regulating the expression of its target genes Bcl-628 

2, RAB22A and CREB1 (Bian et al., 2016). MiR-21 was identified as an important player in 629 

regard to failure of 5-fluorouracil therapy in colon cancer patients (Yu et al., 2013). Mir-21 is 630 

able to increase the number of undifferentiated cancer stem cells during 5-fluorouracil 631 

treatment and contributes by this to therapy failure (Yu et al., 2013).  632 

In liver cancer lncRNA UCA1 contributes to chemotherapy resistance and malignant 633 

transformation of hepatocyte-stem cells (Gui et al., 2015;Li and Chen, 2016;Li et al., 634 

2016a;Chen et al., 2017;Huang et al., 2017;Zheng et al., 2017). LncRNA UCA1 increases 635 

directly the transcription rate of the oncogene c-myc well known to be involved in drug 636 

resistance as well as in activating stem-cell like properties in hepatocarcinoma (Walker et al., 637 
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1996;Lin et al., 2007;Pyndiah et al., 2011;Akita et al., 2014;Pu et al., 2015). Furthermore, 638 

lncRNA UCA1 also induces the expression of lncRNA HULC (highly up-regulated in liver 639 

cancer) in liver cancer and lncRNA HULC in turn stimulates the activity of the Wnt-ß-640 

catenin pathway (Gui et al., 2015). In addition, lncRNA UCA1 forms a complex with the 641 

cell-cycle regulator cyclin-D which enhances the expression of lncRNA H19 by inhibiting the 642 

methylation of the lncRNA H19 promoter (Pu et al., 2015;Chen et al., 2017). High level of 643 

lncRNA H19 induces the telomerase activity and enhances the length of telomere thereby 644 

supporting the stem cell properties (Hiyama and Hiyama, 2007;Pu et al., 2015;Wu et al., 645 

2016b). Another effect of lncRNA UCA1 is the enhanced phosphorylation of the tumour 646 

suppressor retinoblastoma protein 1(RB1). RB1 phosphorylation results in increased cell 647 

cycle progression and in interaction of the phosphorylated retinoblastoma protein 1 with the 648 

SET1A complex. Such interaction catalyses the transcription-activating methylation of 649 

histone H3 lysine-4 on several gene promoters including telomeric repeat-binding factor 2 650 

promoter an important component for the telomerase extension process (Fang et al., 2016a;Li 651 

et al., 2016a).  652 

In liver cancer as well as in pancreatic, gastric, oesophageal and colon cancers a critical role 653 

in inducing the transformation of stem cells into cancer stem cell has been demonstrated for 654 

lncRNA HOTAIR (Chen et al., 2013;Endo et al., 2013;Kim et al., 2013;He et al., 655 

2014;Mohamadkhani, 2014;Li et al., 2015b;Chen et al., 2017). LncRNA HOTAIR is a strong 656 

activator for expression of OCT4, RNF51, CD44 and CD133 genes – all these proteins are 657 

involved in reprogramming the gene network to acquire cancer stem cell properties (Padua 658 

Alves et al., 2013;Zhu et al., 2014). LncRNA HOTAIR expression causes resistance against 659 

cisplatin and doxorubicin treatment in liver cancer model systems (Yang et al., 2011)  and 660 

renders gastric tumours resistant to cisplatin therapy by binding miR-126 and activating the 661 

PI3K-AKT-mTOR pathway (Yan et al., 2016). In the context of several GI cancer stem cells 662 

it has been shown that lncRNA HOTAIR down-regulates the expression of histone 663 

methyltransferase SETD2 and reduces the phosphorylation rate of SETD2 resulting in 664 

reduced trimethylation of histone H3 lysine-36 on several gene promoter, e.g. Wnt inhibitory 665 

factor-1 (WIF-1) (Ge et al., 2013;Kim et al., 2013;Ding et al., 2014;Li et al., 2015b). Reduced 666 

WIF-1 expression leads to activation and increased signalling through the Wnt-ß-catenin 667 

pathway (Ge et al., 2013;Kim et al., 2013). Furthermore, the modulated chromatin 668 

organisation account for a reduced efficiency of the mismatch repair system and damaged 669 
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DNA can escape from corrections leading to microsatellite instability (MSI) and altered 670 

expression of cell cycle regulators as well as reduced apoptosis (Gupta et al., 2010;Valeri et 671 

al., 2010b;Chen et al., 2013;Li et al., 2013;Li et al., 2015b). In addition, lncRNA HOTAIR 672 

induces accumulation of replication errors by hindering the complex formation of MSH2 with 673 

MSH6; one essential dimer for DNA mismatch recognition and repair (Yang et al., 674 

2004;Valeri et al., 2010a;Valeri et al., 2010b;Edelbrock et al., 2013;Pfister et al., 2014).  675 

In pancreatic cancer the oncogenic lncRNA MALAT-1 (metastasis-associated lung 676 

adenocarcinoma transcript-1) contributes to the expression of the cancer stem cell marker 677 

CD133, CD44, CD24 and aldehyde-dehydrogenase (Fan et al., 2014b;Jiao et al., 2014;Jiao et 678 

al., 2015). In addition, the expression of the core pluripotent factors OCT4, NANOG and 679 

SOX2 are also under the control of lncRNA MALAT-1 (Jiao et al., 2015). LncRNA linc-680 

ROR inhibits the expression of p53 and activates by this the transcription factor ZEB1 in 681 

pancreatic cancer (Wellner et al., 2009). ZEB1 in turn suppress the expression of the miR-682 

200 family that leads to maintenance of pancreatic cancer stemness and induces EMT known 683 

to be responsible for paclitaxel resistance in pancreatic cancer patients (Wellner et al., 684 

