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Abstract. Owing to its excellent soft-tissue contrast, magnetic resonance (MR)
imaging has found an increased application in radiation therapy (RT). Harnessing these
properties for treatment planning, automated segmentation methods can alleviate the
manual workload burden to the clinical workflow.

We investigated atlas-based segmentation methods of organs at risk (OARs) in the
head and neck (H&N) region: one approach selecting the most similar atlas from a
library of segmented images and two multi-atlas approaches. The latter were based
on weighted majority voting and an iterative atlas-fusion approach called STEPS. We
built the atlas library from pre-treatment T1-weighted MR images of 12 patients with
manual contours of the parotids, spinal cord and mandible, delineated by a clinician.
Following a leave-one-out cross-validation strategy, we measured geometric accuracy
calculating Dice similarity coefficients (DSC), standard and 95% Hausdorff distances
(HD and HD95), as well as the mean surface distance (MSD), whereby the manual
contours served as the gold standard. To benchmark the algorithm, we determined the
inter-expert variability (IEV) between three experts.

To investigate the dosimetric effect of segmentation inaccuracies, we implemented
an auto-planning strategy within the treatment planning system Monaco (Elekta AB,
Stockholm, Sweden). For each set of auto-segmented volumes of interest (VOIs), we
generated a plan for a 9-beam step and shoot intensity modulated RT treatment,
designed according to our institution’s clinical H&N protocol. Superimposing the
dose distributions on the gold standard VOIs, we calculated dose differences to OARs
caused by contouring differences between auto-segmented and gold standard VOIs. We
investigated the correlation between geometric and dosimetric differences.

The mean DSC was larger than 0.8 and the mean MSD smaller than 2mm for the
multi-atlas approaches, resulting in a geometric accuracy comparable to previously
published results and within the range of the IEV. While dosimetric differences could
be as large as 23% of the clinical goal, treatment plans fulfilled all imposed clinical
goals for the gold standard OARs. Correlations between geometric and dosimetric
measures were low with R2<0.5.

The geometric accuracy and ability to achieve clinically acceptable treatment
plans indicate the suitability of using atlas-based contours for RT treatment planning
purposes. The low correlations between geometric and dosimetric measures indicate
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that geometric measures alone are not sufficient to predict the dosimetric impact of
segmentation inaccuracies on treatment planning for the data utilised in this study.

Page 2 of 31AUTHOR SUBMITTED MANUSCRIPT - PMB-107015.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Phys. Med. Biol. 2018 3

1. Introduction

Magnetic resonance imaging (MRI) has found an increased application in image guidance
for radiation therapy (RT) owing to its superior soft-tissue contrast and lack of ionising
radiation compared to the conventionally used X-ray computed tomography (CT)
(Metcalfe et al., 2013; Dirix et al., 2014; Lagendijk et al., 2014). High soft-tissue contrast
MR images are used to improve contouring of volumes of interest (VOIs) on the CT for
the treatment planning, as well as for treatment adaptations (Chung et al., 2004; Emami
et al., 2003; Rasch et al., 2010). The accurate localisation of all organs at risk (OARs)
and radiation targets is necessary when applying sharp dose gradients in the treatment
planning. In MR-only treatment workflows, the MR image replaces the conventionally
used pre-treatment CT (Nyholm and Jonsson, 2014; Köhler et al., 2015). Treatment
planning and dose calculation are solely based on the MR image but are challenging
as the required electron density information cannot be derived directly from image
intensities. Therefore, methods such as creating synthetic CTs are necessary to provide
surrogates for electron densities (Edmund and Nyholm, 2017). In-room image guidance
can be provided by combined MRI and treatment systems (Raaymakers et al., 2009;
Fallone et al., 2009; Mutic and Dempsey, 2014; Liney et al., 2016). These systems enable
the possibility to scan the patient directly prior to or during the treatment and to adapt
the radiation delivery according to the updated information on the patients’ anatomy
through MR imaging for the same treatment fraction. Clinicians conventionally outline
all VOIs prior to treatment. This is especially tedious for the treatment of head and neck
(H&N) cancer patients due to the complex anatomy including many OARs and target
volumes. Many of these VOIs are difficult to outline on a CT and would hence benefit
from MR imaging (Schmidt and Payne, 2015). Automating the contouring of VOIs
would allow to alleviate the enormous workload of manual contouring and reduce inter-
and intra-observer variabilities (Vinod et al., 2016). Numerous studies have investigated
CT-based automated delineation of critical structures in the H&N region (Han et al.,
2008; Sims et al., 2009; Pekar et al., 2010; Faggiano et al., 2011; Qazi et al., 2011; La
Macchia et al., 2012; Daisne and Blumhofer, 2013; Fritscher et al., 2014; Hoang Duc
et al., 2015), yet only a few studies have been conducted on MR images (Yang et al.,
2014; Veeraraghavan et al., 2015; Wardman et al., 2016). Most commonly used are
atlas-based segmentation methods (Fritscher et al. (2014) and references therein).

The performance of auto-segmentation algorithms is commonly evaluated in terms
of geometric criteria only. However, in RT it is relevant to quantify the impact of
an inaccurate VOI localisation on the planned dose distribution. A few groups have
addressed this need and looked at dosimetric differences on CT images (Tsuji et al.,
2010; Voet et al., 2011; Nelms et al., 2012; Conson et al., 2014; Beasley et al., 2016;
Eldesoky et al., 2017) in various attempts. To our knowledge, as yet, no single geometric
measure has been observed to be suitable for prediction of the dosimetric outcome. To
properly address the dosimetric impact of segmentation inaccuracies in the process
of generating treatment plans, we have calculated dose distributions, optimised for

Page 3 of 31 AUTHOR SUBMITTED MANUSCRIPT - PMB-107015.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Phys. Med. Biol. 2018 4

the automatically contoured VOIs, and investigated resulting dose differences to the
respective gold standard VOIs. Voet et al. (2011) and Beasley et al. (2016) also used
this approach to investigate the dosimetric differences and their correlations to geometric
measures on CT images of H&N cancer patients.

