Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers

A full list of authors and affiliations appears at the end of the article.

Abstract

Background—BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and non-genetic modifying factors. In this study we evaluated the putative role of variants in many candidate modifier genes.

Methods—Genotyping data from 15,252 BRCA1 and 8,211 BRCA2 mutation carriers, for known variants (n=3,248) located within or around 445 candidate genes, were available through the iCOGS custom-designed array. Breast and ovarian cancer association analysis was performed within a retrospective cohort approach.

Results—The observed p-values of association ranged between 0.005–1.000. None of the variants was significantly associated with breast or ovarian cancer risk in either BRCA1 or BRCA2 mutation carriers, after multiple testing adjustments.

Conclusion—There is little evidence that any of the evaluated candidate variants act as modifiers of breast and/or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers.

Impact—Genome-wide association studies have been more successful at identifying genetic modifiers of BRCA1/2 penetrance than candidate gene studies.

Keywords

BRCA1 BRCA2 mutations; BRCA-mutation carriers; Breast cancer risk; Ovarian cancer risk; Candidate genetic risk modifiers

Introduction

Germline BRCA1 or BRCA2 mutations substantially increase the risk of developing breast and ovarian cancer over those of the general population (1). The penetrance is incomplete and combined with the observed variability in age at cancer diagnosis in carriers of identical mutations, suggests the existence of genetic and/or environmental modifying factors. Direct evidence for genetic modifiers of breast and ovarian cancer risk for BRCA1 and BRCA2...
mutation carriers has been provided through genome-wide association studies (GWAS) (2). In parallel, multiple variants in candidate genes that affect BRCA1 or BRCA2 protein expression, act along the same biological pathways, or physically interact with BRCA1 or BRCA2 proteins have been evaluated as putative modifiers of BRCA1/2 mutations (reviewed in 3). However, only a handful of these factors were confirmed and independently validated as “true modifiers” (4). The aim of the present study was to assess the putative modifier effect of 3,248 sequence alterations in 445 candidate genes on breast/ovarian cancer risk in 23,463 BRCA1 and BRCA2 mutation carriers.

Materials and methods

Recruitment and data collection

All study participants were women, >18 years old, carrying a deleterious germline mutation in either BRCA1 or BRCA2. DNA samples and phenotypic data were submitted by 54 study centers participating in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) (5). Recruitment strategies, clinical, demographic, and phenotypic data collected from each participant, and quality control procedures, have previously been reported (4,5). All study participants took part in research studies at the parent institutions under ethically-approved protocols as detailed (4,5).

Sequence variants genotyped

DNA samples were genotyped using the custom Illumina iCOGS array which included 211,155 single nucleotide polymorphisms (SNPs) as previously described (http://www.nature.com/icogs/primer/cogs-project-and-design-of-the-icogs-array/; 6). We report results from 3,248 SNPs from 445 candidate genes proposed by 17 PIs (=projects). The rationale for selecting the SNPs or genes as candidate cancer risk modifiers in BRCA1 and BRCA2 mutation carriers is shown in Table 1. The list of SNPs included in the study and their gene location (if any) is provided in Supplementary Table 1. Genotyping quality control procedures were carried out as reported elsewhere (6).

Statistical analysis

Associations were evaluated within a retrospective cohort framework, by modeling the retrospective likelihood of the observed genotypes conditional on the disease phenotypes (4,7). The associations between genotype and breast or ovarian cancer risk were assessed using the 1 d.f. score test statistic based on this retrospective likelihood while accounting for the non-independence among related individuals (8). All analyses were stratified by country of residence and used calendar-year and cohort-specific breast and ovarian cancer incidence rates for BRCA1 and BRCA2 mutation carriers. Details are provided elsewhere (2).

