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The penetration characteristics of electron beams Kk-ray targets are
investigated for incident electron kinetic energieshe range 50 to 150 keV.
The frequency densities of electrons penetratirey depthx in a target, with a
fraction of initial kinetic energyy, are calculated using Monte Carlo methods
for beam energies of 50, 80, 100, 120 and 150 ke¥ tungsten target. The
frequency densities for 100 keV electrons in Al, Biod Re targets are also
calculated. A mixture of simple modelling with etjoas and interpolation
from data is used to generalize the calculationsuirgsten. Where possible,
parameters derived from the Monte Carlo data amnepened to experimental
measurements. Previous electron transport appréxinga in the semi-
empirical models of other authors are discussedraladed to this work. In
particular the crudity of the use of the Thomsonifdington law to describe
electron penetration and energy loss is highlightéa: results presented here
may be used towards calculating the target sedfatition correction for
bremsstrahlung photons emitted within a tungstegeta

I.INTRODUCTION

The accurate prediction of the photon spectrum gmegrfrom an x-ray tube is

important in imaging and therapy contexts, as gexsum affects imaging properties

and patient dose. An understanding of the penetratharacteristics of beams of
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electrons into thick x-ray targets is necessarythasdepth of the associated x-ray

production affects this spectrum via target séifdiion.

Determinations of the properties of electron traissian, using metal films, were
made by Whiddingtorin 1912. That author found, empirically, that tiggiare of the
most probable energy of an electron, emerging franfilm of thicknessx, is
approximately linearly dependent on The energy spectra of electron beams
transmitted through slabs of media were investiyatelater worker§* A formula of

the same form as for the most probable energy \wwass to describe the mean
energy, (T) very well? This is referred to in the literature as the Thoms
Whiddington law and may be written:

(T()*=T2-Cp x, (1)
whereTy is the kinetic energy of the incident electropds target density an@ is
known as a Thomson-Whiddington constant. This fashstant” is approximately
material independent, but increases slowly Wigh Semi-empirical models of x-ray
production have been proposed that make use ofasidtitomson-Whiddington law to
relate an electron’s energy to its penetrationidepta simple one-to-one mappiig.
Some of these modef, amongst other approachéshave been applied in a
healthcare settintf. The values for the Thomson-Whiddington constasésitin these
latter cases were those calculated by Birch andsMdl’ using the extrapolated
transmission range data of Katz and Pentdl@he distribution in the energies of

electrons at depth was ignored and backscattenegiscted.

This work addresses these issues using Monte @deldron transport. Whilst the

penetration characteristics of electrons have lmeastigated previously using Monte
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Carlo methods e.g. Bishtpor Sundararamaet al,"> more recent articles have

treated the entire process of x-ray generationudieg the bremsstrahlung emission,

|16 1Y

using Monte Carlo e.g. Verhaegen al:™ or Ay et al.”" With modern computing
power and the careful use of variance reductiomrtieues, the full Monte Carlo
simulation of an x-ray unit may, perhaps, be penkd in a matter of minutes or
less'® However, the separation of the process of breafsistng generation into two
steps, electron penetration into a target and s&atdung emission, can provide
insight into the nature of beam transport in amy$arget and the affect that this has
on an emerging spectra. Examinations of the sefiicy of theoretical results for the
differential bremsstrahlung cross-section are asalily made. This article, Part I, is
the first of two papers. Here, the transport ot beams corresponding to tube
potentials of 50 to 150 kVp are simulated in anax-target using Monte Carlo

methods. A second paper, Part’lipresents spectral predictions using these results

and bremsstrahlung cross-sections.

The primary objective of this paper, Part I, isrttvoduce, calculate and parameterize
the “joint frequency density” describing electroenetration. This quantity(u, x), is
the number density of electrons that reach a depthith a fraction of the incident
kinetic energy,u. This joint frequency density may be decomposdd @ planar
survival frequencyy,i(x), which is the frequency with which electrons teacdepth

X, and the probability?(u|x), that an electron at that depth possesses aiofrautits

initial energy,u. Then,
f(ux)=n, PUIX). (2
The probability P(u|x) will be referred to as the conditional probabilitynction