In this study, we propose to investigate the dosimetric impact of auto-generated
contours on MR images by establishing a fully automated workflow consisting of

(1) automated atlas-based segmentation of the parotids, the spinal cord and the
mandible on MR images of H&N cancer patients

(2) automated treatment planning for any set of VOIs using a template approach
(3) automated geometric and dosimetric evaluation of auto-generated VOIs where

manually drawn contours serve as the gold standard reference
(4) benchmarking the automated segmentation algorithm against inter-expert

variability (IEV)
(5) correlation analysis between geometric and dosimetric evaluation measures to

determine whether these are coherent.

To our knowledge, this study is the first to combine all of these components to investigate
the use of auto-segmentation in an MR-guided RT scenario. By automatically generating
treatment plans we can increase treatment plan comparability. The IEV measure
provides a benchmark of our algorithm. Furthermore, this workflow can easily be
adapted to evaluate any auto-segmentation approach within the scope of RT.

2. Materials & Methods

Figure 1 provides an overview of the workflow established in this study with references to
the respective sections that detail the individual steps. We first performed three different
atlas-based segmentation methods using a library of segmented MR images, which is
illustrated in the top part of figure 1. We then warped each set of auto-segmented VOIs
into the geometric space of the corresponding CT using a deformable image registration
(central part of figure 1). Afterwards, we automatically generated clinically acceptable
treatment plans for each of these warped sets and copied the obtained treatment plans to
the corresponding set of manually segmented VOIs (bottom part of figure 1). The central
part of figure 1 shows the geometric and dosimetric evaluations, covered in sections 2.3.2
and 2.3.3, respectively, with the auto-generated segmentations and treatment plans
as input. Finally, we investigated the correlations between geometric and dosimetric
evaluation measures, as highlighted in the yellow box.
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Figure 1: Illustration of the full workflow established in this work. The top part
illustrates the auto-segmentation, the central part the geometric and dosimetric
evaluation and the bottom part the planning study. Each of these steps is performed
following a leave-one-out cross-validation strategy. Related sections of this article are
annotated.
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Table 1: Imaging parameters of the MR and CT images used in this study.

parameter MR CT

FOV [#pixels] 512 x 512 512 x 512
#slices 30 [165, 235]
voxel size [mm3] 0.5 x 0.5 x 4 0.98 x 0.98 x 2.5
TE [ms] [6.54, 7.85] n.a.
TR [ms] [601, 800] n.a.
flip angle [°] 90 n.a.
sequence type 2D T1w spin echo n.a.
field strength/tube voltage 3T 120 keV

2.1. Data acquisition and preparation

We used a retrospectively acquired library of 12 T1-weighted (T1w) pre-treatment
MR images and same-day CT scans. All 12 patients had a tumour at the base of
the tongue and were treated at the MD Anderson Cancer Center (Houston, Texas,
USA). The respective image acquisition parameters are provided in Table 1. A clinician
manually contoured four VOIs on the T1w MR images: the left and the right parotid,
the spinal cord and the mandible. Two additional clinicians manually outlined the
primary (including involved lymph nodes) and secondary (including non-involved lymph
nodes) clinical target volumes (CTVs), the optical nerves and lenses, the chiasm and the
brainstem on the CT images. All VOIs were contoured using the treatment planning
system (TPS) Raystation (Raysearch, Stockholm, Sweden). Figure 2 illustrates one
example image set together with the manual segmentations.

2.2. Automated segmentation

We chose atlas-based auto-segmentation approaches making use of the software tools
NiftyReg (Modat et al., 2010, 2014) and NiftySeg (Cardoso et al., 2011; Van Leemput
et al., 1999), both developed at the University College London (United Kingdom). The
workflow referring to the auto-segmentation is illustrated in the top part of figure 1.

In the following, we define an atlas as a library of MR images, paired with previously
segmented VOIs. We call the previously unseen MR image the target image. Atlas-based
segmentation mainly consists of two major steps: image registration of all library images
to the target image and a subsequent fusion of individual segmentation results from each
atlas to a common segmentation of the target image. We performed the registration in
two steps: an affine initialisation with a block-matching algorithm (Modat et al., 2014),
followed by a deformable registration with a free-form deformation (FFD) algorithm
Modat et al. (2010).

For the affine registration, the atlas and target image were each divided into blocks
of 4x4x4 voxels. In an iterative procedure, each block in the target image was compared
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Figure 2: This figure depicts axial, coronal and sagittal slices of the CT (top row) and
MR (bottom row) images of one example patient from the database used in this study.
The coloured regions represent the manual segmentations of the primary PTV (blue),
the secondary PTV (turquoise) on the CT, as well as the left (orange) and right (yellow)
parotids, the mandible (green) and the spinal cord (red) in the MR images.

to corresponding neighbouring blocks in the atlas image. For the most similar block
in terms of its normalised cross correlation (NCC), the transformation parameters were
determined using a least-trimmed square regression method with 12 degrees of freedom.
The deformable registration used a fast FFD algorithm with B-splines. The atlas and
target image were divided into control position points (CPPs) using a multi-resolution
approach. The CPPs in the target image were optimised via an objective function
that incorporated the image similarity through the NCC and a penalty term to ensure
smoothness and avoid folding.

After the registration of all library images to the target image, we compared three
atlas selection and fusion approaches to obtain the final segmentation result. In all three
approaches, we determined the similarity between two images by calculating the NCC
coefficient.

