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Abstract 

Increasing evidence shows that tumor clonal architectures are often the consequence of 

a complex branching process, yet little is known about the expected dynamics and 

extent to which these divergent subclonal expansions occur. Here we develop and 

implement more than 88,000 instances of a stochastic evolutionary model simulating 

genetic drift and neoplastic progression. Under different combinations of population 

genetic parameter values, including those estimated for colorectal cancer and 

glioblastoma multiforme, the distribution of sizes of subclones carrying driver mutations 

had a heavy right tail at the time of tumor detection, with only 1-4 dominant clones 

present at ≥10% frequency. In contrast, the vast majority of subclones were present at 

<10% frequency, many of which had higher fitness than currently dominant clones. The 

number of dominant clones (≥10% frequency) in a tumor correlated strongly with the 

number of subclones (<10% of the tumor). Overall, these subclones were frequently 

below current standard detection thresholds, frequently harbored treatment-resistant 

mutations and were more common in slow-growing tumors.  
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Major Findings 

Our modeling analysis suggests that most tumors harbor significant heterogenetiy at 

levels lower than the sensitivity of current assays. Moreover we predict that slow-

growing tumors harbor numerous resistant subclones at sub-detectable levels, while 

fast-growing tumors are expected to be more representative of the clonality typically 

modeled for tumors.  
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Quick Guide to Equations and Assumptions 
 

Our computational model is a non-spatial stochastic model based on a branching 

evolutionary process. The major assumptions of our modeling framework are stated as 

follows: 

Assumption 1: Similar to the framework presented in [1], each simulation begins with a 

single cell carrying a single initiating driver mutation (the potential founder of a primary 

tumor). 

Assumption 2: At each time step, a cell may either die or divide. If it divides, it can 

acquire an additional driver mutation in one of the daughter cells at rate µd.  

Assumption 3: For each driver mutation, we randomly sample a selection coefficient 

from an exponential distribution of mean 𝑠 [2], and update fitness f.  

Assumption 4: Each subsequent driver mutation increases the probability of cell 

division, defined as: 

 𝑏 = !
!
𝑓 = !

!
𝑤!" + 𝑑 1− (1− 𝑠!)!

!!! . 

The exponential distribution of mean 𝑠 is truncated for only 𝑠! < 1. The probability of cell 

death depends on the fitness of the cell, and is defined as 1–b.  

Assumption 5: The parameter wwt represents the fitness background of the wild-type 

cell in which the first driver occurs, and without loss of generality, it is assumed to be 1.  

Assumption 6: Driver mutations have intrinsic effects. However, rather than assuming 

fitness differences are background independent (like the additive model) or that 

differences scale by background fitness (like the multiplicative model), fitness 

advantages in our model scale by how near the current fitness background is to a 

hypothesized upper fitness boundary. Without loss of generality, we assume that the 
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maximum possible fitness gain through adaptation is d = 1 [3]. The fitness change in a 

cell produced by a driver is thus dependent of the other driver mutations and the 

temporal order at which they occur in the cell.  

Assumption 7: The parameters s1, s2,…, sn characterize the fitness effects associated 

with each of n driver mutations that a cell lineage carries.  

Assumption 8: The modeling process is terminated when a clinically detectable 

simulated tumor is generated (defined as a tumor cell population reaching ≈ 109 cells). 

Assumption 9: A subclone is defined as a subpopulation of cells that descended from 

another clone but then diverged by accumulating another driver mutation. 
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Introduction 

Cancer is a subclonal evolutionary process and is governed by the dynamic interplay of 

mutation, stochastic drift, and selection [4–6]. Although most mutations that steadily 

accumulate in our cells are probably neutral or weakly deleterious, a fraction of these 

mutations, especially in genes and regulatory elements, can confer a selective 

advantage to the cell by increasing its fitness [7–9]. In cancers, these mutations can 

result in increased survival of a clone [7,10]. In the field of cancer biology, the term 