2009;Kim, 2017). Down-regulation of miR-205 results in increased expression of stem cell 685 

markers OKT3, OKT8 and CD44 in pancreatic cancer tissue and is linked to gemcitabine 686 

resistance (Singh et al., 2013). Re-expression of miR-205 is able to overcome the 687 

gemcitabine resistance in pancreatic cancer model systems (Singh et al., 2013). 688 

The lncRNA-34a mediates an increase in self-renewal of colon cancer stem cells and induce 689 

Wnt as well as NOTCH signalling pathways via sequester miR-34a expression (Bu et al., 690 

2013;Evans et al., 2015). 691 

In hepatocellular carcinoma the lncRNA linc-ROR (long intergenic ncRNA regulator of 692 

reprogramming) is involved in regulating core pluripotent factors (OCT-4, NANOG, SOX2) 693 

necessary for the stem cell like phenotype and causes resistance to chemotherapy (Takahashi 694 

et al., 2014). LncRNA linc-ROR competes with miR-145 for the same binding sites present 695 

in the mRNAs coding for OCT-4, NANOG and SOX2 (Wang et al., 2013b). Presence of 696 

lncRNA linc-ROR prevents the binding of miR-145 to the mRNA of the core pluripotent 697 

factors resulting in translation of these mRNAs and maintains the stem cell phenotype (Wang 698 

et al., 2013b). Furthermore, the expression of CD133, another cancer stem cell marker, is 699 

directly induced by lncRNA linc-ROR (Takahashi et al., 2014).  700 
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MiR-130b is connected to cancer stem cells growth in liver tumours (Ma et al., 2010). 701 

Increased expression of miR-130b targets directly the mRNA coding for tumour protein 53-702 

induced nuclear protein 1 and reduces the expression level of the corresponding protein (Ma 703 

et al., 2010). Furthermore, high level of miR-130b renders liver tumour cells resistant to 704 

doxorubicin treatment (Ma et al., 2010). Another reason for doxorubicin resistance in liver 705 

cancer patients is down-regulation of the tumour suppressor miR-101 resulting in increased 706 

protein expression of enhancer of zeste homolog 2 (EZH2) (Sasaki et al., 2008;Xu et al., 707 

2014a). EZH2 is a histone-lysine N-methyltransferase enzyme that silence Wnt-pathway 708 

antagonists and other tumour suppressor genes on the transcriptional level by histone 709 

methylation (Cheng et al., 2011). Over-expression of EZH2 is positively correlated with 710 

increased Wnt-ß-catenin signalling (Cheng et al., 2011). 711 

MiR-221 is over-expressed in 5-fluorouracil resistant oesophageal tumours (Wang et al., 712 

2016b). The mechanisms of resistance is mediated via down-regulation of the direct target 713 

DDK2 (dickkopf-related protein 2) and subsequent activation of the Wnt-ß-catenin pathway 714 

(Wang et al., 2016b). Furthermore, increased miR-221 expression fosters EMT and facilitates 715 

the formation of tumour stem cells (Wang et al., 2016b). 716 

In colon cancer stem cells, miR-451 was found to be down-regulated compared to colon 717 

cancer cells (Bitarte et al., 2011). Reduced level of miR-451 seems to be essential for the 718 

self-renewal of colon cancer stem cells (Bitarte et al., 2011). In addition, expression of 719 

ABCB1 transporter is increased in colon cancer stem cells due to lack of miR-451 post-720 

transcriptional down-regulation resulting in resistance to irinotecan treatment (Bitarte et al., 721 

2011).  722 

MiR-1182 is often down-regulated in gastric cancer tissue (Zhang et al., 2015a). One direct 723 

target of miR-1182 is telomerase reverse transcriptase (hTERT), an enzyme that is involved 724 

in controlling the length of telomere. Over-expression of hTERT due to missing 725 

transcriptional regulation by miR-1182, results in cell immortality and stem-cell property of 726 

gastric cancer cells (Zhang et al., 2015a). 727 

 728 

Targeted therapies and drug resistance 729 
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For GI cancer several targeted therapies exist (Table 3) (Jonker et al., 2007;Weber and 730 

McCormack, 2008;Loupakis et al., 2010;Roukos, 2010;Grothey et al., 2013;Muro et al., 731 

2015;King et al., 2017). They are used alone or in combination with chemotherapy. 732 

Unfortunately in most cases the patients develop resistance also against these targeted 733 

therapies and the above outlined general principles of drug resistance based on non-coding 734 

RNA dysregulation are involved. Beside that non-coding RNAs interfering with the targeted 735 

protein itself or (up-)regulating the targeted signal pathway are involved in drug resistance 736 

(Roukos, 2010). Furthermore, therapy failure can be related to activation of alternative signal 737 

pathways by non-coding RNAs (Roukos, 2010;Lu et al., 2017b). 738 

Recently it was demonstrated that resistance to cetuximab in colon cancer patients and in in-739 

vitro 3-D-cell culture models can be caused by over-expression of lncRNA MIR100HG (Lu 740 

et al., 2017b). Two microRNAs, miR-100 and miR-125b, are generated from lncRNA 741 

MIR100HG and these microRNAs down-regulate in a concerted way five negative regulators 742 

of the Wnt/ß-catenin pathway resulting in increased Wnt signalling (Lu et al., 2017b). This 743 

kind of cetuximab resistance can be overcome by inhibition of Wnt signalling, underscoring 744 

the potential clinical relevance of the interactions between EGFR and Wnt/ß-catenin 745 

pathways (Lu et al., 2017b). Increased mir-125b expression is also correlated with 746 

trastuzumab resistance in HER2-positive gastric cancer patients but up to now the molecular 747 

basis for this resistance is unclear (Sui et al., 2017). Sorafenib resistance in hepatocellular 748 

carcinoma is caused by lncRNA TUC338 (Jin et al., 2017). RASAL-1 (RAS protein activator 749 

like-1) is a direct target of lncRNA TUC338 and high expression of lncRNA TUC338 750 

inhibits the RASAL-1 expression resulting in activation of RAS-signalling (Jin et al., 2017). 751 