In the best atlas approach (approach A) we selected the library image which
was most similar to the target image. Approach B was a weighted majority voting
method. For each voxel, the labels of the registered library images were combined
into a single label with a weighted majority voting. The weights were derived locally
from the similarity between library and target image (Cardoso et al., 2015). Locally
was defined as the application of a Gaussian kernel with a standard deviation (SD) of
2.5 voxels around each voxel. We call this the multi-atlas weighted majority voting
(maWMV) approach. Approach C was the multi-atlas Similarity and Truth Estimation
for Propagated Segmentations (maSTEPS) (Cardoso et al., 2013) and is closely related
to the well-established STAPLE method (Warfield et al., 2004). STEPS mainly consists
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of seven steps:

(1) All library images are registered to the target image.
(2) For each voxel, the n library images which locally are most similar to the target

image are chosen.
(3) An initial ground truth estimation of the segmentation is determined using a

majority voting approach.
(4) The sensitivity and specificity with respect the initial segmentation in (3) are

determined for the chosen atlases and a weight is assigned for each atlas accordingly.
(5) The ground truth estimation of the segmentation is updated with a weighted

majority voting using the weights from (4).
(6) If all atlases agree on a label, this voxel is declared as solved and removed from the

estimation.
(7) Steps (3) to (6) are repeated until convergence.

We chose n=5 for (2) as it had the optimal performance for the data used in this study.

Computation time We determined computation times for a programme execution on
an Intel® Xeon® CPU E5-1660v3 (3GHz) processor.

2.3. Planning study

To evaluate the geometric and dosimetric accuracy of the auto-segmentation methods,
we devised a planning study based on a leave-one-out cross-validation strategy: We
performed the three auto-segmentation methods for each patient of the library described
in section 2.1, where the MR image of the respective patient was excluded from the
library and used as the target, with the atlas library comprising the remaining MR
images. The manually segmented VOIs (parotids, spinal cord and mandible) of one
clinician served as the gold standard.

To investigate the impact of segmentation differences between auto-segmented and
gold standard VOIs on planned dose volume parameters, we generated treatment plans
for all auto-segmented VOIs and superimposed the dose distributions on the gold
standard VOIs. Due to the restricted coverage in the superior-inferior direction and
the lack of electron density information of the MR images, we warped the automatically
and manually segmented OARs from the MR images to the corresponding CT scans by
using the deformable registration framework ADMIRE (research version 1.1, Elekta AB,
Stockholm, Sweden). Furthermore, we included the brainstem, the optical nerves and
lenses, the chiasm, as well as the CTVs in the treatment planning. We expanded the
CTVs with a margin of 3mm to obtain the PTVs. The brainstem and the spinal cord
were expanded with a margin of 3mm, the optical nerves and chiasm with a margin of
1mm for the planning risk volumes.
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2.3.1. Automated treatment planning To increase treatment plan comparability we
implemented an automated plan generation approach making use of the research
scripting interface of the TPS Monaco (research version 5.19.03, Elekta AB, Stockholm,
Sweden, Clements et al. (2018)). The auto-planning approach is illustrated in the
turquoise box in Figure 1. With this approach we generated treatment plans for a 9-
beam step and shoot IMRT treatment on the Unity MR-Linac (Elekta AB, Stockholm,
Sweden) prescribing mean doses of 65Gy to the primary PTV and 54Gy to the
secondary PTV in 30 fractions, following the INSIGHT study protocol (Welsh et al.,
2015). Details on the clinical goals are listed in the appendix in table A1. To calculate
dose we used the GPU-based Monte Carlo dose engine (research version of GPUMCD,
Elekta AB, Stockholm, Sweden, Hissoiny et al. (2011)) and chose the MR-Linac beam
model for a magnetic field of 1.5T. We normalised each dose distribution so that 95%
of the primary PTV is covered by 95% of the prescribed dose.

We defined a template cost function that incorporates optimisation objectives on
the target volumes and OARs. As for our set of patients the sparing of the parotids was
difficult to achieve due to the large overlap with the target volumes, we chose to losen
the optimisation objective, as well as the clinical goal for the parotids. We determined
the objective as a function of the overlap volume OV with the primary PTV:

Dmean(OV[%])
!
< 24 [Gy] + 0.6 [Gy] ·OV[%]. (1)

This approach has proven to be useful in clinical practice as suggested by Hunt et al.
(2006). It emulates the clinical reality at our hospital, where target coverage and the
sparing of the brainstem, the spinal cord, as well as optical structures are prioritised
over a reduction of dose to the parotids.

The dose distribution, obtained through fluence and sequence optimisations in
Monaco (research version 5.19.03, Elekta AB, Stockholm, Sweden), was then checked for
clinical acceptability. We implemented an automated plan check algorithm to analyse
whether all imposed clinical goals were fulfilled, using the research interface in Monaco
(research version 5.19.03, Elekta AB, Stockholm, Sweden). Additionally, a clinician
visually inspected the dose distributions.

The evaluation workflow is illustrated in the central part of Figure 1, with inputs
from the top and bottom part.

