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Part I: Electron penetration characteristics in x-ray targets 
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The penetration characteristics of electron beams into x-ray targets are 

investigated for incident electron kinetic energies in the range 50 to 150 keV. 

The frequency densities of electrons penetrating to a depth x in a target, with a 

fraction of initial kinetic energy, u, are calculated using Monte Carlo methods 10 

for beam energies of 50, 80, 100, 120 and 150 keV in a tungsten target. The 

frequency densities for 100 keV electrons in Al, Mo and Re targets are also 

calculated. A mixture of simple modelling with equations and interpolation 

from data is used to generalize the calculations in tungsten. Where possible, 

parameters derived from the Monte Carlo data are compared to experimental 15 

measurements. Previous electron transport approximations in the semi-

empirical models of other authors are discussed and related to this work. In 

particular the crudity of the use of the Thomson-Whiddington law to describe 

electron penetration and energy loss is highlighted. The results presented here 

may be used towards calculating the target self-attenuation correction for 20 

bremsstrahlung photons emitted within a tungsten target. 

I. INTRODUCTION 

The accurate prediction of the photon spectrum emerging from an x-ray tube is 

important in imaging and therapy contexts, as the spectrum affects imaging properties 

and patient dose. An understanding of the penetration characteristics of beams of 25 
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electrons into thick x-ray targets is necessary, as the depth of the associated x-ray 

production affects this spectrum via target self-filtration.  

 

Determinations of the properties of electron transmission, using metal films, were 

made by Whiddington1 in 1912. That author found, empirically, that the square of the 30 

most probable energy of an electron, emerging from a film of thickness x, is 

approximately linearly dependent on x. The energy spectra of electron beams 

transmitted through slabs of media were investigated by later workers.2-4 A formula of 

the same form as for the most probable energy was shown to describe the mean 

energy, T , very well.4 This is referred to in the literature as the Thomson-35 

Whiddington law and may be written: 

xCTxT ρ−= 2
0

2
)( ,  (1) 

where T0 is the kinetic energy of the incident electrons, ρ is target density and C is 

known as a Thomson-Whiddington constant. This last “constant” is approximately 

material independent, but increases slowly with T0. Semi-empirical models of x-ray 40 

production have been proposed that make use of such a Thomson-Whiddington law to 

relate an electron’s energy to its penetration depth as a simple one-to-one mapping.5-10 

Some of these models,7-9 amongst other approaches,11 have been applied in a 

healthcare setting.12 The values for the Thomson-Whiddington constants used in these 

latter cases were those calculated by Birch and Marshall,7 using the extrapolated 45 

transmission range data of Katz and Penfold.13 The distribution in the energies of 

electrons at depth was ignored and backscatter was neglected.  

 

This work addresses these issues using Monte Carlo electron transport. Whilst the 

penetration characteristics of electrons have been investigated previously using Monte 50 
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Carlo methods e.g. Bishop14 or Sundararaman et al.,15 more recent articles have 

treated the entire process of x-ray generation, including the bremsstrahlung emission, 

using Monte Carlo e.g. Verhaegen et al.16 or Ay et al..17 With modern computing 

power and the careful use of variance reduction techniques, the full Monte Carlo 

simulation of an x-ray unit may, perhaps, be performed in a matter of minutes or 55 

less.18 However, the separation of the process of bremsstrahlung generation into two 

steps, electron penetration into a target and bremsstrahlung emission, can provide 

insight into the nature of beam transport in an x-ray target and the affect that this has 

on an emerging spectra. Examinations of the sufficiency of theoretical results for the 

differential bremsstrahlung cross-section are also readily made. This article, Part I, is 60 

the first of two papers. Here, the transport of electron beams corresponding to tube 

potentials of 50 to 150 kVp are simulated in an x-ray target using Monte Carlo 

methods. A second paper, Part II,19 presents spectral predictions using these results 

and bremsstrahlung cross-sections.  

 65 

The primary objective of this paper, Part I, is to introduce, calculate and parameterize 

the “joint frequency density” describing electron penetration. This quantity, f(u, x), is 

the number density of electrons that reach a depth x, with a fraction of the incident 

kinetic energy, u. This joint frequency density may be decomposed into a planar 

survival frequency, ηpl(x), which is the frequency with which electrons reach a depth 70 

x, and the probability, P(u|x), that an electron at that depth possesses an fraction of its 

initial energy, u. Then, 

)|()(),( xuPxxuf plη= . (2) 

 The probability )|( xuP  will be referred to as the conditional probability function 

(CPF). Further, since an x-ray emission occurs within a thick target, it is convenient to 75 
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further decompose Eq. (2) into a first-pass (F) and a multiple-pass (M) component 

such that, 

)|()()|()(),( xuPxxuPxxuf MMFF ηη += . (3) 