According to another in-vitro study, reduced expression of miR-193b leads to higher 752 

expression of the anti-apoptotic protein Mcl-1 and renders hepatocellular carcinoma cells 753 

resistant to sorafenib treatment (Braconi et al., 2010). 754 

 755 

Non-coding RNAs as potential biomarkers of resistance and novel therapeutics: promises 756 

and hurdles 757 

Our review summarises most of the current evidence supporting the role of non-coding RNAs 758 

in resistance to chemotherapy and targeted agents. It is likely that, in the near future, given 759 

the promising and exciting results obtained with the use of immunotherapy in 760 
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gastroesophageal (Kang et al., 2017) and colorectal cancer (Le et al., 2017;Overman et al., 761 

2018), new data will emerge on the already known regulation of PD-1, PD-L1 and CTLA-4 762 

by non-coding RNAs and response to nivolumab and pembrolizumab (Cortez et al., 2016;Xu 763 

et al., 2016;Smolle et al., 2017).  764 

The contribution of non-cording RNAs in resistance mechanisms to a broad range of anti-765 

cancer treatments makes their use as biomarkers or novel therapeutics quite promising but 766 

several challenges remain.    767 

Given microRNAs and, to a lesser extent, other non-coding RNAs can be reliably detected in 768 

tissues and bio-fluids such as plasma, serum and urine, it is tempting to hypothesize the use 769 

of non-coding RNA based tools to predict and monitor resistance to anticancer treatments. 770 

Few studies have already tested the validity of microRNAs as biomarkers of response to 771 

anticancer treatment in other cancers such as prostate (Lin et al., 2017), chronic lymphocytic 772 

leukaemia (Gagez et al., 2017) and sarcomas (Wiemer et al., 2017). In colorectal cancer, we 773 

(Sclafani et al., 2015) and others (Graziano et al., 2010;Zhang et al., 2011;Sha et al., 2014)  774 

have tested the contribution of a single nucleotide polymorphism (SNP) in the binding site of 775 

let-7 in the KRAS 3’UTR in predicting benefit from anti-EGFR treatment with conflicting 776 

results across different trials. Despite the good reproducibility of the assay, the predictive 777 

value of the test was not confirmed in all trials likely due to use of cetuximab in different 778 

context (neo-adjuvant, adjuvant and metastatic colorectal cancer, respectively). Similarly the 779 

analysis of a SNP in miR-608 led to contradicting results in patients treated with neo-780 

adjuvant or adjuvant chemo- and radiochemo-therapy in colon and rectal cancers highlighting 781 

some of the challenges in validating data obtained in retrospective series (Lin et al., 782 

2012;Xing et al., 2012;Pardini et al., 2015;Sclafani et al., 2016). Tissue (cancer versus 783 

stroma) and organ (colon versus rectum) specificity in non-coding RNA expression might 784 

represent potential explanations for different findings obtained in some of these studies.  785 

Beside SNPs, expression of microRNAs can be detected in fresh frozen or formalin fixed 786 

paraffin embedded tissues and serve as potential biomarker of sensitivity or resistance to 787 

treatment. Robust data have emerged from the retrospective analysis of a prospective phase 788 

III clinical trial (Laurent-Puig et al., 2016). In this study, KRAS wild-type patients were 789 

classified based on high or low miR-31-3p expression: patients with high expression were 790 

resistant to cetuximab while patient with low expression had good and durable responses 791 
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which translated in survival benefit. The miR-31 expression cut-off for the classification into 792 

high or low expression was predefined in the above study. However, one of the key 793 

challenges in validating these interesting findings will be design of a clinically approved 794 

assay that can accurately assign patients into one of these two categories. In this prospective, 795 

the use of different sources of material (i.e. primary colorectal cancer versus metastasis) 796 

might result in different basal expression of the microRNA and as such different scoring. 797 

Source of material and choice of reference controls represent important obstacles that might 798 

bias the definition of a threshold for high or low expression of microRNAs in tissues and bio-799 

fluids. MicroRNAs can be detected in plasma, serum and urine samples and have been used 800 

for early detection and prognostic purposes in gastrointestinal cancer (Schultz et al., 801 

2014;Shigeyasu et al., 2017;Ozawa et al., 2018). The use of digital droplet approaches allows 802 

the quantitative detection of copies of the microRNA of interest based on the starting volume 803 

of bio-fluids and, potentially overcomes or at least mitigates, the issues related to the 804 

normalization of data against reference controls, making the definition of cut-off easier to 805 

standardize. One study has reported the potential role of miR-126 in predicting and tracking 806 

response to chemotherapy and anti-VEGF treatment in colorectal cancer (Hansen et al., 2015) 807 

and, with the advent of digital quantitative technologies, more studies are expected. 808 

In consideration of their role in cancer initiation, progression and resistance to treatment, 809 

non-coding RNAs and among them microRNAs have been proposed as potential therapeutics 810 

(Adams et al., 2017). A large body of pre-clinical evidence is available on the use of anti-811 

microRNAs or molecules re-expressing microRNAs alone or in combination with other 812 

agents in order to increase efficacy and prevent or revert drug resistance (Rupaimoole and 813 

Slack, 2017).  Inhibition of microRNAs has been tested in clinical trials in the context of 814 

HCV infection (Janssen et al., 2013;van der Ree et al., 2017) and in mesothelioma (van 815 