Results

A total of 23,463 mutation carriers were included (15,252 BRCA1, 8,211 BRCA2 carriers), 12,127 with breast cancer (7,797 BRCA1, 4,330 BRCA2 carriers), 3,093 with ovarian cancer (2,462 BRCA1, 631 BRCA2 carriers), and 9,220 cancer-free carriers (5,788 BRCA1, 3,432 BRCA2 carriers). All 3,248 SNPs were tested as genetic risk modifiers for both breast...
and ovarian cancer in BRCA1 and BRCA2 mutation carriers depending on the selection rationale (Table 1). For each SNP, the number of individuals with genotype data, minor allele frequencies (MAF), values of the X² score test statistic, approximate hazard ratio (HR) estimates based on the score test statistic (7), overall P values and retrospective likelihood HR are shown in Supplementary Table 2. Since project 12 was based on the hypothesis that estrogens contribute to breast cancer pathogenesis, these 139 SNPs were stratified by somatic estrogen receptor status (Supplementary Table 3). None of the SNPs tested showed significant evidence of association with breast and/or ovarian cancer risk, as a single tested variant or after adjusting for mutiple testing. Indeed, there were fewer associations at a nominal P<0.05 or P<0.01 than would be expected by chance (Table 2).

Discussion

In this study, there were no discernible effects for the genotyped SNPs on either breast or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers. Despite the lack of evidence of association between these specific variants and breast/ovarian cancer risk for BRCA1/BRCA2 mutation carriers, these genes may still modify cancer risk by other sequence alterations that are not represented on the iCOGS platform, by epigenetic alterations in gene expression, or in combination and interaction with other polymorphisms, that in concert have an overall effect on cancer risk.

In conclusion, the genotyped SNPs in the candidate modifier genes evaluated here have no major role in breast or ovarian cancer risk modification in either BRCA1 or BRCA2 mutation carriers. Our results suggest that a candidate gene approach where the selected SNPs have little a priori biological plausibility is of limited value in identifying modifier genes, unlike agnostic genome-wide associations which have been more successful (8). Applying more advanced technologies, (whole exome/genome sequencing) and targeting phenotypically distinct mutation carriers may also offer further insights into modifier genes’ identity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors

Affiliations

1IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
2Division of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori (INT), Milan, Italy
3Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
4Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
5Center for Hereditary Breast and Ovarian Cancer, Medical Faculty, University Hospital Cologne, Germany
6Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Germany
7Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
8Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, Canada
9Oncogenetics Team, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, UK
10Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, UK
11Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
12Genomic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
13Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
14Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
15Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
16Department of Genetics and Computational Biology, QIMR Berghofer, Brisbane, Australia
17Department of Pathology, University of Otago, Christchurch, New Zealand
18Department of Biomedical Sciences and Medicine, Gamelas Campus, University of Algarve, Portugal
19Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
20Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
21Department of Clinical Genetics, MUMC, Maastricht, The Netherlands
22Center for Clinical Cancer Genetic, Department of Medicine and Human Genetics, University of Chicago Medical Center, Chicago, USA
23Department of Medicine and Institute for Human Genetics, University of California, San Francisco, USA
24Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, USA
25Department of Epidemiology and Biostatistics, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, USA
26University of Texas MD Anderson Cancer Center, Houston, TX, USA
27Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, USA
28Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
29Department of Genetics and Genomics at Case Western Reserve Medical School, Cleveland, Ohio, USA
30Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, Australia
31Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, USA
32Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City,
USA 33Vilnius University Hospital Santariskiu Clinics, Hematology, Oncology and Transfusion Medicine Center, Dept. of Molecular and Regenerative Medicine; State Research Institute Centre for Innovative medicine, Vilnius, Lithuania 34Department of Genetics, University of Pretoria, Pretoria, South Africa 35Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA 36Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark 37Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark 38Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark 39Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain 40Human Genetics Group, Spanish National Cancer Centre (CNIO), Madrid, Spain 41Molecular Genetics Laboratory, Department of Biochemistry, Cruces Hospital Barakaldo, 48903-Barakaldo-Bizkaia, Spain 42Human Genetics Group and Genotyping Unit, Spanish National Cancer Centre (CNIO), Madrid, Spain 43Saint Alphonsus Regional Medical Center, care of City of Hope Clinical Cancer Genetics Community Research Network, Duarte, California 91010, USA 44Clinical Cancer Genetics, City of Hope, 1500 East Duarte Road, Duarte, California 91010 USA 45Clinical Cancer Genetics, City of Hope, 1500 East Duarte Road, Duarte, California 91010 USA (for the City of Hope Clinical Cancer Genetics Community Research Network) 46Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori (INT), Milan, Italy 47Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy 48Cogentech Cancer Genetic Test Laboratory, Milan, Italy 49Division of Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano (PN), Italy 50Department of Molecular Medicine, Sapienza University, Rome, Italy 51Unit of Medical Genetics, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy 52Unit of Genetic Counseling, Medical Oncology Department, Istituto Nazionale Tumori Regina Elena, Rome, Italy 53UO Anatomia Patologica, Ospedale di Circolo-Università dell’Insubria, Varese, Italy 54Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, Athens, Greece 55Dana-Farber Cancer Institute, Boston, MA, USA 56Clinical Genetics Department, St Michael’s Hospital, Bristol, UK 57Department of Clinical Genetics, Royal Devon & Exeter Hospital, Exeter, UK 58Cheshire & Merseyside Clinical Genetics Service, Liverpool Women’s NHS Foundation Trust, Liverpool, UK 59Genetic Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK 60University of Southampton, Faculty of Medicine, Southampton University Hospitals NHS Trust, Southampton, UK 61North West Thames Regional Genetics Service, Kennedy-Galton Centre, Harrow, UK 62Sheffield Clinical Genetics Service, Sheffield Children’s Hospital, Sheffield, UK 63Department of Clinical Genetics, East Anglian Regional Genetics Service, Addenbrookes Hospital, Cambridge, UK 64Yorkshire Regional Genetics Service, Leeds, UK 65Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, UK 66Oxford Regional Genetics Service, Churchill Hospital,
Oxford, UK 67Clinical Genetics, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK 68North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Trust, London, UK 69Academic Unit of Clinical and Molecular Oncology, Trinity College Dublin, Eire 70St James’s Hospital, Dublin, Eire 71All Wales Medical Genetics Services, University Hospital of Wales, Cardiff, UK 72South East of Scotland Regional Genetics Service, Western General Hospital, Edinburgh, UK 73Centre for Cancer Research and Cell Biology, Queens University of Belfast, Department of Medical Genetics, Belfast HSC Trust, Belfast, UK 74Ferguson-Smith Centre for Clinical Genetics, Yorkhill Hospitals, Glasgow, UK 75Medical Genetics Unit, St George’s, University of London, UK 76West Midlands Regional Genetics Service, Birmingham Women’s Hospital Healthcare NHS Trust, Edgbaston, Birmingham, UK 77Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA 78Center for Medical Genetics, Ghent University, Ghent, Belgium 79Department of Gynaecology and Obstetrics, Division of Tumor Genetics, Klinikum rechts der Isar, Technical University Munich, Germany 80Institute of Human Genetics, University Würzburg, Wurzburg, Germany 81University Heidelberg, Heidelberg, Germany 82Institute for Medical Informatics, Statistics and Epidemiology University of Leipzig, Leipzig, Germany 83University Düsseldorf, Dusseldorf, Germany 84Hannover Medical School, Hanover, Germany 85Institute of Human Genetics, University Hospital of Schleswig-Holstein/University Kiel, Kiel, Germany 86University Dresden, Dresden, Germany 87Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany 88Department of Gynaecology and Obstetrics, University Munich, Munich, Germany 89University Hospital of Schleswig-Holstein/University Kiel, Kiel, Germany 90Institute of Human Genetics, Charité Berlin, Germany 91Department of Gynaecology and Obstetrics, University Hospital Ulm, Germany 92INSERM U946, Fondation Jean Dausset, Paris, France 93Service de Génétique, Institut de Cancérologie Gustave Roussy, Villejuif, France 94Institut Curie, Department of Tumour Biology, Paris, France 95Centre René Gauducheau, Nantes, France 96Université Paris Descartes, Sorbonne Paris Cité, France 97Institut Curie, INSERM U830, Paris, France 98INSERM U1052, CNRS UMR5286, Université Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France 99Unité d’Oncogénétique, CHU Arnaud de Villeneuve, Montpellier, France 100Unité d’Oncogénétique, CRLCC Val d’Aurelle, Montpellier, France 101Department of Medical Oncology, Centre Hospitalier Universitaire Dupuytren, Limoges, France 102Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon – Centre Léon Bérard, Lyon, France 103Consultation de Génétique, Département de Médecine, Institut de Cancérologie Gustave Roussy, Villejuif, France 104INSERM 896, CRCM Val d’Aurelle, Montpellier, France 105GEMO study: National Cancer Genetics Network «UNICANCER Genetic Group», France 106Gynecologic Oncology Group Statistical and Data Center, Roswell Park Cancer Institute, Buffalo, NY, USA 107Australia New Zealand Gynaecological Oncology Group (ANZGOG), Coordinating Centre, Camperdown, Australia 108Division of Gynecologic Oncology, NorthShore University HealthSystem, Evanston, IL, USA 109Ohio State University,
Department of Obstetrics and Gynecology, Hilliard, OH, USA 110
Molecular Oncology Laboratory, Hospital Clínic San Carlos, IDISSC, Madrid, Spain 111
Department of Oncology, Hospital Clínico San Carlos, IDISSC, Madrid, Spain 112
Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland 113
University of Helsinki, Helsinki, Finland 114
Department of Clinical Genetics, Helsinki University Central Hospital, Helsinki, Finland 115
Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands 116
Department of Clinical Genetics, VU University Medical Centre, Amsterdam, The Netherlands 117
Department of Genetics, University Medical Center, Groningen University, Groningen, The Netherlands 118
Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands 119
Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands 120
Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands 121
Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Erasmus University MC Cancer Institute, Rotterdam, The Netherlands 122
Department of Clinical Genetics, Family Cancer Clinic, Erasmus University Medical Center, Rotterdam, The Netherlands 123
Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary 124
Oncogenetics Group, University Hospital Vall d’Hebron, Barcelona, Spain 125
Universitat Autònoma de Barcelona, Barcelona, Spain 126
Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain 127
Vall d’Hebron Research Institute (VHIR), Barcelona, Spain 128
Genetic Counseling Unit, Hereditary Cancer Program, IDIBELL-Catalan Institute of Oncology, Barcelona, Spain 129
Molecular Diagnostic Unit, Hereditary Cancer Program, IDIBELL-Catalan Institute of Oncology, Barcelona, Spain 130
Genetic Counseling Unit, Hereditary Cancer Program, IDIBGI-Catalan Institute of Oncology, Girona, Spain 131
BMC, Faculty of Medicine, University of Iceland, Reykjavik, Iceland 132
Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland 133
Unité de Recherche en Santé des Populations, Centre des Maladies du Sein Deschênes-Fabia, Centre de Recherche FRSQ du Centre Hospitalier Affilié Universitaire de Québec, Québec, QC, Canada 134
Biomedical Sciences Institute (ICBAS), Porto University, Porto, Portugal 135
Department of Genetics, Portuguese Oncology Institute, Porto, Portugal 136
Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA 137
Department of Laboratory Medicine and Pathology, and Health Sciences Research, Mayo Clinic, Rochester, MN, USA 138
Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA 139
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA 140
National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA 141
Clinical Genetics Research Laboratory, Memorial Sloan-Kettering Cancer Center, New York, NY, USA 142
Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA 143
Diagnostic Molecular Genetics Laboratory, Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA 144
Department of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria 145
Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA 146.
Acknowledgments