The first-pass component corresponds to the quantity measured in transmission 

measurements, such as Whiddington’s, through a slab of thickness x. The multiple-80 

pass component is that one that is present due to backscatter from the material below 

the depth x. For the simple treatment developed here, it was necessary to demonstrate 

that a state of diffusion was reached rapidly in a target so that the angle of an electron 

at depth compared to its incident direction is independent of and uncorrelated to its 

kinetic energy.  85 

II. THEORY AND METHOD 

A. Scattering regions 

Energetic electrons penetrating into thick high-Z materials undergo many scatters 

before coming to rest and several interaction processes are relevant.20 The paths of the 

electrons are tortuous due to multiple deflections through elastic scattering. Consider 90 

electrons with the same initial kinetic energy incident normal to a target surface. 

Relatively infrequently an electron is kicked backwards in an interaction with the 

nucleus of an atom, a process which is sufficiently described by Rutherford or Mott 

scattering, but the majority of the scattering events are small angle deflections, in 

which the atomic cloud appreciably screens the nuclear potential. The first extremely 95 

thin layer of the target, corresponding to a few elastic mean free paths of penetration, 

is called the plural scattering region, and is normally assumed to apply where the 

number of scattering events is less than 20. This corresponds to ~ 0.1 µm in tungsten 

for electrons with kinetic energies of tens of keV.21 By the time a few tens of mean 

free paths have been traversed, statistical averaging over an ensemble of electrons 100 
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results in a Gaussian angular distribution (for scattering angles less than ~ 20o), with 

the most probable angle of an electron increasing with penetration depth. This is 

referred to as the multiple-scattering region. The final scattering region, diffusion, has 

been defined as the state in which the angular distribution of an electron beam 

penetrating into a material no longer changes with depth.20 In the elastic scattering of 105 

electrons from nuclei, energy loss is negligible, since the mass of a nucleus can be 

assumed infinite. In between elastic scattering events, however, inelastic scattering 

from electrons bound within the target atoms occurs, resulting in energy loss, 

ionisation, and knock-on electrons. The relative frequency of inelastic to elastic 

scattering events is dependent on target atomic number and the electron energy, 110 

however, the elastic cross-section exceeds the inelastic for high-Z targets in the energy 

range of interest. 

B. Geometry and angular distributions 

The path of an electron in a target is depicted in Fig. 1. In this instance the primary 

electron crosses a plane at a depth, x, three times before coming to rest. The path-115 

length travelled at the nth crossing is denoted by ln. The first crossing of the electron 

through the plane would be assigned, in an appropriate energy bin, as a “first-pass” 

and the second and third, in their appropriate energy bins, as “multiple-pass” 

contributions. The electron velocity at a depth x, is V(x). The incident electron 

velocity vector, V0, is aligned with the positive X-axis, normal to the surface of a 120 

semi-infinite target. The angle between these two vectors is the scattering angle, 

( ))(xlsθ . Account must also be taken of knock-on electrons. δ-rays generated at a 

depth less than x, passing through x, may contribute to the first-pass component and δ-

rays generated at a depth beyond x that are scattered backwards through the plane at 

that depth are necessarily contributions to the multiple-pass component. 125 
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Within the target there will be a straggling in an electron’s lateral displacement in the 

Y-Z plane, relative to its initial position, due to scatter. For a beam of a large enough 

area and sufficient intensity this may be neglected from the point of view of the origin 

of x-ray emissions. For every electron displaced from a Y-Z coordinate, there is one 130 

of the same kinetic energy to replace it at that location, excepting where an electron is 

close enough to the beam edge that its range may take it outside the original beam 

area. An electron beam used in general diagnostic x-ray tube has the approximate 

dimensions: 1.01.0 xLxL =  cm2.22 The typical penetration range for an electron in 

tungsten is 310~ −r  cm. The fraction of electrons within range of edge-effects is 135 

therefore small, being: 04.0/4 2 =×× LrL . It is therefore reasonable to treat electrons 

in a beam as if they had no lateral straggling from a macroscopic perspective i.e. from 

that of an ensemble of electrons emitting x-rays. Further, the beam spot-size increases 

little with depth and can be considered approximately the same as at the surface. 
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θs(l2)

x
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Z
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 140 

Fig. 1. Electron and target geometry and coordinate definitions. 
 
