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Abstract

Purpose
To assess whether dynamic fluorine 18 (18F) fluorodeoxyglucose (FDG) positron emission tomography (PET) has added value over static 18F-FDG PET for tumor delineation in non–small cell lung cancer (NSCLC) radiation therapy planning by using pathology volumes as the reference standard and to compare pharmacokinetic rate constants of 18F-FDG metabolism, including regional variation, between NSCLC histologic subtypes.
[bookmark: _i2]Materials and Methods
The study was approved by the institutional review board. Patients gave written informed consent. In this prospective observational study, 1-hour dynamic 18F-FDG PET/computed tomographic examinations were performed in 35 patients (36 resectable NSCLCs) between 2009 and 2014. Static and parametric images of glucose metabolic rate were obtained to determine lesion volumes by using three delineation strategies. Pathology volume was calculated from three orthogonal dimensions (n = 32). Whole tumor and regional rate constants and blood volume fraction (VB) were computed by using compartment modeling.
[bookmark: _i3]Results
Pathology volumes were larger than PET volumes (median difference, 8.7–25.2 cm3; Wilcoxon signed rank test, P < .001). Static fuzzy locally adaptive Bayesian (FLAB) volumes corresponded best with pathology volumes (intraclass correlation coefficient, 0.72; P < .001). Bland-Altman analyses showed the highest precision and accuracy for static FLAB volumes. Glucose metabolic rate and 18F-FDG phosphorylation rate were higher in squamous cell carcinoma (SCC) than in adenocarcinoma (AC), whereas VB was lower (Mann-Whitney U test or t test, P = .003, P = .036, and P = .019, respectively). Glucose metabolic rate, 18F-FDG phosphorylation rate, and VB were less heterogeneous in AC than in SCC (Friedman analysis of variance).
[bookmark: _i4]Conclusion
Parametric images are not superior to static images for NSCLC delineation. FLAB-based segmentation on static 18F-FDG PET images is in best agreement with pathology volume and could be useful for NSCLC autocontouring. Differences in glycolytic rate and VB between SCC and AC are relevant for research in targeting agents and radiation therapy dose escalation.
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Introduction
Combined radiation therapy and chemotherapy is standard treatment for irresectable stage III non–small cell lung cancer (NSCLC). Concurrent chemotherapy and radiation therapy decreases the local-regional progression rate from 34% to 28% at 3 years and improves overall survival, compared with sequential chemotherapy and radiation therapy. This reflects the importance of optimizing local-regional therapy (1,2).
Tumor delineation for radiation therapy planning by using fluorine 18 (18F) fluorodeoxyglucose (FDG) positron emission tomography (PET) is classically based on static images. By using dynamic 18F-FDG PET, distinction can be made between unmetabolized 18F-FDG and bound 18F-FDG-6-phosphate (3,4). Dynamic PET allows calculation of glucose metabolic rate (in nanomoles per milliliter per minute). Glucose metabolic rate images have an increased signal-to-background ratio relative to static images because of the absence of unmetabolized 18F-FDG in the background (5). Therefore, we hypothesized that tumor delineation by using dynamic 18F-FDG PET is more accurate than static 18F-FDG PET, which might translate into improved local-regional treatment.
Additionally, biological factors like reprogrammed tumor energy metabolism influence response to radiation therapy and might be a target to improve local-regional treatment (6). Several metabolites, such as glucose, lactate, and glutathione, differ between NSCLC and normal lung tissue (7–9). Emerging evidence supports differences in glucose metabolism between adenocarcinoma (AC) and squamous cell carcinoma (SCC), on the basis of the expression of metabolic transporters and enzymes, static 18F-FDG PET findings, and level of several metabolites (10–12). Compared with AC, SCC shows higher glucose transporter 1 expression and standardized uptake values on 18F-FDG PET images (12,13). Also, AC might be better vascularized and/or perfused than SCC (higher vascular density at immunohistochemistry and higher transfer constant, or Ktrans, on dynamic contrast material–enhanced computed tomographic [CT] and magnetic resonance images [12–15]). However, blood flow and volume do not differ on images obtained with these modalities (14–16). Insight into the metabolic rate of glucose metabolism and metabolic vascular heterogeneity is required to further determine NSCLC phenotype. This biological information is likely to be relevant for research in targeting agents and radiation therapy dose escalation. By using dynamic 18F-FDG PET, rate constants of 18F-FDG metabolism and blood volume can be calculated (Fig 1) (4).
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Figure 1: Diagram illustrates the irreversible, two-tissue compartment model for 18F-FDG metabolism. The measured PET signal (thin dashed line) is a combination of the intracellular activity concentration of free 18F-FDG (18F-FDG in tissue), the intracellular activity concentration of 18F-FDG-6-phosphate (18F-FDG-6-PO4 in tissue), and a fraction of the activity concentration of 18F-FDG in blood plasma (blood volume fraction [VB]). In dynamic PET, pharmacokinetic rate constants (the rate constant of transport of 18F-FDG into tumor cells [K1], given in milliliters per gram per minute; the rate constant of export of 18F-FDG out of tumor cells [k2] per minute; and the rate constant of cytoplasmic phosphorylation of 18F-FDG [k3] per minute) and VB (in milliliter of blood per milliliter of tumor) can be calculated by using nonlinear least-squares regression. The vertical dashed line represents the cell membrane.