(CPF). Further, since an x-ray emission occursiwighthick target, it is convenient to
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further decompose Eq. (2) into a first-pass (F) anehultiple-pass (M) component
such that,

f(ux) =7 ()P U X) +7y (B, U]X). (3)
The first-pass component corresponds to the qyamtiéasured in transmission
measurements, such as Whiddington’s, through aaflabicknessx. The multiple-
pass component is that one that is present duadksbatter from the material below
the depthx. For the simple treatment developed here, it veressary to demonstrate
that a state of diffusion was reached rapidly target so that the angle of an electron
at depth compared to its incident direction is petedent of and uncorrelated to its
kinetic energy.
[I. THEORY AND METHOD
A. Scattering regions
Energetic electrons penetrating into thick higjhmaterials undergo many scatters
before coming to rest and several interaction mees are relevafitThe paths of the
electrons are tortuous due to multiple deflectitiieugh elastic scattering. Consider
electrons with the same initial kinetic energy deit normal to a target surface.
Relatively infrequently an electron is kicked baekds in an interaction with the
nucleus of an atom, a process which is sufficiedégcribed by Rutherford or Mott
scattering, but the majority of the scattering eésemre small angle deflections, in
which the atomic cloud appreciably screens thegargbotential. The first extremely
thin layer of the target, corresponding to a feasgt mean free paths of penetration,
is called the plural scattering region, and is raltynassumed to apply where the
number of scattering events is less than 20. Tdwisesponds to ~ 0.4m in tungsten
for electrons with kinetic energies of tens of K&\By the time a few tens of mean

free paths have been traversed, statistical avegagver an ensemble of electrons



results in a Gaussian angular distribution (forttecimg angles less than ~°20with
the most probable angle of an electron increasiity penetration depth. This is
referred to as the multiple-scattering region. Tihal scattering region, diffusion, has
been defined as the state in which the angulariligion of an electron beam
105 penetrating into a material no longer changes déth®® In the elastic scattering of
electrons from nuclei, energy loss is negligiblece the mass of a nucleus can be
assumed infinite. In between elastic scatteringntsyehowever, inelastic scattering
from electrons bound within the target atoms occuesulting in energy loss,
ionisation, and knock-on electrons. The relativeqgérency of inelastic to elastic
110 scattering events is dependent on target atomicbeurand the electron energy,
however, the elastic cross-section exceeds thastelfor highZ targets in the energy
range of interest.
B. Geometry and angular distributions
The path of an electron in a target is depicte#ign 1. In this instance the primary
115 electron crosses a plane at a deptithree times before coming to rest. The path-
length travelled at thath crossing is denoted by, The first crossing of the electron
through the plane would be assigned, in an ap@tgpenergy bin, as a “first-pass”
and the second and third, in their appropriate @ndsins, as “multiple-pass”
contributions. The electron velocity at a depthis V(x). The incident electron
120 velocity vector,V,, is aligned with the positive X-axis, normal tcetBurface of a
semi-infinite target. The angle between these twotars is the scattering angle,
Hs(l(x)). Account must also be taken of knock-on electréasays generated at a
depth less thar, passing througk, may contribute to the first-pass component&nd

rays generated at a depth beyonithat are scattered backwards through the plane at

125 that depth are necessarily contributions to thetipletpass component.
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Within the target there will be a straggling inelactron’s lateral displacement in the
Y-Z plane, relative to its initial position, due soatter. For a beam of a large enough
area and sufficient intensity this may be negleftech the point of view of the origin
of x-ray emissions. For every electron displaceunfra Y-Z coordinate, there is one
of the same kinetic energy to replace it at theafimn, excepting where an electron is
close enough to the beam edge that its range nkayitautside the original beam
area. An electron beam used in general diagnostay Xube has the approximate
dimensions: LxL = 0.1x0.1 cnf.??> The typical penetration range for an electron in
tungsten isr ~10° cm. The fraction of electrons within range of eddfects is
therefore small, beingdx L xr /L? = 004. It is therefore reasonable to treat electrons
in a beam as if they had no lateral straggling feomacroscopic perspective i.e. from
that of an ensemble of electrons emitting x-raysttter, the beam spot-size increases

little with depth and can be considered approxiigetee same as at the surface.