 
Whilst an electron’s lateral straggling may be ignored macroscopically, it is crucial to 

realise that its path-length, l, will be greater than the sum of its paths in the X-145 

direction. That is, the average number of bremsstrahlung photons emitted per electron 
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per unit distance penetrated will be dependent on the angular distribution of the 

electron beam. This may be parameterized in a path-length correction. Azimuthal 

symmetry will be assumed in the angular distribution and the appropriate spherical 

distribution must be projected onto a Y-Z plane. It is therefore convenient an angular 150 

distribution at diffusion, h(θs), with an associated normalisation, 

1)(
0

=∫
π

θθ sshd , (4) 

However, the sign of an electron’s velocity vector with respect to the X-axis is 

immaterial to interaction probability and for certain purposes it is convenient to add 

these contributions together to form a new distribution, 155 

( ) ( ) ( )sss hhg θπθθ −+= , (5) 

where, now, 20 πθ <≤ s . The diffusion angular distribution, in a scoring plane, for 

pure elastic scattering in an infinite medium is:23 

( ) ssdg θθθ sincos2= ,  (6) 

The factor sθsin  projects a spherical fluence distribution onto an annulus on the 160 

surface of a sphere and the factor sθcos  further projects onto the Y-Z plane. 

 

Although an individual electron scatters many times between two planes separated by 

a distance of a fraction of a µm, if the beam is in diffusion, for each electron scattered 

at a new angle, there is, on average, another electron of the same energy that scatters 165 

to replace it. The path-length correction then factorizes out into a multiplicative 

diversion factor. The mean diversion, dx, will be defined, 

( )

( )
∫=→

∆
∆≡

2/

0 cos

,

cos

1 π

θ θ
θθ

θ s

s
s

gs

diffusion

x

xg
d

x

l
d

s

. (7) 



 8

This factor, assuming Eq. (6) is valid and that diffusion is reached instantaneously, 

takes the value, 2=xd . 170 

C. Monte Carlo simulation 

BEAMnrc24 was used to simulate the penetration of normally incident monoenergetic 

electrons into a pure semi-infinite tungsten target using the EGSnrc Monte Carlo 

code.25 Each simulation consisted of 4x106 electron histories and required 

approximately one hour of CPU time. The Exact boundary crossing algorithm was 175 

used for electron transport and single-scattering was imposed by the choice of an 

appropriately large skin-depth (1010 mean-free-paths). The low incident electron 

kinetic energies of 50 to 150 keV made electron transport practicable without the 

condensation of multiple elastic scattering events into single steps. Spin-effects were 

turned on. The values of AE and AP, determining the smallest energy-loss increment 180 

for stochastic treatment of inelastic collisions and bremsstrahlung, respectively, were 

set to 512 keV and 1 keV. The values of UE and UP, determining the high-energy cut-

offs, for electrons and photons, respectively, were set to 1012 keV and 500 keV. In all 

simulations ECUT was set to 521 keV, such that each electron was transported until 

its kinetic energy fell below 10 keV. As very few bremsstrahlung photons of energy 185 

less than 10 keV escape an x-ray unit, it was considered unnecessary to pursue 

electrons’ progress beyond this cut-off. Phase-space files were generated at 0.5 or 1.0 

µm increments of depths, with the maximum depth scored depending on the incident 

energy and varying between 2.5 µm and 14 µm. Five electron kinetic energies were 

investigated: 50, 80, 100, 120 and 150 keV. Analysis of the phase-space files was 190 

performed using the BEAMDP analysis code.26 The first-pass contributions to a 

phase-space file were analysed separately to the multiple-pass frequency, using 

“latching”.25 Simulations for aluminium, molybdenum, and rhenium were also 
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obtained, for 1000 =T  keV only. These materials provide examples of low, medium 

and high-Z elements, respectively, to illustrate the affects of atomic number on the 195 

results. Molybdenum and rhenium are both commonly used materials in x-ray targets 

and many electron beam transmission measurements have used aluminium as their 

attenuating material. 

D. First-pass frequency 

Under diffusion conditions, the rate of decay of the first-pass frequency with 200 

penetration depth is expected to be proportional to the first-pass frequency itself:20,27  

dxxd FF ηη )(Σ−=  (8) 

where Σ is an attenuation coefficient related to the elastic and inelastic cross-sections. 

A plausible form for Fη  can be found heuristically without explicit knowledge of Σ. 

In the non-relativistic limit, both the Mott cross-section describing elastic scatter and 205 

the Møller cross-section describing inelastic scatter, have an inverse square 

dependence on the kinetic energy of an electron. Hypothesizing an inverse square 

dependence for Σ: 


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where,  210 

( )∫
Λ

==
1

0 |/)()( duxuuPTxTxu FFF
 , (10) 

and where 10=Λ  keV/T0 and Σ0 is an attenuation coefficient for electron with a 

kinetic energy, 0T . If 
2

)(
F

xu  is replaced with the Thomson-Whiddington prediction, 

uTW(x)2, using Eq. (1), then after integration, 

( )Γ= 2
TWF uη .  (11) 215 
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The constant ρTWR0Σ≡Γ  is characteristic of the material and RTW [mg·cm-2] is the 

Thomson-Whiddington range. This range is that as defined by the Thomson-

Whiddington law: CTRTW /2
0= , where C is the Thomson-Whiddington constant. 