This study would not have been possible without the contributions of the following: Per Hall (COGS); Douglas F. Easton, Paul Pharoah, Kyriaki Michailidou, Manjeet K. Bolla, Qin Wang (BCAC), Andrew Berchuck (OCAC), Rosalind A. Eeles, Douglas F. Easton, Ali Amin Al Olama, Zsofia Kote-Jarai, Sara Benlloch (PRACTICAL), Georgia Chenevix-Trench, Antonis Antoniou, Lesley McCutuff, Fergus Couch and Ken Offit (CIMBA), Joe Dennis, Alison M. Dunning, Andrew Lee, and Ed Dicks, Craig Luccarini and the staff of the Centre for Genetic Epidemiology Laboratory, Javier Benitez, Anna Gonzalez-Neira and the staff of the CNIO genotyping unit, Jacques Simard and Daniel C. Tessier, Francois Bacot, Daniel Vincent, Sylvie La Boissière and Frederic Robidoux and the staff of the McGill University and Génome Québec Innovation Centre, Stig E. Bojesen, Sune F. Nielsen, Borge G. Nordestgaard, and the staff of the Copenhagen DNA laboratory, and Julie M. Cunningham, Sharon A. Windebank, Christopher A. Hilker, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility.

We thank Sabine Behrens and Ursula Eilber for excellent technical assistance

Breast Cancer Family Registry (BCFR): We wish to thank members and participants in the Ontario Cancer Genetics Network for their contributions to the study.

