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 39 
Abstract 40 

The efficacy of angiogenesis inhibitors in cancer is limited by resistance 41 

mechanisms that are poorly understood. Notably, instead of inducing angiogenesis, 42 

some cancers vascularize by the non-angiogenic mechanism of vessel co-option.  43 

Here we show that vessel co-option is associated with a poor response to the anti-44 

angiogenic agent bevacizumab in patients with colorectal cancer liver metastases. 45 

Moreover, we find that vessel co-option prevails in human breast cancer liver 46 

metastases, a setting where results with anti-angiogenic therapy have been 47 

disappointing. In our preclinical mechanistic studies, we show that cancer cell motility 48 

mediated by the Arp2/3 complex is required for vessel co-option in liver metastases 49 

in vivo and that combined inhibition of angiogenesis and vessel co-option is more 50 

effective than inhibiting angiogenesis alone in this setting. Vessel co-option is 51 

therefore a clinically relevant mechanism of resistance to anti-angiogenic therapy 52 

and combined inhibition of angiogenesis and vessel co-option may be a warranted 53 

therapeutic strategy. 54 

 55 

  56 
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Introduction 57 

 Metastases can vascularize through sprouting angiogenesis that is stimulated 58 

by vascular endothelial growth factor-A (VEGF-A). This prompted the clinical 59 

development of anti-angiogenic agents, including the VEGF-A targeted antibody, 60 

bevacizumab1,2. Bevacizumab combined with chemotherapy (bev-chemo) can extend 61 

progression-free and / or overall survival in several indications, including metastatic 62 

colorectal cancer (CRC)3,4. Indeed, bev-chemo is now an approved treatment for 63 

many different cancer types, including metastatic CRC. Despite this fact, the survival 64 

benefit achieved with the addition of bevacizumab to chemotherapy is modest, 65 

measured only in terms of months. Moreover, in other indications, including 66 

metastatic breast cancer, anti-angiogenic therapy has yet to demonstrate a survival 67 

benefit in patients5,6. The mechanisms that limit the therapeutic efficacy of anti-68 

angiogenic therapy in patients are still poorly understood.  69 

However, it now emerges that some metastases can also vascularize by the 70 

non-angiogenic mechanism of vessel co-option, a process whereby cancer cells 71 

incorporate pre-existing vessels from surrounding tissue instead of inducing new 72 

vessel growth7-10. Notably, although anti-angiogenic agents (including bevacizumab) 73 

were designed to target sprouting angiogenesis, they were not designed to target the 74 

process of vessel co-option. Because of this, vessel co-option has been suggested 75 

as a potential mechanism of resistance to anti-angiogenic therapy6,10,11. In the current 76 

study, we provide the first evidence that vessel co-option is a clinically relevant 77 

mechanism of resistance to anti-angiogenic therapy in liver metastases and that 78 

combined inhibition of angiogenesis and vessel co-option is more effective than 79 

targeting angiogenesis alone. 80 

 81 

 82 

 83 

  84 
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Results 85 
 86 

Replacement growth pattern liver metastases respond poorly to bevacizumab  87 

 The liver is the most common site of involvement in metastatic CRC, and 88 

surgical removal of CRC liver metastases (CRCLMs) is now recommended practice 89 

for eligible patients12. Careful histopathological examination of human CRCLMs has 90 

shown that these tumors can present with three different histopathological growth 91 

patterns (HGPs): the desmoplastic HGP, the pushing HGP or the replacement HGP 92 

(Fig. 1a and Supplementary Fig. 1)8,13. These growth patterns have distinct 93 

histopathological features and utilise different mechanisms to obtain a vascular 94 

supply. In the desmoplastic HGP, the cancer cells are seperated from the normal 95 

liver parenchyma by a capsule of desmoplastic stroma. In the pushing HGP, there is 96 

no desmoplastic capsule but the cancer cells push the normal liver parenchyma 97 

away. Both of these growth patterns utilise angiogenesis to obtain a vascular supply.  98 

However, in metastases with a replacement HGP, the cancer cells infiltrate the liver 99 

parenchyma and co-opt pre-existing sinusoidal vessels instead of promoting 100 

angiogenesis8,13,14. Although bevacizumab was not designed to target vessel co-101 

option, no study has addressed whether the replacement growth pattern (where 102 

vessel co-option occurs) is associated with resistance to bevacizumab in liver 103 

metastases. 104 

 To address this question, we took advantage of the fact that some patients 105 

with metastatic CRC receive preoperative therapy with bev-chemo in the months that 106 

precede surgical removal of CRCLMs15-17. We evaluated the HGPs and the 107 

pathological response to therapy in 59 CRCLMs resected from 33 patients that were 108 

treated preoperatively with bev-chemo at The Royal Marsden (RM) by examining 109 

haematoxylin and eosin (H&E) stained liver resection specimens (Fig. 1b) (for patient 110 

details see Supplementary Fig. 2 and Supplementary Table 1). Since CRCLMs can 111 

present with a mixture of HGPs13, the percentage of desmoplastic, pushing and 112 
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replacement HGP was quantified in each lesion. To measure response to therapy, 113 

the pathological response in each lesion was scored in quartiles (>75%, 50–75%, 114 

25–49% or <25% viable tumor). Lesions with <25% viable tumor were considered 115 

good responders, whilst lesions with ≥25% viable tumor were considered poor 116 

responders.  117 

Notably, lesions having a substantial (≥50%) replacement component were 118 

significantly enriched in the group of lesions classified as poor responders when 119 

compared to the group of lesions classified as good responders (Fig. 1b, P<0.001). 120 

In contrast, lesions having a substantial (≥50%) desmoplastic component were 121 

significantly enriched in the group of lesions classified as good responders when 122 

compared to the group of lesions classified as poor responders (Fig. 1b, P<0.001). 123 

Similar results were obtained when the same analysis was repeated using only the 124 

single largest lesion from each patient (Supplementary Fig. 3). In a univariate 125 

analysis of other clinical variables, only the HGP showed a statistically significant 126 

association with pathological response (Supplementary Table 2).  127 

Some examples of the lesions examined for this analysis are shown in Fig. 128 

1c–e. In Fig. 1c, a lesion scored as >75% viable with HGP score of 100% 129 

replacement is shown. Note the close contact between tumor cells and liver 130 

parenchyma in the infiltrative replacement growth pattern (arrows). In Fig. 1d, a 131 

lesion scored as <25% viable with HGP score of 100% desmoplastic is shown. Note 132 

the entire circumference of the tumor is desmoplastic and well encapsulated 133 

(arrowheads). A large central area of infarct-like necrosis (ILN), indicative of a strong 134 

treatment response, is labeled (asterisks). In Fig. 1e, a lesion scored as <25% viable 135 

that has a mixed growth pattern (79% desmoplastic, 19% replacement, 2% pushing) 136 

is shown. Note the presence of a desmoplastic rim at the periphery of the tumour 137 

(arrowheads) which surrounds a large central area of ILN (asterisks). However, at 138 
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the periphery of the tumour, two viable nodules with a replacement HGP can be seen 139 

(arrows).  140 

To validate the association between the HGPs and pathological response to 141 

therapy, we then examined a larger series of 128 CRCLMs from 59 patients that 142 

were treated preoperatively with bev-chemo at McGill University Health Centre 143 

(MUHC) (for patient details see Supplementary Fig. 4 and Supplementary Table 3). 144 

Again, lesions with ≥50% replacement HGP were significantly enriched in the poorly 145 

responding group of lesions (Fig. 1f, P<0.001), whilst lesions with ≥50% 146 

desmoplastic HGP were significantly enriched in the group of lesions classified as 147 

good responders (Fig. 1f, P<0.001). Similar results were obtained when the same 148 

analysis was repeated using only the single largest lesion from each patient 149 

(Supplementary Fig. 5). In a univariate analysis, the HGP was the strongest predictor 150 

of pathological response (Supplementary Table 4).  151 

Included in these analyses were both patients that presented with a solitary 152 

liver metastasis and patients that presented with multiple liver metastases. To control 153 

for this, we also examined the subset of patients that presented with a single lesion 154 

only (pooled from RM and MUHC). The HGP also correlated with pathological 155 

response in this subset of patients (Supplementary Fig. 6). A univariate and 156 

multivariate analyses of 181 lesions from 90 patients (pooled from RM and MUHC) 157 

was also performed to determine clinical characteristics associated with a good 158 

pathological response (Supplementary Table 5). Only the HGPs showed a 159 

statistically significant association with pathological response. The replacement HGP 160 

was associated with a lower probability of obtaining a good pathological response 161 

(OR=0.07, 95% CI 0.03–0.16, P<0.0001 in univariate and OR=0.06, 95% CI 0.03– 162 

0.15, P<0.0001 in multivariate). In contrast, the desmoplastic HGP was associated 163 

with a higher probability of obtaining a good pathological response (OR=15.06, 95% 164 

CI 6.32–35.87, P<0.0001 in univariate and OR=15.92, 95% CI 6.76–37.51, P<0.0001 165 
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in multivariate). Taken together, these data demonstrate that the replacement HGP is 166 

associated with a poor pathological response to bev-chemo in CRCLMs. 167 

To provide an alternative measure of treatment response, we also evaluated 168 

radiological response in the cohort of lesions from the RM patients. Recently 169 

published guidelines recommend that response to bev-chemo should be evaluated 170 

from computed tomography (CT) scans using novel morphological response criteria 171 

which correlate better with outcome than RECIST-based criteria12,18,19. Lesions with 172 

≥50% replacement HGP were significantly enriched in the poor response group 173 

according to morphological response criteria (Fig. 2; P=0.006). Similar results were 174 

obtained when the same analysis was repeated using only the single largest lesion 175 

from each patient (Supplementary Fig. 7). These data provide independent 176 

verification that CRCLMs with a replacement HGP respond poorly to bevacizumab. 177 

However, notably, no correlation between the HGP and response to therapy was 178 

observed when using RECIST-based criteria as a measure of response 179 

(Supplementary Fig. 8).  180 

 181 

Cancer cells infiltrate the hepatic plates and co-opt sinusoidal blood vessels in 182 

the replacement growth pattern  183 

 We then investigated the mechanism of tumor vascularization in replacement 184 

HGP CRCLMs by examining, in detail, the relationship between cancer cells and the 185 

normal liver in this growth pattern. In normal liver, staining for hepatocyte specific 186 

antigen (HSA) identified hepatocytes within the hepatic plates, whilst collagen-3 187 

staining identified the intervening sinusoidal blood vessels (SV; Fig. 3a). In the 188 

replacement HGP, co-staining for cancer cells (pan-cytokeratin) and hepatocytes 189 

(HSA) demonstrated that invading cancer cells line-up neatly with hepatocytes within 190 

the hepatic plates at the tumor-liver interface  (Fig. 3b). Replacement of hepatocytes 191 

by invading cancer cells was clearly observed (Fig. 3c). Behind the invasive tumor 192 

front, near complete replacement of hepatocytes by cancer cells was evident and 193 
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flattened displaced hepatocytes were frequently observed at the edge of cancer cell 194 

nests (Fig. 3d). However, cancer cells clearly respected the spaces occupied by SV 195 

(Fig. 3b–d). Therefore, in the replacement growth pattern of liver metastasis, cancer 196 

cells (a) invade the liver parenchyma, (b) replace hepatocytes and (c) co-opt SV.  197 

Further evidence for vessel co-option was obtained by staining for the 198 

endothelial marker CD31. In the replacement HGP, SV were frequently observed 199 

where one end of the vessel was physically located in the normal liver (arrows in Fig. 200 

3e–g), whilst the other end was embedded in the tumor (arrowheads in Fig. 3e–g), 201 

showing that these tumors co-opt SV as they infiltrate the liver parenchyma (see also 202 

Supplementary Fig. 9a,b). However, this was not observed in the desmoplastic or 203 

pushing HGPs (Supplementary Fig. 9c–f). In addition, co-staining of tumors for CD31 204 

and HSA demonstrated that tumor vessels at the periphery of replacement HGP 205 

metastases were often still physically associated with hepatocytes, providing 206 

additional evidence that these vessels are co-opted sinusoidal vessels and that they 207 

are not newly formed vessels (Supplementary Fig. 10a,b). However, this was not 208 

observed in the desmoplastic or pushing HGPs (Supplementary Fig. 10c,d). 209 

Therefore, whilst replacement HGP CRCLMs co-opt pre-existing sinusoidal vessels, 210 

the desmoplastic and pushing CRCLMs do not.  211 

 212 

Prevalence of the replacement growth pattern in disease that progresses 213 

following bevacizumab treatment 214 

 Unfortunately, patients can progress following treatment with bev-chemo by 215 

developing new CRCLMs20. Here we define new CRCLMs as lesions that presented 216 

in the liver after the initiation of bev-chemo treatment that were not evident on pre-217 

treatment scans. In our analyses of treatment response described above (Fig. 1) we 218 

only examined resected CRCLMs that were detected on pre-treatment scans prior to 219 

treatment initiation and we specifically excluded any new CRCLMs, even if they were 220 

resected. Given that these new CRCLMs represent progressive disease that is 221 
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clearly resistant to bev-chemo, we identified these new CRCLMs and examined their 222 

HGP. In the MUHC case series, 35 new CRCLMs from 13 patients were available for 223 

assessment (for patient details see Supplementary Table 6). We compared the 224 

HGPs in these new CRCLMs with two control groups from MUHC: pre-existing 225 

CRCLMs, i.e. lesions that were resected from bev-chemo treated patients that were 226 

detected on pre-treatment scans prior to treatment initiation (128 CRCLMs from 59 227 

patients; for patient details see Supplementary Table 3) and untreated CRCLMs, i.e. 228 

lesions resected from MUHC patients that did not receive any pre-operative therapy 229 

(32 CRCLMs from 19 patients; for patient details see Supplementary Table 7). The 230 

percentage of tumor scored as having a replacement HGP was significantly 231 

increased in new CRCLMs compared to the CRCLMs in both control groups 232 

(P<0.001, Fig. 4a). This was mirrored by a concomitant significant decrease in the 233 

desmoplastic HGP in new CRCLMs compared to both control groups (P<0.001, Fig. 234 

4a). These data provide evidence for an increased prevalence of the replacement 235 

HGP in patients that progress following treatment with bev-chemo. 236 

 237 

Patients with replacement growth pattern liver metastases achieve less clinical 238 

benefit from bevacizumab  239 

 We then examined whether the HGPs of liver metastasis could impact on the 240 

clinical benefit achieved with anti-angiogenic therapy in terms of patient survival (Fig. 241 

4b-f). Kaplan-Meier estimates of overall survival (OS) were calculated for a cohort of 242 

62 patients from MUHC that were treated preoperatively with bev-chemo between 243 

2008 and 2014 and for a cohort of 29 patients from MUHC that were treated 244 

preoperatively with chemotherapy alone during the same period. Patients were 245 

stratified into groups based on their liver metastasis growth pattern: predominant 246 

replacement HGP,  predominant desmoplastic HGP or predominant pushing HGP 247 

(see Online Methods for details of how these groups were defined).  248 
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 In the bev-chemo cohort, the predominant desmoplastic HGP patients had a 249 

significantly better OS when compared to the predominant replacement HGP 250 

patients (HR=3.50, 95%CI 1.49–8.20, P=0.0022; Fig. 4b). These data suggest that 251 

patients with replacement HGP liver metastases achieve less clinical benefit from 252 

treatment with bevacizumab than patients with desmoplastic HGP liver metastases.  253 

The HGP was the only variable that showed a statistically significant association with 254 

OS in univariate and multivariate analyses (Supplementary Table 8). In addition, both 255 

3-year and 5-year OS were longer for desmoplastic HGP patients compared to 256 

replacement HGP patients in the bev-chemo cohort (Fig. 4f). However, in the cohort 257 

treated with chemotherapy only, no significant difference in OS was observed 258 

between the desmoplastic HGP and replacement HGP patients (HR=0.90, 95%CI 259 

0.31–2.61, P=0.846; Fig. 4c).  260 

 Additional analyses were also performed as follows. Using the same data set, 261 

we examined for a difference in OS between desmoplastic HGP patients that 262 

received chemotherapy alone and desmoplastic HGP patients that received bev-263 

chemo. The difference in OS was not statistically significant (HR=2.49, 95%CI 0.93–264 