“driver mutation” is often used to refer to mutations that increase a cell’s fitness (and 

thus are increased in frequency due to positive selection) [7,11]. The term “passenger 

mutation” is used for mutations that are neutral or deleterious [7,11,12], and increase in 

frequency due to hitchhiking alongside driver mutations, bottleneck events or genetic 

drift. A common model for the evolutionary process of tumor growth envisions driver 

mutations causing clonal expansions that sweep through the cancer cell population and 

reach fixation (100% frequency) [1,13]. If such a driver mutation did reach fixation, it 

would appear as a “trunk” mutation, present in all the tumor cells. However, the 

experimental evidence points to tumor clonal architectures that are the consequence of 

a complex branching processes, with divergent subclones evolving simultaneously [14–

19].   

 

While a few clones may dominate the composition of a tumor, minor subclones, often 

below current detection thresholds, can determine the clinical course of disease 

progression and recurrence [20–24]. For example, in patients with chronic lymphocytic 

leukemia (CLL) who received chemotherapy, the presence of detectable subclones 
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harboring one or more cancer-driver genes in the primary leukemia adversely impacted 

clinical outcome [20]. More recently, similar findings have shown that there is a clear 

association between a greater number of detectable subclonal populations and poorer 

clinical outcome in lower grade glioma, and cancers of the prostate, kidney, head and 

neck, breast, and lung [25–28]. The generation of genetic variation and subclonal 

diversity may be an indicator of the potential of a tumor to adapt under different 

selective pressures and has important implications on disease progression and drug 

resistance [29]. When studying cancers in patients who have relapsed, several studies 

have revealed that tumor cells in the relapsed-associated clone were often present as 

an undetected subclone in the primary tumor before the initiation of therapy, which 

suggests that mutations contributing to recurrence are selected for during treatment 

[30–33].  

 

Current standard sequencing methods have low sensitivity and high false positive rates 

when detecting mutations below 10% frequency in the DNA extracted from the tumor 

sample [34]. Many subclones carrying driver mutations can remain rare and 

undetectable because their abundance falls below the detection limit of standard 

genome or exome sequencing techniques [16,21,34–36]. Both ultra-deep sequencing 

[16] and high density sampling [37] have shown that large numbers of rare subclones at 

<10% frequency are often present in a neoplasm and even normal tissue. However, 

quantitative assessment of this subclonal diversity across cancers, and theoretical 

expectations are needed to understand the dynamics of neoplastic progression and 

therapeutic resistance. 
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Here, we developed and implemented a computational model to gain insight into the 

dynamics of the subclonal evolution of cancer, and to assess the extent to which 

heterogeneous subclonal expansions occur. We simulated tumor growth via a birth-and-

death branching process, where we keep track of all subclones that arise, die out, are 

maintained, and grow during the evolutionary process. We include both driver mutations 

that increase the fitness of a clone, and passenger mutations that confer therapeutic 

resistance. 

 

Materials and Methods 

Subclonal evolutionary model of cancer cell populations 

Previous dynamical models developed to study tumor evolution [1,38–40] assume that 

each driver mutation affects the fitness of a tumor cell lineage equally (with the 

exception of refs. [39,41]). They also assume that the fitness effect of a driver mutation 

is independent of the other driver mutations carried by the cell. However, epistatic 

interactions are a central aspect of the dynamics of adaption of asexual populations 

[42], and should be relevant to asexual tumor populations as well [43]. Moreover, as it is 

a computationally prohibitive task, cancer evolution models have not studied the extent 

of heterogeneous subclonal expansions that can occur simultaneously during the 

neoplastic process, nor variation across multiple convergent tumors with a distribution of 

starting parameter values.  