2.3.2. Geometric evaluation As a first indication of agreement we calculated the
volume of each auto-segmented VOI, averaged over all patients and compared to the
volume of the gold standard VOIs. Furthermore, we calculated four well-established
geometric measures between the auto-segmented and the gold standard VOIs: the
Dice Similarity Coefficient (DSC) (Dice, 1945) for volumetric differences, as well as
the standard (HD) and 95th percentile of the Hausdorff distance (HD95) and the mean
surface distance (MSD) (Pekar et al., 2010) for distance related differences. The DSC
ranges from 0 to 1, where 1 indicates perfect overlap. The lower the HD, HD95 and
MSD, the better is the agreement.
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2.3.3. Dosimetric evaluation To determine the dosimetric impact of segmentation
differences between manually and automatically segmented VOIs, we calculated dose
differences between dose volume parameters, where we normalised to the respective
clinical goal Dx,goal:

∆Dx,norm = Dx,auto −Dx,manual

Dx,goal
. (2)

Index x denotes the type of dose volume parameter, e. g. the maximum dose to a certain
fraction of the volume or the mean dose. For the parotids we calculated the difference
between mean doses, where we normalised to a non-adapted clinical goal of 26Gy. The
spinal cord and the mandible were evaluated in terms of the maximum dose to 1 cm3

volume with clinical goals of 46 and 67.25Gy, respectively. Negative ∆Dx,norm mean
that a larger dose would be delivered to the gold standard than what was planned for
the auto-segmented VOIs.

2.3.4. Geometric measures as predictors for dosimetric accuracy To determine whether
geometric measures, such as the DSC and HD95, can reliably predict the dosimetric
impact on planned dose volume parameters, we investigated the correlation between the
geometric and dosimetric quantities by calculating Spearman’s correlation coefficients
(Spearman, 1904). We calculated the correlation coefficients individually for the three
different auto-segmentation approaches as these were determined for the same set of
patients and could therefore not be treated as independent. Additionally, we performed
a qualitative analysis by visual inspection of individual patient images in order to
understand the dependency of the correlation on the shape and the size of the OAR, the
dose metric, as well as the relative position to the target volume (i. e. location within
large dose gradients).

2.4. Inter-expert variability (IEV)

It is a known problem that the evaluation of auto-segmentation suffers from the lack
of an objective ground truth. Inter- and intra-expert variability (IEV) can provide an
estimate of the upper bound on the desired auto-segmentation accuracy. To determine
this for the data used in this study, two additional experts were contouring all VOIs on
all patient images. Each of the experts followed the contouring guidelines, defined in Sun
et al. (2014). We estimated the IEV geometrically and dosimetrically. To determine
the geometric IEV between two experts we first calculated the DSC, HD, HD95 and
MSD between the respective experts’ contours for each patient and defined the IEV
as the average and SD over all patients. The overall IEV was then calculated as the
average of the three individual IEVs, with the SD being the root mean square (RMS)
of the three individual SDs. To determine the dosimetric IEV, we chose approach B as
a representative approach for the auto-segmentation. We superimposed the respective
dose distribution on each of the three sets of manually segmented VOIs. For each patient
and VOI, we approximated the dosimetric variability with the SD of the three "manual"
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dose values, normalised to the clinical goal. We estimated the overall variability by
calculating the mean and SD over all patients.

2.5. Statistical evaluation

Tests for statistically significant differences were performed using Student’s paired t-
test (Student, 1908) at a significance level of p=0.05/3 with a Bonferroni correction
to account for multiple comparisons. As a condition of the paired t-test is the normal
distribution of the data, we tested the results for normality by visual inspection of
Q-Q-plots. All analyses were performed within an in-house developed Python software.

3. Results

The computation of the full auto-segmentation process took less than an hour. A major
part was attributed to the image registration. The image registration between two
images took 5 minutes on average. This resulted in a total time of 55 minutes for
our library of 11 patient images for the registration part. The only difference between
approach A (best atlas) and the approaches B and C (maMWV and maSTEPS) in
terms of the computation time was attributed to the atlas selection and fusion method.
Selecting the most similar atlas in approach A did not add any significant time. The
atlas fusion for approaches B and C added less than a minute for the full database.

Figure 3 provides three typical examples from three different patients for a
qualitative comparison of all three auto-segmentation approaches to the gold standard.
The two multi-atlas approaches (columns 2 and 3) clearly outperformed the best-atlas
approach (first column) in all shown cases.

3.1. Geometric evaluation

As a first indication of agreement, we calculated the volume of the automatically and
manually segmented VOIs, averaged over all patients. Table 2 lists the mean volume,
as well the SD for all VOIs and segmentation approaches. The intervals of mean values
± 1 SD of manually and auto-segmented volumes overlapped for all VOIs and auto-
segmentation approaches.

The top four rows of Figure 4 illustrate boxplots of the DSC, HD, HD95 and
MSD for all VOIs and the three atlas fusion methods. The stars indicate statistical
significance. Table 3 lists the mean and standard deviations for all applied geometric
measures. The IEV was included as a reference value.

The mean DSC for approach A ranged from 0.64 to 0.77. We found statistically
significant improvements when using the multi-atlas approaches B and C with a mean
DSC larger than 0.80 for all VOIs. Differences between the mean DSC values ranged
from 0.05 for the parotids to 0.16 for the mandible. This superior performance of
the multi-atlas approaches also held true for the mean MSD with 1.10mm to 1.61mm
compared to 1.84mm to 2.26mm, and the mean HD95 with 5.84 to 7.68mm (approach
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Table 2: Automatically segmented mean volumes with standard deviations for all
approaches and volumes of interest (VOI) with comparisons to manually segmented
(gold standard) volumes.