6.67, P=0.0605; Fig. 4d). We also examined for a difference in OS between 265 

replacement HGP patients that received chemotherapy alone and replacement HGP 266 

patients that received bev-chemo. Again, the difference in OS was not significant 267 

(HR=0.69, 95%CI 0.27–1.77, P=0.433; Fig. 4e). A comparison of the replacement 268 

group with the desmoplastic group showed that the patients were similar in terms of 269 

their clinical characteristics (Supplementary Table 9). However, the interval between 270 

last dose of therapy and resection tended to be longer in the replacement group 271 

compared to the desmoplastic group (median of 83 days interval for replacement 272 

patients versus 62 days for desmoplastic patients, P=0.030). We also examined for 273 

differences in clinical characteristics between the bev-chemo treated cohort and the 274 

cohort treated with chemotherapy alone (Supplementary Table 10). The cohorts were 275 
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similar except for a larger proportion of patients receiving irinotecan-based 276 

chemotherapy in the bev-chemo cohort compared to the chemotherapy alone cohort 277 

(19% of bev-chemo patients received irinotecan versus 10.3% of chemotherapy 278 

alone patients, P=0.019). 279 

 When stratifying patients based on their liver metastasis HGPs, only two 280 

patients were designated in the predominant pushing group (one patient treated with 281 

bev-chemo and one patient treated with chemotherapy alone). Due to this fact, these 282 

patients were not included in the Kaplan-Meier analysis. However, both of these 283 

patients had a poor outcome because they died within 2 years of diagnosis of liver 284 

metastasis. This is consistent with the findings of a previous study, which showed 285 

that the pushing HGP is an independent predictor of poor overall survival at 2 years 286 

of follow-up21. It is therefore possible that the pushing HGP of CRCLMs is associated 287 

with a poor outcome regardless of the treatment modality utilized. 288 

 289 

The replacement HGP is prevalent in breast cancer liver metastases  290 

Thus far, disappointing results have been obtained with anti-angiogenic 291 

therapy in metastatic breast cancer5,6. Therefore, we also examined the HGPs in 292 

breast cancer liver metastasis samples, obtained from 17 patients, by examining 293 

H&E-stained tissue sections (for patient details see Supplementary Table 11). The 294 

replacement HGP was predominant in 16 of 17 cases examined, with only one case 295 

presenting with a predominant desmoplastic HGP (Fig. 5a). Further histopathological 296 

characterization of replacement HGP BCLMs is presented in Fig. 5b–g. Breast 297 

cancer cells colonized the liver by replacing resident hepatocytes (Fig. 5d) with no 298 

desmoplastic stroma present at the tumor-liver interface (Fig. 5e). The vascular 299 

architecture of the adjacent liver was preserved at the tumor-liver interface (Fig. 5f) 300 

and the co-option of sinusoidal vessels was observed (Fig. 5g). These data show 301 

that the replacement HGP, which vascularizes by vessel co-option, predominates in 302 

breast cancer liver metastases.  303 



 

 12

Combined inhibition of vessel co-option and angiogenesis is more effective 304 

than inhibition of angiogenesis alone  305 

 Vessel co-option in the liver requires the infiltration of cancer cells into the 306 

normal liver parenchyma (for example see Fig. 3). We therefore reasoned that 307 

cancer cell motility may be required for vessel co-option. The Actin Related Proteins 308 

2/3 complex (Arp2/3 complex) mediates the nucleation of actin filaments at the 309 

leading edge of cells to drive cell movement, and has been previously implicated in 310 

the motility and invasion of both breast cancer cells and colorectal cancer cells22-24. In 311 

order to confirm expression of the Arp2/3 complex in human liver metastases, we 312 

performed staining for the Arp2/3 subunit ARPC3 using a well-validated antibody. 313 

ARPC3 was expressed in cancer cells in all human specimens we examined. 314 

Moreover, ARPC3 expression was significantly higher in replacement HGP 315 

metastases when compared to desmoplastic HGP metastases (Supplementary Fig. 316 

11).  317 

 To then address whether cancer cell motility mediated by Arp2/3 could play a 318 

functional role in the process of vessel co-option in vivo, we utilized a preclinical 319 

orthotopic model of advanced liver metastasis where HT29 colorectal cancer cells 320 

are directly injected into mouse liver (Supplementary Fig. 12). This model is 321 

commonly used to replicate the advanced stage of CRCLMs where patients are 322 

treated in the metastatic setting25-27. The CRCLMs generated in this model had a 323 

mixed HGP, being mainly composed of replacement HGP areas (Fig. 6a) and, to a 324 

lesser extent, desmoplastic HGP areas (Fig. 6b), thus recapitulating the two 325 

prevalent HGPs observed in human CRCLMs. We then attempted to knock-down 326 

ARPC3 expression in HT29 cells using three different ARPC3-targeting shRNA 327 

oligonucleotides. Two of these oligonucleotides (shARPC3-2 and shARPC3-3) 328 

significantly reduced ARPC3 expression in cells, whereas the third oligonucleotide 329 

(shARPC3-1), and a control non-targeting oligonucleotide (control shRNA), did not  330 

reduce ARPC3 expression in cells (Fig. 6c). In addition, knockdown of ARPC3 331 
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significantly suppressed the migration of HT29 cells (Fig. 6d) without any 332 

confounding effect on cell proliferation (Supplementary Fig. 13). Notably, knockdown 333 

of ARPC3 significantly decreased the replacement HGP in vivo, whilst significantly 334 

increasing the desmoplastic HGP (Fig. 6e). These data confirm that suppression of 335 

Arp2/3-mediated cancer cell motility inhibits the replacement HGP within this in vivo 336 

model and therefore also blocks the ability of these tumors to co-opt pre-existing liver 337 

vessels in vivo. 338 

We then evaluated whether combined inhibition of vessel co-option and 339 

angiogenesis is more effective at limiting tumor growth when compared to 340 

angiogenesis inhibition alone. Mice with established control- or ARPC3-knockdown 341 

tumors were treated with the VEGF-A inhibitory antibody B20-4.1.128 combined with 342 

capecitabine (Fig. 6f–h). In control tumors, which have a predominantly replacement 343 

HGP (Fig. 6f), no significant inhibition of tumor burden was observed in response to 344 

treatment when compared to vehicle control (Fig. 6g). However, in ARPC3 345 

knockdown tumors, which have a predominantly desmoplastic HGP (Fig. 6f), tumor 346 

burden was significantly suppressed by treatment (Fig. 6g). In addition, although 347 

treatment with B20-4.1.1 led to a reduced tumor vessel density in both control- and 348 

ARPC3 knockdown-tumors, this effect was more pronounced when vessel co-option 349 

was suppressed by knockdown of ARPC3 (Fig. 6h, Supplementary Fig. 14). The 350 

administration of capecitabine alone did not significantly suppress tumor burden or 351 

tumor vessel density in either control- or ARPC3-knockdown tumors (Supplementary 352 

Fig. 15). These data suggest that simultaneous inhibition of angiogenesis and vessel 353 

co-option may be a more effective strategy for the treatment of advanced liver 354 

metastases than current strategies which target angiogenesis alone. 355 

  356 
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Discussion 357 

When cancers metastasize to highly vascular organs (including the liver) they 358 

can sometimes utilize vessel co-option, instead of angiogenesis, as a mechanism to 359 

obtain a vascular supply10. Here we addressed whether vessel co-option could be a 360 

significant mechanism of resistance to anti-angiogenic therapy in patients with 361 

colorectal cancer liver metastases. We found that: (a) vessel co-option was the 362 

predominant mechanism of vascularization in approximately 40% of the lesions we 363 

examined, (b) metastases that utilized vessel co-option responded poorly to bev-364 

chemo, (c) vessel co-option was prevalent in patients that progressed following 365 

treatment with bev-chemo, and (d) patients with metastases that utilized vessel co-366 

option obtained less clinical benefit from bev-chemo in terms of overall survival. 367 

These observations strongly suggest that vessel co-option can blunt the therapeutic 368 

benefit achieved with anti-angiogenic therapy in metastatic colorectal cancer. 369 

 Our findings also have relevance for breast cancer. Phase 3 trials of 370 

bevacizumab combined with chemotherapy in metastatic breast cancer have 371 

consistently failed to demonstrate a survival benefit for the addition of bevacizumab29-372 

33. Here we found that the majority of breast cancer liver metastases utilize vessel co-373 

option. In addition, vessel co-option occurs in breast cancer metastases to the lymph 374 

nodes34,35, skin36, lungs7,37,38 and brain39-41. The prevalence of vessel co-option in 375 

breast cancer may explain, at least in part, why anti-angiogenic therapy has been a 376 

disappointing therapeutic approach in metastatic breast cancer.  377 

Biomarkers that are predictive of response to anti-angiogenic therapy in 378 

patients remain elusive6,11,42.  Our data suggest that patients who present with 379 

desmoplastic HGP liver metastases may derive more benefit from bevacizumab than 380 

patients who present with replacement HGP liver metastases, which identifies the 381 

HGPs as potential biomarkers for anti-angiogenic therapy. There are some 382 

characteristics that are present on magnetic resonance imaging (MRI) of the liver, or 383 

CT imaging of the liver, that might be exploited to determine the HGPs of liver 384 
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metastases prior to treatment. By using imaging to identify liver metastasis HGPs in 385 

this way, it may eventually be possible to select-out the patients with desmoplastic 386 

HGP liver metastases who are more likely to benefit from anti-angiogenic therapy.  387 

However, in the longer term, we believe that therapeutic strategies which can 388 

block vessel co-option in tumors should also be developed. In this regard, here we 389 

show that knockdown of Arp2/3-mediated cancer cell motility suppresses vessel co-390 

option in a preclinical model of advanced liver metastasis. Moreover, Kuczynski et al  391 

recently showed that acquired resistance to the anti-angiogenic drug sorafenib in 392 

hepatocellular carcinoma occurs due to increased cancer cell invasion in the liver 393 

which mediates co-option of pre-existing liver vessels43. Taken together, these and 394 

other data44-51, suggest a key role for cancer cell motility and cancer cell invasion in 395 

the process of vessel co-option and that targeting cancer cell movement might, 396 

therefore, be an effective means to block vessel co-option in tumors.  397 

In the current manuscript, we also present preclinical evidence that combined 398 

inhibition of angiogenesis and vessel co-option is more effective at controlling tumor 399 

burden than targeting angiogenesis alone. We propose therefore that therapies 400 

which are designed to inhibit both angiogenesis and vessel co-option should be 401 

explored in patients, as these may yield greater therapeutic benefit than current 402 

therapies that are designed to target angiogenesis alone.  403 
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Figure legends 618 
 619 

Figure 1 Correlation between HGP and pathological response in patients 620 
treated preoperatively with bevacizumab 621 
a. Diagrams illustrating the morphology of the normal liver or the morphology of the 622 
tumor-liver interface in liver metastases with a desmoplastic, pushing or replacement 623 
HGP. b. The HGPs and the pathological response to bev-chemo were scored in 59 624 
CRCLMs from 33 patients treated preoperatively with bev-chemo at RM. Graph 625 
shows % HGP (replacement, desmoplastic, pushing) scored in each individual lesion 626 

and the data are grouped by pathological response score: >75%, 50–75%, 25–49% 627 

or <25% viable tumor. Median number of lesions examined per patient was 1 (range 628 

= 1 to 4 lesions per patient). c–e. Examples of H&E-stained lesions from the RM 629 
cohort are shown. Arrows point to examples of replacement HGP areas. Arrowheads 630 
point to examples of desmoplastic HGP areas. Asterisks indicate areas of infarct-like 631 
necrosis. f. The HGPs and the pathological response to bev-chemo were scored in 632 
128 CRCLMs from 59 patients treated with bev-chemo at MUHC.  Graph shows % 633 
HGP (replacement, desmoplastic, pushing) scored in each individual lesion and the 634 
data are grouped by pathological response score: >75%, 50–75%, 25–49% or <25% 635 

viable tumor. Median number of lesions examined per patient was 2 (range = 1 to 12 636 

lesions per patient). The χ2-test was used to determine statistical significance (see 2 637 
x 2 contingency tables in panels b and f). Scale bars, 1 mm.  638 
 639 

 640 

641 
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Figure 2 Correlation between HGP and morphological response on CT in 642 
patients treated preoperatively with bevacizumab 643 
a–f. CT scans of patients treated preoperatively with bev-chemo. Examples of 644 
optimal (OR), partial (PR) or absent (AR) morphological response are shown.  645 
a,b. OR; in the pre-treatment image a lesion in liver segment VII (arrowhead) is 646 
scored as group-3 (a); the same lesion imaged after 4 cycles of bevacizumab in 647 
combination with CAPOX is now scored as group-1 (b).  648 
c,d. PR; in the pre-treatment image a lesion in liver segment II (arrowhead) is scored 649 
as group-3 (c); the same lesion imaged after 4 cycles of bevacizumab in combination 650 
with CAPOX is now scored as group-2 (d). 651 
e,f. AR; in the pre-treatment image a lesion in liver segment VI (arrowhead) is scored 652 
as group-3 (e); the same lesion imaged after 6 cycles of bevacizumab in combination 653 
with FOLFIRI is still scored as group-3 (f). 654 
g. Morphological response and HGP were scored in 52 liver metastases from 31 655 
patients treated preoperatively with bev-chemo at RM. Graph shows the % HGP 656 
scored in each individual lesion (replacement, desmoplastic, pushing). Lesions are 657 
grouped according to response: AR, PR or OR. Lesions scored as AR were classed 658 
as poor responders, whilst those scored as PR or OR were classed as good 659 
responders. Median number of lesions examined per patient was 1 (range = 1 to 4 660 

lesions per patient). The χ2 test was used to determine statistical significance (see 2 661 
x 2 contingency table in panel g).   662 
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Figure 3 Cancer cells infiltrate the hepatic plates and co-opt sinusoidal blood 663 
vessels in the replacement HGP 664 
a. An area of normal liver is shown. Staining is for hepatocyte specific antigen (HSA, 665 
green) to detect hepatocytes and collagen-3 (col-3, red) to detect liver sinusoidal 666 
blood vessels (SV). b–d. Staining for cancer cells (CK, red) and hepatocytes (HSA, 667 
green) at the tumor-liver interface (b,c) and within the tumor mass (d) in a 668 
replacement HGP liver metastasis of colorectal cancer. Examples of displaced 669 
hepatocytes are marked (arrowheads). e–g. Staining for cytokeratin 20 (CK20, 670 
brown) to identify cancer cells and CD31 to identify blood vessels (blue) in 671 
replacement HGP liver metastases of colorectal cancer. Arrows and arrowheads 672 
indicate examples of liver sinusoidal blood vessels where one end of the vessel is 673 
physically located in the liver parenchyma (arrows), whilst the other end is 674 
surrounded by cancer cells (arrowheads). Asterisk, tumor. Lv, normal liver. SV, 675 

sinusoidal blood vessel. Scale bars, 25 μM.  676 
  677 



 