By employing an optimized algorithm on a Hadoop cluster (see Materials and Methods 

for details), we are able to keep track of all subclones (branches) that arise and die out, 

or are maintained and grow during the evolutionary process. Given the limited 
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quantitative knowledge of parameter values across cancers, we test a range of values 

for µd and 𝑠. The ranges we explored are centered on values obtained from the 

literature, which have been estimated from experimental data. For example, the mean 

selection coefficient for glioblastoma multiforme (GBM) has been estimated by fitting a 

mathematical model to GBM sequencing data from 14 tumor samples [1]. The values 

selected for the driver mutation rate, µd, are: 1 x 10-8, 1 x 10-7, 1 x 10-6, and 1 x 10-5 

mutations per cell division [1,8,40,44]. And the values chosen for the mean, 𝑠, of the 

exponential distribution of fitness effects are: 0.1, 0.01, and 0.005 [1,40,45]. Because of 

our optimized algorithm, we are able to simulate more than 100 tumors for each 

combination of parameter values, allowing us to consider variation across tumors of 

each combination of parameter values. 

 

Software required 

We used the following open-source platforms and programming languages for tumor 

simulation, monitoring and analysis: Apache Hadoop (HortonWorks 2.6.0); Apache Hive 

(1.2.1 spark HiveMetastoreConnection version 1.2.1, interactive hive-cli-0.14) – external 

data warehousing stacked on Hadoop, provides simulation monitoring, data 

summarization, query and analysis; Apache Scala (2.10.5) – functional programming 

language that utilizes the JVM (Java Virtual Machine) for platform independency, 

controls tumor simulation logic; Apache Spark (1.6.0 with a min of 1.4.0) – distributed 

computing framework originally developed at UC Berkeley AMPLab 

(https://amplab.cs.berkeley.edu), tracks tumor array memory across multiple machines; 

Bash (Sun AMD64 Linux 2.6.32-504.el6.x86_64) – for monitoring, analysis and data 
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export to spreadsheets or other visualizations; Tableau (public 9.1 to 9.3) – for 

visualization of subclonal composition of simulated tumors; YARN (2.2.4.2-2) – Yet 

Another Resource Manager, manages Hadoop data and hardware resources. We used 

a hierarchical data structure to store common attributes for all cells within the same 

subclonal population. 

 

Run environment 

The computation and data intensive piece includes a 44 node HDP 2.3 cluster on Dell 

PowerEdge 720xd servers. Each of the 40 worker nodes has 128GB ram, 2x Intel E5-

2640 6 core processors and 22TB of disk. The cluster backbone network consists of 

10Ge HA top of rack switching combined with Intel x520 10Ge NICs in each server. 

Although the tumor simulator can run parallel jobs utilizing multiple resources, the 

demands upon the hadoop NameNode (worker, memory, disk resource managment) 

are quite exhaustive; therefore, it is suggested to run sequential jobs on a single node 

for as many images as needed to emulate parallelization. 

 

Statistical analysis 

We created scripts on RStudio (Version 0.99.891) to analyze the data sets, perform 

statistical analysis, and generate most of the figures (with the exception of the figures 

displaying subclonal composition of simulated tumors).  
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Code accessibility 

The computer code for simulations, tumorsim.scala is available at: 

https://github.com/WilsonSayresLab/TumorHeterogeneity. For details on the steps 

necessary to run tumorsim application see Supplementary Material and the readme 

section on GitHub. All the R scripts for analysis are also available at 

https://github.com/WilsonSayresLab/TumorHeterogeneity.  

 

Results 

Drift dominates early neoplastic dynamics 

A necessary step in neoplastic initiation is that the first mutated cell lineage survives 

stochastic drift to result in a clone growing at the expense of its normal neighbors. The 

growth of the first clone is important in increasing the number of cells in which a second 

driver mutation could occur, and subsequently, another clone could emerge from the 

cell with the second driver, and so on, until a clinically detectable tumor is formed (Fig. 

1). To quantify the effect of stochastic drift in neoplastic initiation we ran our simulations 

until we generated at least 100 clinically detectable simulated tumors (defined as a 

tumor cell population reaching ≈ 109 cells) for each combination of the chosen 

parameter values, for a total of 88,265 simulations of the process (Table 1). Overall, we 

observed that out of the total number of realizations executed, only 1,432 became 

clinically detectable tumors, despite each simulation being initiated with a driver 

mutation. Thus, on average, ≈ 98% of all the initiating mutated cell lineages carrying a 

driver mutation spontaneously regress (Table 1), which is in line with theoretical 
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expectations [46]. This result highlights the importance of genetic drift affecting 

neoplastic initiation, even after a first driver mutation has occurred.  