VOI manually segmented approach auto-segmented
volume [cm3] volume [cm3]

right parotid 29.11±8.89 A (best atlas) 31.29±12.07
B (maWMV) 29.03±8.24
C (maSTEPS) 29.62±7.70

left parotid 27.58±5.22 A (best atlas) 30.92±9.43
B (maWMV) 29.75±6.98
C (maSTEPS) 30.67±7.07

spinal cord 6.34±1.45 A (best atlas) 6.54±1.32
B (maWMV) 5.94±0.92
C (maSTEPS) 6.76±1.11

mandible 66.93±18.53 A (best atlas) 54.74±13.71
B (maWMV) 60.92±16.87
C (maSTEPS) 61.86±16.77

A) in comparison to 4.26 to 5.65mm (approaches B and C). The mean HD ranged from
10.88 to 16.65mm for all approaches. The only significant differences in the HD could
be detected between approaches B and C for the left parotid and between A and B for
the mandible. We found a trend towards smaller SDs for all quantitative measures and
VOIs when applying multi-atlas approaches. When using the multi-atlas approaches (B
and C), the mean values of all geometric measures for the parotids and the spinal cord
were within one SD of the IEV. The auto-segmentation performance for the mandible
was slightly worse than the IEV. The best-atlas approach (A) had a lower accuracy than
the IEV.

3.2. Dosimetric evaluation

The bottom row of Figure 4 shows the dosimetric differences, calculated using equation
(2). Table 4 lists mean and SDs, averaged over all patients. Furthermore, we included
the dosimetric variability, calculated as described in section 2.4. Overall, no method
was superior to any other in terms of dosimetric differences. Dose differences took
both, positive and negative values but were close to a zero mean for all VOIs and
segmentation approaches. Differences as large as 23% of the clinical goal in either
direction were observed for the parotids. Dose differences to the mandible were below
4% of the clinical goal. The SDs of the dosimetric differences were within the range of the
dosimetric variability, which means that the overall dosimetric accuracy was comparable
to the inter-expert variability. However, in half of the patients for the parotids and the
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Table 3: Geometric evaluation for all VOIs and auto-segmentation approaches: mean
values for DSC, HD, mean HD and HD95. All mean values have been calculated by
averaging over all 12 patients. For a reference, we also include the inter-expert variability
(IEV), derived from the manual contours of three different experts.

VOI method DSC HD [mm] HD95 [mm] MSD [mm]

right A 0.74±0.04 15.07±5.03 6.84±1.95 2.24±0.75
parotid B 0.80±0.03 16.51±6.96 5.65±1.41 1.61±0.43

C 0.81±0.02 13.33±5.20 5.20±0.97 1.56±0.38
IEV 0.84±0.04 10.76±4.35 4.97±1.66 1.40±0.45

left A 0.77±0.04 13.89±5.36 5.84±1.64 1.84±0.54
parotid B 0.82±0.03 15.00±4.62 5.17±1.62 1.47±0.41

C 0.83±0.03 12.13±3.91 4.63±1.21 1.35±0.40
IEV 0.83±0.04 10.94±3.75 5.27±1.76 1.59±0.63

spinal A 0.71±0.08 12.72±3.91 7.68±3.56 2.26±1.10
cord B 0.80±0.05 10.12±4.83 4.26±1.36 1.24±0.45

C 0.80±0.05 10.35±3.75 4.39±1.33 1.21±0.44
IEV 0.79±0.07 7.12±5.15 4.64±3.06 1.55±0.81

mandible A 0.64±0.09 16.65±3.60 6.96±1.84 2.14±0.60
B 0.80±0.04 13.33±4.06 4.31±1.05 1.10±0.28
C 0.80±0.04 10.88±2.07 4.44±1.09 1.35±0.30
IEV 0.85±0.04 8.94±3.16 3.85±1.56 0.92±0.45

spinal cord, and in 75% for the mandible the individual dosimetric difference was outside
the range of the dosimetric variability.

3.3. Geometric measures as predictors for dosimetric accuracy

Figure 5 depicts the absolute values of the dosimetric differences as a function of three
geometric measures (DSC, MSD, HD95) for all VOIs and segmentation approaches. For
a qualitative overall picture, we illustrate all approaches in the same subfigures. The
correlation coefficients for each approach are included in each subfigure.

If geometric measures were good predictors for the impact of segmentation
inaccuracies on the dose distribution, we would expect large negative correlation
coefficients R for the DSC and large positive R for distance-related measures. However,
for the dataset here, correlations were small with R2 < 0.5 and did not have the expected
sign in all cases, e. g. a negative correlation existed between the MSD and |∆D| for the
left parotid, segmented using approach C.

As the HD is very sensitive to outliers we only included the HD95 in Figure 5. We
obtained even smaller correlation coefficients when analysing the dosimetric differences
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Table 4: Normalised dosimetric differences ∆Dnorm (see equation (2)), as well as
dosimetric variability (see section 2.4). Negative ∆Dnorm mean larger mean doses to
gold standard structures. For a reference, we also include the inter-expert variability
(IEV).

VOI method ∆Dnorm [%] IEV [%]

right parotid A 0.06±12.93
B -0.84±10.82 5.56±4.78
C 0.02±10.26

left parotid A -0.65±11.39
B 0.83±6.51 6.00±3.93
C 0.68±6.28

spinal cord A 0.95±10.68
B -2.77±6.64 4.76±4.58
C -2.17±7.41

mandible A -0.66±1.64
B -1.02±0.85 0.46±0.26
C -0.84±1.18

as a function of the HD (data not shown here).
With the qualitative per-patient analysis we found that larger dosimetric differences

started to appear with the OAR being closer to the target volume. However, there was
only a small and non-significant correlation when clustering the data as a function of the
distance to the target volume (data not shown here). Figure 6 illustrates three example
pairs of cases with similar geometric accuracy yet large deviations between the dosimetric
differences. The first two columns show a sagittal or axial image plane for two different
patients. The coloured lines represent the isodose curves, whereas the coloured areas
show the manually and automatically segmented VOIs. The respective geometric and
dosimetric differences between manual and automatically segmented VOIs are provided
in the table in the third column. The first two rows illustrate examples for the spinal
cord, where steep dose gradients have a large influence due to the nature of the clinical
goal (maximum dose). The last row shows an example for the parotid, where the relative
position to the high dose region largely impacts the dosimetric outcome.
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(a) approach A (b) approach B (c) approach C