 25

Figure 4 The replacement HGP occurs in progressive disease and is 678 
associated with a poor outcome in patients treated with bevacizumab 679 
a. Left: HGPs in untreated CRCLMs (n = 32 lesions from 19 MUHC patients).  680 
Middle: HGPs in pre-existing CRCLMs (n = 128 lesions from 59 MUHC patients). 681 
Right: HGPs in new CRCLMs (n = 35 lesions from 13 MUHC patients). Graphs show 682 
% replacement (R), % desmoplastic (D) and % pushing (P) HGP per lesion ± SEM. 683 
b. Kaplan-Meier estimates of OS for 62 MUHC patients treated preoperatively with 684 
bev-chemo stratified into two groups: predominant replacement HGP (26 patients) or 685 
predominant desmoplastic HGP (35 patients). c. Kaplan-Meier  estimates of OS for 686 
29 MUHC patients treated preoperatively with chemotherapy alone stratified into two 687 
groups: predominant replacement HGP (12 patients) or predominant desmoplastic 688 
HGP (16 patients). d. Kaplan-Meier estimates of OS for 51 MUHC patients with a 689 
predominant desmoplastic HGP stratified into two groups: desmoplastic HGP treated 690 
with bev-chemo (35 patients) or desmoplastic HGP treated with chemotherapy alone 691 
(16 patients). e. Kaplan-Meier estimates of OS for 38 MUHC patients with a 692 
predominant replacement HGP stratified into two groups: replacement HGP treated 693 
with bev-chemo (26 patients) or replacement HGP treated with chemotherapy alone 694 
(12 patients). Kruskall-Walls test (a) or the Log-Rank test (b–e) were used to 695 
determine statistical significance. Hazard ratios were calculated using Cox-696 
regression. * P<0.001.  697 
 698 

  699 
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Figure 5 The replacement HGP predominates in breast cancer liver metastases 700 
a. The HGPs were examined in breast cancer liver metastases (BCLMs) from 17 701 
patients. Graph shows the % HGP (replacement, desmoplastic, pushing) scored in 702 
each case. The cases are grouped by intrinsic subtype of breast cancer. Lum A, 703 
luminal A. Lum B (HER2-), luminal B HER2 negative. Lum B (HER2+), luminal B 704 
HER2 positive. TN, triple negative.  705 
b–g. Morphology of the replacement growth pattern of BCLMs. Diagram of the 706 
tumor-liver interface in the replacement HGP (b). H&E-stained human BCLM sample 707 
illustrating the tumor-liver interface (c). Co-staining for hepatocyte specific antigen 708 
(HSA) to label hepatocytes and pan-cytokeratin (CK) to label cancer cells confirms 709 
that breast cancer cells infiltrate the liver parenchyma and replace hepatocytes in 710 
BCLM (d). Co-staining for alpha smooth muscle actin (αSMA) to label fibroblasts and 711 
CK to label cancer cells confirms the absence of a desmoplastic stroma at the tumor-712 
liver interface in BCLM (e). Co-staining for collagen-3 (col-3) to label sinusoidal 713 
vessels and CK to label cancer cells shows that the vascular architecture of the 714 
adjacent liver is preserved at the tumor-liver interface in BCLM (f). Co-staining for 715 
CD31 to label blood vessels and cytokeratin 19 (CK19) to label cancer cells confirms 716 
the infiltrative pattern of tumor growth that facilitates vessel co-option in BCLM (g). 717 
Asterisk, cancer cells; Lv, normal liver. Scale bars, 50 μM. 718 
  719 
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Figure 6 Inhibition of vessel co-option and angiogenesis is more effective than 720 
targeting angiogenesis alone 721 
a,b. Areas of replacement (a) and desmoplastic (b) HGP are shown in a preclinical 722 
(HT29 cell line) orthotopic model of advanced liver metastasis. Staining shown is for: 723 
H&E, CK and HSA, CK and col-3, CK and αSMA or cytokeratin 20 (CK20) and 724 
CD31, as indicated. c,d. Characterization of parental HT29 cells (parent) and HT29 725 
cells transduced with control non-targeting shRNA (control shRNA) or ARPC3-726 
targeting shRNAs (shARPC3-1, shARPC3-2 or shARPC3-3). In c, ARPC3 727 
expression was determined by western blotting (see also Supplementary Data Set 728 
1). Graph shows ARPC3 expression relative to parental HT29 cells ± SEM  (n = 3 729 
independent western blots). In d, cell motility was measured by time-lapse 730 
microscopy. Graph shows cell velocity (μm per minute) relative to parental HT29 731 
cells ± SEM  (n = 30 tracked cells per group pooled from 2 independent 732 
experiments). e. Quantification of the HGPs in control- and ARPC3-knockdown 733 
tumors. Graph shows the % replacement (R), % desmoplastic (D) and % pushing (P) 734 
HGP per group ± SEM (n = 6 mice per group). f–h. Tumors with normal ARPC3 735 
levels (control shRNA) or ARPC3 knockdown (shARPC3-3) were established in the 736 
livers of mice, followed by treatment with B20-4.1.1 plus capecitabine (BC) or vehicle 737 
alone (Vh) for two weeks followed by histopathological analysis. Graph in f shows the 738 

% HGP per group ± SEM (n = 8 mice per group). Graph in g shows liver tumor 739 

burden expressed in terms of lesion area ± SEM (n = 8 mice per group). Graph in h 740 

shows tumor vessel density in terms of vessels per mm2 ± SEM (n = 8 mice per 741 
group). For statistical analysis, Student’s t-test (panels c,g,h) or Mann Whitney U-742 

test (panels d,e,f) were used. *P<0.05, **P<0.01 ***P<0.001, ****P<0.0001. n.s., no 743 
significant difference. Asterisk, cancer cells; DS, desmoplastic stroma; Lv, normal 744 

liver. Scale bars, 50 μM.  745 
  746 
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Online Methods 747 
 748 

Human samples 749 

Specimens were obtained from patients treated at The Royal Marsden (RM) 750 

in London, at McGill University Health Centre (MUHC) in Montreal and at Gasthuis 751 

Zusters Antwerpen (GZA) Hospitals St Augustinus in Antwerp. Informed consent was 752 

obtained from all patients. Ethical approval was granted by the local Research Ethics 753 

Committee at The Royal Marsden, the McGill University Health Centre Research 754 

Ethics Board and by the local Research Ethics Committee of the GZA Hospitals St. 755 

Augustinus.  756 

We identified all cases of CRC liver metastases (CRCLMs) resected from 757 

patients treated preoperatively with a combination of bevacizumab and 758 

chemotherapy (bev-chemo) at RM from 2006-2012 (101 metastases from 47 759 

patients). Of these, 59 liver metastases from 33 patients were eligible for our study 760 

correlating HGP with pathological response. A consort diagram illustrates how these 761 

59 cases were selected for inclusion (Supplementary Fig. 2). For patient 762 

characteristics see Supplementary Table 1. For correlating HGP with morphological 763 

response on imaging, 52 lesions from 31 patients were eligible for inclusion 764 

(Supplementary Fig. 2). For correlating HGP with response by RECIST criteria all 59 765 

liver metastases from 33 patients were eligible for inclusion.  766 

We identified all CRCLMs resected from patients treated preoperatively with 767 

bev-chemo at MUHC from 2008–2014 (191 CRC liver metastases from 65 patients). 768 

Of these, 128 liver metastases from 59 patients were eligible for correlating HGP with 769 

pathological response (Supplementary Fig. 4). For patient characteristics see 770 

Supplementary Table 3. For the analysis of new CRCLMs (i.e. lesions that only 771 

presented after the initiation of bev-chemo but were not present on baseline scans) 772 

we identified 35 resected lesions from 13 patients treated preoperatively with bev-773 

chemo at MUHC (Supplementary Fig. 4). For patient characteristics see 774 
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Supplementary Table 6. A total of 148 liver metastases from 62 patients treated 775 

preoperatively with bev-chemo were eligible for correlating HGP with overall survival. 776 

For the analysis of CRC liver metastases from patients that did not receive pre-777 

operative therapy, we identified 32 lesions from 19 patients at MUHC. For patient 778 

characteristics see Supplementary Table 7. For the analysis of CRCLMs from 779 

patients treated with chemotherapy alone we identified all cases of CRCLMs 780 

resected from patients treated preoperatively with chemotherapy at MUHC from 781 

2008–2014 (81 metastases resected from 30 patients) and from this group a total of 782 

76 liver metastases from 29 patients were eligible for our study correlating HGP with 783 

overall survival. 784 

For breast cancer, all breast cancer liver metastasis cases obtained via 785 

resection or autopsy at GZA Hospitals St. Augustinus from 2004–2015 were 786 

examined (17 patients). For patient characteristics see Supplementary Table 11.  787 

 788 

  789 
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Therapy administration 790 

 Patients receiving treatment with bevacizumab in combination with 791 

chemotherapy were treated with one the following regimens. 792 

 CAPOX plus bevacizumab: 21 day treatment cycle consisting of 15 minute 793 

intravenous infusion of bevacizumab (7.5 mg per kg) and 2 hour intravenous infusion 794 

of oxaliplatin (130 mg per m2) on day one, followed by daily oral capecitabine (1700 795 

mg per m2) in two divided doses from days 1 to 14.  796 

 FOLFOX plus bevacizumab: 14 day treatment cycle consisting of 10 minute 797 

intravenous infusion of bevacizumab (5 mg per kg), 2 hour intravenous infusion of 798 

oxaliplatin (85 mg per m2), 2 hour intravenous infusion of folinic acid (400 mg per m2) 799 

with a bolus dose of 5-FU (400 mg per m2) on day one, followed by 48 hour 800 

continuous intravenous infusion of 5-FU (1200 mg per m2 per day).  801 

 FOLFIRI plus bevacizumab: 14 day treatment cycle consisting of 10 minute 802 

intravenous infusion of bevacizumab (5 mg per kg), 1 hour intravenous infusion of 803 

irinotecan (180 mg per m2), 1 hour intravenous infusion of folinic acid (400 mg per 804 

m2) with a bolus dose of 5-FU (400 mg per m2) on day one, followed by 48 hour 805 

continuous intravenous infusion of 5-FU (1200 mg per m2 per day). 806 

 For patients that received chemotherapy alone, most patients received either 807 

FOLFOX or FOLFIRI administered as described above without the addition of 808 

bevacizumab. However, a minority of patients that received chemotherapy alone 809 

received one of the following regimens instead. 810 

 FOLFIRINOX: 14 day treatment cycle consisting of oxaliplatin (85 mg per m2), 811 

irinotecan (180 mg per m2), leucovorin (400 mg per m2), and 5-FU (400 mg per m2) 812 

followed by a 48 hour continuous intravenous infusion of 5-FU (1200 mg per m2 per 813 

day).  814 

 5-FU: 14 day treatment cycle consisting of leucovorin (400 mg per m2) and 5-815 

FU (400 mg per m2) followed by 48 hour continuous intravenous infusion of 5-FU 816 

(1200 mg per m2 per day). 817 
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 818 

 The decision to administer therapy, the type of therapy and the number of 819 

cycles were based on the recommendation of the local multidisciplinary team. 820 

Patients received oxaliplatin- or irinotecan-based regimens with the addition of 821 

bevacizumab preferentially, as long as there were no contraindications to administer 822 

bevacizumab, such as uncontrolled hypertension, history of gastrointestinal 823 

perforation, history of arterial or venous thromboembolic events, history of significant 824 

bleeding, recent surgery or nephrotic syndrome. In the case that the patient was 825 

deemed unsuitable for administration of bevacizumab, the patient received 826 

chemotherapy alone. 827 

 828 

Scoring HGPs  829 

Sections (5 μm thickness) were prepared from formalin fixed paraffin-830 

embedded (FFPE) liver resection specimens, stained with H&E and then scored for 831 

HGP by two pathologists with extensive experience of scoring the HGPs. In brief, the 832 

tumor-liver interface was categorized as being desmoplastic, pushing or replacement 833 

HGP according to the following criteria. Desmoplastic HGP: there was no direct 834 

contact between cancer cells and liver parenchyma and the cancer cells were 835 

separated from the liver parenchyma by a layer of desmoplastic stroma. Pushing 836 

HGP: close contact between cancer cells and normal liver tissue was observed, 837 

without an intervening desmoplastic stroma. The normal liver was compressed by the 838 

tumor and no invasion of cancer cells into the hepatic plates was observed. 839 

Replacement HGP: close contact between cancer cells and liver parenchyma was 840 

observed, without an intervening desmoplastic stroma. The cancer cells invaded into 841 

the hepatic plates and replaced the hepatocytes without destroying the vascular 842 

architecture of the liver at the tumor-liver interface.  843 

Given that some lesions present with a mixture of different HGPs, the 844 

percentage of the tumor-liver interface with a desmoplastic, pushing or replacement 845 
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HGP was scored in intervals of 5% in all available tissue blocks. Where multiple 846 

blocks were available, the mean average score was calculated to produce a single 847 

score for % desmoplastic, % pushing and % replacement for each lesion.  848 

In some cases, invasion of cancer cells into the hepatic plates (which is a 849 

defining feature of the replacement HGP and required for vessel co-option) was also 850 

accompanied by compression of the liver parenchyma. These cases were scored as 851 

replacement HGP and not pushing HGP. This subtle but important refinement to the 852 

criteria for scoring the HGPs helps to explain why, in the current study, the incidence 853 

of the replacement HGP in CRC metastases is higher than in some previous studies.  854 

 855 

Agreement of HGP scores  856 

 The level of intra-observer and inter-observer agreement for scoring the 857 

HGPs was tested independently. In brief, two pathologists (observers A and B) 858 

scored the HGP (% replacement, % desmoplastic and % pushing) in 150 tissue 859 

sections of resected CRCLM without conferring. After a break of several weeks, the 860 

two pathologists scored the same set of 150 tissue sections again without conferring 861 

and without reference to their previous scores. The % replacement scores from each 862 

round of scoring were then used to test the level of intra- and inter-observer 863 

agreement. The difference between scores is plotted in Supplementary Fig. 16. 864 

 The correlation between scores was calculated using Pearson’s correlation 865 

co-efficient. We also analyzed the data using Bland-Altman plots (Supplementary 866 

Fig. 17) from which we determined the mean difference between the scores and the 867 

limits of agreement (2 standard deviations from the mean difference)52. The results 868 

are tabulated in Supplementary Table 12.  869 

  There was a strong correlation (r > 0.98) between the scores recorded by the 870 

same observer (intra-observer agreement), and also a strong correlation (r > 0.96) 871 

between the scores recorded by the two different observers (inter-observer 872 
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agreement). The Bland-Altman plots showed that the mean difference between the 873 

scores recorded by the same observer was small (0.033 and −0.633) and that the 874 

mean difference between the scores recorded by the two different observers was 875 

also small (−1.500 and −2.167). Taken together, these data indicate that there is a 876 

good level of inter- and intra-observer agreement between observers for scoring the 877 

HGPs.  878 

 Despite this fact, the limits of agreement for the inter-observer agreement are 879 

quite wide (−22.88 to 19.88 and −25.287 to 20.953). This occurred due to the 880 

presence of some cases which have a ‘mixed’ growth pattern that can be more 881 

difficult to score and led to some divergent scores. However, in the main study, in 882 

any cases having a ‘mixed’ growth pattern where there was a significant 883 

disagreement between observers, the two observers were always able to reconcile 884 

their differences in order to produce a single consensus score for the lesion.  885 

 886 

Scoring of pathological response to therapy 887 

For scoring of the pathological response to bev-chemo from H&E-stained 888 

specimens, the extent of viable carcinoma was assessed semi-quantitatively as a 889 

percentage relative to the total tumor surface area. Each lesion was assigned as 890 

belonging to one of four categories: >75%, 50–75%, 25–49% or <25% viable 891 

carcinoma53, with areas of ‘usual necrosis’ being considered part of the viable tumor 892 

fraction, whilst areas of ‘infarct-like necrosis’ were considered to be non-viable54. 893 

Pathological response was scored independently by three experienced pathologists 894 

using these criteria. Any difference in score that occurred between pathologists was 895 

resolved by consensus to produce a single score for each lesion. 896 

 897 

  898 
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Scoring of morphological response to therapy  899 

Pre- and post-treatment contrast-enhanced CT scans of suitable quality were 900 

available for 52 lesions from 31 patients for this analysis (see consort diagram, 901 

Supplementary Fig. 2) and the response to therapy was evaluated using a method 902 

based on previously published morphological response criteria18,20 as described 903 

below.   904 

The appearance of each lesion on both the pre- and post-treatment scan was 905 

scored as belonging to one of three morphology groups (group-1, group-2 or group-906 