This range should not be confused with the extrapolated range, Rex [mg·cm-2], which 

is defined to be the value of intersection through the x-axis of a tangent to the ηF 220 

curve. These two quantities were equated in the work of Birch and Marshall7 and, 

hence, in the work dependent upon it.8-10 Care should be taken in equating these 

ranges with each other, as such identification will only be correct for a material in 

which the ηF curve is dominated by a linear portion. 

E. Multiple-pass frequency 225 

In a thick target, such as that in an x-ray tube, the backscatter from the deeper material 

must be accounted for at any given depth, ρx. The multiple-pass frequency, ηM, may 

be written as the sum of two contributions: the number of electrons moving forwards 

(η+) and the number moving backwards (η-). The forward and backward-moving 

numbers may be treated through the approximation of geometric series.28,29 Doing so, 230 

( )
FB

B
BFBFB FF −

=+++=− 1
...)()(1 2 ηηη  (12) 

and 

F−+ = ηη , (13) 

where B and F are the backscatter and forward scatter fractions, respectively. B is the 

scatter back from the semi-infinite slab below the plane of interest and F is the 235 

forward scatter from the slab of finite thickness, x, above. The multiple-pass 

frequency is then, 










−
+=+= −+ FB

F
BFM 1

1ηηηη  (14) 
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and the planar survival frequency is, −+ ++=+= ηηηηηη FMFpl . A related quantity 

is the planar survival current, −+ −+= ηηηη Fc . Whilst the survival current is 240 

constrained to satisfy 1≤cη , the survival frequency has no such constraint and, for 

this reason, it is to be interpreted as a frequency and not a survival probability.  

 

At the target surface, necessarily, 

0)(
0

=
=x

xF
ρ

ρ , 245 

and at sufficient depth,  

d
x

BxBxF ≡
∞→

)(~)( ρρ
ρ

, 

where Bd is the backscatter fraction at diffusion. The simplest parameterization for the 

forward-scatter between zero thickness and asymptotically large depths is therefore, 

( )( )TWd RxBxF ρρ Κ−−= exp1)( ,  (15) 250 

where Κ is a dimensionless constant. This functional form exhibits an initial linear 

rise with ρx at small values of the exponent. This behaviour has been observed in 

backscatter experiments.28 

 

The angular distribution of the beam disperses from the incident δ-function towards 255 

the diffusion distribution as it penetrates and consequently, the backscatter factor 

initially increases with depth. Choosing the simplest parameterization to describe the 

transitory variation in the backscatter, 

( ) ( )( )TWd RxBBBxB ρρ Κ−−−+= exp1)( 00 , (16) 

where B0 is the backscatter fraction at the surface. 260 

F. Conditional probability functions 
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Theoretical quantities related to the CPFs, PF(u|x) and PM(u|x), exist, such as 

Landau’s and Vavilov’s straggling functions.30,31,32 These straggling functions are 

defined in a non-trivial form, however, and furthermore, the functions are defined in 

terms of path-length rather than penetration depth. An empirical approach to 265 

describing the CPFs is preferred here. The first and multiple-pass components are 

treated separately, since the first-pass distribution is more amenable to experimental 

measurement, as it corresponds to the energy distribution of a beam exiting a slab of 

material, and some comparison to experimental findings can be made. The energy 

spectra for all depths and incident energies, for both the first-pass and multiple 270 

components, were generated from the Monte Carlo data in 2 keV bins over the ranges 

010 TT <<  keV. The CPFs were obtained by normalising the integral of these spectra 

over u to unity. A function was written in Matlab (MathWorks Inc., Natwick, MA) to 

linearly interpolate between the data sets in the u and x dimensions. For extrapolation 

of a CPF to an arbitrary initial kinetic energy, 0̂T , away from the values calculated, 275 

the following simple scaling rule is suggested:   

( ) ( )00 ;|ˆ;| TxfuPTxuP ii =  (17) 

where { }MFi ,∈  and 

)ˆ(/)( 00 TRTRf TWTW= . (18) 

An approximate scaling in energy distributions has been identified elsewhere.27 280 

III. RESULTS 

A. Validation of assumptions 

Monte Carlo angular distributions for a 100 keV beam are presented in Fig. 2(a) at 

four depths. By a density-scaled depth of 2 mg·cm-2, equivalent to approximately 1 

µm in tungsten, the distribution has converged. Fig. 2(b) shows the planar survival 285 
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frequency for those 100 keV electrons: it has decreased little at a depth of 2 mg cm-2. 

Diffusion dominates then for the majority of the survival-frequency curve. Therefore, 

an electron beam of energy ~ 100 keV, incident upon a high-Z anode, reaches 

diffusion early in its journey into the target. 