Z

Fig. 1.Electron and target geometry and coordinate defimst

Whilst an electron’s lateral straggling may be igrtbmacroscopically, it is crucial to
realise that its path-length, will be greater than the sum of its paths in ¥e

direction. That is, the average number of bremisktrey photons emitted per electron
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per unit distance penetrated will be dependenthen angular distribution of the
electron beam. This may be parameterized in a lpatth correction. Azimuthal
symmetry will be assumed in the angular distributemd the appropriate spherical
distribution must be projected onto a Y-Z planas ltherefore convenient an angular

distribution at diffusionh(fs), with an associated normalisation,
[de.h,) =1, @)
0

However, the sign of an electron’s velocity vectith respect to the X-axis is
immaterial to interaction probability and for cemntgurposes it is convenient to add
these contributions together to form a new distity
9(6.)=h(6.)+h(n-6.). (5

where, now,0< 6, < /2. The diffusion angular distribution, in a scoripigine, for
pure elastic scattering in an infinite mediuniis:

g, (6) = 2cosd, sinég,, (6)
The factorsiné, projects a spherical fluence distribution onto eaamulus on the

surface of a sphere and the factosg, further projects onto the Y-Z plane.

Although an individual electron scatters many tirbesveen two planes separated by
a distance of a fraction ofian, if the beam is in diffusion, for each electraatsered

at a new angle, there is, on average, anotherefeof the same energy that scatters
to replace it. The path-length correction then dazes out into a multiplicative
diversion factor. The mean diversiah, will be defined,

diffusion 72
dxs<ﬂ> A = | a6, 96X 7y
JAVY cosd, o(6) cosb,

0
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This factor, assuming Eq. (6) is valid and thatusiion is reached instantaneously,

takes the valued, = 2.

C. Monte Carlo smulation

BEAMnrc** was used to simulate the penetration of normaliydient monoenergetic
electrons into a pure semi-infinite tungsten targsing the EGSnrc Monte Carlo
code® Each simulation consisted of 4X1Celectron histories and required
approximately one hour of CPU time. The Exact bamcrossing algorithm was
used for electron transport and single-scatteriag wnposed by the choice of an
appropriately large skin-depth (Jmeean—free—paths). The low incident electron
kinetic energies of 50 to 150 keV made electromdpart practicable without the
condensation of multiple elastic scattering evemtis single steps. Spin-effects were
turned on. The values of AE and AP, determiningdtmallest energy-loss increment
for stochastic treatment of inelastic collisionsl dmemsstrahlung, respectively, were
setto 512 keV and 1 keV. The values of UE andd#fermining the high-energy cut-
offs, for electrons and photons, respectively, veateto 1012 keV and 500 keV. In all
simulations ECUT was set to 521 keV, such that edebtron was transported until
its kinetic energy fell below 10 keV. As very fewemsstrahlung photons of energy
less than 10 keV escape an x-ray unit, it was demsd unnecessary to pursue
electrons’ progress beyond this cut-off. Phaseesfides were generated at 0.5 or 1.0
um increments of depths, with the maximum depthest@tepending on the incident
energy and varying between il and 14um. Five electron kinetic energies were
investigated: 50, 80, 100, 120 and 150 keV. Analysi the phase-space files was
performed using the BEAMDP analysis cd8eThe first-pass contributions to a
phase-space file were analysed separately to thiiphatpass frequency, using

“latching”.?® Simulations for aluminium, molybdenum, and rheniuwere also
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obtained, forT, = 100keV only. These materials provide examples of lovedium

and high-Z elements, respectively, to illustrate #ifects of atomic number on the
results. Molybdenum and rhenium are both commosgdumaterials in x-ray targets
and many electron beam transmission measuremews used aluminium as their
attenuating material.
D. First-pass frequency
Under diffusion conditions, the rate of decay ot tfirst-pass frequency with
penetration depth is expected to be proportiongiédirst-pass frequency itséff?’

dr7e =-2(X)7.dx  (8)
whereX'is an attenuation coefficient related to the etaatid inelastic cross-sections.
A plausible form forr. can be found heuristically without explicit knowtge of 2.
In the non-relativistic limit, both the Mott crossection describing elastic scatter and
the Mgller cross-section describing inelastic sratthave an inverse square

dependence on the kinetic energy of an electrompolhesizing an inverse square

dependence fa¥:

tTY N o dx
n: (X) ex;{ Zolmdxj—ex;{ zol—w(x‘»;} (9)

where,

1

(u(x)). =(T(¥)_ /T, :jupF (U] ¥du, (10

A

and whereA =10 keV/Ty and2y is an attenuation coefficient for electron with a

2
E

kinetic energy,T,. If (u(x)) is replaced with the Thomson-Whiddington predictio

urw(X)?, using Eg. (1), then after integration,

ne =) . (11)



The constanf =3 R, /0 is characteristic of the material aRg,y [mg-cni?] is the
Thomson-Whiddington range. This range is that afne@ by the Thomson-
Whiddington law: R, =T/ /C, whereC is the Thomson-Whiddington constant.

