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Abstract

Background—Epigenetic disturbances are crucial in cancer initiation, potentially with 

pleiotropic effects, and may be influenced by the genetic background.

Methods—In a subsets (ASSET) meta-analytic approach, we investigated associations of genetic 

variants related to epigenetic mechanisms with risks of breast, lung, colorectal, ovarian and 

prostate carcinomas using 51,724 cases and 52,001 controls. False-discovery-rate corrected p-

values (q-values < 0.05) were considered statistically significant.

Results—Among 162,887 imputed or genotyped variants in 555 candidate genes, SNPs in eight 

genes were associated with risk of more than one cancer type. For example, variants in BABAM1 
were confirmed as a susceptibility locus for squamous cell lung, overall breast, ER-negative 

breast, overall prostate, overall and serous ovarian cancer; the most significant variant was 

rs4808076 (odds ratio (OR)=1.14, 95% confidence interval (CI)=1.10–1.19, q=6.87*10−5). DPF1 
rs12611084 was inversely associated with ER-negative breast, endometrioid ovarian, overall and 

aggressive prostate cancer risk (OR=0.93, 95% CI=0.91–0.96, q=0.005). Variants in L3MBTL3 
were associated with colorectal, overall breast, estrogen receptor (ER)-negative breast, clear cell 

ovarian, and overall and aggressive prostate cancer risk (e.g. rs9388766: OR=1.06, 95% CI=1.03–

1.08, q= 0.02). Variants in TET2 were significantly associated with overall breast, overall prostate, 

overall ovarian and endometrioid ovarian cancer risk, rs62331150 showing bidirectional effects. 

Analyses of sub-pathways did not reveal gene subsets that contributed disproportionately to 

susceptibility.

Conclusion—Functional and correlative studies are now needed to elucidate the potential links 

between germline genotype, epigenetic function, and cancer etiology.

Impact—This approach provides novel insight into possible pleiotropic effects of genes involved 

in epigenetic processes.
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INTRODUCTION

Genetic and epigenetic alterations are hallmarks of cancer initiation and progression and can 

influence each other to work cooperatively (1). Dysfunction of epigenetic processes, such as 

DNA methylation, chromatin remodeling and covalent histone modifications can be as 

important in carcinogenesis as the change of the genetic material itself (2). Since the first 

studies that described the global hypomethylation of cancer genomes and the 

hypermethylation of the promoter sequence of mainly tumor suppressor genes, several “pan-

cancer” DNA methylation patterns (patterns across multiple cancer types) have been 

identified (reviewed in (3)). The CpG island methylator phenotype (CIMP) was first 

described in colorectal cancer (4) and later similar patterns were observed in several other 

tumor types. Highlighting the interplay between genetic and epigenetic changes, CIMP 

subtypes usually present with characteristic genetic alterations. CIMP-H colorectal cancers 

are frequently characterized by BRAF mutations, while CIMP-L tumors tend to harbor 

KRAS mutations (5). Non-CIMP colorectal cancer, the B-CIMP-negative breast cancer and 

the low methylated tumor group of serous ovarian cancers frequently acquire TP53 
mutations (5–8).

Furthermore, somatic mutations in epigenetic regulatory genes that are either carcinogenic 

driver or passenger mutations are known to exist. Important mutations have been shown for 

example in DNMTs, IDH1, IDH2 and TETs (as important players of DNA methylation), in 

EZH2 and KDM1A (involved in histone modifications) and in ARID1A (participant of 

chromatin remodeling) (reviewed in (2)). In addition, inherited genetic variants related to 

epigenetic regulatory processes were described in association with multiple cancers (9, 10). 

Given the fundamentality of epigenetic processes, germline variants in genes related to 

epigenetic pathways presumably have pleiotropic effects on the initiation of different 

cancers.

As part of the U.S. National Cancer Institute’s Genetic Associations and Mechanisms in 

Oncology (GAME-ON) Network (http://epi.grants.cancer.gov/gameon/), we have previously 

shown the value of cross-cancer analyses in inflammation pathways (11).

An additional value is that our datasets include large numbers of cancer subtypes that were 

not studied in The Cancer Genome Atlas (TCGA). The present study was focused and 

approved by the GAME-ON consortium for the overall analyses of pleiotropy, where we 

aimed to identify cross-cancer associations of epigenetically related polymorphisms that 

advance our understanding of the role of epigenetics in cancer development. Given the 

central role of epigenetic processes in carcinogenesis, germline variants in genes related to 

epigenetic pathways show pleiotropic effects on the initiation of different cancers. 