 290 

Fig. 3 presents the Monte Carlo results for the diffusion angular distributions of 50, 

80, 100, 120 and 150 keV beams. The curves lie close together. The diffusion angular 

distribution is, to a good approximation, independent of incident electron energy in 

the range of interest. The close correspondence between the curves permits the use of 

the 100 keV angular distribution as a “universal distribution” for all the energies.  295 

 

Fig. 4 shows the CPF, as defined by Eq. (2), for 100 keV incident electrons having 

penetrated to a depth of 3 µm (a density-scaled depth of 5.79 mg cm-2). The planar 

CPF was derived from the energy spectrum of planar electron fluence at depth, using 

BEAMDP analyses of Monte Carlo phase-space files. The path-corrected CPF, also 300 

shown, is defined by, 

( ) ( ) ( )( )uxuP
d

xuP s
DP

Cor θcos1|
1

| ×=  (19) 

where 

( ) ( )( )( )∫
Λ

×=
1

cos1| duuxuPd sDP θ  (20) 

and ( )( )usθcos1  is the mean of the reciprocal of the cosine of the scattering angle, for 305 

electrons with an energy fraction, u. This second CPF was calculated from the “real 

fluence” as defined in the BEAMDP Users’ Manual.26 The value of dDP was found to 

be 1.88 for the example shown. The similarity in the shape of the two curves suggests 
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that the scattering angle of an electron at depth, is, to an excellent approximation, 

independent of the energy loss of a particle. This is in agreement with the sparse 310 

experimental literature available.20 
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Fig. 2. For 100 keV incident electrons in tungsten, the  (a) distribution of scattering angle at four depths 

and (b) planar survival frequency of the electrons (Monte carlo data). 
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Fig. 3. Diffusion angular distributions of scattering angles for electrons with incident kinetic energies 

of 50, 80, 100, 120 and 150 keV (Monte Carlo Data).  
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Fig. 4. Planar conditional probability function (solid line) and path-length corrected probability 

function (broken line), for electrons with an incident kinetic energy of 100 keV, at a density-scaled 320 

depth of 5.79 mg cm-2 (Monte Carlo data).  

B. Angular distribution 

Fig. 5 displays the angular distribution g(θs), generated by Monte Carlo simulation in 

2o bins, and the theoretical curve using Eq. (6). The agreement is good and hence 

00.2=xd  is a reasonable approximation for the mean diversion. This is slightly 325 
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larger than, the value of 1.88 (dDP) arrived at by another method in the previous 

subsection. This discrepancy is partly due to the fact that BEAMDP limits the 

obliquity with respect to the plane to less than 85o in calculating the “real fluence”. 

This cut-off is present to avoid large statistical fluctuations, due to the fact that the 

number of particles crossing a plane is asymptotically zero as 2πθ →s . However, 330 

particle diversions approach infinity asymptotically in this limit, accentuating this 

contribution to the diversion factor such that it may not be completely negligible. To 

compare diversion estimates fairly, Eq. (7) should be modified to give 

( ) ( ) 91.1
85cos

1

cos

85

0

90

85
850 =+= ∫ ∫

o

o

o

o

ssos
s

s dgd
g

d θθθ
θ

θ
, (21) 

where again Eq. (6) has been assumed for the diffusion distribution. The remaining 335 

small discrepancy is due to the imperfect nature of the fit of Eq. (6) to the angular 

distribution data. Henceforth it will be assumed that: 00.2=xd . 
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Fig. 5. Angular distribution, g(θs), for a 100 keV incident electron energy, at a density-scaled depth of 

5.79 mg cm-2 (Monte Carlo data). The predictions of Eq. (6) also shown (solid curve). 340 

C. Thomson-Whiddington law and the mean energy  
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The square of the mean energy of a beam emerging from a target layer will approach 

zero asymptotically as the thickness of the slab approaches infinity. The use of the 

Thomson-Whiddington law to describe this quantity is based upon fitting a straight-

line to the initial, approximately linear, part of the curve. The data points in Fig. 6(a) 345 

show the Monte Carlo results for 
F

u  at five different incident energies. The solid 

curves were generated using the fit 

( ) ( ) 00.122 +⋅−⋅= xcxbu
F

ρρ , (22) 

where 148.3
05999 −⋅= Tb  [mg-2·cm4] and 559.1

01.130 −⋅= Tc  [mg-1·cm2]. The two-

dimensional correlation coefficient for the fit was 997.02 =R . The broken curves in 350 

the figure correspond to linear fits (fitting for 4.0
2 >
F

u ). The corresponding 

Thomson-Whiddington constants (C) are presented in Table 1, along with the values 

presented by Birch and Marshall7 (CBM). The linear relation is good in the region of 

fitting. There is, however, a failure to describe the onset of the asymptotic regime 

apparent in the data ( 4.0
2 <
F

u ). The Thomson-Whiddington range, as defined by C, 355 

is well-described ( 999.02 =R ) by, 

513.1
00119.0 TRTW ⋅=  [mg·cm-2]. (23) 