This range should not be confused with the extetpd| rangeRex [mg-cmz], which
220 is defined to be the value of intersection throtigh x-axis of a tangent to thg
curve. These two quantities were equated in the&kwdrBirch and Marshall and,
hence, in the work dependent upofi™it.Care should be taken in equating these
ranges with each other, as such identification wily be correct for a material in
which theyg curve is dominated by a linear portion.
225 E. Multiple-pass frequency
In a thick target, such as that in an x-ray tube,ldackscatter from the deeper material
must be accounted for at any given depth,The multiple-pass frequencyy, may
be written as the sum of two contributions: the bamof electrons moving forwards
(n+) and the number moving backwardg).( The forward and backward-moving

230 numbers may be treated through the approximatigreofmetric serie$*° Doing so,

0. =B ER+ B )n — (12

and
n.=nkF, (13)
whereB andF are the backscatter and forward scatter fractigspectivelyB is the
235 scatter back from the semi-infinite slab below ilane of interest and is the
forward scatter from the slab of finite thickness, above. The multiple-pass

frequency is then,

F+1
=N, +n.=n.B ——— 14
M =1 +0- =1 (1_FBJ (14)

1C



and the planar survival frequency ig, =77 +1y =1 +7, +1_. A related quantity
240 is the planar survival currenty, =7 +n, —n_. Whilst the survival current is

constrained to satisfyy, < ,lthe survival frequency has no such constraint &od

this reason, it is to be interpreted as a frequamel/not a survival probability.

At the target surface, necessarily,

245 F(o x)

:O,
p x=0

and at sufficient depth,

F(p X)p;mB(p X) =By,

whereBy is the backscatter fraction at diffusion. The despparameterization for the

forward-scatter between zero thickness and asyiopligtlarge depths is therefore,
250 F(p x) = By{L-exd-K p x/Ry,)), (15)
whereK is a dimensionless constant. This functional faxhibits an initial linear

rise with px at small values of the exponent. This behaviows b@en observed in

backscatter experiments.

255 The angular distribution of the beam disperses fthenincidents-function towards
the diffusion distribution as it penetrates and ssmuently, the backscatter factor
initially increases with depth. Choosing the sinsplparameterization to describe the

transitory variation in the backscatter,
B(ox) =B, + (Bd - Bo)(l_exd_ Kp X/ Rrw »’ (16)
260 whereBy is the backscatter fraction at the surface.

F. Conditional probability functions

11
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Theoretical quantities related to the CPPg(u|x) and Pw(u|x), exist, such as

Landau’s and Vavilov's straggling functioffs®*? These straggling functions are
defined in a non-trivial form, however, and furtimare, the functions are defined in
terms of path-length rather than penetration depth. empirical approach to

describing the CPFs is preferred here. The first anltiple-pass components are
treated separately, since the first-pass distidouis more amenable to experimental
measurement, as it corresponds to the energylditith of a beam exiting a slab of
material, and some comparison to experimental figglican be made. The energy
spectra for all depths and incident energies, fothkthe first-pass and multiple

components, were generated from the Monte Carla ida2 keV bins over the ranges

10<T <T, keV. The CPFs were obtained by normalising thegrdl of these spectra
overu to unity. A function was written in Matlab (Math\iks Inc., Natwick, MA) to
linearly interpolate between the data sets inuladx dimensions. For extrapolation
of a CPF to an arbitrary initial kinetic energflo, away from the values calculated,
the following simple scaling rule is suggested:

PlulxT,)=Pulx:T,) @7)
wherei O{F,M} and

f =R (T)/ R (%) (18)
An approximate scaling in energy distributions basn identified elsewhefé.
I11.RESULTS
A. Validation of assumptions
Monte Carlo angular distributions for a 100 keV imeare presented in Fig. 2(a) at

four depths. By a density-scaled depth of 2 m¢f,cequivalent to approximately 1

um in tungsten, the distribution has converged. Bitp) shows the planar survival

12
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frequency for those 100 keV electrons: it has desed little at a depth of 2 mg ém
Diffusion dominates then for the majority of thensual-frequency curve. Therefore,
an electron beam of energy ~ 100 keV, incident upohighZ anode, reaches

diffusion early in its journey into the target.