Consequently, we investigated whether common polymorphisms in epigenetic genes are 

associated with risk of multiple cancer types (breast, colorectal, lung, ovarian and prostate 

cancer) and their subtypes.
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METHODS

Study population

Within the GAME-ON Network, 32 studies from North America and Europe participated in 

this investigation (12–21). Studies included frequency matched cases and controls on at least 

age, and all subjects were of European descent based on ancestry analyses. The study 

characteristics are summarized in Table 1. In total, 51,724 cancer patients (breast, colorectal, 

lung, ovarian and prostate with respective subtypes) and 52,001 controls were included in 

the analysis.

Gene and variant selection, pathway assignment

Genes (n=634) involved in epigenetic processes were identified using GO and GeneCards 

databases by searching for the following keywords: DNA methylation, DNA demethylation, 

histone acetylation, deacetylation, methylation, demethylation, and other histone 

modification, chromatin remodeling, chromatin modification and histones. The recent 

literature was also reviewed. After excluding genes on sex chromosomes and those not 

covered in all cancer sites, 555 genes were included in the analysis, which were categorized 

into one or more of epigenetic sub-pathways (Supplementary Table S1).

We analyzed all single nucleotide polymorphisms (SNPs) residing within 50 kb of the 

largest transcript for each gene (Databases see in Supplementary Table S2). Overall, 162,887 

polymorphisms were included in the final analysis. In the combined dataset, the major 

alleles (according dbSNP) were used as reference alleles.

Statistical analysis

Cancer sites were further divided into subtypes and for each cancer type and subtype, a fixed 

effect meta-analysis was conducted to combine results from individual studies (Table 1). 

This method used log-additive models adjusted for age, European principal components, and 

sex (where appropriate).

The beta values and standard errors for each cancer or cancer subtype were then combined 

using the association analysis based on a subsets (ASSET) meta-analytic approach, which 

allows for disease heterogeneity and potential opposite directions of the same genetic variant 

on different cancer types (22). It searches for the most parsimonious grouping based on the 

test statistics using any of the five cancers or cancer subtypes simultaneously as the outcome 

variables. Overlapping subjects amongst cancer subtypes (e.g. overlapping cases and 

controls between overall lung cancer and its subtypes) and across cancer types (e.g. UK 

ovary and UK breast GWAS both used controls from Welcome Trust Case Control 

Consortium, WTCCC) were accounted for in the covariance matrix when estimating the 

standard errors (11). The resulting p-values were adjusted using false-discovery rate (FDR) 

correction. Results with FDR q<0.05 were considered statistically significant 

(Supplementary Table S3). All association analyses were performed in R (3.2.5).
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Functional annotation

The overall approach of the functional annotation is summarized in Supplementary Fig. S1. 

For each gene with more than five significant SNPs (FDR q<0.05 in the ASSET meta-

analysis), we selected tagSNPs to represent these regions in subsequent analysis. 

Specifically, a linkage disequilibrium (LD) map was prepared using the Haploview 4.2 

software and tagSNPs were identified with the tagger algorithm of Haploview using 

1000Genomes data (release 20130502). Variants with more than two alleles based on 

1000Genomes were excluded from LD mapping. As a result we were able to investigate 

SNPs that were not covered in the original meta-analysis but potentially have functional 

effect on the genes in the region of interest.

To assess if any of the epigenetic sub-pathways shown in Supplementary Table S1 were 

enriched with genes containing significant associations with cancer types or subtypes, 

pathway analyses were conducted using the ALIGATOR algorithm of the SNPath R 

package.