 

To test how this model works with parameter values from a known cancer type, we use 

estimates from colorectal cancer. It has been experimentally estimated that colorectal 

cancer cells divide every 4 days [1,47]. Assuming this cell division time in the 

simulations, we find that the average expected time from onset to clinical detection of 

the simulated tumors ranges from 1.64 years to 27.97 years, depending on the values 

for 𝑠   and µd (Table 1). Additionally, using the parameter values 𝑠  = 0.005 and µd = 1 x 

10-5 per cell division, which have been estimated for colorectal cancer [1], our model 

predicts that it would take an average of 18.28 years for a colorectal tumor to grow to a 

detectable size after the first driver mutation appears (Table 1). This estimate is 

concordant with previous estimates of tumor development in colorectal cancer [1,47].  

 

Relationship between selection and mutation on tumor growth 

By having generated a total of 1,432 clinically detectable simulated tumors under a wide 

range of parameter values, we can determine the general contribution of each of the 

parameters to initiation and neoplastic progression. We find, consistent with a previous 

report [40], that selection has a larger effect on neoplastic initiation than the driver 

mutation rate (Table 1). Moreover, the average expected time from initiation to detection 

of a tumor increases with decreasing the average fitness effect of driver mutations and 

with decreasing the driver mutation rate (Table 1). However, we also find that there is a 

non-linear relationship in the effect of selection and mutation. When the mean selective 
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coefficient is low, mutation rate does not have a large effect on the mean time to 

detection, but as the mean selective coefficient increases, mutation rate has an 

increasingly large effect on the mean time to detection (Table 1). 

 

Extent of intratumor subclonal variation at detection 

To gain insight into the extent of subclonal populations within a tumor at the time of 

detection and to determine how the different evolutionary parameters impact the 

subclonal composition, we analyzed all the 1,432 detectable tumors generated by our 

model. In most tumors, we find that the number of dominant clones, defined here as a 

subclone present at ≥10% frequency in a tumor, ranges from 1 to 4 (Table S1); 

however, the average number of dominant clones in a tumor tends to increase with 

decreasing the average fitness effect of driver mutations and with increasing the driver 

mutation rate (Fig. 2A and Table S1). Across all the 1,432 detectable simulated tumors, 

the average number of dominant clonal populations is 1.46 (Table S1). Importantly, we 

find that even though only a few dominant clones compose the majority of the cancer 

cell population in a simulated tumor (range 90.6% – 99.5%; Fig. 2A), the number of 

minor subclones present at <10% frequency is substantial (Fig. 2A and Table S1); this 

number increases with decreasing the average fitness effect of drivers and increases 

with the driver mutation rate (range 0 – 6,734; Fig. 2A and Table S1).  

Given the parameter values 𝑠   = 0.005 and µd = 1 x 10-5, which have been estimated for 

glioblastoma multiforme and colorectal cancer [1], the model predicts that, on average, 

1.8 (range 1 – 4) dominant clones and 2,705 (range 1,190 – 6,734) minor subclonal 

populations carrying driver mutations compose a tumor (Fig. 2A and Table S1). We also 
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find that there is a strong, statistically significant correlation between the average 

number of dominant clones and the average number of minor subclones across all 

simulated tumors (Pearson r = 0.91, P < 0.001; Fig. 2B). This result suggests that the 

number of detectable clonal populations by standard sequencing techniques may serve 

as a crude proxy for the extent of undetectable minor subclones in a tumor. 

For each combination of parameter values, we computed the probability density function 

for the subclone sizes present in the simulated tumors (Fig. 3). Overall, we find that the 

distribution of subclone sizes harboring driver mutations has a heavy right tail, with only 

a few clones present at ≥10% frequency in the tumor, and with most subclones present 

at frequencies as low as 10-9 (Fig. 3). 