Fig. 3 presents the Monte Carlo results for théudibn angular distributions of 50,
80, 100, 120 and 150 keV beams. The curves liedlmgether. The diffusion angular
distribution is, to a good approximation, indepamtdef incident electron energy in
the range of interest. The close correspondenaseeleet the curves permits the use of

the 100 keV angular distribution as a “universatmbution” for all the energies.

Fig. 4 shows the CPF, as defined by Eq. (2), fd B€V incident electrons having
penetrated to a depth ofidn (a density-scaled depth of 5.79 mg3miThe planar

CPF was derived from the energy spectrum of plafentron fluence at depth, using
BEAMDP analyses of Monte Carlo phase-space filége path-corrected CPF, also

shown, is defined by,
P lulX) == Plul)x@eost )  (29)
DP
where

(P(u | X)x (1/cos8, )(u))du (20)

dDP =

>t

andi]/cosé?s )(u) is the mean of the reciprocal of the cosine ofsitettering angle, for

electrons with an energy fraction, This second CPF was calculated from the “real
fluence” as defined in the BEAMDP Users’ Man&&The value ofipp was found to

be 1.88 for the example shown. The similarity ia shape of the two curves suggests

13



that the scattering angle of an electron at dejgthto an excellent approximation,
310 independent of the energy loss of a particle. Thign agreement with the sparse

experimental literature availabf@.

(@) 0.8 — 0.00 mg-cr?

0.7 - -—-—--—  0.97 mg-cn?
) //\ ~ e 1.93 mg-cn?
0.6 3.86 mg-cn?
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&) o4
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0.1
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0 2 4 6 8 10 12 14
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Fig. 2. For 100 keV incident electrons in tungstée, (a) distribution of scattering angle at fdepths

and (b) planar survival frequency of the electr(Msnte carlo data).

14
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Fig. 3. Diffusion angular distributions of scattegiangles for electrons with incident kinetic enesg
of 50, 80, 100, 120 and 150 keV (Monte Carlo Data).

2.5
—— Planar CPF

o] Path-corrected CPF

Fig. 4. Planar conditional probability function figloline) and path-length corrected probability
320 function (broken line), for electrons with an ineid kinetic energy of 100 keV, at a density-scaled

depth of 5.79 mg cth(Monte Carlo data).

B. Angular distribution
Fig. 5 displays the angular distributigs), generated by Monte Carlo simulation in

2° bins, and the theoretical curve using Eg. (6). Ageeement is good and hence

325 d, =200 is a reasonable approximation for the mean digarsirhis is slightly

15
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larger than, the value of 1.88p6) arrived at by another method in the previous
subsection. This discrepancy is partly due to thet that BEAMDP limits the
obliquity with respect to the plane to less thafl iB5calculating the “real fluence”.
This cut-off is present to avoid large statistiiattuations, due to the fact that the
number of particles crossing a plane is asymptbfiz@ro asé, —» 7/2. However,
particle diversions approach infinity asymptotigaih this limit, accentuating this
contribution to the diversion factor such that ymot be completely negligible. To

compare diversion estimates fairly, Eq. (7) shdaddnodified to give

85° 90°
_°T 9(6.) 1 _
o = do, + o [a(6.)d6, =191, (21)

S
- cosH, o0

where again Eqg. (6) has been assumed for the @iffudistribution. The remaining

small discrepancy is due to the imperfect natur¢heffit of Eq. (6) to the angular

distribution data. Henceforth it will be assumeditttd, = 200.

1.2

1.0

9(8) 0.6 -

Monte Carlo data

——  9(8) =2 sin6, cosh,

OO I I I I I I I 1

00 02 04 06 08 1.0 12 14 16
6, [radians]

Fig. 5. Angular distributiong(és), for a 100 keV incident electron energy, at asityrscaled depth of

5.79 mg cnf (Monte Carlo data). The predictions of Eq. (6pahown (solid curve).