The possible functional annotation of the tagSNPs and the region-representative SNPs 

(functional follow-up (FFU) SNPs) were then assigned using the FunciSNP R/Bioconductor 

package (23). Using the package, we identified all the corresponding SNPs of our tagSNPs 

using 50 kb searching window and r2>=0.8 as a linkage threshold. In the next step, 

FunciSNP package checks if the corresponding SNPs or the tagSNPs show overlap with 

DNA segments with predicted functional importance. To annotate these biofeatures, we used 

the combined genome segmentation assessed by the ENCODE Project Consortium. These 

results represent ChIP-seq data for eight chromatin marks (H3K4me1, H3K4me2, 

H3K4me3, H3K9ac, H3K27ac, H3K27me3, H3K36me3, H4K20me1), RNA Polymerase II 

and the CTCF transcription factor, as well as DNase-seq and FAIRE-seq data. This data is 

processed with ChromHMM and Segway software which segments the genome into seven 

disjoint segments based on their predicted functional role (24). Since the goal of the study 

was to identify those polymorphisms that change the function of the epigenetic related 

genes, we interpreted polymorphisms that overlap with a predicted transcribed region only, 

if they were in the gene of interest. We used the data available on Huvec, H1hesc and 

Gm12878 cell lines. Unfortunately, comprehensive information for the genome 

segmentation track was not available for all cell lines of the respective cancer types. We thus 

decided to use data from normal cell lines. Additionally, an ENCODE Uniform transcription 

factor binding site (TFBS) track was used, that encompasses data for 161 transcription 

factors from 91 cell types. Supplementary Table S4 summarizes the functional annotation of 

all SNPs based on FunciSNP (SNPs that were annotated as not functional are not listed). 

Furthermore, the functionality of the ASSET-identified SNPs as well as their corresponding 

SNPs were annotated using RegulomeDB, version 1.1.

All software packages and databases that were used are listed in Supplementary Table S2.

RESULTS

The results of the original (individual study based) meta-analyses and the ASSET-based risk 

associations are summarized in Figure 1. Ovarian cancer was associated with the largest 
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number of variants (98), followed by prostate (70), lung (50), breast (46) and colorectal (10) 

cancers. Interestingly, all of the endometrioid ovarian cancer specific SNPs also showed an 

association with overall prostate cancer risk. These polymorphisms were mainly located in 

the RUVBL1 gene regions. Variants in the flanking region of MORF4L1 on 15q25 were 

mainly associated with lung and ovarian cancer. Due to the proximity of MORF4L1 to 

CHRNA5, CHRNA3 and CHRNB4 genes and their well-known association with lung 

cancer, we excluded this region from further analysis (25–27). The number of remaining 

SNPs that were associated with lung cancer risk was 35 and with ovarian cancer was 83. 

Furthermore, variants in PHC3 (3q26) were solely associated with risk of overall prostate 

cancer and will not further be discussed.

When combining genes into epigenetic sub-pathways (see above), we observed no 

significant risk association with more than one cancer type or subtype (p values>0.05) 

indicating that all pathways were similarly important for cancer risk.

Overall 99 SNPs in 8 genes (excluding MORF4L1: 84 SNPs in 7 genes) showed significant 

associations (FDR q<0.05) with risk of more than one cancer type (Supplementary Fig. S2. 

A and B). Genes with associated SNPs were: RUVBL1 (3q21), TET2 (4q24), L3MBTL3 
(6q23), HDAC9 (7p21), BRCA2 (13q12), MORF4L1 (15q25), BABAM1 (19p13) and DPF1 
(19q13) (Table 2, Supplementary Fig. S3). Previous GWAS-identified cancer risk 

associations in these and other genes located in these regions are listed in Supplementary 

Table S5.

The most pleiotropic genes were TET2, BABAM1, DPF1and especially L3MBTL3 (Figure 

1, Table 2). Eleven variants in L3MBTL3 were associated with cancer risk, all with 

pleiotropic effects. The highest OR (odds ratio) in this region was 1.06 (rs9388766, 95% CI 

(confidence interval) =1.03–1.08, FDR q= 0.02), which was associated with risk of 

colorectal, overall breast, ESR1 (ER)-negative breast, clear cell ovarian, overall and 

aggressive prostate cancer. L3MBTL3 is a member of the putative Polycomb group (PcG) 

proteins. Two SNPs, rs9375694 and rs6569648, were previously identified as eQTLs 

(expression quantitative trait locus) for L3MBTL3 (RegulomeDB score: 1d and 1f, 

respectively) (28). The variant allele of rs6899976 may also be functionally important, since 

it overlaps with CTCF enriched regions in all cell lines as well as a transcription factor 

binding site. However, this variant has a RegulomeDB score of only 4.