BRCA-gene Mutations and Breast Cancer in South African Women (BMBSA): We wish to thank the families who contributed to the BMBSA study.

Beckman Research Institute of the City of Hope (BRICOH): We wish to thank Linda Steele for her work in participant enrollment and biospecimen and data management.
Centro Nacional de Investigaciones Oncológicas (CNIO): We thank Alicia Barroso, Rosario Alonso and Guillermo Pita for their assistance.

Consorzio Studi Italiani sui Tumori Ereditari alla Mammella (CONSIT TEAM): We wish to thank Irene Feroce and Alessandra Rossi of the Istituto Europeo di Oncologia, Milan, Italy; Liliana Varesco of the IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy; Stefania Tommasi and Brunella Pilato of the Istituto Nazionale Tumori “Giovanni Paolo II” - Bari, Italy; Loris Bernard and the personnel of the Cogentech Cancer Genetic Test Laboratory, Milan, Italy.

Fox Chase Cancer Center (FCCC): We thank Ms. JoEllen Weaver and Dr. Betsy Bove for their technical support.

Helsinki Breast Cancer Study (HEBCS): We would like to thank Taru A. Muranen, Drs. Carl Blomqvist and Kirsimari Aaltonen and RNs Irja Erkkilä and Virpi Palola for their help with the HEBCS data and samples.

The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON) consists of the following Collaborating Centers: Coordinating center: Netherlands Cancer Institute, Amsterdam, NL: M.A. Rookus, F.B.L. Hogervorst, F.E. van Leeuwen, S. Verhoef, M.K. Schmidt, J.L. de Lange, R. Wijnands; Erasmus Medical Center, Rotterdam, NL: J.M. Collée, A.M.W. van den Ouweland, M.J. Hooning, C. Seynaeve, C.H.M. van Deurzen, L.M. Obdeijn; Leiden University Medical Center, NL: C.J. van Asperen, J.T. Wijnen, R.A.E.M. Tollenaar, P. Devilee, T.C.T.E.F. van Cronenburg; Radboud University Nijmegen Medical Center, NL: C.M. Kets, A.R. Mensenkamp; University Medical Center Utrecht, NL: M.G.E.M. Ausems, R.B. van der Luijt; Amsterdam Medical Center, NL: C.M. Aalfs, T.A.M. van Os; VU University Medical Center, Amsterdam, NL: J.J.P. Gille, Q. Waisfisz, H.E.J. Meijers-Heijboer; University Hospital Maastricht, NL: E.B. Gómez-Garcia, M.J. Blok; University Medical Center Groningen, NL: J.C. Oosterwijk, A.H. van der Hout, M.J. Mourits, G.H. de Bock; The Netherlands Foundation for the detection of hereditary tumours, Leiden, NL: H.F. Vasen; The Netherlands Cancer Registry: S. Siesling; The Dutch Pathology Registry (PALGA): L.I.H. Overbeek. HEBON thanks the registration teams of the Comprehensive Cancer Centre Netherlands and Comprehensive Centre South (together the Netherlands Cancer Registry) and PALGA (Dutch Pathology Registry) for part of the data collection.

Molecular Genetic Studies of Breast and Ovarian Cancer in Hungary (HUNBOCS): We wish to thank the Hungarian Breast and Ovarian Cancer Study Group members (Janos Papp, Tibor Vaszko, Aniko Bozsik, Timea Poczta, Judit Franko, Maria Balogh, Gabriella Domokos, Judit Ferenczi, Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary) and the clinicians and patients for their contributions to this study.

University Hospital Vall d’Hebron (HVH): We wish to thank the Oncogenetics Group, and the High Risk and Cancer Prevention Unit of the University Hospital Vall d’Hebron led by Dr. J. Balmaña.

Institut Catala d’Oncologia (ICO): We wish to thank the ICO Hereditary Cancer Program team team led by Dr. Gabriel Capella.

Interdisciplinary Health Research Internal Team Breast Cancer Susceptibility (INHERIT): We would like to thank Dr Martine Dumont, Martine Tranchant for sample management and skillful technical assistance. J.S. is Chairholder of the Canada Research Chair in Oncogenetics. J.S. and P.S. were part of the QC and Genotyping coordinating group of iCOGS (BCAC and CIMBA).