3). A homogeneous, low attenuation lesion with a thin, sharply defined tumor-liver 907 

interface was defined as group-1. A lesion having heterogeneous attenuation and a 908 

thick, poorly defined tumor-liver interface was defined as group-3. A lesion that was 909 

intermediate between group-1 and group-3, having a moderate degree of 910 

heterogeneous attenuation and a moderately defined tumor-liver interface, was 911 

defined as group-2.  912 

Morphological response was defined as an optimal response (OR) if the 913 

lesion changed from a group-3 or group-2 to a group-1 following treatment; a partial 914 

response (PR) if the lesion changed from group-3 to group-2 following treatment; and 915 

an absent response (AR) if the metastasis either did not change group, or went from 916 

group-2 to group-3, following treatment. Morphological response was scored 917 

independently by two observers. Any difference in scores was resolved by 918 

consensus to produce a single score for each lesion. Lesions scored as AR were 919 

considered to be poor responders, whilst lesions scored as PR or OR were 920 

considered to be good responders. Scorers were blinded as to the HGP and 921 

pathological response data.  922 

  923 
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Scoring of response by RECIST  924 

Change in lesion size was determined from MRI scan data, by calculating the 925 

change in lesion diameter that occurred between the pre- and post-treatment scans. 926 

The lesion size measurements were obtained from the patient records and were 927 

therefore blinded, because the original reporting radiologist had no prior knowledge 928 

of our retrospective HGP and pathological response data. For this analysis, MRI 929 

scans of suitable quality were available for 59 lesions from 33 patients. Lesions were 930 

classified as partial response (PR), stable disease (SD) or progressive disease (PD) 931 

according to the following criteria: PR (lesion underwent ≥30% decrease in size 932 

between pre- and post-treatment scan), SD (lesion underwent <30% decrease in size 933 

and <20% increase in size between pre- and post-treatment scan) and PD (lesion 934 

underwent ≥20% increase in size between pre- and post-treatment scan).  935 

 936 

Kaplan-Meier estimates of overall survival 937 

Patients were allocated to one of three groups: predominant replacement, 938 

predominant desmoplastic or predominant pushing. To allocate patients to each 939 

group, the mean percentage of replacement, desmoplastic and pushing HGP was 940 

calculated for each patient using the data available from all lesions. Patients with a 941 

mean replacement HGP of >50% were allocated to the predominant replacement 942 

group, patients with a mean desmoplastic HGP of >50% were allocated to the 943 

predominant desmoplastic group and patients with a mean pushing HGP of >50% 944 

were allocated to the predominant pushing group. This method allowed unambiguous 945 

allocation of patients to the three groups (i.e. there were no patients scored as 946 

having a 50:50 score for two growth patterns). Overall survival estimates were 947 

calculated from the date of diagnosis of liver metastases to the date of death or to 948 

the date of last follow-up. 949 

 950 

951 
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Immunohistochemistry  952 

  Sections of 5 μm thickness were prepared from FFPE blocks, de-paraffinized 953 

and rehydrated by standard protocols. Depending on the antibodies used, antigen 954 

retrieval was performed either at pH 6 in a pressure cooker (Menapath Access 955 

Retrieval Unit, Menarini Diagnostics) or at pH 9 in a microwave. Sections were 956 

incubated in blocking buffer (1% BSA in PBS-T) for 1 hour followed by incubation 957 

with primary antibodies in blocking buffer for 2 hours, all at room temperature. 958 

Primary antibodies used were: mouse anti-ARPC3 (Millipore, MABT95; dilution 959 

1:2500), mouse anti-human CD31 (Dako, M0823; dilution 1:30), rabbit anti-mouse 960 

CD31 (Dianova, DIA310; dilution 1:75), rabbit anti-collagen-3 (Abcam, ab7778; 961 

dilution 1:200), mouse anti-cytokeratin-19 (Dako, M0888; dilution 1:100), mouse anti-962 

cytokeratin-20 (Dako, M7019; dilution 1:50), mouse anti-estrogen receptor alpha 963 

(ER) (Dako, M3643, dilution 1:80), mouse anti-hepatocyte specific antigen (Santa 964 

Cruz Biotechnology, sc-58693; dilution 1:400), mouse anti-pan-cytokeratin (Dako, 965 

M3515, dilution 1:75), rabbit anti-pan-cytokeratin (Dako, Z0622; dilution 1:400), 966 

mouse anti-Ki67 (Dako, M7240; dilution 1:300), mouse anti-progesterone receptor 967 

(PgR) (Dako, M3643; dilution 1:200) and rabbit anti-αSMA (Abcam, ab5694; dilution 968 

1:500). Antibody validation is provided on the manufacturers’ websites. For 969 

immunofluorescence, primary antibodies were detected with Alexa-488 or Alexa-555 970 

fluorescently-conjugated secondary antibodies (Invitrogen) diluted in blocking buffer 971 

supplemented with DAPI for 30 mins at room temperature, followed by mounting 972 

under glass coverslips in MOWIOL mountant supplemented with anti-fade (0.1% w/v 973 

1,4-diazabicyclo[2.2.2]octane) (Sigma). For DAB and TMB staining, primary 974 

antibodies were detected with Envision Flex system (K8002, Dako), followed by a 975 

light counterstain with hematoxylin before mounting under glass coverslips in DPEX 976 

mountant. For HER2 we used the HercepTest kit (SK001, Dako). Images were 977 

captured using a confocal laser-scanning microscope (Leica) or a light microscope 978 
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(Olympus), as appropriate.  979 

 980 

Scoring subtypes of breast cancer  981 

Cases of breast cancer liver metastasis were characterized for intrinsic 982 

molecular subtype as per published guidelines55. In brief, FFPE sections were 983 

stained for ER, PgR, HER2 or Ki67 and scored by a pathologist. For both ER and 984 

PgR, positive staining in ≥1% of tumor cell nuclei was required in order for the case 985 

to be considered receptor positive56. For HER2, the following system was utilized:  0 986 

or 1+ (HER2 negative), 2+ (HER2 borderline), or 3+ (HER2 positive)57. HER2 987 

borderline cases underwent additional testing using HER2 CISH pharmDx kit 988 

(SK109, Dako) to test for HER2 amplification. The presence of HER2 amplification 989 

was considered to indicate that the case was HER2 positive. Cases were deemed 990 

Ki67 ‘low’ if <14% of nuclei were Ki67 positive, otherwise they were considered to be 991 

Ki67 ‘high.’ The results of the ER, PgR, HER2 and Ki67 analysis were then used to 992 

assign each case to an intrinsic molecular subtype according to the criteria 993 

recommended by Goldhirsch et al 55 as detailed in Supplementary Table 13. 994 

 995 

Cell culture  996 

Luciferase-tagged HT29 cells (HT-29-luc2 from Caliper Life Sciences) were 997 

authenticated by STR typing and regularly tested for mycoplasma and shown to be 998 

contamination free. They were cultured in DMEM supplemented with 10% FCS, L-999 

glutamine and penicillin/streptomycin at 37°C in an atmosphere of 5% CO2.  1000 

 1001 

  1002 
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shRNA knockdown  1003 

 HT29 cells were stably transduced with shRNA oligonucleotides using 1004 

lentiviral particles. We utilized three different shRNA oligonucleotides designed to 1005 

target ARPC3 (shARPC3-1, shARPC3-1, shARPC3-1) and a control oligonucleotide 1006 

with a validated non-targeting sequence (control shRNA) as follows:  1007 

 1008 

shARPC3-1 (5’CACCCGCTTAATAAGAATAAGTACGAATACTTATTCTTATTAAGCG3’)  1009 

shARPC3-2 (5’CACCGAAATGTATACGCTGGGAATCCGAAGATTCCCAGCGTATACATTTC3’)  1010 

shARPC3-3 (5’CACCGCCAAGGTGAGAAAGAAATGTCGAAACATTTCTTTCTCACCTTGGC3’) 1011 

control shRNA (5’CACCTAAGGCTATGAAGAGATACCG AAGTATCTCTTCATAGCCTTA3’) 1012 

  1013 

Oligonucleotides were ligated into the pENTR/U6 Gateway system entry vector 1014 

(Invitrogen) according to the manufacturer's instructions. Oligonucleotide sequences 1015 

were verified by sequencing and then transferred, together with the U6 promoter, into 1016 

the Gateway-modified pSEW lentiviral vector (this vector also contains the EGFP 1017 

gene under the control of an independent SFFV promoter). Viral supernatants were 1018 

generated by lipofectamine-2000 co-transfection of this expression vector and two 1019 

packaging vectors (psPAX2 and pMD2.G) into HEK293T cells. Viral supernatants 1020 

were collected and stored at -80°C until use. Adherent HT29 cells were infected with 1021 

viral supernatant for 24 hours. Following this, the infecting medium was aspirated 1022 

and replaced by DMEM complete. At 3–5 days after infection, HT29 cells were 1023 

trypsinized and sorted for GFP expression by flow cytometry on a FACS ARIA 1024 

instrument (BD Biosciences).  1025 

 1026 

  1027 
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Western blotting 1028 

Western blotting was performed as described58. In brief, cell lysates were 1029 

separated on 10% SDS-PAGE gels at 150 V for 1 hour.  Transfer to nitrocellulose 1030 

membranes was performed at 100 V for 1 hour. Membranes were blocked using 1031 

blocking buffer (TBS-T supplemented with 5% milk) and then probed with anti-1032 

ARPC3 antibodies (Santa Cruz Biotechnology, sc-136020; dilution 1:200) or anti-1033 

HSC70 antibodies (Santa Cruz Biotechnology, sc-7298; dilution 1:20,000). After 1034 

incubation with HRP-conjugated secondary antibodies in blocking buffer, membranes 1035 

were incubated with chemiluminescence substrate and exposed to films. 1036 

Densitometry was performed using ImageJ software on three independent western 1037 

blots. Expression levels of ARPC3 were normalized to the expression level of HSC-1038 

70. Antibody validation is provided on the manufacturer’s website.   1039 

 1040 

Cell motility assay 1041 

Cells were plated at a density of 50,000 cells per well in a 6-well plate. After 1042 

24 hours, the media was refreshed and the plates were transferred to the stage of an 1043 

inverted Leica IX-70 time-lapse microscope at 37°C in an atmosphere containing 5% 1044 

CO2. Images were captured through a 20X phase contrast objective every 30 1045 

minutes for 48 hours. To measure cell migration, random cells were tracked in time-1046 

lapse videos for 30 hours using the manual tracking plugin in ImageJ. For the 1047 

purposes of quantification, 30 cells from each experimental group were analyzed 1048 

from across two independent experiments. Results were expressed in terms of cell 1049 

velocity (μm per minute). 1050 

 1051 

  1052 
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Cell proliferation assay  1053 

To assess the proliferation kinetics of cells, 2000 HT29 cells were seeded (in 1054 

quadruplicate wells) on to four different 96-well plates (plates 1 to 4). Cell viability 1055 

was measured from plates 1, 2, 3 and 4 at 24, 48, 72 and 96 hours, respectively, 1056 

using the CellTitre-Glo reagent (Promega) according to the manufacturer’s 1057 

instructions. The quantity of viable cells was expressed relative to the signal at 24 1058 

hours from three independent experiments. 1059 

 1060 

Preclinical model of advanced liver metastasis 1061 

The Institute of Cancer Research Animal Ethics Committee granted approval 1062 

for animal work. Procedures were performed in accordance with United Kingdom 1063 

Home Office regulations. We used female CB17 SCID mice (CB17/lcr-1064 

Prkdcscid/lcrlcoCrl) at 12–16 weeks of age (obtained from Charles River UK). Parental 1065 

HT29 cells, or HT29 cells stably transduced with shRNA constructs, were 1066 

resuspended in growth factor-reduced Matrigel (Invitrogen) at a concentration of 1067 

1x107 cells per ml. Cells were introduced into the liver by laparotomy performed 1068 

under general anesthesia (inhaled isofluorane). A midline incision was made through 1069 

the peritoneum and the left main lobe of the liver was exteriorized. This lobe was 1070 

injected with 4x105 cells in a volume of 40 μL using a 29-gauge needle and then 1071 

returned to the peritoneal cavity, followed by closure of the wound. In order to assess 1072 

the effect of ARPC3 knockdown on the HGP (Fig. 6e) mice were culled 21 days post-1073 

injection of cancer cells. The tumor-bearing liver lobe was harvested, fixed in formalin 1074 

and embedded in paraffin. 1075 

For experiments where treatment was administered (Fig. 6f–h and 1076 

Supplementary Fig. 15), we waited for 10 days post- injection to allow for tumor 1077 

establishment. At 10 days, mice were injected subcutaneously with 75 mg per kg D-1078 

luciferin (Caliper Life Sciences), anesthetized with isofluorane and then imaged in an 1079 

Lumina II™ IVIS (In Vivo Imaging System) instrument (Caliper Life Sciences).  1080 
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Quantification of liver bioluminescence was performed using Living Image™ software 1081 

(Caliper Life Sciences) according to manufacturer’s instructions. The 1082 

bioluminescence measurement was used to ensure that subjects of equivalent tumor 1083 

burden were allocated to each experimental group.  1084 

Capecitabine powder (LC Laboratories) was dissolved in vehicle for oral 1085 

administration (40 mM citrate buffer pH 6, 5% gum Arabic). B20-4.1.1 (Genentech), 1086 

an antibody that blocks both mouse and human VEGF-A28, was formulated in sterile 1087 

PBS for intraperitoneal administration. One cycle of therapy consisted of the 1088 

following: mice received 500 mg per kg capecitabine or vehicle by oral gavage every 1089 

day for 5 days, followed 2 days treatment break, with intraperitoneal injection of 2.5 1090 

mg per kg B20-4.1.1 or vehicle on the first and fifth day of the cycle. In mice that 1091 

received capecitabine alone, the same protocol was followed but without the 1092 

administration of B20-4.1.1. Mice were administered two cycles of therapy and then 1093 

culled at 24 days post-injection of cancer cells. The tumor-bearing liver lobe was 1094 

harvested, fixed in formalin and embedded in paraffin. 1095 

For quantification of tumor burden, H&E-stained sections were prepared. 1096 

Sections were digitally scanned (Nanozoomer, Hamamatsu) and imported into NDPI 1097 

viewer software (Hamamatsu). The marquee tool was used freehand to create 1098 

regions of interest (ROIs) around areas of tumor in the section and tumor burden 1099 

measurement was calculated in terms of area in mm2. For quantification of vessel 1100 

density, sections were co-stained for CD31 (detected with TMB) and CK20 (detected 1101 

with DAB). Tumor vessels were manually counted and expressed in terms of vessels 1102 

per mm2 of tumor area. H&E-stained sections were scored for HGP according to the 1103 

same criteria used for human samples of liver metastasis. The scoring of tumor 1104 

burden, vessel density and HGPs was performed in a blinded fashion. The number of 1105 

mice per group was selected based on prior experience regarding the minimum 1106 

number of animals necessary to detect a statistically significant difference between 1107 

experimental groups. No randomization method was used.  1108 
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 1109 

ARPC3 staining  1110 

 HT29 cells stably transfected with the control shRNA or shARPC3-3 were 1111 

grown to confluency, washed in PBS, harvested by trypsinization and then pelleted 1112 

by centrifugation. Pelleted cells (approximately 1x107 cells per pellet) were then 1113 

resuspended in formalin and fixed for 15 minutes followed by pelleting again and 1114 

embedding in paraffin. Tissue sections were prepared and then stained using anti-1115 

ARPC3 antibody (Millipore, MABT95; dilution 1:2500) as described above (see 1116 

Immunohistochemistry) with antigen retrieval performed in pH 6 citrate buffer with 1117 

heating in a microwave for 18 minutes.  1118 

 The same staining protocol was used to stain for ARPC3 in FFPE tissue 1119 

sections of human liver metastasis specimens. Positive staining for ARPC3 was 1120 

observed in cancer cells and in some stromal cell types (including immune cells and 1121 