Zandwijk et al., 2017). These trials highlighted a huge potential for microRNA-based 816 

therapeutics but at the same time pinpointed some of the criticalities in further clinical 817 

development of such approaches. MiR-122 inhibition led to durable viral load reduction in 818 

both HCV trials and was associated with manageable side effects. Similarly, in mesothelioma 819 

patients treated with miR-16-loaded minicells the disease control rate was satisfactory and the 820 

toxicity profile acceptable warranting further investigations. Overall in both approaches the 821 

risk of off-target effects represent the main hurdle to be taken into account: indeed miR-122 822 

inhibition has been associated with risk of developing liver cancer in pre-clinical models 823 
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(Hsu et al., 2012) and, similarly, over-expression of miR-16 might lead to uncontrolled 824 

cardiac effects as proven in the phase I trial (van Zandwijk et al., 2017). These effects might 825 

be increased in combination studies in which anti-microRNAs or microRNA-conjugates are 826 

delivered together with chemotherapy leading to cumulative side effects. Therefore a robust 827 

understanding of the biology underpinning microRNA deregulation in physiology and 828 

pathological conditions in order to implement effort that can minimise the risk of serious 829 

adverse events hampering the clinical development of microRNA-based strategies.   830 

 831 

Conclusion: 832 

Non-coding RNAs especially lncRNAs and microRNAs are important mediators for drug 833 

resistance. They function in an organ and tissue specific manner and through different 834 

molecular mechanisms. One non-coding RNA always have several targets and in the end 835 

deregulation of one non-coding RNA alters the expression level of several proteins in a tissue 836 

specific way. For example, in the case of miR-374b more than 700 genes have been identified 837 

as direct target in pancreatic tissue (Schreiber et al., 2016). Drug resistance is a dynamic 838 

process caused by several cell and non-cell autonomous mechanisms. Given non-coding 839 

RNAs can simultaneously control several cancer-associated pathways, non-coding RNA 840 

dysregulation plays a crucial role in treatment resistance. Future studies will continue to shed 841 

insights in the fine interplay among lncRNA, microRNA and their target genes and might 842 

provide opportunities for more effective strategies to prevent or overcome resistance. In the 843 

interim, given non-coding RNAs and especially microRNAs can be tested in tissues and 844 

biofluids in a rapid, cost/effective and robust way. More investigational studies should 845 

explore their utility to monitor and forecast treatment response and resistance in order to 846 

personalise treatments and improve patient’s outcomes. 847 
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Figure legends: 855 

Figure 1: Role of non-coding RNAs for the different reasons that can cause resistance to 856 

anticancer drugs in liver cancer. For details about target genes and regulated protein 857 

expression by the non-coding RNAs see text. 858 

Figure 2: Role of non-coding RNAs for the different reasons that can cause resistance to 859 

anticancer drugs in oesophageal cancer. For details about target genes and regulated 860 

protein expression by the non-coding RNAs see text. 861 

Figure 3: Role of non-coding RNAs for the different reasons that can cause resistance to 862 

anticancer drugs in gastric cancer. For details about target genes and regulated protein 863 

expression by the non-coding RNAs see text. 864 

Figure 4: Role of non-coding RNAs for the different reasons that can cause resistance to 865 

anticancer drugs in colon and colorectal cancer. For details about target genes and 866 

regulated protein expression by the non-coding RNAs see text. 867 

Figure 5: Role of non-coding RNAs for the different reasons that can cause resistance to 868 

anticancer drugs in pancreatic cancer. For details about target genes and regulated protein 869 

expression by the non-coding RNAs see text. 870 

Figure 6: Role of non-coding RNAs for the different reasons that can cause resistance to 871 

anticancer drugs in gastrointestinal stromal cancer. For details about target genes and 872 

regulated protein expression by the non-coding RNAs see text. 873 

Figure 7: Role of non-coding RNAs for the different reasons that can cause resistance to 874 

anticancer drugs in cholangiocarcinoma. For details about target genes and regulated 875 

protein expression by the non-coding RNAs see text. 876 

  877 
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Table1: Overview about non-coding RNAs involved in resistance to anticancer drugs in 878 

gastrointestinal tumours. 879 

Abbreviation used: GI=gastrointestinal; vRNA=vault RNA; lncRNA=long non-coding RNA; 880 

miR=microRNA; EMT=epithelial-mesenchymal transition  881 

 882 

Non-coding 

RNA 

GI cancer type Causing drug resistance via Reference 

lncRNA 

AK022798 

gastric cancer increasing the expression of 

ABCB1 gene 

(Hang et al., 2015) 

lncRNA ANRIL gastric cancer increasing the expression of 

MDR1 gene 

(Zhang et al., 

2015c;Lan et al., 

2016) 

lncRNA ARA liver cancer reduced G2/M cell-cycle 

arrest; reduced apoptosis rate; 

de-regulation of MAPK-

pathway 

(Jiang et al., 

2014;Cox and 

Weinman, 2016) 

lncRNA-ATB liver cancer increased expression of ZEB1 

and ZEB2; induced EMT 

(Yuan et al., 2014) 

lncRNA CCAL colorectal cancer increasing the expression of 

ABCB1 gene; increased 

activity of Wnt/ß-catenin 

pathway 

(Ma et al., 2016b) 

lncRNA H19 liver cancer  

oesophageal cancer 

up-regulation of membrane 

glycoprotein p95; elevating 

the expression of MDR1 gene 

by increasing promoter 

methylation; increasing 

telomere length 

(Hiyama and 

Hiyama, 

2007;Tsang and 

Kwok, 

2007;Matouk et 

al., 2013) 

lncRNA 

HOTAIR 

liver cancer  

colorectal cancer  

pancreatic cancer  

GI stromal tumour 

increased expression of 

PRC2 complex members; 

genome-wide changes in 

transcription process due to 

epigenetic chromatin 

silencing; down-regulation of 

p21(WAF/CIP1); repression 

of G1/S cell-cycle arrest; 

increased proliferation rate; 

reduced DNA-damage 

response 

(el-Deiry et al., 

1993;Geng et al., 

2011;Kogo et al., 

2011;Liu et al., 

2013) 

lncRNA 

HOTAIR 

colon cancer  

pancreatic cancer  

gastric cancer  

transformation of stem cells 

into cancer stem cells due to 

activation of OCT4, RNF51, 

(Yang et al., 

2004;Edelbrock et 

al., 2013;Ge et al., 

In review



Non-coding RNAs and anticancer drugs

 

 
oesophageal cancer CD44 and CD133 gene 

expression; increased activity 

of Wnt/ß-catenin pathway; 

modulation of chromatin 

organisation leads to reduced 

efficiency of the mismatch 

repair system; increased MSI; 

reduced apoptosis rate; 

inhibition of the expression 

of miR-126 and activating the 

PI3K-AKT-mTOR pathway 

(in gastric cancer) 