 

Differential fitness between dominant and minor subclones 

A key aspect of our computational model is that it simulates and tracks subclonal 

heterogeneity. For illustrative purposes, we show the subclonal composition and their 

corresponding fitness values in two clinically detectable simulated tumors using the 

parameter values 𝑠  = 0.01 and µd = 1 x 10-5 (Fig. 4A); and  𝑠  = 0.005 and µd = 1 x 10-5 

(Fig. 4B). The corresponding population dynamics of both simulated tumors are shown 

as well (Fig 4 C and D, respectively). The simulated tumor presented in Fig. 4A has 3 

dominant clones present at 41%, 19%, and 10% frequency in the tumor, carrying 1–2 

driver mutations, when it reached a clinically detectable size. On the other hand, the 

simulated tumor shown in Fig. 4B has only two dominant clones preset at 80% and 17% 

frequency, harboring 2 and 1 driver mutations, respectively. Additionally, there is 

substantial intra- and inter- subclonal variation in both cases (Fig. 4 A and B). On 
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average, the relative fitness of some minor subclones is greater than the fitness of the 

dominant clonal populations (Fig. 4 A and B and Table S2). These results show that, 

even though some subclones have acquired additional driver mutations that provide a 

fitness advantage over the dominant clones, they have not yet swept through the tumor 

population when the tumor is detected. Consequently, a substantial number of minor – 

and often fitter – subclones harboring driver mutations are present in the tumor at very 

low frequency. 

 

Resistant subclones carrying driver mutations are present at low frequency when 

the tumor is detected  

Populations can adapt to novel environments in two different ways – selection can act 

on pre-existing genetic variants or on de novo mutations [48]. Adaptation from standing 

genetic variation is faster than adaptation from novel mutations, not only because 

beneficial mutations are immediately available in the new environment, but also 

because they may start at higher frequencies [48]. We tested whether subclones 

carrying driver mutations could also carry at least one resistance mutation in the 

clinically detectable simulated tumors. To test this, we assume that multiple different 

mutations can independently cause resistance [49], and assume a resistance mutation,  

rate, µr , of 1 x 10-8 [49] during cell division (Fig. 1). Additionally, we assume that the 

resistance mutation does not affect fitness in the absence of therapy. Under these 

assumptions and parameter values, we find that the majority of resistant subclones are 

often present at very low frequency, below the detection limit of standard DNA 

sequencing techniques (Fig. 5A). We then calculated the number of independent 
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resistant subclones within each clinically detectable simulated tumor (Fig. 5B). We find 

that the number of independent resistant subclones ranges from 0 to 18 at the time the 

tumor is detected (Fig. 5B). Overall, we find that the number of independent resistant 

subclones in a simulated tumor increases with decreasing the average fitness effect of 

the drivers (Fig. 5B). In addition, Fig. 5B shows that the probability that a tumor is 

curable, i.e., that there are no resistant clones present when the tumor is detected, is 

higher for fast-growing tumors (larger fitness effects of driver mutations) and for high 

driver gene mutation rates. We finally “treated” all clinically detectable simulated tumors 

with a hypothetical targeted drug, killing all non-resistant cells, and calculated the 

average time from the moment when the drug is applied to the time at disease 

recurrence (cancer cell population rebounds to ≈ 109 cells). Our analysis suggests that 

there is on average an eight-fold decrease in the time from the start of treatment to the 

time at recurrence relative to the average time from initiation to clinical detection of the 

simulated tumors (Table 1 and S3).  

 

Discussion  

In this study, we developed and implemented a stochastic evolutionary model to study 

the subclonal dynamics of cancer progression. First, we show that despite the selective 

advantage of the driver mutation, drift substantially affects neoplastic initiation (Table 1). 