Kathleen Cuningham Consortium for Research into Familial Breast Cancer (kConFab): We wish to thank Heather Thorne, Eveline Niedermayr, all the kConFab research nurses and staff, the heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study for their contributions to this resource, and the many families who contribute to kConFab. Georgia Chenevix-Trench and Amanda B Spurdle are NHMRC Senior Research Fellows.

Memorial Sloan-Kettering Cancer Center (MSKCC): We wish to thank Anne Lincoln.

Ontario Cancer Genetics Network (OCGN): We wish to thank members and participants in the Ontario Cancer Genetics Network for their contributions to the study.

The Ohio State University Comprehensive Cancer Center (OSUCCG): Leisha Senter, Kevin Sweet, Caroline Craven, and Michelle O’Connor were instrumental in accrual of study participants, ascertainment of medical records and database management. Samples were processed by the OSU Human Genetics Sample Bank.

Sheba Medical Centre (SMC): SMC team wishes to acknowledge the assistance of the Meirav Comprehensive breast cancer center team at the Sheba Medical Center for assistance in this study.

Swedish Breast Cancer Study (SWE-BRCA): Swedish scientists participating as SWE-BRCA collaborators are Anna von Wachenfeldt, Annelic Liljegren, Annika Lindblom, Brita Arver, Gisela Barbany Bustinza and Johanna Rantalä (Karolinska University Hospital); Marie Stenmark-Askmalm and Signur Liedgren (Linköping University); Ake Borg, Helena Jernström and Katja Harbst (Lund University); Håkan Olsson, Karin Henriksson, Maria Soller, Niklas Loman and Ulf Kristoffersson (Lund University Hospital); Anna Olverholm, Margaretta Nordling, Per Karlsson and Zakaria Einbeigi (Sahlgrenska University Hospital); Beatrice Melin, Christina Edwindsdotter Ardnor and Monica Emanuelsson (Umeå University); Maritta Hellström Pigg and Richard Rosenquist (Uppsala University); Hans Ehrencrenna (Upplands University and Lund University Hospital).
Financial support: Funding for the iCOGS infrastructure came from: the European Community’s Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (iCOGS), Cancer Research UK (C1287/A10118, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19CA148537, U19 CA148065 and U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. BCFR was supported by grant U11 CA164920 from the National Cancer Institute. The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR. BCFR is partly supported by: Research Council of Lithuania grant LIG-07/2012; BRCA-gene mutations and breast cancer in South African women (BMBSA) was supported by grants from the Cancer Association of South Africa (Cansa) to Elizabeth J. van Rensburg; the CNIO study was supported by Spanish Association against Cancer (AECC08), RTICC 06/0020/1060 and FISPI12/00070 and Mutua Madrileña Foundation (FMMA); City of Hope Clinical Genetics Community Network and the Hereditary Cancer Research Registry (COH-CGGCRN) is supported in part by Award Number R01CA153828 (P. J. Weitzel) from the National Cancer Institute and the Office of the Director, National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health; CONSIT TEAM was partially supported by funds from Italian citizens who allocated the 5x1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale dei Tumori, according to Italian laws (INT-Institutional strategic projects ‘5x1000’); the DKFZ study was supported by the DKFZ; EMBRACE is supported by Cancer Research UK Grants C1287/A10118, C1287/A16563 and C1287/A17523. D. Gareth Evans and Fiona Laloo are supported by an NIH grant to the Biomedical Research Centre, Manchester. The Investigators at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust are supported by an NIH grant to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. Ros Eeles and Elizabeth Bancroft are supported by Cancer Research UK Grant CS047/A8385; the German Consortium of Hereditary Breast and Ovarian Cancer (GC-HBCC) is supported by the German Cancer Aid (grant no 109076, Rita K. Schmutzler) and by the Center for Molecular Medicine Cologne (CMMC); the GEMO study was supported by the Ligue Nationale contre le Cancer; the Association “Le cancer du sein, paix, onctu!” Award; and the Canadian Institutes of Health Research for the “CIHR Team in Familial Risks of Breast Cancer” program; the HEBCS was financially supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (266528), the Finnish Cancer Society and the Sigrid Juselius Foundation; The HEBON study is supported by the Dutch Cancer Society grants NK1998-1854, NK1204-3088, NK1207-3756, the Nethelands Organization of Scientific Research grant NWO 91109024, the Pink Ribbon grant 110005 and the BBMRI grant NWO 184.021.007.CP46; Hungarian Breast and Ovarian Cancer Study (HUNBOCS) was supported by Hungarian Research Grants KTIA-OTKA CK-80745 and OTKA K-11228; ICO was sponsored by Asociación Española Contra el Cáncer, Spanish Health Research Fund; Carlos III Health Institute; Catalan Health Institute and Autonomous Government of Catalonia, contract grant numbers: ISCHIRETIC RD06/0020/1051, RD12/0036/008, P110/01422, P110/00748 and 2009SGR290; The IHCC was supported by Grant PBZ_KBN_122/P05/2004; The ILUH group was supported by the Icelandic Association “Walking for Breast Cancer Research” and by the Landspitali University Hospital Research Fund; IOVHBOCS is supported by Ministero della Salute and “5x1000” Istituto Oncologico Veneto grant; iConFab is supported by grants from the National Breast Cancer Foundation, the National Health and Medical Research Council (NHMRC) and by the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia; MAYO is supported by NIH grant CA128978, an NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), a U.S. Department of Defence Ovarian Cancer Idea award (W81XWH-10-1-0341) and a grant from the Breast Cancer Research Foundation, the David and Margaret T. Grohne Family Foundation, and the TING Tsung and Wei Fong Chao Foundation; MSKCC is supported by grants from the Breast Cancer Research Foundation and Robert and Kate Niehaus Clinical Cancer Genetics Initiative; OSUCCG is supported by the Ohio State University Comprehensive Cancer Center; SWE-BRCA collaborators are supported by the Swedish Cancer Society; the Women’s Cancer Program (WCP) at the Samuel Oschin Comprehensive Cancer Institute is funded by the American Cancer Society Early Detection Professership (SIOP-06-258-01-COUN).