Kuppfer cells), but only cancer cell staining was scored. The scoring of ARPC3 1122 

staining intensity in cancer cells was performed semi-quantitatively by a pathologist. 1123 

For each case examined, the percentage of cancer cells having 1+ (weak), 2+ 1124 

(moderate) or 3+ (strong) staining intensity was scored. The result for each case was 1125 

expressed as an H-score as calculated by the formula: (% area of weak staining) + (2 1126 

x % area of moderate staining) + (3 x % area of strong staining). This generated a 1127 

score between 0 - 300 for each case. 1128 

 1129 

  1130 
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Statistical analysis 1131 

 The univariate analysis of clinical data reported in Figs. 1 and 2, in 1132 

Supplementary Figs. 3, 5, 6, 7 and 8, and in Supplementary Tables 2, 4, 9 and 10 1133 

was performed using the two-tailed χ2 test. A univariate and multivariate analysis on 1134 

181 lesions from 90 patients was performed to determine clinical characteristics 1135 

significantly associated with a good pathological response. Given that some lesions 1136 

came from the same patient, a generalized estimating equation (GEE) approach was 1137 

used to account for the within-patient covariance (exchangeable working correlation 1138 

structure was used to specify the correlation among lesions clustered within the 1139 

same patient). A total of 12 different clinical variables were included in the univariate 1140 

analysis. Only 5 variables which met a pre-defined threshold for association with 1141 

pathological response in the univariate GEE analysis (P-value <0.25) were then 1142 

included in the subsequent multivariate GEE analysis. The results of the analysis are 1143 

reported in Supplementary Table 5. 1144 

For the overall survival data, the Log-Rank test was used to determine the 1145 

statistical signficance and Cox proportional hazards regression was used to 1146 

determine hazard ratios (Fig. 4b–e). A univariate and multivariate analysis to 1147 

determine clinical characteristics associated with overall survival was performed 1148 

using the Cox proportional hazards regression model. A total of 12 different clinical 1149 

variables were included in the univariate analysis. Only 2 variables which met a pre-1150 

defined threshold for association with overall survival in the univariate analysis (P-1151 

value <0.25) were then included in the subsequent multivariate analysis. The results 1152 

of the analysis are reported in Supplementary Table 8. The proportional hazards 1153 

assumption for the Cox regression models was tested based on weighted 1154 

Schoenfeld residuals59: for the overall survival analyses (Fig. 4b–e) the P-values 1155 

calculated ranged from 0.09 to 0.69, for the univariate analyses the P-values 1156 

calculated ranged from 0.08 to 0.99 (depending on the variable), whilst the global P-1157 
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value calculated for the multivariate analysis was 0.85, indicating that the 1158 

proportional hazards ratio assumption was not rejected in any instance. 1159 

 Where appropriate, the Kolmogorov-Smirnov normality test was used to 1160 

determine the normality of the data and the F-test equality of variances test was used 1161 

to determine whether the variance between groups was similar. For normally 1162 

distributed data, we used two-tailed unpaired Student’s t-test (with Welch’s correction 1163 

applied if the variance between groups was not similar) to compare experimental 1164 

groups (Fig. 6g,h and Supplementary Figs. 11h and 15b,c). For non-normally 1165 

distributed data we used Kruskal-Wallis test (Fig. 4a) or Mann-Whitney U-test (Fig. 1166 

6d-f and Supplementary Fig. 15a) to compare experimental groups. For data where 1167 

the sample number was too small (n = 3 independent experiments) to determine 1168 

normality, but where the variance between groups was similar, we used two-tailed 1169 

unpaired Student’s t-test to compare experimental groups (Fig. 6c and 1170 

Supplementary Fig. 13). Intra- and inter-observer agreement for scoring the HGPs 1171 

was analyzed using Pearson’s correlation co-efficient and Bland-Altman plots 1172 

(Supplementary Fig. 17). For all statistical analyses, P-values below 0.05 were 1173 

considered statistically significant. 1174 

 1175 
 1176 
 1177 

 1178 



Individual CRC liver metastases (RM cohort)

Individual CRC liver metastases (MUHC cohort)

Score the HGP and the
pathological response 

Resection

0

20

40

60

80

100

H
G

P 
(%

)

0

20

40

60

80

100

Preoperative bev–chemo

>75% viable 50 – 75% viable 25 – 49% viable <25% viable

Poor pathological response Good pathological response

b

c

*

*
d

*

*
e

f

H
G

P 
(%

)

Metastases
Treated 

metastases
Resected

metastases

Figure 1
a Normal liver Pushing HGPDesmoplastic HGP Replacement HGP

Hepatocyte

Pre-existing 
sinusoidal 
blood vessel

Desmoplastic 
stroma

Cancer cell

New blood vessel

>75% viable 50 – 75% viable 25 – 49% viable <25% viable

Poor pathological response Good pathological response

Replacement (R)
Desmoplastic (D)
Pushing (P)

Response
Poor Good

  <50% R

  Total

  Total

26 (96.2%) 1 (3.7%)

11 (34.4%) 21 (65.6%) 

27 (100%)

32 (100%)

37 (62.7%) 22 (37.3%) 59 (100%)

P < 0.001

  ≥50% R
No. of 
lesions

Response
Poor Good

  <50% D

  Total

  Total

10 (32.3%) 21 (67.7%)

27 (96.4%) 1 (3.6%) 

31 (100%)

28 (100%)

37 (62.7%) 22 (37.3%) 59 (100%)

P < 0.001

  ≥50% D
No. of 
lesions

Response
Poor Good

  <50% R

  Total

  Total

52 (89.7%) 6 (10.3%)

30 (42.9%) 40 (57.1%) 

58 (100%)

70 (100%)

82 (64.1%) 46 (35.9%) 128 (100%)

P < 0.001

  ≥50% R
No. of 
lesions

Response
Poor Good

  <50% D

  Total

  Total

26 (39.4%) 40 (60.6%)

56 (90.3%) 6 (9.7%) 

66 (100%)

62 (100%)

82 (64.1%) 46 (35.9%) 128 (100%)

P < 0.001

  ≥50% D
No. of 
lesions

Replacement (R)
Desmoplastic (D)
Pushing (P)

*

*



a b

c d

e f

Figure 2

0

20

40

60

80

100

H
G

P 
(%

)

g
AR PR OR

Individual CRC liver metastases (RM cohort)

Poor morphological 
response

Good morphological 
response

Response
Poor Good

  <50% R

  Total

  Total

18 (85.7%) 3 (14.3%)

15 (48.4%) 16 (51.6%) 

21 (100%)

31 (100%)

33 (63.5%) 19 (36.5%) 52 (100%)
  ≥50% R

No. of 
lesions

Replacement (R)
Desmoplastic (D)
Pushing (P)

P = 0.006



Col-3  
HSA

CK  
HSA

Figure 3

CK  
HSA

CK  
HSA

c

a b

d

e f g

*
Lv

*

Lv

*
Lv

CK20 CD31 CK20 CD31 CK20 CD31

SV

SV

SV

SV

SV

SV

SV

SV SV

SV SV

SV



Figure 4

 Untreated CRCLMs Pre-existing CRCLMs New CRCLMs

Bev–chemo

R D P

M
ea

n 
H

G
P 

(%
)

0

20

40

60

80

100

R D P R D P

*

*

b

a

c

Pe
rc

en
t s

ur
vi

va
l

Replacement (bev–chemo) 

Desmoplastic (bev–chemo) 

HR = 3.50, 95% CI  1.49 – 8.20 (Cox–regression)  
P = 0.0022 (Log–Rank)

HR = 0.90, 95% CI  0.31 – 2.61 (Cox–regression)   
P = 0.846 (Log–Rank)

0

25

50

75

100 Replacement (chemo alone) 

Desmoplastic (chemo alone) 

0

25

50

75

100

d e
Desmoplastic (bev–chemo) 

Desmoplastic (chemo alone) 

Replacement (bev–chemo) 

Replacement (chemo alone) 

Pe
rc

en
t s

ur
vi

va
l

0

25

50

75

100

Pe
rc

en
t s

ur
vi

va
l

0

25

50

75

100

HR = 2.49, 95% CI  0.93 – 6.67 (Cox–regression)   
P = 0.0605 (Log–Rank)

HR = 0.69,  95% CI  0.27 – 1.77 (Cox–regression) 
P = 0.433 (Log–Rank) 

0 1 2 3 4 5 6 7 8

Time (years)  
0 1 2 3 4 5 6 7 8

Time (years)  

0 1 2 3 4 5 6 7 8

Time (years) 
0 1 2 3 4 5 6 7 8

Time (years)  

Pe
rc

en
t s

ur
vi

va
l

f Treatment HGP n Median OS Rate 95% CI Rate 95% CI 
bev-chemo replacement 26 patients 39.2 months 52.8% 29.3 – 71.8 21.1% 5.7 – 42.9
bev-chemo desmoplastic 35 patients median not reached 86.3% 67.2 – 94.7 51.2% 21.9 – 74.5
chemo alone replacement 12 patients 36.4 months 41.3% 12.9 – 68.3 41.3% 12.9 – 68.3
chemo alone desmoplastic 16 patients 50.6 months 53.3% 22.8 – 76.5 26.7% 4.6 – 56.7

3-year OS 5-year OS

Bev–chemo



Lum A
Lum B 

(HER2–)
Lum B 

(HER2+) TN

Replacement
Desmoplastic
Pushing

0

20

40

60

80

100

Individual cases of breast cancer liver metastases 

H
G

P 
(%

)

CK    HSA

*
Lv

a

CK    Col-3  

g

CK19 CD31

c

f

d e

 Figure 5

b

CK    aSMA  

*
*



0

5

10

15
n.s.

Control
shRNA

Le
si

on
 a

re
a 

(m
m

2 )

100

80

60

40

20

0

0

20

40

60

80

100

Control shRNA shARPC3-3

M
ea

n 
H

G
P 

(%
)

n.s.

Vh BC Vh BC
Vh BC Vh BC

R D P

sh
AR

PC
3-

1 
sh

AR
PC

3-
2 

sh
AR

PC
3-

3 

Pa
re

nt
 

0

1

R
el

at
iv

e 
AR

PC
3 

ex
pr

es
io

n

0

0.1

0.2

 C
el

l v
el

oc
ity

 (m
m

 p
er

 m
in

)

C
on

tro
l s

hR
N

A 

Pa
re

nt
 

 HSC70

ARPC3

R D P R D P R D P

M
ea

n 
H

G
P 

(%
)

R D P R D P R D P R D P

c d e

gf

Figure 6

100

80

60

40

20

0

Ve
ss

el
s 

pe
r m

m
2

*

Vh BC Vh BC

h

C
on

tro
l s

hR
N

A 

H&E CK  HSA CK  Col-3 CK20 CD31

DS
Lv

CK  aSMA

Lv

*
DS

Lv

a

b

***
***

***
***

**

n.s.
n.s.

*
*n.s.**

** ****
****

**

**

*
n.s.

**

**

sh
AR

PC
3-

1 
sh

AR
PC

3-
2 

sh
AR

PC
3-

3 

C
on

tro
l s

hR
N

A 

Pa
re

nt
 

sh
AR

PC
3-

1 
sh

AR
PC

3-
2 

sh
AR

PC
3-

3 

sh
AR

PC
3-

1

C
on

tro
l s

hR
N

A 

sh
AR

PC
3-

2

sh
AR

PC
3-

3

n.s.

*

*

shARPC3-3 Control
shRNA

shARPC3-3

*
*



CK  HSA

CK  Col-3

CK  αSMA

CK  HSA CK  HSA

CK  Col-3 CK  Col-3

CK  αSMA CK  αSMA

Hepatocytes

Desmoplastic stroma

Cancer cells

Lv

*

DS
Lv

Lv*

a b d

e f h

j l

m p

q t

Supplementary Figure 1

Normal liver

CK  HSA

CK  Col-3

CK  αSMA

*
Lv

c

g

k

o

s

Pushing HGPDesmoplastic HGP Replacement HGP

*
Lv

See overleaf for figure legend

r

n

i

Pre-existing sinusoidal 
blood vessel

New blood vessel

*
*

DS
*

*



Supplementary Figure 1 Morphology of the three histopathological growth 

patterns (HGPs) of colorectal cancer liver metastases  

a–h. Diagrams and H&E–stainings illustrate the morphology of normal liver or the 

morphology of the tumor–normal liver interface in human CRC liver metastases with a 

desmoplastic, pushing or replacement HGP.   

i–t. To confirm the distinct tumor–stroma interaction that occurs in each HGP, we 

performed additional staining for hepatocyte specific antigen (HSA), collagen–3 (col–

3) and alpha smooth muscle actin (αSMA). In normal liver, HSA labeled hepatocytes 

(i), col–3 labeled sinusoidal blood vessels (m), whilst αSMA labeled neither 

hepatocytes nor sinusoidal blood vessels (q). In the desmoplastic HGP, a 

desmoplastic stroma physically separates cancer cells from normal liver (b,f). Co–

staining for pan–cytokeratin (CK) to detect cancer cells and HSA to detect 

hepatocytes confirmed physical separation of cancer cells and normal liver (j), whilst 

co–staining for pan–cytokeratin and col–3, or pan–cytokeratin and αSMA, confirmed 

the presence of a desmoplastic stroma abundant in collagen (n) and αSMA–positive 

fibroblasts (r), respectively. In the pushing HGP, cancer cells and normal liver are in 

close contact with no intervening desmoplastic stroma (c,g) which was confirmed by 

co–staining for CK and HSA (k) or CK and αSMA (s). Another feature of the pushing 

HGP, physical compression of sinusoidal vessels in adjacent normal liver tissue, was 

confirmed by co–staining for pan–cytokeratin and col–3 (o). In the replacement HGP, 

cancer cells infiltrate the liver parenchyma and replace hepatocytes without disturbing 

the vascular architecture of the liver; no desmoplastic stroma is observed (d,h). 

Supporting this, co–staining for CK and HSA confirmed the invasion of cancer cells 

into liver parenchyma (l). Co–staining for CK and col–3 showed that the vascular 

architecture of the adjacent liver was preserved at the tumor–liver interface (p). Lack 

of αSMA staining confirmed the absence of a desmoplastic stroma (t). Asterisk, 

cancer cells. DS, desmoplastic stroma. Lv, normal liver. Scale bars, 50 µM. 



CRC liver resections performed after preoperative 
treatment with bev–chemo at RM during the
period 2006 – 2012:  

n = 101 lesions from 47 patients

Recovery of FFPE tissue blocks 

Tissue not available for assessment:

n = 16 lesions

FFPE tissue blocks assessed by pathologists 
for presence of tumour tissue   Liver lesions were excluded from further 

histopathological analysis for the following 
reasons: 

Tissue block(s) did not contain any tumour 
tissue (n = 12 lesions)

Tissue was too poor quality for reliable 
assessment (n = 1 lesion)

Analysis of pathological response by pathology 
team:

n = 67 lesions from 37 patients

Liver lesions were excluded from assessment 
of histopathogical growth pattern because a 
complete pathological response was scored: 

n = 8 lesions 

Analysis of histopathogical growth pattern by 
pathology team:

n = 59 lesions from 33 patients

Analysis of morphological response criteria from 
CT scans:

n = 52 lesions from 31 patients

Liver lesions were excluded from morphological 
response criteria assessment because CT scans
were of insufficient quality or because the pre– 
and post–treatment scans were performed at 
different sites:

n = 7 lesions  

Liver lesions that were absent from baseline 
pre-treatment scans, but presented after the 
initiation of bev–chemo treatment:

n = 5 lesions from 1 patient 

Supplementary Figure 2

Supplementary Figure 2 Consort diagram for RM cohort 
Consort diagram to illustrate how cases of CRC liver metastases from patients treated preoperatively 
with bev–chemo at RM were selected for inclusion in the study or excluded.



Supplementary Table 1 Characteristics of bev–chemo treated CRC patients in the 
RM cohort  
 
Characteristics of 33 patients (n = 59 lesions) treated preoperatively with bev-chemo prior to 
liver resection at RM. 