This result is expected from population genetics theory, as selection is less efficient in 

small populations [46]. That said, we find that the mean selective coefficient has a much 

larger effect on neoplastic initiation than the driver mutation rate (Table 1). Based on 

this, we hypothesize that the fitness effects conferred by driver genetic alterations in 
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certain sporadic childhood cancers, which arise within a few years, should be greater 

than those associated with drivers in sporadic adult cancers, and those rapidly growing 

tumors should be more likely to be curable than adult cancers.  

 

A statistical strength of this study is that we simulated 88,265 tumor initiation events for 

a range of biologically realistic parameters, resulting in more than 1,400 clinically 

detectable tumors, from which we could analyze and gain important biological insights.  

 

Across all the combinations of the chosen evolutionary parameter values, our analysis 

show that the distribution of sizes of subclones carrying driver mutations has a heavy 

right tail at the time of tumor detection. We find that the vast majority of subclones are 

predicted to be present at <10% frequency in the tumor, and only 1–4 dominant clones 

are present at ≥10% frequency, composing the majority of the tumor cell population 

(Fig. 2A). Additionally, we find that there is a strong, statistically significant correlation 

between the average number of numerically dominant clones and the average number 

of minor subclones across all simulated tumors (Fig. 2B). 

 

The distribution of subclones sizes inferred by our model is qualitatively similar to that 

found in a recent empirical study where the authors used ultra-deep sequencing 

technology to detect mutations in specific known cancer genes in biopsies of sun-

exposed eyelids from different individuals [37]. The authors found that aged sun-

exposed skin has already thousands of subclones with driver mutations subjected to 

selection, with some clones as large as several square millimeters in surface area [37]. 
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Moreover, the predicted range by the model on the number of dominant clonal 

populations is largely concordant with a recent pan-cancer analysis of intratumor 

heterogeneity [26]. In this study, the authors analyzed whole exome sequencing 

mutational data from over 3,300 tumors from The Cancer Genome Atlas (TCGA) to infer 

that 92% of all the tumors had between 1 and 4 clonal populations at detectable levels 

by standard sequencing methods [26].  

The assumptions that each tumor simulation begins with a single cell, that at each time 

step a cell can die, divide and not incur a mutation, or divide and incur a mutation, and 

that we sample selection coefficients from an exponential distribution are consistent with 

current expectations about cell division, tumorigenesis, and selective coefficients from 

population genetics. Our assumption that each driver mutation increases fitness means 

that we are only modeling positive selection, and not negative selection. Tumors, while 

affected by negative selection, have been shown to be much more affected by positive 

selection [50], and so we expect this assumption is valid for our initial model. One of the 

major extensions we provide in this computational modeling framework is that we track 

subclonal heterogeneity, where each subclone evolves as a cellular lineage (a branch) 

with its own fitness, which is dependent on the fitness effects conferred by the driver 

mutations present in the cell and their epistatic interactions - we think this is very likely 

to match tumorigenesis. We also assume that the fitness advantages confered by driver 

mutations in our model scale by how near the current fitness background is to a 

hypothesized upper fitness boundary. This specific form of fitness advantage generates 

some qualitative features commonly observed in adaptive evolution ([3,51,52].  
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While some tumors may have a substantial number of subclones (Figure 2), these 

should not necessarily be interpreted as these subclones having unique mutations, but 

rather unique combinations of mutations. In our simulated tumors each of these 

subclones carry only a handful of drivers. The number of passengers in a given cell 

lineage should be much larger, which should theoretically be proportional to the number 

of cell divisions. In some combinations of parameter values, a simulated tumor can have 

many subclones. Of note, as mentioned above, each subclone has only a handful of 

driver mutations. And each of these subclones should be viewed as a unique 

combination of mutations, not that there are thousands of affected genes. We do not 

keep track of unique mutations, and in fact in this model, even unique mutations would 

not make sense, because we have a model of diminishing returns epistasis, where the 

order of mutations is important. 