Figure 3: This figure shows in each row a typical example comparing the manual
segmentation (light blue) to approach A (dark blue, first column), approach B (red,
second column) and approach C (green, third column), respectively. Each example
originates from a different patient image.
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Figure 4: Boxplots of, from top to bottom, the DSC, HD95, HD and dosimetric difference
∆Dnorm for all OAR (x-axis) and automated segmentation approaches (A in blue, B in
red and C in green). The boxes indicate the interquartile range (IQR), the whiskers
extend to the minimum and maximum values. Outliers are defined as data points beyond
1.5 IQRs from the IQR, denoted with a plus sign. Stars indicate statistical significance
(p<0.05/3).
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Figure 5: Scatter plots illustrating dose differences between manually and auto-
segmented VOIs normalised to the clinical goal as a function of the respective geometric
measures (from left to right: DSC, HD95 and MSD), separated according to the VOIs
used in this study (from top to bottom: right parotid, left parotid, spinal cord and
mandible). The different colours and symbols illustrate the three auto-segmentation
methods of this study. The numbers in each subplot are the respective correlation
coefficients R together with the p-values, calculated using Spearman’s approach.
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Figure 6: This figures illustrates three example cases where the geometric differences
(DSC, HD, HD95 and MSD) were similar between the patients in columns 1 and 2 but
the dosimetric impact differed. The first two rows illustrate examples for the spinal
cord, the last row for the left parotid.
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4. Discussion

4.1. Geometric evaluation

Both multi-atlas approaches outperformed the best-atlas approach in terms of the
geometric accuracy (DSC, HD95 and MSD). This finding is in line with other published
studies (Teguh et al., 2011; Han et al., 2008; Daisne and Blumhofer, 2013). Comparing
the two multi-atlas approaches B and C, there was no clear benefit of using one or the
other. As these two approaches only differ in the atlas fusion method, we can conclude
that for the data utilised in this study, the performance of atlas-based approaches is
mainly influenced by the quality of the image registration and choosing a local instead
of a global approach (atlas fusion in the multi-atlas approaches versus global atlas
selection in approach A). The HD was not a reliable measure for the geometric accuracy
of the data used in this study. As this measure provides the maximum distance to the
gold standard segmentations, it is very sensitive to outliers and is hence not a good
representative of the overall geometric accuracy.

To compare our results with published auto-segmentation studies, Table 5 lists mean
reported geometric measures. The majority of the reported studies used CT scans. Only
three studies chose MR imaging as their imaging modality (Yang et al., 2014; Wardman
et al., 2016; Veeraraghavan et al., 2015). As none of these studies calculated the HD95,
we did not include this measure in Table 5. With a mean DSC larger than 0.8 and
a mean MSD smaller than 2mm, our multi-atlas methods lie in the range of reported
values in Table 5, as well as within one SD of the IEV that has been determined for the
data in this study. Published results for the HD are sparse and have large variations.
Our study is the only one reporting on the HD for the mandible. For the parotids, our
results are comparable to Daisne and Blumhofer (2013) and Fritscher et al. (2014). For
the spinal cord, we found a lower HD than Hoang Duc et al. (2015).

The segmentation accuracy in terms of the DSC of the mandible was slightly worse
in our approach compared to reported studies (Han et al., 2008; Qazi et al., 2011; La
Macchia et al., 2012). This may be attributed to the fact that each of these studies was
conducted using CT images. As the mandible is a bony structure, it is more clearly
visualised on CT images.

The results published by Yang et al. (2014) demonstrate a superior performance
of their algorithm. They used an atlas-based approach, refined by a machine learning
post-processing step. However, in contrast to our study, they applied their approach
to the auto-segmentation of post-RT MRIs using pre-RT MRIs from the same patient.
This resulted in a smaller expected variance between atlas and target images.

4.2. Dosimetric evaluation

None of the three auto-segmentation approaches chosen in this work was superior to any
other in terms of dosimetric accuracy for any of the investigated OARs. Average absolute
dose differences were below 3% of the clinical goal for all OARs and segmentation
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Table 5: This table lists geometric measures (mean Dice Similarity Coefficient (DSC),
mean Hausdorff distance (HD) and mean surface distance (MSD) reported for the
volumes of interest (VOI) of this work. The mean values for the parotids are averaged
between the left and right parotid.

VOI DSC HD[mm] MSD[mm] mod. #pat. study

paro- 0.76 14.48 2.04 MR 12 this study (A)
tids 0.81 15.75 1.54 MR 12 this study (B)

0.82 12.73 1.46 MR 12 this study (C)
0.79 - 4.97 MR 14 Wardman et al. (2016)
0.77 - - CT 10 Beasley et al. (2016)
0.65 45 - CT 100 Hoang Duc et al. (2015)
0.84 13 - CT 18 Fritscher et al. (2014)
0.91 3.46 0.31 MR 15 Yang et al. (2014)
0.72 15 2.5 CT 20 Daisne et al. (2013)
0.79 - - CT 5 La Macchia et al. (2012)
0.79 - 2.5 CT 10 Teguh et al. (2011)
0.83 5.8 - CT 25 Qazi et al. (2011)
0.86 4.95 - CT 25 Pekar et al. (2010)
0.68 - - CT 13 Sims et al. (2009)
0.85 - - CT 10 Han et al. (2008)

spinal 0.71 12.72 2.26 MR 12 this study (A)
cord 0.80 10.12 1.10 MR 12 this study (B)