 
Demographics  
Gender, number of patients (%) 
 Male 
 Female 

 
21 (63.6) 
12 (36.4) 

Age, median (range)  63 (29 – 79) 
Primary tumor  
Site of primary tumor, number of patients (%) 
 Rectum 
 Recto–sigmoid 
 Colon 

 
7 (21.2) 

14 (42.4) 
12 (36.4) 

Lymph node status, number of patients (%) 
 Positive 
 Negative 

 
26 (78.8) 
7 (21.2) 

Histological grade, number of patients (%) 
 High grade 
 Low grade 

 
4 (12.1) 

29 (87.9) 
Adjuvant therapy, number of patients (%) 
 Yes 
 No 

 
10 (30.3) 
23 (69.7) 

Liver metastasis  
No. of liver lesions at presentation, number of patients (%) 
 Solitary lesion 
 Multiple lesions 

 
11 (33.3) 
22 (66.7) 

No. of liver lesions utilised for histopathological analysis  
per patient, number of patients (%) 
 1 lesion 
 2 lesions 
 3 lesions 
 4 lesions 

 
 

17 (51.5) 
10 (30.3) 

2 (6.1) 
4 (12.1) 

Baseline lesion size, median (range) 21 mm (5 – 110) 
Preoperative therapy administered, number of patients (%) 
 CAPOX + bevacizumab 
 FOLFOX + bevacizumab 
 FOLFIRI + bevacizumab 

 
21 (63.6) 
5 (15.2) 
7 (21.2) 

Cycles of preoperative therapy, median (range) 6 (4 – 12) 
Interval between last bevacizumab dose and resection, median (range) 76 days (41 – 362) 

 
Footnote: CAPOX, capecitabine and oxaliplatin; FOLFOX, infusional 5–fluorouracil and 
oxaliplatin; FOLFIRI, infusional 5–fluorouracil and irinotecan. 
  



Supplementary Figure 3

Supplementary Figure 3 Correlation between HGP and pathological response in an analysis restricted 
to one lesion per patient (RM cohort)
Data are presented from the same series of 33 patients as depicted in Figure 1b, but for this analysis only one 
lesion per patient was used. The graph shows the % HGP (replacement, desmoplastic, pushing) scored in the 
largest lesion from each patient. Lesions scored as >75%, 50-75% or 25-49% viable were considered to be 
poor responders, whilst lesions scored as <25% viable were considered good responders. Lesions with a 
substantial (≥50%) replacement HGP were significantly enriched in the poor responder group when compared 
with good responders (P < 0.001), whilst lesions with a substantial (≥50%) desmoplastic HGP were 
significantly enriched in the good responder group when compared with poor responders (P < 0.001). The χ2 
test was used to determine statistical significance (see 2x2 contingency tables).
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Supplementary Table 2 Univariate analysis of clinical characteristics associated 
with pathological response in RM patients treated preoperatively with bev–chemo 
 
Analysis was performed using data for 59 lesions from 33 patients treated preoperatively with 
bev-chemo prior to liver resection (RM cohort). The χ2 test was used to determine statistical 
significance. 
 

Variables Total number 
of lesions 

Lesions with <25% 
viable tumor, no. (%) 

P–value  

Demographics    
Gender  
 Male 
 Female 

 
34 
25 

 
12 (35.3) 
10 (40) 

 
0.712 

Age  
 <60 years 
 ≥60 years 

 
17 
42 

 
6 (35.3) 

16 (38.1) 

 
0.840 

Primary tumor     
Site of primary tumor 
 Rectum 
 Recto–sigmoid 
 Colon 

 
13 
24 
22 

 
4 (30.8) 
8 (33.3) 

10 (45.5) 

 
0.599 

 

Lymph node status 
 Positive 
 Negative 

 
48 
11 

 
19 (39.6) 
3 (27.3) 

 
0.446 

Histological grade 
 High grade 
 Low grade 

 
8 

51 

 
5 (62.5) 

17 (33.3) 

 
0.113 

Adjuvant therapy 
 Yes 
 No 

 
18 
41 

 
4 (22.2) 

18 (43.9) 

 
0.113 

Liver metastasis    
No. of liver lesions at presentation 
 Solitary 
 Multiple 

 
11 
48 

 
5 (45.5) 

17 (35.4) 

 
0.535 

Baseline lesion size 
 <20 mm 
 ≥20 mm 

 
24 
35 

 
11 (45.8) 
11 (31.4) 

 
0.261 

Preoperative therapy administered 
 CAPOX + bevacizumab 
 FOLFOX + bevacizumab 
 FOLFIRI + bevacizumab 

 
37 
9 

13 

 
16 (42.1) 
2 (22.2) 
4 (30.8) 

 
0.475 

Cycles of preoperative therapy 
 ≤6 cycles 
 >6 cycles 

 
44 
15 

 
16 (36.4) 
6 (40.0) 

 
0.801 

Interval between last bevacizumab 
dose and resection 
 <70 days 
 ≥70 days 

 
 

24 
35 

 
 

10 (41.7) 
12 (34.3) 

 
 

0.565 

 
Table continues overleaf 
 
 
  



Supplementary Table 2 continued 
 

 
Footnote: CAPOX, capecitabine and oxaliplatin; FOLFOX, infusional 5–fluorouracil and 
oxaliplatin; FOLFIRI, infusional 5–fluorouracil and irinotecan; N/A, data not available. 
 
  

Variables 
 

Total number 
of lesions 

Lesions with <25% 
viable tumor, no (%) 

P–value  

Response measures    
Change in lesion size by RECIST  
 PR 
 SD or PD 

 
34 
25 

 
15 (44.1) 
7 (28.0) 

 
  0.206 

Morphological response on CT 
 Yes (OR or PR) 
 No (AR)  

 
19 
33 

 
11 (57.9) 
10 (30.3) 

 
0.051 

Histopathological growth pattern    
Replacement HGP 
 <25% 
 ≥25% 

 
28 
31 

 
20 (71.4) 

2 (6.5) 

 
<0.001 

Replacement HGP 
 <50% 
 ≥50% 

 
32 
27 

 
21 (65.6) 

1 (3.7) 

 
<0.001 

Desmoplastic HGP 
 <25% 
 ≥25% 

 
25 
34 

 
0 (0) 

22 (64.7) 

 
<0.001 

Desmoplastic HGP 
 <50% 
 ≥50% 

 
28 
31 

 
1 (3.6) 

21 (67.7) 

 
<0.001 



CRC liver resections performed after preoperative 
treatment with bev-chemo at MUHC during the 
period 2008-2014: 

n = 191 lesions from 65 patients

Recovery of FFPE tissue blocks 

Tissue not available for assessment:

n = 1 lesion

FFPE tissue blocks assessed by pathologists 
for presence of tumour tissue   Liver lesions were excluded from further 

histopathological analysis for the
following reasons:

Tissue block(s) did not contain any tumour 
tissue: n = 15 lesions

Tissue was too poor quality for reliable 
assessment: n = 3 lesions 

Analysis of pathological response by pathology 
team:

n = 137 lesions from 61 patients 

Liver lesions were excluded from assessment 
of histopathogical growth pattern because a 
complete pathological response was scored: 

n = 9 lesions

Analysis of histopathogical growth pattern by 
pathology team:

n = 128 lesions from 59 patients 

Liver lesions that were absent from baseline 
pre-treatment scans, but presented after the 
initiation of bev-chemo treatment (new CRCLMs): 

n = 35 lesions from 13 patients

Supplementary Figure 4

Supplementary Figure 4 Consort diagram for MUHC cohort 
Consort diagram to illustrate how cases of CRC liver metastases from patients treated preoperatively 
with bev-chemo at MUHC were selected for inclusion in the study or excluded.



Supplementary Table 3 Characteristics of bev–chemo treated CRC patients in the 
MUHC cohort 

 
Characteristics of 59 patients (n = 128 lesions) treated preoperatively with bev-chemo at MUHC. 

 
Demographics  
Gender, number of patients (%) 
 Male 
 Female 

 
35 (59.3) 
24 (40.7) 

Age, median (range)  63 (30 – 85) 
Primary tumor  
Site of primary tumor, number of patients (%) 
 Rectum 
 Recto–sigmoid 
 Colon 

 
11 (18.6) 
9 (15.3) 

39 (66.1) 
Lymph node status, number of patients (%) 
 Positive 
 Negative 

N/A 

 
32 (54.2) 
8 (13.6) 

19 (32.2) 
Histological grade, number of patients (%) 
 High grade 
 Low grade 

N/A 

 
4 (6.8) 

36 (61.0) 
19 (32.2) 

Adjuvant therapy, number of patients (%) 
 Yes 
 No 

N/A 

 
12 (20.3) 
46 (78.0) 

1 (1.7) 
Liver metastasis  
No. of liver lesions at presentation, number of patients (%) 
 Solitary lesion 
 Multiple lesions 

 
18 (30.5) 
41 (69.5) 

No. of liver lesions utilised for histopathological analysis  
per patient, number of patients (%) 
 1 lesion 
 2 lesions 
 3 lesions 
 4 lesions 
 5 lesions  
 6 lesions 
 8 lesions 
 12 lesions 

 
 

29 (49.2) 
15 (25.4) 
7 (11.8) 
3 (5.1) 
2 (3.4) 
1 (1.7) 
1 (1.7) 
1 (1.7) 

Baseline lesion size, median (range) 26 (5 – 190)* 
Preoperative therapy administered, number of patients (%) 
 FOLFOX + bevacizumab 
 FOLFIRI + bevacizumab 

 
47 (79.7) 
12 (20.3) 

Cycles of preoperative therapy, median (range) 6 (2 – 13) 
Interval between last bevacizumab dose and resection,  
median (range) 

 
64 (23 – 237) 

 
Footnote: FOLFOX, infusional 5–fluorouracil and oxaliplatin; FOLFIRI, infusional 5–
fluorouracil and irinotecan; N/A, data not available. *Information on baseline lesion size was 
available for 113 out of 128 lesions.   
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Supplementary Figure 5

Supplementary Figure 5 Correlation between HGP and pathological response in an analysis restricted 
to one lesion per patient (MUHC cohort)
Data are presented from the same series of 59 patients as depicted in Figure 1f, but for this analysis only one 
lesion per patient was used. The graph shows the % HGP (replacement, desmoplastic, pushing) scored in the 
largest lesion from each patient. Lesions scored as >75%, 50-75% or 25-49% viable were considered to be 
poor responders, whilst lesions scored as <25% viable were considered good responders. Lesions with a 
substantial (≥50%) replacement HGP were significantly enriched in the poor responder group when compared 
with good responders (P < 0.001), whilst lesions with a substantial (≥50%) desmoplastic HGP were 
significantly enriched in the good responder group when compared with poor responders (P < 0.001). The χ2 
test was used to determine statistical significance (see 2x2 contingency tables).



Supplementary Table 4 Univariate analysis of clinical characteristics associated 
with pathological response in MUHC patients treated preoperatively with bev–
chemo 
 
Analysis was performed using data for 128 lesions from 59 patients treated preoperatively with 
bev-chemo prior to liver resection (MUHC cohort). The χ2 test was used to determine statistical 
significance. 
 

Variables Total number 
of lesions 

Lesions with <25% 
viable tumor, no. (%) 

P–value  

Demographic    
Gender  
 Male 
 Female 

 
88 
40 

 
29 (32.9) 
17 (42.5) 

 
0.297 

Age  
 <60 years 
 ≥60 years 

 
53 
75 

 
18 (34.0) 
28 (37.3) 

 
0.695 

Primary tumor     
Site of primary tumor 
 Rectum 
 Recto–sigmoid 
 Colon 

 
21 
14 
93 

 
5 (23.8) 
8 (57.1) 

33 (35.5) 

 
0.022 

 

Lymph node status 
 Positive 
 Negative 

 
66 
11 

 
20 (30.3) 
7 (63.6) 

 
0.032 

Histological grade 
 High grade 
 Low grade 

 
6 

72 

 
1 (16.7) 

28 (38.9) 

 
0.279 

Adjuvant therapy 
 Yes 
 No 

 
24 

103 

 
6 (25) 

40 (38.8) 

 
0.204 

Liver metastasis    
No. of liver lesions at presentation 
 Solitary 
 Multiple 

 
18 

110 

 
7 (38.9) 

39 (35.4) 

 
0.778 

 
Baseline lesion size 
 <20 mm 
 ≥20 mm 

 
40 
73 

 
13 (32.5) 
29 (39.7) 

 
0.447 

Preoperative therapy administered 
 FOLFOX + bevacizumab 
 FOLFIRI + bevacizumab 

 
108 
20 

 
42 (38.9) 
4 (20.0) 

 
0.048 

Cycles of preoperative therapy 
 ≤6 cycles 
 >6 cycles 

 
86 
42 

 
37 (43) 
9 (21.4) 

 
0.017 

Interval between last bevacizumab 
dose and resection 
 <70 days 
 ≥70 days 

 
 

58 
70 

 
 

22 (37.9) 
24 (34.3) 

 
 

0.669 

 
Table continues overleaf 
 
 
  



Supplementary Table 4 continued  
 

 
Footnote: FOLFOX, infusional 5–fluorouracil and oxaliplatin; FOLFIRI, infusional 5–fluorouracil 
and irinotecan; N/A, data not available. 
 

  

Variables 
 

Total number 
of lesions 

Lesions with <25% 
viable tumor, no (%) 

P–value  

Response measures    
Change in lesion size by RECIST  
 PR 
 SD or PD 

 
44 
69 

 
22 (50) 
20 (29) 

 
0.024 

Histopathological growth pattern    
Replacement HGP 
 <25% 
 ≥25% 

 
60 
68 

 
34 (56.7) 
23 (17.7) 

 
<0.001 

Replacement HGP 
 <50% 
 ≥50% 

 
70 
58 

 
40 (57.1) 
6 (10.3) 

 
<0.001 

Desmoplastic  HGP 
 <25% 
 ≥25% 

 
48 
80 

 
2 (4.2) 
44 (55) 

 
<0.001 

Desmoplastic  HGP 
 <50% 
 ≥50% 

 
62 
66 

 
6 (9.7) 

40 (60.6) 

 
<0.001 



Supplementary Figure 6
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Supplementary Figure 6 The HGPs correlate with pathological response in patients presenting with 
a single lesion only
The graph shows the HGPs and pathological response in 29 patients that presented with a single lesion only. 
Graph shows the % HGP (replacement, desmoplastic, pushing) scored in each lesion from each patient. 
Lesions scored as >75%, 50-75% or 25-49% viable were considered to be poor responders, whilst lesions 
scored as <25% viable were considered good responders. Lesions with a substantial (≥50%) replacement 
HGP were significantly enriched in the poor responder group when compared with good responders 
(P=0.0264). Lesions with a substantial (≥50%) desmoplastic HGP were significantly enriched in the good 
responder group when compared with poor responders (P=0.0128). The χ2 test was used to determine 
statistical significance (see 2x2 contingency table).
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Supplementary Table 5 Univariate and multivariate analysis of clinical characteristics 
associated with pathological response in lesions treated preoperatively with bev–chemo 
 
Data from patients that received preoperative therapy with bev–chemo were used to determine clinical 
variables associated with a good pathological response (lesions were pooled from RM and MUHC). Only 
lesions with ≥50% replacement HGP (85 lesions) or ≥50% desmoplastic HGP (96 lesions) were included. 
Lesions with ≥50% pushing HGP were excluded (6 lesions). The final analysis was therefore performed 
on 181 lesions from 90 patients. Both the univariate analysis and the multivariate analysis were 
performed using a generalized estimating equation. Only 5 variables that met a pre–defined threshold of 
P<0.25 in the univariate analysis were included in the subsequent multivariate analysis. 
 