C. Thomson-Whiddington law and the mean ener gy

16
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The square of the mean energy of a beam emergng drtarget layer will approach
zero asymptotically as the thickness of the slatr@gches infinity. The use of the
Thomson-Whiddington law to describe this quant#tybased upon fitting a straight-

line to the initial, approximately linear, part thie curve. The data points in Fig. 6(a)

show the Monte Carlo results f({)ﬂ)F at five different incident energies. The solid
curves were generated using the fit

(u)2 =b{ox)’ —c{ox)+100,  (22)
where b=5999T,** [mg*cnf] and ¢=13010T,"* [mg'-cnf]. The two-
dimensional correlation coefficient for the fit w& = 0997. The broken curves in
the figure correspond to linear fits (fitting fo(ru)i > 04). The corresponding

Thomson-Whiddington constant€)(are presented in Table 1, along with the values
presented by Birch and MarsHa{Cg\). The linear relation is good in the region of

fitting. There is, however, a failure to descrile tonset of the asymptotic regime
apparent in the dat@(}i < 04). The Thomson-Whiddington range, as definedCby
is well-described R? = 0999) by,

R, =0.0119T,** [mg-cn?].  (23)
The exponent ol is very close to the energy-dependence of thepalated ranges

of Katz and Penfol&® Their predictions were 1.446 & = 150 keV and 1.551 & =

50 keV.

The fall of (u)i with penetration depth for aluminium, molybdenutmenium and
tungsten are presented in Fig. 6(b). The rate lbiSanly weakly dependent on the

atomic number of the target material. The faII(o}; for aluminium, molybdenum,

17



365 rhenium and tungsten are presented in Fig. 7(bgrellis a more sizable variation

between materials, with aluminium showing the latgdiscrepancy with respect to
the tungsten results. The fall o(fu)iﬂ with depth in tungsten, in the range
50<T, <150 keV, displayed in Fig. 7(a), is well describe®*(= 0996 in two
dimensions) by,

370 (u)? =-alfox)’ +box)’ -cfox)+ 061 (24)
wherea =15859T, ** [mg> cnf], b =1016T, ** [mg>-cni] and

¢ = 32501, *** [mg™-cnf].

To [keV] | C [keV*-mg"-cnf] | Cem [keV-mg"cnf]
50 565 540
80 710 639
100 792 700
12C 86& 787
15C 964 84C

Table 1. Thomson-Whiddington constants derived ftbenMonte Carlo data and the corresponding

R?-correlation . The Birch and Marshall values foofitson-Whiddington constants are also quédted.

1
@ I8 (b) 1%
% » 50 keV
0.8/ 4t o 80 keV 0.8
o 100 keV
0.6 o 120 keV 0.6
<WUs? o 150 keV (s 2
04 0.4
0.2 0.2
0 \ ‘ v \ N ) N ) ) o ) ) ) )
0 5 10 15 20 25 30 0 5 10 15 20
pX [mg-cn? P X [mg-cnv

375

Fig. 6. <U>F as a function of penetration for (a) five initedéctron energies and for (b) aluminium,

molybdenum, rhenium and tungsten at a 100 keV @mtiénergy (Monte Carlo data). The solid curves
are polynomial fits using Eq. (22) and the dotieds are the Thomson-Whiddington predictions the

values of C appearing in Table 1.

18
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0.4

2
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Fig. 7. <U>M as a function of penetration for (a) five initedéctron energies and for (b) aluminium,
molybdenum, rhenium and tungsten at a 100 keV @mtiénergy (Monte Carlo data). The solid curves
are polynomial fits using Eq. (24).

D. First and multiple-pass frequencies

The first and multiple-pass frequencies for 100 ke®ident electrons are shown in
Fig. 8(a) and Fig. 8(b) for tungsten, rhenium, rbdignum and aluminium. The
tungsten Z =74 and p =193 mg-cn?) and rhenium Z =75 and p =210
mg-cnt®) results are essentially identical, as expectedvio elements differing by
only one unit in atomic number and having very Bmidensities. Molybdenum

(Z=42 and p=103 mg-cn?) shows a marked departure from tungsten.
Aluminium (Z =13 and p =27 mg-cnm’) shows a considerable difference. The

shape of the curve is sensitive Zo0 The plural scattering, multiple-scattering and
diffusion regions have been identified with an écfion, a linear portion and an
exponential fall injg, respectively® The extent of the plural and multiple-scattering
regions is expected to diminish with increasthgnd this is confirmed by the graphs.
Tungsten is dominated by an exponential-looking rat fall, molybdenum has a
fairly large linear portion and aluminium exhibéslefinite initial inflection. The lack
of a clear linear portion in higB-targets means that an extrapolated rariyg (

cannot be unambiguously defined. For aluminiumpw-Z target, an extrapolated

19
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range can be found unambiguously. The solid lin€ign8(a) shows a fit to the linear
portion: the extrapolated range was 12.7 m¢.ciatz and Penfold presented
Carlvik's experimental value of 13.0 + 0.5 mg-tfor this range, consistent with the
value derived here. Further, using a continuougisig-down approximation (CDSA)
range of 18.7 mg-chfor 100 keV electrons incident on aluminium, thethod of

l33

Tabataet al*® predicts an extrapolated range of 12.4 m¢f.catso close to the value

found in this work.