2013;Kim et al., 

2013;Padua Alves 

et al., 2013;Zhu et 

al., 2014;Yan et 

al., 2016) 

lncRNA 

HOTTTIP 

pancreatic cancer increased expression of 

transcription factor HOX13; 

cell cycle deregulation 

(Wang et al., 

2011;Li et al., 

2015e) 

lncRNA HULC liver cancer increased activity of Wnt-ß-

catenin; increased expression 

of USP22 and SIRT1; 

reduced expression of miR-

6825-5p, miR-6845-5p, miR-

6886-3p; increased 

autophagy pathway 

(Xiong et al., 

2017) 

lncRNA HULC gastric cancer induced EMT; suppressed 

apoptosis  

(Zhao et al., 

2014c;Zhang et 

al., 2016b) 

lncRNA LEIGG gastric cancer induced EMT (Han et al., 

2014b;Fang et al., 

2015) 

lncRNA linc-

ROR 

pancreatic cancer inhibition of p53; inhibition 

of the expression of miR-200 

family; increased expression 

of the transcription factor 

ZEB1; induced EMT 

(Wellner et al., 

2009;Kim, 2017) 

lncRNA linc-

ROR 

liver cancer preventing the binding of 

miR-145 to pluripotent 

factors OKT-4, NANOG and 

SOX2 resulting in increased 

expression of these 

transcription factors 

necessary for sustain stem 

cell character 

(Wang et al., 

2013b;Takahashi 

et al., 2014) 

lncRNA 

LOC285194 

oesophageal cancer cell-cycle deregulation; 

blocking non-apoptotic cell 

death pathway  

(Tong et al., 2014) 
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lncRNA 

MALAT-1 

oesophageal tumour binds miR-107 and miR-217; 

reduced activity of the ATM-

CHK2 signalling pathway; 

reduced cell-cycle arrest and 

cell death as response to 

DNA damage; increased 

expression of transcription 

factor B-Myb  

(Smith et al., 

2010;Lin and Xu, 

2015;Wang et al., 

2015c) 

lncRNA 

MALAT-1 

pancreatic cancer increased expression of 

cancer stem cell marker 

CD133; increased expression 

of pluripotent factors OCT4, 

NANOG and SOX2;  

induced EMT; repression of 

G2/M cell-cycle arrest; 

reduced apoptosis rate 

(Ying et al., 

2012;Jiao et al., 

2014;Jiao et al., 

2015) 

lncRNA 

MALAT-1 

gastric cancer sequestering of miR-23b-3p; 

increased expression of 

ATG12; increased autophagy 

(YiRen et al., 

2017) 

lncRNA 

MIR100HG 

colon cancer increased activity of Wnt-ß-

catenin pathway 

(Lu et al., 2017b) 

lncRNA MRUL gastric cancer increasing the expression of 

MDR1 gene 

(Wang et al., 

2014) 

lncRNA 

PANDAR 

gastric cancer 

colorectal cancer 

hepatocellular 

cancer 

cholangiocarcinoma 

interacts with the 

transcription factor NF-YA 

resulting in reduced 

translation of pro-apoptotic 

genes – leading to reduced 

apoptosis rate and increased 

proliferation 

(Hung et al., 

2011;Peng and 

Fan, 2015;Ma et 

al., 2016a;Lu et 

al., 2017a;Xu et 

al., 2017b) 

lncRNA PVT1 gastric cancer 

oesophageal cancer 

pancreatic cancer 

colon cancer 

liver cancer 

 induced EMT (Zheng et al., 

2016;Wu et al., 

2017;Zhou et al., 

2017) 

lncRNA PVT-1 gastric cancer increasing the expression of 

MDR1 gene 

(Zhang et al., 

2015c;Lan et al., 

2016) 

lncRNA TUC338 hepatocellular 

cancer 

inhibiting the RASAL-1 

pathway 

(Jin et al., 2017) 

lncRNA TUG1 oesophageal cancer 

gastric cancer 

colorectal cancer 

hepatocellular 

cancer 

cholangiocarcinoma 

increasing the expression of 

Bc-2 gene; reducing the 

expression of cyclin-

dependent protein kinase, 

caspase-3, caspase-9 and 

Bax; decreasing G0/G1 arrest 

during cell cycle; reducing 

apoptosis rate; inducing EMT 

(Huang et al., 

2015;Dong et al., 

2016;Jiang et al., 

2016;Li et al., 

2016b;Wang et 

al., 2016a;Zhang 

et al., 2016a;Xu et 

al., 2017c) 
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lncRNA UCA1 

(identical with 

lncRNA CDUR) 

liver cancer  

colorectal cancer 

pancreatic cancer  

gastric cancer  

oesophageal cancer 

sequestering microRNAs 

(miR-216b in liver cancer; 

miR-204-5p in colorectal and 

oesophageal cancer; miR-27 

in gastric cancer); increase 

expression of lncRNAs 

(HULC; H19); increased 

activity of Wnt-ß-catenin 

pathway; increased activity of 

PI3K-AKT-mTOR pathway; 