TET2 (tet methylcytosine dioxygenase 2) at 4q24 encodes a protein catalyzing the 

conversion of methylcytosine to 5-hydroxymethylcytosine. Nine variants at this locus were 

significantly associated with risk of at least two cancer types, of which one variant 

(rs6825684) was associated with decreased risk of four cancers or subtypes: colorectal, 

overall prostate, overall and endometrioid ovarian cancer (OR=0.89, 95% CI=0.85–0.93, 

FDR q=0.02) and one polymorphism (rs62331150) showed a bidirectional effect. The 

variant allele of rs62331150 increased the risk of overall breast and serous ovarian cancer 

(OR:1.09, 95% CI: 1.02–1.15, p-value=0.009) and decreased the risk of clear cell ovarian 

and prostate cancer (OR=0.91, 95% CI= 0.87–0.96, p-value=0.0004) with a combined q-

value of 0.04 (Figure 2). Most of the variants were positioned within TET2. The non-

synonymous rs34402524 was predicted to be deleterious (SIFT) and possibly damaging 
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(PolyPhen). Among the ASSET identified and FFU SNPs, further functional annotation 

singled out polymorphisms with a possible functional role. Rs62331150, (RegulomeDB 

score =2b), overlaps with a transcription start site, a transcription factor binding site and an 

enhancer region.

33 variants, all pleiotropic, showed an association with cancer susceptibility in the region 

containing BABAM1, a known ovarian and breast cancer locus. The strongest association 

was observed for rs4808076, which conferred 14% increased risk of ESR1 (ER)-negative 

breast, serous ovarian and squamous cell lung cancer (OR=1.14, 95% CI=1.10–1.19, FDR 

q=6.87*10−5). Five variants decreased the risk of six cancer types and subtypes; overall 

prostate, overall breast, ESR1 (ER)-negative breast, squamous cell lung, overall and serous 

ovarian cancer risk (strongest signal for rs8100241: OR=0.95, 95% CI=0.93–0.97, FDR 

q=1.78*10−3). Besides BABAM1, the captured region (19p13) additionally contains 

ANKLE1, ABHD8 and USHBP (Supplementary Table S5). BABAM1 was selected for its 

involvement in chromatin modifications, namely ubiquitination as part of the BRCA1 A 

complex. The ASSET identified SNPs in this region were in LD with several variants that 

may play an important role in regulatory processes. The most important ones are shown in 

Table 3. Apart from the variants in regulatory regions, five SNPs were in coding sequences. 

Important features of these variants, as well as their SIFT (29) and PolyPhen (30) scores are 

shown in Table 4.

DPF1 is part of the neuron-specific chromatin remodeling complex (nBAF complex). One 

variant (rs12611084) was significantly associated with endometrioid ovarian, ESR1 (ER)-

negative breast, overall and aggressive prostate cancer risk (OR=0.93, 95% CI=0.91–0.96, 

FDR q=0.005) and one variant (rs8100395) additionally with lung adenocarcinoma 

(OR=0.93, 95% CI=0.90–0.96, FDR q=7.2*10−3). Both variants were located upstream of 

DPF1, some were overlapping with other genes in this region, PPP1R14A and SPINT2, and 

were captured by one tagSNP in the FunciSNP analysis. Seven FFU SNPs showed a possible 

functional role, among them rs7250689, which was previously reported to be an eQTL for 

PPP1R14A (28). Based on RegulomeDB, rs8100395 and rs12611084 (both significant in the 

ASSET analysis) likely affect binding, and additionally overlap with enhancer regions as 

well as transcription factor binding sites and, in the case of rs8100395, overlaps with a 

CTCF enriched region.

Overall, 27 polymorphisms in RUVBL1 were associated with risk of prostate and 

endometrioid ovarian cancer, while one SNP was additionally associated with colorectal 

cancer risk. The strongest association was observed for rs144609957 with increased risk of 

prostate and endometrioid ovarian cancer (OR=1.13, 95% CI=1.08–1.19, FDR q=0.01). 

None of the SNPs had reached genome-wide significance in the original meta-analysis. 

RUVBL1 plays a role in chromatin organization. All associated SNPs belonged to the same 

LD block and were captured by one tagging SNP. Further, FunciSNP analysis revealed seven 

variants that overlapped with multiple biofeatures (transcription factor binding site, weak 

enhancer region and promoter flanking region). These variants also had low RegulomeDB 

scores, the lowest being 2b for rs9879865 and rs9879866, variants that likely affect binding.