The exponent of T0 is very close to the energy-dependence of the extrapolated ranges 

of Katz and Penfold.13 Their predictions were 1.446 at T0 = 150 keV and 1.551 at T0 = 

50 keV. 360 

 

The fall of 
2

F
u  with penetration depth for aluminium, molybdenum, rhenium and 

tungsten are presented in Fig. 6(b). The rate of fall is only weakly dependent on the 

atomic number of the target material. The fall of 
2

M
u  for aluminium, molybdenum, 
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rhenium and tungsten are presented in Fig. 7(b). There is a more sizable variation 365 

between materials, with aluminium showing the largest discrepancy with respect to 

the tungsten results. The fall of 
2

M
u  with depth in tungsten, in the range 

15050 0 << T  keV, displayed in Fig. 7(a), is well described ( 996.02 =R  in two 

dimensions) by, 

( ) ( ) ( ) 61.0232 +⋅−⋅+⋅−= xcxbxau
M

ρρρ   (24) 370 

where 903.3
015859 −⋅= Ta  [mg-3·cm6], 544.2

01016 −⋅= Tb  [mg-2·cm4] and 

249.1
05.32 −⋅= Tc  [mg-1·cm2]. 

T0 [keV] C [keV2·mg-1·cm2] CBM [keV2·mg-1·cm2] 
50 565 540 
80 710 639 
100 792 700 
120 865 787 
150 964 840 

Table 1. Thomson-Whiddington constants derived from the Monte Carlo data and the corresponding 

R2-correlation . The Birch and Marshall values for Thomson-Whiddington constants are also quoted.7 
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Fig. 6. 
F

u  as a function of penetration for (a) five initial electron energies and for (b) aluminium, 

molybdenum, rhenium and tungsten at a 100 keV incident energy (Monte Carlo data). The solid curves 

are polynomial fits using Eq. (22) and the dotted lines are the Thomson-Whiddington predictions the 

values of C appearing in Table 1.  
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Fig. 7. 

M
u  as a function of penetration for (a) five initial electron energies and for (b) aluminium, 

molybdenum, rhenium and tungsten at a 100 keV incident energy (Monte Carlo data). The solid curves 

are polynomial fits using Eq. (24).  

D. First and multiple-pass frequencies 

The first and multiple-pass frequencies for 100 keV incident electrons are shown in 385 

Fig. 8(a) and Fig. 8(b) for tungsten, rhenium, molybdenum and aluminium. The 

tungsten ( 74=Z  and 3.19=ρ  mg·cm-3) and rhenium  ( 75=Z  and 0.21=ρ  

mg·cm-3) results are essentially identical, as expected for two elements differing by 

only one unit in atomic number and having very similar densities. Molybdenum 

( 42=Z  and 3.10=ρ  mg·cm-3) shows a marked departure from tungsten. 390 

Aluminium ( 13=Z  and 7.2=ρ  mg·cm-3) shows a considerable difference. The 

shape of the curve is sensitive to Z. The plural scattering, multiple-scattering and 

diffusion regions have been identified with an inflection, a linear portion and an 

exponential fall in ηF, respectively.20 The extent of the plural and multiple-scattering 

regions is expected to diminish with increasing Z and this is confirmed by the graphs. 395 

Tungsten is dominated by an exponential-looking rate of fall, molybdenum has a 

fairly large linear portion and aluminium exhibits a definite initial inflection. The lack 

of a clear linear portion in high-Z targets means that an extrapolated range (Rex) 

cannot be unambiguously defined. For aluminium, a low-Z target, an extrapolated 
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range can be found unambiguously. The solid line on Fig. 8(a) shows a fit to the linear 400 

portion: the extrapolated range was 12.7 mg·cm-2. Katz and Penfold presented 

Carlvik’s experimental value of 13.0 ± 0.5 mg·cm-2 for this range, consistent with the 

value derived here. Further, using a continuous-slowing-down approximation (CDSA) 

range of 18.7 mg·cm-2 for 100 keV electrons incident on aluminium, the method of 

Tabata et al.33 predicts an extrapolated range of 12.4 mg·cm-2, also close to the value 405 

found in this work. 

 

The first and multiple-pass frequencies are presented in Fig. 9(a) and Fig. 9(b) for 

tungsten and electron energies of 50, 80, 100, 120 and 150 keV. The solid curves are 

the best-fits making use of Eqs. (11) and (14) to (16). The data are suitably described 410 

by the forms of these equations with the parameter Γ held constant, independent of T0. 

The values of the constants found, for tungsten, were Γ = 1.753, Κ = 18.0 and Bd = 

0.584. The value of the surface backscatter, B0, was calculated from )0(0 =≡ xB Mη  

and found to take the value 0.50. 