increased phosphorylation of 

tumour suppressor 

retinoblastoma; increased 

expression of c-myc; 

increased cell-cycle 

progression; increased 

expression of anti-apoptotic 

protein Bcl-2; reduced 

expression of PARP (in 

gastric cancer); reduced 

apoptosis rate. In liver cancer 

additional effects: 

transformation of stem cells 

into cancer stem cells due to 

increased c-myc expression; 

increasing telomere length 

(Walker et al., 

1996;Hiyama and 

Hiyama, 

2007;Wang et al., 

2008;Gui et al., 

2015;Pu et al., 

2015;Bian et al., 

2016;Fang et al., 

2016a;Fang et al., 

2016b;Li and 

Chen, 2016;Shang 

et al., 2016;Chen 

et al., 2017;Li et 

al., 2017) 

lncRNA URHC liver cancer reduced expression of the 

tumour suppressor ZAK; 

increased proliferation rate; 

reduced apoptosis rate 

(Xu et al., 2014b) 

lncRNA-34a colon cancer increased activity of Wnt-ß-

catenin pathway; increased 

activity of NOTCH pathway; 

increasing the self-renewal of 

cancer stem cells 

(Bu et al., 

2013;Evans et al., 

2015) 

miR let-7 family pancreatic cancer induced EMT (Li et al., 2009) 

miR let-7a pancreatic tumours increased expression of 

RRM2 

(Bhutia et al., 

2013) 

miR let-7g oesophageal cancer increased expression of 

ABCC10 

(Wu et al., 2016a) 

miR let-7i oesophageal cancer increased expression of 

ABCC10 

(Wu et al., 2016a) 

miR-100 colon cancer increased activity of Wnt-ß-

catenin pathway 

(Lu et al., 2017b) 

miR-101 liver cancer increased expression of 

EZH2; increased activity of 

Wnt-ß-catenin pathway; 

increased expression of Mcl-

(Sasaki et al., 

2008;Xu et al., 

2014a;He et al., 

2016) 

In review



Non-coding RNAs and anticancer drugs

 

 
1; reduced apoptosis rate 

miR-10b colorectal cancer increased expression of anti-

apoptotic protein BIm 

(Nishida et al., 

2012) 

miR-103/107 gastric cancer reduced expression of 

tumour-suppressor caveolin-

1; activation of Ras-p42/p44 

MAP pathway; reduced 

apoptosis rate 

(Le Gall et al., 

2000;Mebratu and 

Tesfaigzi, 

2009;Zhang et al., 

2015d) 

miR-106a gastric cancer reduced expression of FAS; 

reduced apoptosis rate 

(Xiao et al., 

2009;Wang et al., 

2013c) 

miR-1182 gastric cancer increased expression of 

hTERT 

(Zhang et al., 

2015a) 

miR-122 liver cancer increased expression of ABC 

proteins; increased 

expression of cyclin G1; 

reduced G2/M cell-cycle 

arrest; reduced DNA repair; 

reduced apoptosis rate 

(Fornari et al., 

2009;Xu et al., 

2011) 

miR-124 pancreatic cancer 

 liver cancer 

reduced expression of 

SLC16A1 

(Pullen et al., 

2011) 

miR-125b colon cancer increased activity of Wnt-ß-

catenin pathway 

(Lu et al., 2017b) 

miR-1246 pancreatic cancer reduced expression of cyclin-

G2; de-regulated cell-cycle 

(Hasegawa et al., 

2014) 

miR-129 colorectal cancer increased expression of anti-

apoptotic protein Bcl-2 

(Karaayvaz et al., 

2013) 

miR-1291 pancreatic cancer increased expression of 

ABCC1 

(Pan et al., 2013) 

miR-130b liver cancer reduce expression of tumour 

protein 53-induced nuclear 

protein 1 

(Ma et al., 2010) 

miR-1307 pancreatic cancer reduced apoptosis rate  (Carotenuto et al., 

2018) 

miR-133a oesophageal cancer increased expression of 

GSTP1 

(Kano et al., 2010) 

miR-145 colon carcinoma increased expression of 

ABCB1 

(Ikemura et al., 

2013) 

miR-147 colon cancer induced EMT; increased 

phosphorylation of AKT; 

increased activity of PI3K-

AKT-mTOR pathway; 

increased activity of TGF-ß 

pathway 

(Lee et al., 2014) 
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miR-155 colorectal cancer inhibition of MSH2, MSH6 

and MLH1 

(Valeri et al., 

2010b) 

miR-15b gastric cancer increased expression of anti-

apoptotic protein Bcl-2 

(Xia et al., 2008) 

miR-16 gastric cancer increased expression of anti-

apoptotic protein Bcl-2 

(Xia et al., 2008) 

mir-17-5p colorectal cancer reduced expression of PTEN 

expression; activation of 

AKT-mTOR pathways 

(Fang et al., 2014) 

miR-17-5p pancreatic cancer reduced expression of BIM (Yan et al., 2012) 

miR-1915 colon cancer increased expression of BCL-

2 

(Xu et al., 2013) 

miR-192 colon cancer reduced expression of 

thymidylate synthase; altered 

cell-cycle control at multiple 

levels; prevent progression 

into the S-phase 

(Boni et al., 2010) 

miR-193b hepatocellular 

cancer 

increased expression of Mcl-

1 

(Braconi et al., 

2010) 

miR-195 colorectal cancer increased expression of anti-

apoptotic protein Bcl-2L2 

(Qu et al., 2015) 

miR-199a-3p liver cancer reduced G1/S cell-cycle 

arrest; increased expression 

of mTOR and c-Met; reduced 

apoptosis rate 

(Abukhdeir and 

Park, 

2008;Fornari et 

al., 2010) 