 

Understanding the expected levels of subclonal variation is important for treating 

primary cancers and predicting recurrence. By employing ultra-deep sequencing 

technology to study intratumor subclonal diversity in patients with CLL, it has been 

shown the presence of rare subclones at frequencies down to the limit of detection for 

depth of this specific sequencing method, 10-4 [16]. Our model predicts that minor 

subclones carrying driver mutations can be present in a tumor at lower frequencies, 10-7 

(Fig. 3). Importantly, we find that these commonly undetectable minor subclones can 

harbor therapeutically resistant mutations (Fig. 5A). These results are in line with 

multiple previous reports showing that tumor cells corresponding to the relapsed clone 

were often present as a rare subclone in the diagnostic tumor before the initiation of 
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treatment [30,31,33]. Additionally, we find that the number of independent treatment-

resistant subclones ranges from 0 to 18 at the time the tumor is detected (Fig. 5B). 

 

Given that cancer is the result of a complex evolutionary process, our approach has 

some limitations. First, we have not taken spatial structure into consideration in our 

computational model, which may restrict the expansion of certain subclonal populations 

during the neoplastic process. Thus, our modeling framework may be more suitable for 

cancers that develop in the absence of spatial constraints. Second, we assumed that 

resistant mutations are neutral. While there is often a fitness cost of resistance [53], in 

the absence of drug, it is well known in population genetics that deleterious mutations 

can grow to substantial frequencies in expanding populations [12]. Third, the host 

immune system has not been taken into account, which has been demonstrated to have 

an important role for both cancer suppression and promotion [54]. Fourth, future studies 

should extend this work and consider non-cell autonomous interactions, as well as 

“public good” factors, which are likely to be a strong influence on subclonal dynamics 

[55]. Despite these caveats, our model captures some essential features of the 

dynamics of subclonal evolution of cancer progression. The subclonal dynamics 

predicted by our model are consistent with the “Big Bang” model [56], where clonal 

driver mutations and most detectable subclonal drivers occurred relatively early during 

tumor growth. This result is in contrast with the traditional clonal selection model, where 

sequential stepwise accumulation of drivers leads to fitter clones that sweep through the 

population [1,13].  
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In conclusion, our modeling provides a theoretical framework for tumor growth and 

spontaneous regression, predicting that a substantial number of subclonal populations 

carrying driver mutations will be rare and undetectable within a tumor because their 

abundance has not yet grown above the detection limit of standard genome sequencing 

methods. Additionally, these minor and often undetectable subclones can harbor 

treatment-resistant mutations, which present a major challenge for personalized 

medicine and clinical management. These results suggest that driver mutations that 

have been identified in individual tumors through standard genome sequencing [57] are 

likely to constitute only the “tip of the iceberg”, with many mutations never rising above 

very low frequencies, but that can expand post-treatment and are critical for the 

evolutionary dynamics of cancer progression and relapse. The strong correlation 

between macrodiversity (the diversity of clones present at ≥10% frequency) [34] and 

microdiversity (the diversity of clones present at <10% frequency), supports efforts to 

predict the probability that a resistant minor subclone is present based on the measures 

of macrodiversity. Altogether, our findings help explain why tumors with greater 

numbers of detectable clonal populations are associated with poorer prognosis across 

multiple cancer types [20,25,26].  
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Table 1. Number of simulations performed for each combination of parameter values (𝑠, 

µd). The mean time from initiation to clinical detection of a simulated tumor is 
shown. The generation time assigned in the simulations is 4 days. 

 
 
 
𝒔 

 
 

µd 

 
Numb
er of 
realiz
ations 

 
Number of 

simulations 
that reached 

109 cells 

 
Percentage 

of 
simulations 

that 
reached 109 

cells 

 
Mean 

number of 
generations 
to detection 

 

 
Mean time 

to detection 
(years) 

0.1 1 x 10!! 10155 162 1.6% 1596.66 17.50 
0.1 1 x 10!! 1948 112 5.7% 475.08 5.21 
0.1 1 x 10!! 748 134 17.9% 158.54 1.74 
0.1 1 x 10!! 748 111 14.8% 147.50 1.62 