0.80 10.35 1.35 MR 12 this study (C)
0.37 - 17.5 MR 14 Wardman et al. (2016)
0.75 40 - CT 100 Hoang Duc et al. (2015)
0.81 - - CT 5 La Macchia et al. (2012)
0.78 - 2.3 CT 10 Teguh et al. (2011)
0.75 - - CT 10 Han et al. (2008)

mandible 0.64 16.65 2.14 MR 12 this study (A)
0.80 13.33 1.10 MR 12 this study (B)
0.80 10.88 1.35 MR 12 this study (C)
0.86 - - CT 5 La Macchia et al. (2012)
0.93 - 2.64 CT 25 Qazi et al. (2011)
0.78 - - CT 13 Sims et al. (2009)
0.9 - - CT 10 Han et al. (2008)

approaches. However, dose differences for different patients were widely spread with
a SD of up to 11% of the clinical goal. Despite these large SDs, we found that the
dosimetric accuracy was comparable to the dosimetric IEV.
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Several groups have addressed the need for quantifying the impact of inaccurate
localisations of VOIs on the planned dose distribution when using auto-generated
contours for the treatment plan and creation process. These can be summarised into
essentially three approaches.

The first approach is to use existing planned dose distributions on gold standard
VOIs and superimpose these on the auto-segmented VOIs. The effect of contouring
variations on dose parameters can then be determined by comparing dose differences to
paired gold standard and auto-segmented VOIs. This method was applied by Eldesoky
et al. (2017) for the segmentation of breast tissues and by Conson et al. (2014) for
the segmentation of brain structures. A limitation of applying this method to the
plan creation is that instead of generating new treatment plans for the automatically
segmented VOIs, the original plans are used, therefore ignoring the fact that different
contours imply a different optimisation problem.

The second approach individually optimises the dose distributions for both, auto-
segmented and gold standard VOIs, using the same beam parameters and planning
constraints. Tsuji et al. (2010) applied this approach for pairs of pre- and mid-treatment
CTs of the H&N region. A limitation of this method is that instead of comparing the
direct dosimetric impact of contouring inaccuracies two separately generated treatment
plans are compared.

The third approach is to create treatment plans for the auto-segmented sets of VOIs
and superimpose the dose distributions to the gold standard VOIs. Nelms et al. (2012)
applied this approach to investigate effects of inter-observer variabilities in manual OAR
segmentations from 32 observers. A drawback of their study is that they only use the CT
image of one patient for their evaluation. Voet et al. (2011) applied the third approach
to investigate whether geometric measures can predict the amount of underdosage in
the PTV. Auto-segmented H&N VOIs edited by clinicians served as the gold standard.
They included the neck levels and the parotids in their analysis. Beasley et al. (2016)
compared dosimetric differences and the geometric accuracy of auto-generated contours
for the parotids and the larynx of 10 H&N cancer patients, using the manually drawn
contours of 5 observers as gold standard.

In this study, we chose the third approach. We found that this was the only
appropriate approach to use as it solves the optimisation problem directly for the auto-
segmented VOIs. This emulates the clinical reality in the case of an application to
treatment plan generation.

In contrast to our findings, Voet et al. (2011) reported a small, statistically non-
significant dose difference for the parotids (-0.8±1.1Gy, i. e. SD<3%). With respect to
the target volume (CTV) they found that the mean reduction in dose to 99% of the
volume (D99) is large with 14.2Gy (range of 1 to 54Gy). Beasley et al. (2016) reported on
an average difference in the mean dose to the parotids between auto-generated and gold
standard VOIs, relative to the latter, of -4.8±3.4% with a range from -18% to 43%. They
also compared mean doses for the larynx and found a difference of -8.4±2.3%, ranging
from -20% to 3%. The uncertainty was determined by the inter-observer variability

Page 21 of 31 AUTHOR SUBMITTED MANUSCRIPT - PMB-107015.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Phys. Med. Biol. 2018 22

between 5 observers. These large ranges of dosimetric differences are in line with our
findings. Tsuji et al. (2010) did not find any significant dose differences to the manually
and automatically segmented OARs. However, instead of superimposing one treatment
plan on both sets of VOIs for comparison they generated individual treatment plans for
each set of VOIs, therefore impairing a direct comparison.

4.3. Geometric measures as predictors for dosimetric accuracy

In order to understand whether the geometric measures used in our study (DSC, HD,
HD95 and MSD) can be a reliable surrogate for dosimetric differences and treatment
planning accuracy, we investigated their correlation. Voet et al. (2011) showed that
both DSC and mean contour distances did not have a large predictive value with
respect to their influence on dose coverage of the target volume. They reported that an
underdosage of 11Gy may appear even for a decent geometric accuracy with DSC=0.8
and ASD<1mm. Eldesoky et al. (2017) investigated the relation between geometric and
dosimetric accuracy for four target volumes in breast cancer RT. They found a small
significant correlation for only one of those target volumes between the DSC and dose
volume metrics.

In contrast to the aforementioned studies, we were focusing on OARs instead of
target volumes. The results presented in Figure 5, illustrating the relation between
geometric and dosimetric measures, did not imply a strong correlation between these
measures. This finding was also reflected in the small correlation coefficients. All
patients in our study had a tumour at the base of the tongue. For this reason, relative
positions of OARs and target volumes were similar. Despite this similarity, the relation
between dose deposition and the location of target volumes remained to be very complex.
The visual inspection of individual patient images suggests that the impact of geometric
inaccuracies on dosimetric outcome is influenced by the shape of the structure, the type
of clinical goal (maximum or mean dose) and the location of geometric differences (i. e.
whether these lie within regions of high dose gradients or are far from those). Examples
of high dose gradients influencing the correlation between geometric and dosimetric
measures could be seen in the first two example cases in figure 6.