miR-19a gastric cancer reduced expression of PTEN 

expression; activation of 

AKT-mTOR pathways 

(Wang et al., 

2013a) 

miR-19b gastric cancer reduced expression of PTEN 

expression; activation of 

AKT-mTOR pathways 

(Wang et al., 

2013a) 

miR-200a pancreatic cancer induced EMT (Li et al., 2009) 

miR-200b pancreatic cancer induced EMT (Li et al., 2009) 

miR-200c pancreatic cancer induced EMT (Li et al., 2009;Yu 

et al., 2010) 

miR-203 colorectal cancer reduced expression of ATM; 

impaired DNA repair; 

reduced apoptosis rate 

(Zhou et al., 2014) 

miR-205 pancreatic cancer increased expression of 

pluripotent factors OKT3, 

OKT8 and CD44 

(Singh et al., 

2013) 

miR-21 colorectal cancer inhibition of MSH2 and 

MSH6; reduced G2/M cell-

cycle arrest; reduced 

apoptosis rate; increasing the 

number of undifferentiated 

cancer stem cells 

(Valeri et al., 

2010a;Yu et al., 

2013) 
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miR-21 pancreatic cancer reduced cell-cycle arrest; 

reduced expression of PTEN; 

activation of AKT-mTOR 

pathway; increased 

expression of anti-apoptotic 

protein Bcl-2; increased cell 

proliferation; reduced 

apoptosis rate 

(Giovannetti et al., 

2010;Dong et al., 

2011) 

miR-21 liver cancer  

gastric cancer 

reduced expression of PTEN 

expression; activation of 

AKT-mTOR pathways 

(Meng et al., 

2007;Zhang et al., 

2012;Yang et al., 

2013a) 

synergistic action 

of 

miR-21 

miR-23a 

miR-27a 

pancreatic cancer reduced expression of the 

tumour suppressors PDCD4, 

BTG2 and NEDD4L; de-

regulated cell-cycle; reduced 

apoptosis rate 

(Frampton et al., 

2014a;Frampton 

et al., 2014b) 

miR-211 pancreatic tumours increased expression of 

RRM2 

(Maftouh et al., 

2014) 

miR-215 liver cancer reduced expression of 

dihydrofolate reductase; 

reduced expression of 

thymidylate synthase 

(Wang et al., 

2015b) 

miR-215 colon cancer reduced expression of 

thymidylate synthase; altered 

cell-cycle control at multiple 

levels; prevent progression 

into the S-phase 

(Boni et al., 2010) 

miR-215 gastric cancer reduced expression of 

retinoblastoma 1; altered cell-

cycle control 

(Deng et al., 

2014;Xu and Fan, 

2015) 

miR-22 p53-mutated colon 

cancer 

reduced expression of PTEN 

expression; activation of 

AKT-mTOR pathways 

 

miR-221 oesophageal cancer reduced expression of DDK2; 

activation of Wnt/ß-catenin 

pathway; induced EMT 

(Li et al., 

2011;Wang et al., 

2016b) 

miR-223 liver cancer increased expression of 

ABCB1 

 

miR-223 pancreatic cancer induced EMT (Ma et al., 2015) 

miR-223 gastric cancer reduced expression of 

FBXW7; altered cell-cycle 

control 

(Zhou et al., 2015) 

miR-224 colon cancer induced EMT; increased 

phosphorylation of AKT und 

ERK; increased activity of 

PI3K-AKT-mTOR pathway; 

increased activity of ERK 

(Amankwatia et 

al., 2015) 
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pathway; activation of NF-

æB and EGFR dependent 

pathways 

miR-23a microsatellite 

instable colon 

cancer 

increased expression of 

ABCF1 

(Li et al., 2015c) 

miR-25 gastric cancer reduced expression of 

FOXO3a, ERBB2 and 

FBXW7; cell-cycle 

deregulation; reduced 

apoptosis rate 

(Zhao et al., 

2014a;Gong et al., 

2015;Li et al., 

2015a;He et al., 

2017) 

miR-26b liver cancer increased activation of NF-

æB 

(Fan et al., 

2008;Zhao et al., 

2014b) 

miR-27a liver cancer reduced expression of 

dihydropyrimidine 

dehydrogenase 

(Offer et al., 2014) 

miR-27b liver cancer increased expression of 

CYP1B1; reduced expression 

of dihydropyrimidine 

dehydrogenase 

(Offer et al., 

2014;An et al., 

2017) 

miR-27b pancreatic cancer reduced expression of 

CYP3A4– resulting in 

cyclophosphamide resistance 

due to missing drug 

activation 

(Pan et al., 2009) 

miR-297 colorectal cancer increased expression of 

ABCC2 

(Xu et al., 2012) 

miR-29a pancreatic cancer  

liver cancer 

reduced expression of 

SLC16A1 

(Pullen et al., 

2011) 

miR-29b pancreatic cancer  

liver cancer 

reduced expression of 

SLC16A1 

(Pullen et al., 

2011) 

miR-31 colorectal cancer cell-cycle deregulation; 

reduced apoptosis rate 

(Wang et al., 

2010b;Cekaite et 

al., 2012) 

miR-320 colon cancer increased expression of 

SOX4; inhibition of p53 

mediated apoptosis; reduced 

expression of FOXM1 and 

FOXQ1; cell-cycle 

deregulation 

(Wan et al., 

2015;Vishnubalaji 

et al., 2016) 

miR-338-3p p53 mutant 

colorectal cancer 

reduced expression of 

mTOR; increased autophagy 

and reduced apoptosis rate 

(Han et al., 2017) 

miR-34a colon cancer increased expression of anti-

apoptotic protein Bcl-2 

(Wang et al., 

2010a) 

miR-365 colon cancer increased expression of anti-

apoptotic protein Bcl-2 

(Nie et al., 2012) 
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miR-374b pancreatic cancer increased ATP7A expression (Schreiber et al., 