0.01 1 x 10!! 6867 125 1.8% 1807.63 19.80 
0.01 1 x 10!! 6866 113 1.6% 1406.75 15.41 
0.01 1 x 10!! 6866 120 1.7% 1263.80 13.85 
0.01 1 x 10!! 6865 115 1.7% 1018.40 11.16 

0.005 1 x 10!! 11951 102 0.9% 2552.70 27.97 
0.005 1 x 10!! 11751 112 1.0% 2546.85 27.91 
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0.005 1 x 10!! 11750 126 1.1% 2046.78 22.43 
0.005 1 x 10!! 11750 100 0.9% 1668.07 18.28 

  88265 1432 1.6%   
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure Legends 

Figure 1. Branching evolutionary process of cancer. Schematic representation of the 

process developed to simulate the subclonal evolution of cancer is presented below. 

For details of the process and assumptions, see main Quick Guide to Equations and 

Assumptions.  

 

 

Figure 2. Intratumor subclonal variation. (A) Bar plots of the log10 average number of 

dominant clones present at ≥10% frequency in the simulated tumors (red) and the log10 

average number of minor subclones that are present at <10% frequency (blue). The 
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value shown over each red bar represents the average percentage tumor cell 

population composed by the dominant clones. Note that the extent of intratumor 

subclonal variation is greatly affected by both the mean selective coefficient, s, of the 

exponential distribution of fitness effects associated with the driver mutations and the 

driver mutation rate, µd. (B) Correlation between the average number of dominant 

clones and the log10 average number of minor subclones in the simulated tumors for 

each combination of parameter values used as in (A). 

 

 

 

 

 

Figure 3. Probability density function for the log10 sizes of subclones carrying driver 

mutations present in the clinically detectable simulated tumors for each combination of 

parameter values; N is the number of clinically detectable tumors generated by the 

model. The distribution has a heavy right tail with only a few dominant clones present at 

≥10% frequency, composing most of the tumor cell population (Fig. 2A), and with the 

majority of subclones present at frequencies below the detection limit of standard 

sequencing techniques. 

 

 

Figure 4. Variability in subclonal composition, differential fitness among subclones, and 

population dynamics of progression of two simulated tumors. (A and C) Parameter 

Research. 
on December 1, 2017. © 2017 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on November 29, 2017; DOI: 10.1158/0008-5472.CAN-17-1229 

http://cancerres.aacrjournals.org/


	
   31 

values used are: 𝑠 = 0.01 and µd =1 x 10!!. (B and D) Parameter values used are: 𝑠 = 

0.005 and µd = 1 x 10!!. Each circle represents a subclone carrying a certain number of 

driver mutations. The size of a circle is proportionate to the number of cells composing 

the subclone. The color of a circle corresponds to the fitness of the subclone. Note that 

the relative fitness of some minor subclones is greater than the fitness of the dominant 

clones. And, as would be expected, there is substantial intra- and inter- subclonal 

variation between the two simulated tumors. The numbers within each circle indicate the 

identifier of the subclone, the number of driver mutations, the percentage of cells 

relative to the total number of cells in the tumor, and its fitness value. The plots 

depicting the population dynamics of cancer progression use a log10 scale for the y-axis. 

In both cases, the generation time used is T = 4 days.  

Figure 5. Resistant subclones in clinically detectable simulated tumors. (A) Probability 

density functions for the log10 sizes of therapeutically resistant subclones within in the 

primary simulated tumors. (B) Number of independent resistant subclones in each 

simulated primary tumor. Each bar represents a tumor. The area in light gray represents 

those simulated tumors with no resistant subclones, which should be curable. For each 

set of parameter values used, N is the number of tumors generated by the model. It is 

assumed that a resistant mutation occurs at a rate of 1 x 10-8 per cell division. Resistant 

mutations are assumed not to affect fitness. 
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The process ends when the 
population reaches ≈109 cells, 

i.e., a clinically detectable 
tumor is formed.

Figure 1 
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