 
 
 

Univariate analysis Multivariate analysis 

 OR (95% CI) P–value OR (95% CI) P–value 

Demographics     
Gender   
   Male 
   Female 

 
0.83 (0.69 – 1.00) 
1.21 (1.00 – 1.45) 

 
0.0507 

 
0.80 (0.32 – 2.00) 
1.25 (0.50 – 3.16) 

 
0.6304 

Age  
<60 years  
≥60 years 

 
1.03 (0.85 – 1.24) 
0.97 (0.81 – 1.18) 

 
0.7629 

– – 

Primary tumour     
Site of primary tumor  
   Rectum 
   Colon / recto–sigmoid 

 
0.91 (0.74 – 1.11) 
1.10 (0.90 – 1.35) 

 
0.3502 

 
– 

 
– 

Lymph node status  
   Positive  
   Negative  

 
0.68 (0.25 – 1.89) 
1.47 (0.53 – 4.06) 

 
0.4565 

 
– 

 
– 

Histological grade 
   High grade 
   Low grade   

 
1.16 (0.30 – 4.55) 
0.86 (0.22 – 3.35) 

 
0.8259 

 
– 

 
– 

Adjuvant therapy  
   Yes 
   No   

 
0.85 (0.70 – 1.03) 
1.17 (0.97 – 1.42) 

 
0.1087 

 
0.48 (0.17 – 1.41) 
2.07 (0.71 – 6.01) 

 
0.1834 

Liver metastasis     
Number of lesions at presentation  
   Solitary  
   Multiple 

 
1.07 (0.87 – 1.32) 
0.93 (0.76 – 1.15) 

 
0.5275 

 
– 

 
– 

Baseline lesion size 
   <20 mm 
   ≥20 mm 

 
0.99 (0.49 – 2.01) 
1.01 (0.50 – 2.04) 

 
0.9730 

 
– 

 
– 

Preoperative therapy 
administered 
   CAPOX + bev / FOLFOX + bev  
   FOLFIRI + bev 

 
 

2.09 (0.76 – 5.78) 
0.48 (0.17 – 1.32) 

 
 

0.1534 

 
 

1.14 (0.37 – 3.51) 
0.88 (0.29 – 2.70) 

 
 

0.8237 

Cycles of preoperative therapy  
   ≤6 cycles 
   >6 cycles 

 
2.03 (0.82 – 5.02) 
0.49 (0.20 – 1.22) 

 
0.1249 

 
1.74 (0.71 – 4.28) 
0.57 (0.23 – 1.41) 

 
0.2256 

Interval between last 
bevacizumab dose and resection 
   <70 days 
   ≥70 days 

 
 

1.41 (0.66 – 3.03) 
0.71 (0.33 – 1.52) 

 
 

0.3782 

 
 

– 

 
 

– 

HGP 
≥50% replacement  

   ≥50% desmoplastic  

 
0.07 (0.03 – 0.16) 

15.06 (6.32 – 35.87) 

 
<0.0001 

 
0.06 (0.03 – 0.15) 

15.92 (6.76 – 37.51) 

 
<0.0001 

 
Footnote: For every variable tested, we present the odds ratio in both directions e.g. male vs female 
(OR=0.83) and its reverse, female vs male (OR=1.21), etc.  
 
bev, bevacizumab; CAPOX, capecitabine and oxaliplatin; FOLFOX, infusional 5–fluorouracil and 
oxaliplatin; FOLFIRI, infusional 5–fluorouracil and irinotecan. 



Supplementary Figure 7 

Supplementary Figure 7 Correlation between HGP and morphological response in an analysis 
restricted to one lesion per patient (RM cohort)
Data are presented from the same series of 31 patients as depicted in Figure 2g, but for this analysis 
only one lesion per patient was used. The graph shows the % HGP (replacement, desmoplastic, 
pushing) scored in the largest lesion from each patient. Lesions scored as having an absent 
morphological response (AR) were considered to be poor responders, whilst those undergoing a 
partial (PR) or optimal (OR) morphological response were considered to be good responders. Lesions 
with ≥50% replacement HGP were significantly enriched in poor responders compared to good 
responders  (P = 0.0357). The χ2 test was used to determine statistical significance (see 2x2 
contingency table).
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Supplementary Figure 8
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Supplementary Figure 8 The HGPs do not correlate with response when using RECIST criteria as a 
response measure
Response to bev-chemo was scored using RECIST criteria in order to categorise individual lesions as: progressive 
disease (PD), stable disease (SD) or partial response (PR). Graph shows the % HGP scored in each individual 
lesion (replacement, desmoplastic, pushing) with lesions grouped according to response: PD, SD or PR (n = 59 liver 
metastases from 33 patients). Lesions scored as PD or SD were considered to be poor responders, whilst lesions 
scored as PR were considered to be good responders. Lesions with a substantial (≥50%) replacement HGP were 
not significantly enriched in the poor responder group when compared with good responders (P=0.440). The χ2 test 
was used to determine statistical significance (see 2x2 contingency table).
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Supplementary Figure 9 Staining for blood vessels in the different histopathological growth patterns
Resection specimens of CRCLMs corresponding to the three different HGPs were stained for cytokeratin 20 
(CK20) to identify cancer cells (brown) and CD31 to identify vessels (blue). a,b. Replacement HGP. Co-option of 
sinusoidal vessels by invading cancer cells is observed. c,d. Desmoplastic HGP. Co-option of sinusoidal vessels 
by cancer cells is physically precluded by the desmoplastic stroma (DS) that separates cancer cells from the 
normal liver (Lv). Dashed line indicates where the desmoplastic rim of the tumor meets the normal liver. e,f. Push-
ing HGP. Sinusoidal vessels that are present in the normal liver adjacent to the tumor are compressed, highly elon-
gated and run in parallel with the tumor-liver interface, a topology that physically precludes the co-option of these 
vessels by invading cancer cells. DS, desmoplastic stroma. Lv, normal liver. Scale bar, 50 μM.
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Supplementary Figure 10 Co-staining for blood vessels and hepatocytes in the different histopathological 
growth patterns
Resection specimens of CRCLMs were stained for HSA to identify hepatocytes (brown) and CD31 to identify 
vessels (blue). a. Normal liver, b. replacement HGP, c. desmoplastic HGP, and d. pushing HGP. Dashed line 
indicates the interface where the tumor meets the normal liver. Arrowheads indicate co-opted sinsuoidal vessels 
that are still associated with hepatocytes. DS, desmoplastic stroma. Lv, normal liver. Scale bar, 50 μM.
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Supplementary Table 6 Characteristics of MUHC patients that presented with new 
CRC liver metastases after bev–chemo treatment was initiated (new CRCLMs) 
 

 
Demographics  
Gender, number of patients (%) 
 Male 
 Female 

 
9 (69.2) 
4 (30.8) 

Age, median (range)  65 (46–78) 
Primary tumor  
Site of primary tumor, number of patients (%) 
 Rectum 
 Recto–sigmoid 
 Colon 

 
2 (15.4)  
3 (23.1) 
8 (61.5) 

Lymph node status, number of patients (%) 
 Positive 
 Negative 

N/A 

 
10 (76.9) 

0 
3 (23.1) 

Histological grade, number of patients (%) 
 High grade 
 Low grade  
 N/A 

 
2 (15.4) 
8 (61.5) 
3 (23.1) 

Adjuvant therapy, number of patients (%) 
 Yes 
 No 

 
4 (30.8) 
9 (69.2) 

Liver metastasis   
Quantity of liver lesions present when treatment started,  
number of patients (%) 
 No lesion* 
 Solitary lesion  
 Multiple lesions 

 
 

2 (15.4) 
2 (15.4) 
9 (69.2) 

Quantity of new liver lesions presenting after treatment started, 
number of patients (%)  
 Solitary lesion  
 Multiple lesions 

 
 

7 (53.8) 
6 (46.2) 

No. of liver lesions utilised for histopathological analysis  
per patient, number of patients (%) 
 1 lesion 
 2 lesions 
 3 lesions 
 5 lesions 
 14 lesions 

 
 

7 (53.8) 
3 (23.1) 
1(7.7) 
1 (7.7) 
1 (7.7) 

Preoperative therapy administered, number of patients (%)  
 FOLFOX + bevacizumab 
 FOLFIRI + bevacizumab 

 
9 (69.2) 
4 (30.8) 

Cycles of preoperative therapy, median (range) 6 (5 – 12)  
Interval between last bevacizumab dose and resection,  
median (range) 

 
67 days (43 – 126) 

 
Footnote: *Two patients were administered bev-chemo prior to detection of liver metastases: one patient 
was receiving adjuvant bev-chemo when liver disease was detected and a second patient was receiving 
bev-chemo for CRC lung metastasis when liver disease was detected. bev, bevacizumab; CAPOX, 
capecitabine and oxaliplatin; FOLFOX, infusional 5–fluorouracil and oxaliplatin; FOLFIRI, infusional 5–
fluorouracil and irinotecan. N/A, data not available. 



Supplementary Table 7 Characteristics of MUHC patients that received no 
preoperative therapy prior to resection of CRC liver metastases (untreated 
CRCLMs) 
 

 
Demographics  
Gender, number of patients (%) 
 Male 
 Female 

 
11 (57.9) 
8 (42.1) 

Age, median (range)  70 (33 – 80) 
Primary tumor  
Site of primary tumor, number of patients (%) 
 Rectum 
 Recto–sigmoid 
 Colon 

 
5 (26.3) 
1 (5.3) 

13 (68.4) 
Lymph node status, number of patients (%) 
 Positive 
 Negative 

N/A 

 
10 (52.6) 
5 (26.3) 
4 (21.1) 

Histological grade, number of patients (%) 
 High grade 
 Low grade 

N/A 

 
1 (5.3) 

10 (52.6) 
8 (42.1) 

Adjuvant therapy, number of patients (%) 
 Yes* 
 No (completely chemonaive) 

 
4 (21.1) 

15 (78.9) 
Baseline features of the liver metastases  
No. of liver lesions at presentation, number of patients (%) 
 Solitary lesion 
 Multiple lesions 

 
12 (63.2) 
7 (36.8)  

No. of liver lesions utilised for histopathological analysis  
per patient, number of patients (%) 
 1 lesion 
 2 lesions 
 4 lesions 
 6 lesions 

 
 

12 (61.1) 
5 (26.3) 
1 (5.3) 
1 (5.3) 

Baseline lesion size, median (range) 13.5 mm (4 – 77) 
 
Footnote: *patients were only included if the last dose of adjuvant therapy was administered ≥ 
365 days prior to diagnosis of liver metastasis (median interval between last dose of adjuvant 
therapy and diagnosis of liver metastasis in these 4 patients was 1161 days, range was 789 – 
1667 days). Adjuvant therapy consisted of chemotherapy only and no patients received 
adjuvant bevacizumab. N/A, data not available. 
 
 
 
 
 
 

 



Supplementary Table 8 Univariate and multivariate analysis of clinical characteristics 
associated with overall survival in patients treated preoperatively with bev–chemo 
 
Data from patients that received preoperative therapy with bev–chemo at MUHC were used to determine 
clinical variables associated with overall survival. Only patients in the predominant replacement subgroup 
(26 patients) or the predominant desmoplastic subgroup (35 patients) were included in the analysis. The 
predominant pushing subgroup (1 patient) was excluded from the analysis. The final analysis was 
therefore performed on 61 patients. Both the univariate analysis and the multivariate analysis were 
performed using Cox proportional hazards regression. Only 2 variables that met a pre–defined threshold 
of P<0.25 in the univariate analysis were included in the subsequent multivariate analysis. 
 

 
 
 

Univariate analysis Multivariate analysis 
 HR (95% CI) P–value HR (95% CI) P–value 

Demographics     
Gender   
   Male 
   Female 

 
1.14 (0.49 – 2.63) 
0.88 (0.38 – 2.06) 

 
0.7641 

 
– 

 
– 

Age  
<60 years  
≥60 years 

 
1.08 (0.47 – 2.48) 
0.93 (0.40 – 2.13) 

 
0.8494 

 
– 

 
– 

Primary tumour     
Site of primary tumor  
   Rectum 
   Colon / recto–sigmoid 

 
1.28 (0.43 – 3.78) 
0.78 (0.26 – 2.33) 

 
0.6504 

 
– 

 
– 

Lymph node status  
   Positive  
   Negative  

 
0.72 (0.16 – 3.23) 
1.38 (0.31 – 6.21) 

 
0.6788 

 
– 

 
– 

Histological grade 
   High grade 
   Low grade   

 
1.25 (0.35 – 4.35) 
0.80 (0.23 – 2.83) 

 
0.7324 

 
– 

 
– 

Adjuvant therapy  
   Yes 
   No   

 
1.05 (0.35 – 3.13) 
0.95 (0.32 – 2.86) 

 
0.9274 

 

 
– 

 
– 

Liver metastasis     
Number of lesions at presentation  
   Solitary  
   Multiple 

 
0.41 (0.15 – 1.11) 
2.44 (0.90 – 6.67) 

 
0.0797 

 
0.51 (0.19 – 1.42) 
1.96 (0.70 – 5.26) 

 
0.1985 

Mean baseline lesion size 
   <20 mm 
   ≥20 mm 

 
1.63 (0.65 – 4.06) 
0.61 (0.25 – 1.54) 

 
0.2957 

 
– 

 
– 

Preoperative therapy administered 
   CAPOX+bev / FOLFOX+bev  
   FOLFIRI+bev 

 
0.91 (0.36 – 2.31) 
1.10 (0.43 – 2.78) 

 
0.8476 

 
– 

 
– 

Cycles of preoperative therapy  
   ≤6 cycles 
   >6 cycles 

 
0.67 (0.30 – 1.51) 
1.49 (0.66 – 3.33) 

 
0.3315 

 
– 

 
– 

Interval between last bevacizumab 
dose and resection 
   <70 days 
   ≥70 days 

 
 

1.03 (0.44 – 2.38) 
0.97 (0.42 – 2.27) 

 
 

0.9488 

 
 

– 

 
 

– 

HGP 
≥50% replacement  

   ≥50% desmoplastic  

 
0.29 (0.12 – 0.67) 
3.50 (1.49 – 8.20) 

 
0.0040 

 
0.33 (0.14 – 0.80) 
3.03 (1.25 – 7.14) 

 
0.0135 

 
Footnote: For each variable tested, we present the odds ratio in both directions e.g. male vs female 
(HR=1.14) and its reverse, female vs male (HR=0.88), etc.  
 
bev, bevacizumab; CAPOX, capecitabine and oxaliplatin; FOLFOX, infusional 5–fluorouracil and 
oxaliplatin; FOLFIRI, infusional 5–fluorouracil and irinotecan.  



 
Supplementary Table 9 Analysis for differences in characteristics between 
patients with a predominant replacement HGP and patients with a predominant 
desmoplastic HGP 
 
Analysis was performed on 89 patients from MUHC that received preoperative therapy with 
bev–chemo or chemotherapy alone. Clinical characteristics were compared between 38 
predominant replacement HGP patients and 51 predominant desmoplastic HGP patients. The 
χ2 test was used to determine statistical significance. 
 