Toth et al. Page 7

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2018 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCUSSION

We performed the first large-scale association study of variants in epigenetic-related genes 

and cancer risk utilizing the extensive genomic data on 51,724 cancer patients and 52,001 

controls and identified eight epigenetic-related genes with pleiotropic effects on cancer risk.

Epigenetic disturbances are common drivers of carcinogenesis, yet, effects of germline 

variants and their potential pleiotropic mechanisms are not well understood. Thus, we 

investigated the risk association of SNPs related to epigenetic processes with multiple 

cancers. Using a subset-based meta-analysis, we were able to account for different subsets of 

cancer types and subtypes even with contrasting risk associations.

The L3MBTL3 gene on 6q26 is a member of the putative Polycomb group (PcG). It contains 

a methyl-lysine reader Malignant Brain Tumor (MBT) domain that is responsible for the 

recognition of the mono- and di-methylated lysines of H3 and H4 histone tails. MBT domain 

proteins are associated with gene expression repression and their dysregulation has been 

shown to contribute to different diseases (31). In our analysis, two variants (rs9375694 and 

rs6569648), which were previously identified as eQTLs, were significantly associated with 

risk of prostate and breast cancer (and their subtypes), and to a lesser extent with risk of 

clear cell ovarian and colorectal cancer (28). Interestingly, previous GWAS identified an 

association of rs6569648 and rs6899976, both hits in our analysis, with height (32) and 

height is associated with risk of several cancers including breast, ovarian, prostate and 

colorectal cancer (33). Our findings suggest the link between height and cancer risk may be 

vis-a-vis altered epigenetic processes, but this requires further investigations.

Several SNPs located in and around TET2 showed significant associations with risk of 

overall prostate, overall ovarian, endometrioid ovarian, overall breast and colorectal cancer. 

Previous studies reported significant associations of variants at the TET2 locus with risk of 

cancer including ovarian and breast cancer (9, 21, 34). A large number of functional variants 

were identified in this region forming multiple pleiotropic linkage blocks that support the 

role of TET2 and its germline variants in the development of multiple cancer types. 

Furthermore, an association between rs62331150 and TET2 gene expression in breast 

normal and tumor tissue was recently shown (9). The bidirectional association of the 

rs62331150 variant allele implies that the effect of TET2 genetic variation may be of a 

different nature for distinct cancers, increasing the risk of breast cancer, but decreasing the 

risk of prostate cancer. Similar associations were observed for a group of highly linked 

polymorphisms, namely rs2007403, rs2047409, rs6533183, rs6839705, rs11097882 and 

rs13147502 confirming previous studies (21, 35); however, with only one statistically 

significant risk direction.

Several functional variants were found at 19p13 with significant associations observed for 

risk of ESR1 (ER)-negative breast cancer, serous ovarian cancer and squamous cell lung 

cancer, but also with overall ovarian, breast and prostate cancer. BABAM1 is involved in 

chromatin modifications (ubiquitination), as part of the BRCA1 complex and regulates the 

retention of BRCA1 at double strand DNA breaks to maintain stability of this complex at the 

sites of DNA damage (36). Previous GWAS associated this region with breast (37) and 
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ovarian cancer (10), with some of the SNPs showing triple-negative breast cancer specificity 

(38). However, to our knowledge we are the first to describe an association with squamous 

cell lung cancer or overall prostate cancer risk. Demonstrating a limitation of our selective 

candidate gene approach, new evidence suggests that nearby 19p13 genes ANKLE1 and/or 

ABHD8, rather than BABAM1, may be the functional drivers in breast and ovarian cancer 

[Lawrenson et al, Nature Communications in press]. The complexity of this region requires 

detailed functional follow up to disentangle the combined effect of individual variants and to 

understand their role in carcinogenesis.

DPF1 is part of the mSWI/SNF (also called BAF) chromatin remodeling complex with a 

central role in carcinogenesis (39). Mutations in DPF1 were seen in solid tumors (7). 

Furthermore, significant overexpression of DPF1 was observed in breast and squamous cell 

lung cancers (40). Our results also support a pleiotropic effect of DFP1 during 

carcinogenesis through potentially functional polymorphisms in this gene. However, as in 

each region of interest, we cannot exclude the potential relevance of the other genes in this 

region (PPP1R14A, SPINT2).