The first and multiple-pass frequencies are preskim Fig. 9(a) and Fig. 9(b) for
tungsten and electron energies of 50, 80, 100,ah20150 keV. The solid curves are
the best-fits making use of Egs. (11) and (14)18).(The data are suitably described
by the forms of these equations with the paraniétezld constant, independentTf
The values of the constants found, for tungstengwe= 1.753,K = 18.0 andBy =

0.584. The value of the surface backscaBgrwas calculated fronB, =7,, (x= 0)

and found to take the value 0.50.

The values of parameters quoted were determined tine data for the first-pasg/{)
and multiple-pass frequencieg,( =7, +7_). The solid squares in Fig. 10 depigt
and the empty squareg,, for 100 keV electrons incident on tungsten. Theves
through these points are the fit using Eq. (12) Bgd(13) and the parameter values
quoted above. The fit is good, despite these pammbaving been determined from
the sum ofp_ andz, , not their independent values. This thereforedeadis the use

of the geometric series approach. Bgthandy. are modelled correctly.
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E. Energy distribution

The shape of the CPF functions of 100 keV inciaggettrons at density-scaled depths
of 1.93, 5.79 and 11.58 mg-&nare presented in Fig. 11. The data points (ciycles
correspond to the Monte Carlo results binned ire? kncrements. The solid curves
are linear interpolations im and x. Unsurprisingly, the multiple-pass CPFs are
broader than their first-pass counterparts andbéixtdwer mean values ai. Note,
however, that the first-pass component becomesllsapiore broad as it penetrates.
Also, note the long low energy tail, present padiye to the generation dfrays>*
the so-called Landau tail, but also arising froma thistribution of path lengths of
electrons at a given depth. The maximum cut-offuins absolute (rather than
asymptotic) and is present due to the CSDA compoogenergy loss in EGSnrc.

This cut-off decreases linearly with depth.

The CPF functions at a density-scaled depth of ;§6cn¥ are presented in Fig. 12

for five incident electron energies. Not only aresd energetic electrons less
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penetrative, they also, as these results demoaseahibit a broader distribution in
energies at the same depth. This is despite pasgess essential identical angular
distribution. The broken curves are linear integpiohs of the Monte Carlo data at the
relevant incident energy. The solid curves areptteglictions using Eq. (17) and Eg.

(18) with Monte Carlo data fof, = 10ReV, and linear interpolation xandu. The

scaling law for extrapolation to arbitrary energyfprms well.

Example data (circles) of the CPFs of rhenium, mdénum and aluminium are
presented in Fig. 13, at similar values of densdgled depth. The solid curves are
the predictions using linear interpolationurandx, between tungsten data. The CPF
of rhenium is seen to very closely match the indkfion prediction in tungsten.
Molybdenum shows a discernable discrepancy withptiegliction based on tungsten
and in aluminium the agreement is poor. This isugmssing, as the ratio of elastic to
inelastic scatter varies markedly &s decreasésd and the different balance of
scattering mechanism inevitably affects the charact energy loss with depth. The
shift of the CPF curve for aluminium towards lowemergies with respect to the
tungsten curve is consistent with Cosslett and Tdsdnexperimental results for

aluminium and gold, with incident electrons of &8/
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interpolations (iru) between Monte Carlo data of 100 keV incident etets and extrapolation to other

energies using Eqgs. (17) and (18).
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depth, based on interpolationdrandx between 100 keV electrons in tungsten data.

IV. DISCUSSION

The results of section IllLA demonstrate that diffun is reached rapidly, rapidly
enough to assume, to a reasonable approximati@, ithis instantaneous. The
scattering angle of an electron was also shownetsuificiently independent of its
kinetic energy to factorise thé-dependence from tha-dependence. These facts
allow the calculation of a simple multiplicative tpdength correction for higi-
materials, using Eg. (7), which is (approximatelglid for all incident energies of
interest (50 <Tp < 150 keV). This diversion correctiod,, was found in section III.B

to take an approximately constant value of 2.