 Total number 

of patients 
Number of 

replacement 
patients (%) 

Number of 
desmoplastic 
patients (%) 

P–value 

Demographics     
Gender  
 Male 
 Female 

 
56 
33 

 
28 (50) 

10 (30.3) 

 
28 (50) 

23 (69.7)  

 
0.070 

 
Age  
 <60 years 
 ≥60 years 

 
35 
54 

 
15 (42.9) 
23 (42.6) 

 
20 (57.1) 
31 (57.4)  

 
0.980 

Primary tumour     
Primary tumour site 
 Rectum 
 Recto–sigmoid 
 Colon 

 
20 
17 
32 

 
7 (35) 

9 (52.9) 
22 (68.8) 

 
13 (65)  
8 (47.1) 

10 (31.2) 

 
0.544 

Lymph nodes 
 Positive 
 Negative    

 
44 
14 

 
20 (45.5) 
5 (35.7) 

 
24 (54.5) 
9 (64.3)  

 
0.522 

Histological grade 
 High grade 
 Low grade 

 
6 

55 

 
4 (66.7) 

20 (36.4) 

 
2 (33.3) 

35 (63.6)  

 
0.149 

Treated with adjuvant 
therapy 
 Yes 
 No 

 
  

16 
72 

 
 

8 (50) 
30 (41.7) 

 
 

8 (50) 
42 (58.3) 

 
 

0.543 

Liver metastasis      
Number of lesions at 
presentation 
             No lesion* 
 Solitary lesion  
 Multiple lesions 

 
 

3 
27 
59 

 
 

3 (100) 
8 (29.6) 

27 (45.8) 

 
 

0 (0) 
19 (70.4) 
32 (54.2) 

 
 

0.046 

Mean baseline lesion size 
 <20 mm 
 ≥20 mm 

 
25 
56 

 
9 (36) 

23 (41.1) 

 
16 (64) 

33 (58.9) 

 
0.666 

Therapy administered 
            FOLFOX 
            FOLFIRI 
            FOLFIRINOX 
            5–FU 
            FOLFOX + bev 
            FOLFIRI + bev 

 
24 
1 
2 
1 

49 
12 

 
11 (45.8) 

0 (0) 
1 (50) 

0 
19 (38.8) 
7 (58.3) 

 
13 (54.2) 
1 (100) 
1 (50) 

1 (100) 
30 (61.2) 
5 (41.7) 

 
0.679 

 
Table continues overleaf 



Supplementary Table 9 continued 
 
Cycles of preoperative 
therapy 
 ≤6 cycles 
 >6 cycles 

 
 

62 
27 

 
 

26 (41.9) 
12 (44.4) 

 
 

36 (58.1) 
15 (55.6) 

 
 

0.826 

Interval between last therapy 
dose and resection 
 <70 days 
 ≥70 days 

 
 

47 
38 

 
 

15 (31.9) 
21 (55.3) 

 
 

32 (68.1) 
17 (44.7) 

 
 

0.030 

 
Footnote: *Three patients were administered therapy prior to detection of liver metastases: 
one patient was receiving adjuvant bev-chemo when liver disease was detected, one patient 
was receiving bev-chemo for CRC lung metastasis when liver disease was detected and one 
patient was receiving adjuvant chemotherapy alone when liver disease was detected. 
FOLFOX, infusional 5–fluorouracil and oxaliplatin; FOLFIRI, infusional 5–fluorouracil and 
irinotecan; FOLFIRINOX, infusional 5–fluorouracil and irinotecan and oxaliplatin; 5–FU, 
infusional 5–FU only.  
 
  



Supplementary Table 10 Analysis for differences in characteristics between 
patients that received bev–chemo and patients that received chemotherapy 
alone 
 
Analysis was performed on 91 patients from MUHC. Clinical characteristics were compared 
between 62 patients that received pre–operative bev–chemo and 29 patients that received 
preoperative chemotherapy only). The χ2 test was used to determine statistical significance. 
 
 Total number 

of patients 
Number of  
bev–chemo 
patients (%) 

Number of 
chemo alone 
patients (%) 

P–value 

Demographics     
Gender  
 Male 
 Female 

 
57 
34 

 
37 (64.9) 
25 (73.5) 

 
20 (35.1) 
9 (26.5) 

 
0.393 

 
Age  
 <60 years 
 ≥60 years 

 
36 
55 

 
25 (69.4) 
37 (67.3) 

 
11 (30.6) 
18 (32.7) 

 
0.828 

Primary tumor     
Primary tumour site 
 Rectum 
 Recto–sigmoid 
 Colon 

 
21 
17 
53 

 
12 (57.1) 
10 (58.8) 
40 (75.5) 

 
9 (42.9) 
7 (41.2) 

13 (24.5) 

 
0.206 

Lymph nodes 
 Positive 
 Negative 

 
45 
14 

 
35 (77.8) 
8 (57.1) 

 
10 (22.2) 
6 (42.9) 

 
0.129 

Histological grade 
 High grade 
 Low grade 

 
6 

55 

 
5 (83.3) 

38 (69.1) 

 
1 (16.7) 

17 (30.9) 

 
0.468 

Treated with adjuvant 
therapy 
 Yes 
 No 

  
 

18 
72 

 
 

13 (72.2) 
48 (66.7) 

 
 

5 (27.8) 
24 (33.3) 

 
 

0.652 

Liver metastases     
Number of lesions at 
presentation 
             No lesion* 
 Solitary lesion  
 Multiple lesions 

 
 

4 
27 
60 

 
 

2 (50) 
18 (66.7) 
42 (70) 

 
 

2 (50) 
9 (33.3) 
18 (30) 

 
 

0.695 

Mean baseline lesion size 
 <20 mm 
 ≥20 mm 

 
25 
56 

 
14 (56) 

41 (73.2) 

 
11 (44) 

15 (26.8) 

 
0.125 

Therapy administered            
            FOLFOX 
            FOLFIRI 
            FOLFIRINOX 
            5–FU 

 
75 
13 
2 
1 

 
50 (66.7) 
12 (92.3) 

0 (0) 
0 (0) 

 
25 (33.3) 

1 (7.7) 
2 (100) 
1 (100) 

 
0.019 

 
Table continues overleaf 



Supplementary Table 10 continued 
 
Cycles of preoperative 
therapy 
 ≤6 cycles 
 >6 cycles 

 
 

63 
28 

 
 

41 (65.1) 
21 (75) 

 
 

22 (34.9) 
7 (25) 

 
 

0.349 

Interval between last 
therapy dose & resection 
 <70 days 
 ≥70 days 

 
 

48 
39 

 
 

35 (72.9) 
26 (66.7) 

 
 

13 (27.1) 
13 (33.3) 

 
 

0.527 

 
Footnote: *Four patients were administered therapy prior to detection of liver metastases: one 
patient was receiving adjuvant bev–chemo when liver disease was detected, one patient was 
receiving bev–chemo for CRC lung metastasis when liver disease was detected and two 
patients were receiving adjuvant chemotherapy alone when liver disease was detected. 
FOLFOX, infusional 5–fluorouracil and oxaliplatin; FOLFIRI, infusional 5–fluorouracil and 
irinotecan; FOLFIRINOX, infusional 5–fluorouracil and irinotecan and oxaliplatin; infusional 5–
FU. 
 
 
  



Supplementary Table 11 Characteristics of 17 patients from whom samples of 
breast cancer liver metastasis were obtained 
 

 
Details of primary  
Age at diagnosis of primary breast cancer, median (range)  47 (36 – 77) 
Primary was resected, number of patients (%) 

Yes 
No 

 
15 (88.2) 
2 (11.8) 

Ductal or lobular histology, number of patients (%) 
 Ductal 
 Lobular  
 Mixed 

 
13 (76.5) 
3 (17.6) 
1 (5.9) 

T–stage, number of patients (%) 
 T1  
 T2  
 T3  
 T4  
 N/A  

 
6 (35.3) 
6 (35.3) 
2 (11.8) 
1 (5.9) 

2 (11.8) 
Lymph nodes, number of patients (%)  
 Positive 
 Negative 
 N/A 

 
9 (52.9) 
6 (35.3) 
2 (11.8) 

Treatment received prior to obtaining liver metastasis sample  
Form of treatment received, number of patients (%) 
 Endocrine therapy  
 Chemotherapy  
 Herceptin  
 Everolimus 
 Iressa  
 Zometa 

 
14 (82.4) 
12 (70.6) 
2 (11.8) 
1 (5.9) 
1 (5.9) 
1 (5.9) 

Details of liver metastasis sample  
Age when sample was obtained, median (range) 54 (43 – 81) 
Source of material, number of patients (%) 
 Resection  
 Autopsy 

 
11 (64.7) 
6 (35.3) 

Intrinsic subtype, number of patients (%)  
 Luminal A 
 Luminal B HER2 negative 
 Luminal B HER2 positive  
 HER2 positive (non–luminal) 
 Triple negative  

 
5 (29.4) 
5 (29.4) 
3 (17.7) 

0 (0) 
4 (23.5) 

 
Footnote: N/A, data not available. 
  



Supplementary Figure 11 
a

Control shRNA shARPC3-3 

Supplementary Figure 11 Expression of the Arp2/3 subunit ARPC3 in human liver metastases

a,b. Validation of anti-ARPC3 antibody staining specificity 
HT29 cells stably transfected with a control non-targeting shRNA (control shRNA) (a) or an ARPC3-targeted shRNA 
(shARPC3-3) (b) were prepared for FFPE sections and then stained using an anti-ARPC3 antibody (MABT95, 
Millipore). Loss of antigenicity in the knockdown cells (b) compared to the control cells (a) indicates that this antibody 
is specific for ARPC3. 
c-e. Examples of  ARPC3 staining in human liver metastasis specimens
Samples of human liver metastasis were stained using the anti-ARPC3 antibody.  c. ARPC3 staining in normal liver.  
ARPC3 staining is limited to Kuppfer cells and immune cells within the lumen of vessels (arrowheads) and staining is 
absent / weak in hepatocytes. d-f. ARPC3 staining in cancer cells (Can) of a replacement HGP CRCLM (d), a 
desmoplastic HGP CRCLM (e) and a replacement HGP breast cancer liver metastasis (BCLM) (f). Panel g shows a 
negative control, where the same staining  protocol was performed but the primary antibody was omitted. Can, cancer 
cells. Lv, normal liver parenchyma.  DS, desmoplastic stroma.
h. Quantification of ARPC3 staining in human liver metastasis specimens
The intensity of ARPC3 staining was scored in replacement HGP CRCLMs (n = 10),  desmoplastic HGP CRCLMs (n 
= 10) and replacement HGP BCLMs (n = 9).  Each data point on the graph is the intensity (H-score) for an individual 
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Supplementary Figure 12 

a b

* *

Supplementary Figure S12 Preclinical model of advanced liver metastasis 
a. Macroscopic appearance of tumor formation in the left main lobe of the mouse liver after injection of 
HT29 cells.  b. Macroscopic appearance of a human CRC liver metastasis resected from a patient (picture 
is courtesy of Mr Ali Majeed). Scale bar, 5 mm (a) or 5 cm (b). Tumor is indicated by an asterisk. 
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Supplementary Figure 13 Knockdown of ARPC3 in HT29 cells does not alter cell proliferation
Proliferation of parental HT29 cells (Parent) and HT29 cells stably transduced with control shRNA, 
shARPC3-1, shARPC3-2 or shARPC3-3. The quantity of viable cells is expressed relative to the quantity 
measured at 24 hours ± SEM (n = 3 independent experiments). n.s., no significant difference (Student’s t-test). 
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Supplementary Figure 14 Staining for CD31 in HT29 tumours treated with B20-4.1.1 and 
capecitabine in vivo
a-d. HT29 tumors with normal ARPC3 levels (Control shRNA) or  ARPC3 knockdown 
(shARPC3-3) were established in the livers of mice and treated with B20-4.1.1 plus capecitabine 
(BC) or vehicle (Vh) alone. Liver specimens harvested after two weeks of treatment were stained 
for CK20 to label tumor cells and CD31 to label blood vessels. Representative images of the 
tumour-liver interface are shown for Control shRNA tumors treated with Vh (a) or B/C (b) and for 
ARPC3 knockdown tumors treated with Vh (c) or BC (d). Dashed line in panels c and d indicates 
where the desmoplastic rim of the tumor meets the normal liver. Lv, normal liver. Scale bar, 60 μM.  
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Supplementary Figure 15 Knockdown of ARPC3 does not effect tumor burden or tumor vessel 
density in mice treated with capecitabine alone
a-c. Tumors with normal ARPC3 levels (Control shRNA) or ARPC3 knockdown (shARPC3-3) were 
established in the livers of mice. Mice were then treated with capecitabine (C) or vehicle alone (Vh) for two 
weeks followed by histopathological analysis of the liver tumors (n = 8 mice per group). Graph in a shows 
the % HGP per group ± SEM. Graph in b shows liver tumor burden expressed in terms of lesion area ± 
SEM. Graph in c shows tumor vessel density in terms of vessels per mm2 ± SEM. For statistical analysis, 
Mann Whitney U-test (panel a) or Student’s t-test (panels b,c) were used. **P<0.01. n.s., no significant 
difference.
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Supplementary Figure 16 Difference in % HGP scores between observers for the intra-observer and 
inter-observer agreement of HGP scoring
Two observers scored the HGP (% replacement, % desmoplastic, % pushing) in 150 tissue sections of colorectal 
cancer liver metastasis. The graphs show the difference between the two % replacement scores for every case 
for the following comparisons:
a. intra-observer agreement: observer A first score (A1) minus observer A second score (A2), b. intra-observer 
agreement: observer B first score (B1) minus observer B second score (B2), c. inter-observer agreement: 
observer A first score (A1) minus observer B first score (B1) and d. inter-observer agreement: observer A second 
score (A2) minus observer B second  score (B2). 
Data points which lie on the red line indicate cases for which there was complete agreement between the two 
scores, whilst data points either side of the line are cases for which there was disagreement between the two 
scores. 
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Supplementary Figure 17 Bland-Altman plots for intra-observer and inter-observer agreement of HGP scoring
Two observers scored the HGP (% replacement, % desmoplastic, % pushing) in 150 tissue sections of colorectal cancer 
liver metastasis. Bland-Altman plots show the difference between the two % replacement scores plotted against the 
average of the two % replacement scores for the following comparisons:
a. Intra-observer agreement: observer A first score (A1) versus observer A second score (A2). Mean difference between 
scores (-0.033) and limits of agreement (-7.431 to 7.497). b. Intra-observer agreement: observer B first score (B1) 
versus observer B second score (B2). Mean difference between scores (-0.633) and limits of agreement (-15.663 to 
14.397). c. Inter-observer agreement: observer A first score (A1) versus observer B first score (B1). Mean difference 
between scores (-1.500) and limits of agreement (-22.88 to 19.88). d. Inter-observer agreement: observer A second 
score (A2) versus observer B second score (B2). Mean difference between scores (-2.167) and limits of agreement 
(-25.287 to 20.953). 
Bold dashed line indicates the mean difference between scores whilst the flanking dotted lines show the limits of 
agreement. Note: since a large proportion of the 150 data points in each graph have identical x and y co-ordinates, many 
of the data points depicted constitute multiple overlaping data points.  
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Supplementary Table 12 Results of the intra– and inter–observer agreement 
study for scoring the HGPs of liver metastases 

 
 
Measurement of intra–observer agreement for HGP scoring 
Comparison 
 

Correlation  
co–efficient  

Mean 
difference 

Limits of  
agreement 

Observer A (1st score) versus 
Observer A (2nd score) 0.9965  0.033  (–7.431 to 7.497) 

Observer B (1st score) versus 
Observer B (2nd score) 0.9866 –0.633 (–15.663 to 14.397) 

 
 
Measurement of inter–observer agreement for HGP scoring 
Comparison 
 

Correlation  
co–efficient 

Mean 
difference 

Limits of 
agreement 

Observer A (1st score) versus 
Observer B (1st score) 0.9715 –1.500  (–22.88 to 19.88) 

Observer A (2nd score) versus 
Observer B (2nd score) 0.9678 –2.167 (–25.287 to 20.953) 

 
 
 
 
 

Supplementary Table 13 Criteria for scoring the intrinsic subtypes of breast 
cancer  

 
Intrinsic subtype Criteria 
Luminal A ER and PgR positive 

HER2 negative 
Ki67 ‘low’  

Luminal B HER2–negative ER positive 
HER2 negative 
Ki67 ‘high’ 

Luminal B HER2–positive ER positive 
HER2 positive 
Any Ki67 
Any PgR 

HER2 positive (non–luminal) HER2 positive 
ER and PgR absent 

Triple negative ER negative 
PgR negative 
HER2 negative 

 
Footnote: Table was adapted from: Goldhirsch, A., et al. Personalizing the treatment of 
women with early breast cancer: highlights of the St Gallen International Expert Consensus on 
the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24, 2206–2223 (2013). ER, 
estrogen receptor; PgR, progesterone receptor. 
 
 