Polymorphisms in 3q21 were previously only observed in association with prostate cancer 

risk (41); however, our analysis has detected additional associations with endometrioid 

ovarian and colorectal cancer risk. RUVBL1 is a member of the INO80 family protein 

remodeling complex. It interacts with MYC and CTNNB1 (β-catenin), participates in many 

signal transduction pathways and is overexpressed in many cancer types (42). We have 

identified several polymorphisms with seemingly strong functional impacts. Interestingly, a 

proportion of endometrioid ovarian and colorectal cancers arise from common etiologies 

associated with hereditary non-polyposis cancer (HNPCC) or Lynch syndrome (43) and also 

show de novo promoter methylation silencing of DNA mismatch repair genes (44) and 

altered β-catenin signaling (45). RUVBL1 may represent novel susceptibility genes that 

further unify endometrioid ovarian and colorectal cancer development.

The major strength of this study is the large sample size of more than 100,000 subjects 

across five cancer types and their subtypes, some of which were not studied in TCGA. In 

addition, by searching the most parsimonious grouping based on the test statistics using any 

of the five cancers or cancer subtypes simultaneously as the outcome variables, the ASSET-

subset-based meta-analysis (1) increased the power to detect associations, which may not 

have been detected in the individual analyses of the five cancer types, (2) allowed estimation 

of associations with opposing effects, and (3) provided new insights into pleiotropy that 

were not observed in the original analyses (22). Further, the overlapping subjects (cases and 

controls) are accounted for during the analysis (11). Finally, our focused approached 

reduced the genome-wide multiple testing burden and allowed for examination of 

functionally grouped subsets of epigenetic-related genes (i.e., sub-pathways). We were thus 

able to confirm established and identify new risk genes, including TET2 and L3MBTL3.

Although the odds ratios that are discovered as pleiotropic across cancer types may be 

considered modest, there is potential clinical significance. First, the ORs for individual 

cancers may be higher than the summary OR. Second, the combination of several SNPs with 

low ORs may become relevant through creation of a risk score, and third, the association of 

Toth et al. Page 9

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2018 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SNPs with disease may be modified and, in some instances, strengthened by environmental 

factors.

While our approach provides interesting insights into the pleiotropic effects of selected 

regions, it is limited with respect to the assignment of the identified predisposing variants to 

genes by chromosomal position rather than the actual cancer-initiating processes. Of note, 

several of the identified pleiotropic associations cannot clearly be linked to the selected 

epigenetic genes, as some of the regions additionally contain genes that were previously 

described for their effect on carcinogenesis.

Further investigations are required to elucidate the functional link between the identified 

pleiotropic variants and their impact on epigenetic processes such as the potential effect of 

TET2 polymorphisms on DNA methylation. Indeed, our pathway-based selection of 

epigenetic-related genes overlooked the subtleties of complex gene networks, and most 

genes are involved in multiple biological processes. Finally, this dataset did not allow for the 

investigation of interactions with other genetic or environmental factors, which are 

undoubtedly of great importance.

In summary, using a unique, large dataset, we identified novel pleiotropic variants in 

epigenetic-related genes that are associated with susceptibility to multiple cancer types and 

subtypes. This study provides the basis for future studies investigating the impact of these 

variants, their causal relationship to epigenetic processes, and the mechanisms leading to 

carcinogenic pleiotropy.
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Figure 1. 
Manhattan plot showing the original meta-analyses (A) and the results of the ASSET-based 

meta-analysis (C) on the selected SNPs available for all studies. Variants with –log10 (p 

values) higher than 20 are not shown. Regions showing significant pleiotropic association in 

the ASSET analysis are marked in green.

Pie charts (B) show the number of variants that were significant in the ASSET analysis. 

Numbers in brackets depict the number of independent risk loci. Each diagram represents a 

gene region and the numbers of SNPs associated with a specific cancer type (in the same 

colors as indicated in the Manhattan plot (A)) are shown. SNPs associated with multiple 

cancer types are counted in each of the respective cancer sections. Overlap is not visualized.

Toth et al. Page 15

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2018 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(A) Linkage disequilibrium (LD) plot encompassing the significant SNPs in the TET2 
region. Selected SNPs representing each LD block with respective forest plots are shown for 

(B) rs62331150 representing the single-variant block A; (C) rs17508261representing block 

B1 and B2; and (D) rs2007403 representing block C.
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