The analysis presented in section 1ll.C showed thatThomson-Whiddington law

provided a good approximation fdu(x)). only when (u)_* > 04. Nevertheless,
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since the first-pass survival frequengydeclines more rapidly with depth théu}F

(Section 111.D), the Thomson-Whiddington law provide$a& approximation at the
depths whereyr is appreciably large. The values of the Thomson-Whgtdn
constants presented in Table 1 correspond fairly closéh the value quoted by
495 Birch and Marshall, which are used in several x-ray spemodels ™ It is
unsurprising that their values are somewhat differerthtse of this work, as they
were derived from the extrapolated range data summdatigeKatz and Penfold
based on lowZz materials, predominantly aluminium. Fig. 6 showed thaetiesome
deviation of the aluminium data from the results of tungshe addition, whilst it is
500 perhaps legitimate to identify the extrapolated range withTtitemson-Whiddington
range for lowZ materials, care should be taken in doing so for Eighaterials like

tungsten, for which, as Fig. 8 clearly shows, there idiscernable linear portion.

There remain several ways to model the joint frequereysity and hence the
505 penetration of electrons into a target. Four of these iarencreasing order of
sophistication,
f(u,x) = (U= upy (X)), (25a)
£, %) = 7 ()8(U = Upy (%)), (25b)
f(u,x) =7, (x)d(u —(u(x)), )+/7M (x)d(u —(u(3),, ) (25¢)
510 f(u,x) =7 ()P (u|x)+7, (9P, (U] x). (25d)
Approach (25a) was, implicitly, that taken by Birch and stail and other§™°
Whilst this approach has the virtue of simplicity, it igrsotiee distribution of electron

energies at depth (a Diratfunction imposed), ignores backscatter (absence of a

multiple-pass term) and, furthermore, ignores the pdsggithat an electron does not
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survive to a given depth (abseptterm). Approach (25b) remedies the last deficit.
Approach (25c), in addition, introduces backscatter. Finél$d) provides the full
description in terms of the model developed here. Tégret of backscatter is not
small: that ispy is not small compared tg- (Section II1.D). Monte Carlo results
therefore suggest that at the very least, approad) §€iould be adopted. Further, the
rapid broadening of both the first and multiple-pass CRifaatistrated in section
III.E suggests that this third approach may not give al ggaproximation to the full
model. The formalism introduced in this work allows the,fatlost sophisticated
model, to be applied to the problem of electron bgemetration in a higE-target.
The results presented here may be used towards dalgulthe spectra of

bremsstrahlung escaping an anode. This aim is pursube icompanion paper, Part

.1

It is noteworthy that the results of this paper are derik@d Monte Carlo modelling,
not experiment. It has been assumed here that thecphysodel contained in the
EGSnrc code, with the options that were selected, addguahcapsulates the
relevant physics in the electron kinetic energy rang&Oofo 150 keV. The EGSnrc
code system has, however, excelled in validation exerofdeselectron transpoft®’
and certain parameters derived in this work, sucR.a$or aluminum, have agreed
with experimental results. It seems likely, in any c#ésat the beam transport results
presented here are a great quantitative improvemetiteomethods hitherto used in

the models of x-ray spectra where the Thomson-Whiddmggiation has been used.

The results presented here for the survival frequereidsCPFs should be applicable

for heavy elements of atomic numbers similar to tungsteay may also be of some
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applicability for elements of moderafesuch as molybdenum. It should be noted that
there are x-ray tubes in use within healthcare that possestes made of elements
that are not higlZ materials. The majority of such tubes are used in mamapbg.
The tube potentials used in these cases are less thevipSGutside of the range
investigated here. If the approach adopted here webe teepeated and applied to
mammographic energies and lowematerials, careful consideration would have to
be taken of the consequences of the less rapid onditusion.

V.CONCLUSION

The concept of the joint frequency density, describlegteon penetration in a target,
was introduced and decomposed into survival frequemacidsconditional probability
functions. These components were calculated using M@atdo techniques for
electron beams of energies of 50, 80, 100, 120 &ddk&V penetrating into a thick
tungsten target. Results for low and medium atomic nuri#sgets were compared
for 100 keV beams. A combination of parameterization inftren of equations,
interpolation in energy fraction and depth, and extrdjmoian incident beam energy,
were used to generalise the results. The results opdipier allow the more accurate
treatment of the penetration of electrons into tighrgets, for use in models of x-ray
spectra generation.
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