 415 

The values of parameters quoted were determined from the data for the first-pass (Fη ) 

and multiple-pass frequencies ( −+ += ηηηM ). The solid squares in Fig. 10 depict −η  

and the empty squares +η , for 100 keV electrons incident on tungsten. The curves 

through these points are the fit using Eq. (12) and Eq. (13) and the parameter values 

quoted above. The fit is good, despite these parameters having been determined from 420 

the sum of −η  and +η , not their independent values. This therefore validates the use 

of the geometric series approach. Both η+ and η- are modelled correctly. 
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Fig. 8. The (a) first-pass frequencies and (b) multiple-pass frequencies, for 100 keV electrons 

penetrating into four different elements (Monte Carlo data). 425 
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Fig. 9. The (a) first-pass frequencies and (b) multiple-pass frequencies for electrons penetrating into 

tungsten with five different incident energies (Monte Carlo data). Solid curves are best-fits using Eqs. 

(11) and (14) to (16). 
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Fig. 10. The values of the η+ and η-  frequencies  for 100 keV electrons incident on tungsten (Monte 

Carlo data). Solid lines are the predictions using Eq. (12) and (13) and the values of constants quoted in 

the text. 

E. Energy distribution 

The shape of the CPF functions of 100 keV incident electrons at density-scaled depths 435 

of 1.93, 5.79 and 11.58 mg·cm-2 are presented in Fig. 11. The data points (circles) 

correspond to the Monte Carlo results binned in 2 keV increments. The solid curves 

are linear interpolations in u and x. Unsurprisingly, the multiple-pass CPFs are 

broader than their first-pass counterparts and exhibit lower mean values of u. Note, 

however, that the first-pass component becomes rapidly more broad as it penetrates. 440 

Also, note the long low energy tail, present partly due to the generation of δ-rays,34 

the so-called Landau tail, but also arising from the distribution of path lengths of 

electrons at a given depth. The maximum cut-off in u is absolute (rather than 

asymptotic) and is present due to the CSDA component of energy loss in EGSnrc. 

This cut-off decreases linearly with depth.    445 

 

The CPF functions at a density-scaled depth of 3.86 mg·cm-2 are presented in Fig. 12 

for five incident electron energies. Not only are less energetic electrons less 



 23

penetrative, they also, as these results demonstrate, exhibit a broader distribution in 

energies at the same depth. This is despite possessing an essential identical angular 450 

distribution. The broken curves are linear interpolations of the Monte Carlo data at the 

relevant incident energy. The solid curves are the predictions using Eq. (17) and  Eq. 

(18) with Monte Carlo data for 1000 =T  keV, and linear interpolation in x and u. The 

scaling law for extrapolation to arbitrary energy performs well. 

 455 

Example data (circles) of the CPFs of rhenium, molybdenum and aluminium are 

presented in Fig. 13, at similar values of density-scaled depth.  The solid curves are 

the predictions using linear interpolation in u and x, between tungsten data. The CPF 

of rhenium is seen to very closely match the interpolation prediction in tungsten. 

Molybdenum shows a discernable discrepancy with the prediction based on tungsten 460 

and in aluminium the agreement is poor. This is unsurprising, as the ratio of elastic to 

inelastic scatter varies markedly as Z decreases35 and the different balance of 

scattering mechanism inevitably affects the character of energy loss with depth. The 

shift of the CPF curve for aluminium towards lower energies with respect to the 

tungsten curve is consistent with Cosslett and Thomas’ experimental results for 465 

aluminium and gold, with incident electrons of 18 keV.4 
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Fig. 11. The first-pass (PF) and multiple pass (PM) CPFs for electrons of initial kinetic energy 100 keV, 

at three depths in tungsten (Monte Carlo data). The solid curves are linear interpolations.  
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Fig. 12. The first-pass (PF) and multiple-pass (PM) CPFs for five different initial electron kinetic 

energies at a density-scaled depth of 3.86 mg·cm-2 in tungsten. The solid curves are linear 
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interpolations (in u) between Monte Carlo data of 100 keV incident electrons and extrapolation to other 

energies using Eqs. (17) and (18). 
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Fig. 13. The first-pass (PF) and multiple-pass (PM) CPFs for rhenium, molybdenum and aluminium at 

similar values of ρx (Monte Carlo data). The solid lines are the predictions for the stated density-scaled 

depth, based on interpolation in u and x between 100 keV electrons in tungsten data. 

IV. DISCUSSION 

The results of section III.A demonstrate that diffusion is reached rapidly, rapidly 480 

enough to assume, to a reasonable approximation, that it is instantaneous. The 

scattering angle of an electron was also shown to be sufficiently independent of its 

kinetic energy to factorise the θ-dependence from the u-dependence. These facts 

allow the calculation of a simple multiplicative path-length correction for high-Z 

materials, using Eq. (7), which is (approximately) valid for all incident energies of 485 

interest (50 < T0 < 150 keV). This diversion correction, dx, was found in section III.B 

to take an approximately constant value of 2.  