This work was supported by the NEYE Foundation; by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program of the General Secretariat for Research & Technology: ARISTEIA, Investing in knowledge society through the European Social Fund; by the University of Kansas Cancer Center (P30 CA168524) and the Kansas Bioscience Authority Emminent Scholar Program; by National Cancer Institute grants to the Gynecologic Oncology Group (GOG) Administrative Office and Tissue Bank (CA 27469), the GOG Statistical and Data Center (CA 37517), and by NCI’s Community Clinical Oncology Program (CCOP) grant (CA 101165); by the Canadian Institutes of Health Research for the “CIHR Team in Familial Risks of Breast Cancer” program, the Canadian Breast Cancer Research Alliance-grant #019511 and the Ministry of Economic Development, Innovation and Export Trade – grant # PSR-SIIRI-701; through a grant by the Israel Cancer Association and the funding for the Israeli Inherited Breast Cancer Consortium; by National Institutes of Health (NIH) (R01-CA102776 and R01-CA108385); by Breast Cancer Research Foundation; by Susan G. Komen...
Foundation; by Basser Research Center; by RD12/00369/0006 from ISCIII and the European Regional Development funds, Spain and by 1R01 CA149429-01 grant.

Susan L. Neuhausen was partially supported by the Morris and Horowitz Families Endowed Professorship; Andrew K. Godwin was funded by SU01CA113916, R01CA140323, and by the Chancellors Distinguished Chair in Biomedical Sciences Professorship; the research of Mark H Greene and Phuong L Mai was supported by the Intramural Research Program of the US National Cancer Institute, NIH, and by support services contracts NO2-CP-11019-50 and NO2-CP-65504 with Westat, Inc, Rockville, MD.

References

Description of the 17 projects included in the study.