2016) 

miR-378 liver cancer increased expression of 

CYP2E1 

(Mohri et al., 

2010) 

miR-409-3p colon cancer increased expression of 

Beclin-1; increased 

autophagy pathway 

(Tan et al., 2016) 

miR-451 colon cancer increasing the self-renewal of 

cancer stem cells; increased 

expression of ABCB1 

(Bitarte et al., 

2011) 

miR-494 colon cancer reduced expression of 

dihydropyrimidine 

dehydrogenase 

(Chai et al., 2015) 

miR-503-5p colorectal cancer reduced expression of 

apoptotic protein PUMA 

(Xu et al., 2017a) 

miR-508-5p gastric cancer increased expression of 

ABCB1; increased 

expression of transcription 

factor ZNRD1 

(Shang et al., 

2014) 

miR-519d liver cancer reduced expression of G1-

checkpoint CDK inhibitor 

p21; reduced apoptosis rate 

(Fornari et al., 

2012) 

miR-522 colon cancer increased expression of 

ABCB5 

(Yang et al., 2015) 

miR-92b colon cancer reduced expression of 

SLC15A and SLC15A1 

(Dalmasso et al., 

2011) 

miR-939 gastric cancer increased expression of 

SLC34A2; activation of 

Ras/MEK/ERK pathway 

(Zhang et al., 

2017) 

miR-96 colorectal cancer reduced expression of anti-

apoptotic proteins XIAP and 

UBE2N 

(Kim et al., 2015) 

svRNAb all GI tumours reduced expression of 

CYP3A4 

(Persson et al., 

2009) 

vRNA hvg-1 all GI tumours transporting drugs away from 

the target and drug 

sequestration 

(Mossink et al., 

2003;Gopinath et 

al., 2010) 

vRNA hvg-2 all GI tumours transporting drugs away from 

the target and drug 

sequestration 

(Mossink et al., 

2003;Gopinath et 

al., 2010) 
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Table 2: Overview about the different categories of non-coding RNA molecules.  885 

 886 

Name Biological role 

circular RNA 

(circRNA) 

involved in forming RNA-protein complex that regulate gene 

transcription; involved in regulating gene expression at post-

transcriptional level by acting as miRNA sponge 

endogenous small 

interfering RNA 

(endo-siRNA) 

involved in repression of transposable elements, chromatin 

organisation as well as gene regulation at transcriptional and post-

transcriptional level 

extracellular RNA 

(exRNA) 

involved in intercellular communication and cell regulation 

long intergenic non-

coding RNA 

(lincRNA) 

involved in gene expression via directing chromatin-modification 

complexes to specific target regions; lincRNAs located in the 

cytoplasm function as scaffold to bring together proteins and other 

RNA categories (especially mRNAs and miRNAs)  

long non-coding 

RNA (lncRNA) 

involved in regulation of gene expression via binding to chromatin 

regulatory proteins; involved in regulating gene expression at post-

transcriptional level by acting as microRNA decoys; some lncRNAs 

are processed into microRNAs 

microRNA involved in fine tuning cell homeostasis by controlling gene 

expression at post-transcriptional level 

miRNA-offset-RNA 

(moRNA) 

unknown  

piwi-interacting 

RNA (piRNA) 

involved in maintain germline integrity by 

repressing transposable elements; involved in mRNA de-adenylation;  

ribosomal RNA 

(rRNA) 

component of the ribosomes; involved in protein synthesis  

small Cajal body 

RNA (scaRNA) 

component of the Cajal bodies; involved in the biogenesis of small 

nuclear ribonucleoproteins and by this influence splicing of pre-

mRNAs 

small interfering 

RNA (siRNA) 

involved in RNA interference pathway as part of anti-viral defence 

small nuclear RNA 

(snRNA) 

component of the spliceosome; involved in splicing of pre-mRNAs 

during post-transcriptional modifications 

small nucleolar 

RNA (snoRNA) 

component of the Cajal bodies; involved in modification and 

processing of snRNA, rRNA and tRNA precursors as well as in 

mRNA editing  

sno-derived RNA 

(sdRNA) 

component of the Cajal bodies; involved in alternative splicing of 

mRNAs; some sdRNAs control gene expression at post-

transcriptional level 

transcription 

initiation RNA 

(tiRNA) 

involved in regulation of RNA polymerase II dependent transcription 

transfer RNA 

(tRNA) 

involved in transporting amino acids to the ribosomes during 

translation 

vault RNA (vRNA) component of the vaults (large ribonucleoprotein complexes in 
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cytoplasm); unknown function 

 887 

 888 

Table 3: Approved targeted therapies for GI cancer  889 

Abbreviation used: HER2=human epidermal growth factor receptor 2 ; VEGFR=vascular 890 

endothelial growth factor receptor; PD-1=programmed cell death protein-1 ; RAF=rapidly 891 

accelerated fibrosarcoma; PDGFR=platelet-derived growth factor receptor; c-892 

KIT=SCFR=mast/stem cell growth factor receptor; EGFR=epidermal growth factor receptor; 893 

VEGF=vascular endothelial growth factor; RET=rearranged during transfection; MSI-894 

H=microsatellite instability-high 895 

GI cancer Drug Target 

Gastric cancer Trastuzumab HER2 

Ramucirumab VEGFR-2 

Pembrolizumab PD-1 

Hepatocellular cancer Sorafenib RAF, VEGFR-2, VEGFR-3, PDGFR, c-

KIT 

Colon cancer Cetuximab, 

Panitumumab 

EGFR 

Bevacizumab VEGF 

Regorafenib VEGFR-1, VEGFR-2, VEGFR-3, 

BRAF, c-KIT, RET, PDGFR 

Colon cancer with 

MSI-H  

Pembrolizumab PD-1 
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