 

The analysis presented in section III.C showed that the Thomson-Whiddington law 

provided a good approximation for 
F

xu )(  only when 4.02 >
F

u . Nevertheless, 490 
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since the first-pass survival frequency ηF declines more rapidly with depth than 
F

u  

(Section III.D), the Thomson-Whiddington law provides a fair approximation at the 

depths where ηF is appreciably large. The values of the Thomson-Whiddington 

constants presented in Table 1 correspond fairly closely with the value quoted by 

Birch and Marshall, which are used in several x-ray spectra models.7-10 It is 495 

unsurprising that their values are somewhat different to those of this work, as they 

were derived from the extrapolated range data summarised by Katz and Penfold13 

based on low-Z materials, predominantly aluminium. Fig. 6 showed that there is some 

deviation of the aluminium data from the results of tungsten. In addition, whilst it is 

perhaps legitimate to identify the extrapolated range with the Thomson-Whiddington 500 

range for low-Z materials, care should be taken in doing so for high-Z materials like 

tungsten, for which, as Fig. 8 clearly shows, there is no discernable linear portion. 

 

There remain several ways to model the joint frequency density and hence the 

penetration of electrons into a target. Four of these are, in increasing order of 505 

sophistication, 

( ) ( ))(, xuuxuf TW−= δ ,  (25a) 

( ) ( ))()(, xuuxxuf TWF −= δη , (25b) 

( ) ( ) ( )
MMFF xuuxxuuxxuf )()()()(, −+−= δηδη , (25c) 

( ) ( ) ( )xuPxxuPxxuf MMFF |)(|)(, ηη += . (25d) 510 

Approach (25a) was, implicitly, that taken by Birch and Marshall7 and others.8-10 

Whilst this approach has the virtue of simplicity, it ignores the distribution of electron 

energies at depth (a Dirac δ-function imposed), ignores backscatter (absence of a 

multiple-pass term) and, furthermore, ignores the possibility that an electron does not 
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survive to a given depth (absent ηF term). Approach (25b) remedies the last deficit. 515 

Approach (25c), in addition, introduces backscatter. Finally, (25d) provides the full 

description in terms of the model developed here. The degree of backscatter is not 

small: that is ηM is not small compared to ηF  (Section III.D). Monte Carlo results 

therefore suggest that at the very least, approach (25c) should be adopted. Further, the 

rapid broadening of both the first and multiple-pass CPFs demonstrated in section 520 

III.E suggests that this third approach may not give a good approximation to the full 

model. The formalism introduced in this work allows the full, most sophisticated 

model, to be applied to the problem of electron beam penetration in a high-Z target. 

The results presented here may be used towards calculating the spectra of 

bremsstrahlung escaping an anode. This aim is pursued in the companion paper, Part 525 

II.19 

 

It is noteworthy that the results of this paper are derived from Monte Carlo modelling, 

not experiment. It has been assumed here that the physical model contained in the 

EGSnrc code, with the options that were selected, adequately encapsulates the 530 

relevant physics in the electron kinetic energy range of 10 to 150 keV. The EGSnrc 

code system has, however, excelled in validation exercises of its electron transport36,37 

and certain parameters derived in this work, such as Rex for aluminum, have agreed 

with experimental results. It seems likely, in any case, that the beam transport results 

presented here are a great quantitative improvement on the methods hitherto used in 535 

the models of x-ray spectra where the Thomson-Whiddington relation has been used. 

 

The results presented here for the survival frequencies and CPFs should be applicable 

for heavy elements of atomic numbers similar to tungsten. They may also be of some 
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applicability for elements of moderate-Z such as molybdenum. It should be noted that 540 

there are x-ray tubes in use within healthcare that possess anodes made of elements 

that are not high-Z materials. The majority of such tubes are used in mammography. 

The tube potentials used in these cases are less than 50 kVp, outside of the range 

investigated here. If the approach adopted here were to be repeated and applied to 

mammographic energies and lower Z materials, careful consideration would have to 545 

be taken of the consequences of the less rapid onset of diffusion.  

V. CONCLUSION 

The concept of the joint frequency density, describing electron penetration in a target, 

was introduced and decomposed into survival frequencies and conditional probability 

functions. These components were calculated using Monte Carlo techniques for 550 

electron beams of energies of 50, 80, 100, 120 and 150 keV penetrating into a thick 

tungsten target. Results for low and medium atomic number targets were compared 

for 100 keV beams. A combination of parameterization in the form of equations, 

interpolation in energy fraction and depth, and extrapolation in incident beam energy, 

were used to generalise the results. The results of this paper allow the more accurate 555 

treatment of the penetration of electrons into high-Z targets, for use in models of x-ray 

spectra generation. 
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