Table 1

<table>
<thead>
<tr>
<th>Project</th>
<th>Rationale for testing SNPs as risk modifiers for breast cancer and ovarian cancer in BRCA-mutation carriers</th>
<th>Number of SNPs included</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>X chromosome SNPs shown to be associated with risk of breast cancer in the CGEMS breast cancer study were considered.</td>
<td>11</td>
<td>Hunter DJ et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet. 2007 Jul;39(7):870–4.</td>
</tr>
<tr>
<td>3</td>
<td>Previous data suggested that the “del” allele of rs3834129 was associated with increased breast cancer risk in BRCA1-mutation carriers.</td>
<td>1</td>
<td>Catucci I et al. The CASP8 rs3834129 polymorphism and breast cancer risk in BRCA1 mutation carriers. Breast Cancer Res Treat. 2011 Feb;125(3):855-60.</td>
</tr>
<tr>
<td>4</td>
<td>Search for risk modifiers of BRCA1 5382insC-mutation carriers was performed by a pooled GWAS in 124 women diagnosed with breast cancer (<45 years) and 119 unaffected controls (>50 years at last follow up) from Poland. The highest-ranked SNPs from the pooled GWAS were selected.</td>
<td>137</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>The proposed SNPs are related to genes in regulatory T-cell (Treg) cell and myeloid derived suppressor cell (MDSC) pathways. Both pathways play a role in cancer immunosuppression.</td>
<td>2637</td>
<td>Schreiber RD et al. Cancer immunoediting; integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–1570</td>
</tr>
<tr>
<td>Project</td>
<td>Rationale for testing SNPs as risk modifiers for breast cancer and ovarian cancer in BRCA-mutation carriers</td>
<td>Number of SNPs included</td>
<td>Reference</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>12</td>
<td>Steroid hormones such as estrogens play an important role in the etiology of breast cancer contributing to tumor growth by promoting cell proliferation. SNPs in candidate genes involved in sex steroid metabolism were considered. The SNPs were tested also as breast cancer risk modifiers considering estrogen receptor status of BRCA-mutation carriers (see Supplementary Table 3)</td>
<td>139</td>
<td>Labrie F et al. Endocrine and intracrine sources of androgens in women: inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone. Endocr Rev. 2003;24(2):152–82.</td>
</tr>
<tr>
<td>13</td>
<td>RAD51C is a breast cancer gene. SNPs located within, or in close proximity to RAD51C were selected.</td>
<td>17</td>
<td>Meindl A et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet. 2010;42(5):410–4.</td>
</tr>
<tr>
<td>14</td>
<td>The highest-ranked SNPs from a GWAS based on 700 hereditary breast cancer cases and 1,200 controls were selected.</td>
<td>142</td>
<td>None</td>
</tr>
<tr>
<td>16</td>
<td>The rs10895068 SNP in the promoter of the progesterone receptor (PR) gene (+331G/A) has been reported to be associated with endometrial cancer risk. Our previous study in 220 patients from BC and OC families showed a marginal association of the +331A allele with OC risk. This SNP was tested only as modifier of ovarian cancer risk.</td>
<td>1</td>
<td>Vivo ID et al. A functional polymorphism in the promoter of the progesterone receptor gene associated with endometrial cancer risk. Proc Natl Acad Sci U S A. 2002;99(19):12263–12268. Romano A et al. Impact of two functional progesterone receptor polymorphisms (PRP): +331G/A and PROGINS on the cancer risks in familial breast/ovarian cancer. Open Cancer J. 2007;1:1–8.</td>
</tr>
<tr>
<td>17</td>
<td>The proposed SNPs were selected according to the hypothesis that different levels of expression of the remaining normal allele in BRCA2 mutation carriers may be associated with variable penetrance of BRCA2 mutations.</td>
<td>24</td>
<td>Maia AT et al. Effects of BRCA2 cis-regulation in normal breast and cancer risk amongst BRCA2 mutation carriers. Breast Cancer Res. 2012;14(2):R63</td>
</tr>
</tbody>
</table>
Table 2

Observed and expected number of SNPs with p-values <0.05 and <0.01

<table>
<thead>
<tr>
<th>Category</th>
<th>Tumor</th>
<th>Number of SNPs tested</th>
<th>Number of SNPs with p-value<0.01 (expected)</th>
<th>Number of SNPs with p-value<0.05 (expected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1</td>
<td>BrCa</td>
<td>3232</td>
<td>25 (32)</td>
<td>202 (162)</td>
</tr>
<tr>
<td>BRCA1</td>
<td>OvCa</td>
<td>3160</td>
<td>13 (32)</td>
<td>146 (158)</td>
</tr>
<tr>
<td>BRCA2</td>
<td>BrCa</td>
<td>3230</td>
<td>5 (32)</td>
<td>96 (161)</td>
</tr>
<tr>
<td>BRCA2</td>
<td>OvCa</td>
<td>3157</td>
<td>6 (32)</td>
<td>131 (159)</td>
</tr>
</tbody>
</table>

* Not all the 3,248 SNPs were tested in each category/tumor group