These findings suggest that for the data used in this study the investigated
geometric measures are not reliable surrogates for dosimetric outcome. The correlation
values for the DSC are in line with results reported by Beasley et al. (2016). Additionally,
they found a large correlation (R=0.83) between the centroid distance and the differences
in the mean dose to the parotids. However, evaluating this for the data in this study,
we did not find such a strong correlation. Furthermore, correlations with the distance-
related measures were smaller compared to Beasley et al. (2016).

While the SD of dosimetric differences for the full patient cohort was within the
range of the dosimetric inter-expert variability, we found that for individual patients, the
dosimetric difference was outside this variability despite a decent geometric accuracy.
This finding highlights the need to carefully investigate the dosimetric impact of
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contouring inaccuracies.

4.4. Limitations and future work

One limitation of this study is the relatively small number of available training data.
Considering the large appearance variations between different patients’ anatomies, a
larger database would be needed to account for these variations. However, a larger
database would not invalidate the conclusions on the accuracy of the atlas-based
segmentations. Instead, we would expect a higher geometrical accuracy, as more
variation in the library will also more likely include images similar to the target image.

Furthermore, due to the small imaging coverage of the patients’ anatomies in the
superior-inferior direction we could only include four organs at risk in our analysis.
Treatment planning of H&N requires the segmentation of more organs at risk such as
the optical structures and the brainstem.

It is a known problem that the evaluation of auto-segmentation suffers from the
lack of an objective ground truth. While we determined the IEV to provide an estimate
of the upper bound on the desired auto-segmentation accuracy, we chose the contours of
one expert as the gold standard VOIs to compare to. This was the expert whose contours
were used to create the atlas for the auto-segmentation. Previous publications suggested
to combine the contours of several experts into one common contour, for example
by using an approach called Simultaneous Truth and Performance Level Estimation
(STAPLE) (Warfield et al., 2004). With STAPLE one could obtain a gold standard
that might be closer to the unknown ground truth by considering the agreement between
different experts on the absence or presence of the VOI at a certain location within the
image. In future work one could consider using the STAPLE of several observers as
the gold standard VOIs, both, as input for the atlas-based segmentation, as well as a
reference to compare to.

A limitation of the atlas-based segmentation approach is the computation time.
With computation times of an hour using a library of 11 images this would not be
suitable for an online workflow. However, the use of a multi-atlas approach for the
offline segmentation of pre-treatment images would already represent a significant time-
gain compared to manual segmentations which can take up to several hours. In an
adaptive RT workflow, one could then use previous, already segmented, images of the
same patient in a single-atlas approach which would necessitate the registration of only
one image to the target image and reduce time significantly to a few minutes. We
furthermore expect that we can significantly reduce the registration time by changes in
the algorithm itself, e. g. by parallelising image registrations for different library images
and cutting down the time for the affine registration.

Dose calculations in this study were performed simulating a 9-beam step and shoot
IMRT treatment on an MR-linac in a magnetic field. While other radiation delivery
techniques may lead to slightly different dosimetric results, the dosimetric evaluation
method is independent of the treatment type and can be easily applied to more patient
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data. The template approach established in this study worked well for all included
patients. We anticipate some necessary changes of the template for very different
anatomies compared to the patient data in this study.

In future work we would like to investigate new measures than can more reliably
predict the dosimetric effect of segmentation inaccuracies. Anticipating the dosimetric
effect from the geometric evaluation directly would remove the need to optimise
treatment plans for each set of auto-segmented VOIs. On the other hand, using
geometric measures that do not reliably predict the impact on the dose distribution
limits their applicability in RT. One could incorporate knowledge about the position
of OARs relative to target volumes to account for regions with sharp dose gradients.
Furthermore, first applications of machine learning approaches in RT seem promising
and could be applied for this problem by, for example, modelling geometric uncertainties
using neural networks and determining the effect on dose distributions.

5. Conclusion

To our knowledge, this was the first study to investigate the use of contours derived
from atlas-based segmentation on H&N MR images in the context of treatment plan
generation for RT with a complete analysis of the geometric and dosimetric accuracy.
We benchmarked the accuracy of the generated contours by determining the inter-
expert variability for the image data used in this study. This study indicates that a
geometric accuracy in the range of the inter-expert variability could be achieved, as
well as clinically acceptable treatment plans. Multi-atlas approaches outperformed a
simple best-atlas approach. Although there appeared to be a slight correlation between
geometric (DSC, MSD and HD95) and dosimetric measures, the geometric measures
alone were not sufficient to predict the dosimetric impact of segmentation inaccuracies
on RT treatment plans.
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Appendix A. Clinical treatment planning goals

Table A1: Clinical treatment planning goals according to our institution’s clinical
protocol, prescribing a mean dose of 65 and 54 Gy to the primary and secondary planning
target volumes (PTV), respectively. Depending on the clinical case, priorities 2a and
2b can change order.

priority volume of interest clinical goal

1 spinal cord D1cc < 46 Gy
1 spinal cord + 3mm PRV D1cc < 48 Gy
1 brainstem D1cc < 54 Gy
1 brainstem + 3mm PRV D1cc < 56 Gy
2a primary PTV D99% > 90% of 65 Gy
2a primary PTV D95% > 95% of 65 Gy
2a primary PTV D50% = 65 ± 1 Gy
2a secondary PTV D99% > 90% of 54 Gy
2a secondary PTV D95% > 95% of 54 Gy
2a secondary PTV D50% = 54 ± 1 Gy
2b optical nerves D1cc < 54 Gy
2b optical nerves + 1mm PRV D1cc < 55 Gy
2b chiasm D1cc < 55 Gy
2b chiasm + 1mm PRV D1cc < 56 Gy
2b optical lenses Dmean < 6 Gy
3 parotids Dmean < 26 Gy
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