Open in Image Viewer
The aim of this prospective cohort study was dual: to assess whether dynamic 18F-FDG PET has added value over static 18F-FDG PET for tumor delineation in NSCLC radiation therapy planning by using pathology volumes as a reference standard and to compare pharmacokinetic rate constants of 18F-FDG metabolism, including regional variation, between NSCLC histologic subtypes.
[bookmark: _i7]Materials and Methods
This study was approved by the Commission on Medical Research Involving Human Subjects Region Arnhem–Nijmegen, the Netherlands. All patients gave written informed consent.
Patients
Nondiabetic patients who had not undergone prior treatment for newly diagnosed or suspected NSCLC of stage IB to limited stage IIIA (according to the TNM, 7th edition) and who underwent primary resection were consecutively included in this prospective, observational cross-sectional study between 2009 and 2014. All subjects were routinely staged by using contrast-enhanced CT of the chest and/or upper abdomen and 18F-FDG PET/CT with additional histologic staging of the mediastinum or other sites suspicious for cancer when necessary. Patients with histologically proven non-NSCLC or a high suspicion for metastasis were ineligible. Tumors had to be at least 30 mm to minimize partial volume effect (17). Dynamic FDG PET was performed within 7 days of surgery. A total of 38 patients were included. Three patients were excluded because of no malignancy after lobectomy (infarction with inflammation), absence of 18F-FDG uptake on dynamic PET images, or a severe mismatch between dynamic PET and CT images, which could not be correctly realigned before reconstruction. Thirty-six lesions in 35 patients remained (mean age of men, 66 years [range, 45–82 years]; mean age of women, 64 years [range, 48–77 years]; age not significantly different between men and women [according to the independent-samples t test]); one patient had two synchronous primary NSCLCs (AC and SCC). Measurement of all pathology volume dimensions was not available in three lesions, and no resection was performed in one patient because of detection of stage IV cancer peroperatively (Fig 2). Clinical-pathologic characteristics, shown in Table 1, were similar for AC and SCC (Table 2).
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Figure 2: Flowchart shows the patients available for PET analysis and measurement of pathology volumes.
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Note.—Data are numbers of NSCLCs (n = 36), unless indicated otherwise. Numbers in parentheses are percentages, unless indicated otherwise.
*Numbers in parentheses are ranges.
†Unknown for one patient, because stage IV findings were diagnosed during surgery.
‡Pathologic margins were inconclusive. This patient did not undergo postoperative radiation therapy.
View larger version
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Note.—Data are numbers of lesions, unless indicated otherwise. Numbers in parentheses are percentages, unless indicated otherwise. All P values for the comparisons in this Table were not significant.
*Numbers in parentheses are ranges.
†Unknown for one patient with AC, because stage IV findings were diagnosed during surgery.
‡Pathologic margins were inconclusive. This patient did not undergo postoperative radiation therapy.
View larger version
Dynamic PET Acquisition and Reconstruction
Dynamic 18F-FDG PET was performed for study purposes. Patients fasted and underwent scanning in the supine position, with the tumor centrally located in the field of view, after validating euglycemia (Biograph Duo [n = 21] and Biograph 40 mCT [n = 17]; Siemens Medical Solutions USA, Knoxville, Tenn). After performing low-dose breath-hold CT, free-breathing PET data in a single bed position were acquired in three-dimensional list mode for 60 minutes. A standardized infusion of 18F-FDG was given directly after the start of acquisition. A venous sample was obtained to determine plasma activity concentration for quality assurance. For details, see Appendix E1 (online).
Creation of Glucose Metabolic Rate Parametric Maps
All image analyses were performed by T.W.H.M. (a resident in radiation oncology with 5 years of experience) under the supervision of D. Vriens (a nuclear medicine physician with 8.5 years of experience) and L.F.d.G.O. (a nuclear medicine physician with 18 years of experience) and were conducted by using Inveon Research Workplace software (version 4.2; Siemens Healthcare, Erlangen, Germany).
Glucose metabolic rate images were assessed on the basis of tissue and blood time-activity concentration curves by using the Patlak linearization approach, with data acquired between 15 and 60 minutes after injection, as described earlier (4). A 10-mL volume of interest (VOI) of the descending aorta, drawn on the images obtained during the first 60 seconds, on which endothelial wall and calcifications were excluded to identify only blood, served as image-derived input function (IDIF). Correction was applied for time differences between the arrival of the 18F-FDG bolus in the descending aorta and the tumor. A lumped constant (LCFDG in the following equation) of 1 was assumed (3,5). In short, glucose metabolic rate was calculated as Ki · (Cp,glu/LCFDG), where Ki is the 18F-FDG influx constant (slope of the Patlak plot) and Cp,glu is the plasma glucose concentration (4,5).
Image Analysis of Dynamic (Glucose Metabolic Rate) PET
Oversized container VOIs for tumors surrounded by normal tissue were drawn on glucose metabolic rate parametric maps, excluding any 18F-FDG–avid nontumor tissue (myocardium). Within this container VOI, tumor was segmented by using (a) threshold of 50% of maximum glucose metabolic rate (18,19), (b) threshold of 40% of maximum glucose metabolic rate adapted for background (threshold = mean glucose metabolic rate of background + 0.4 · [maximum glucose metabolic rate of tumor − mean glucose metabolic rate of background]) (18,19), and (c) a fuzzy locally adapted Bayesian (FLAB) algorithm (custom in-house developed software, ImageD, LaTim INSERM Laboratory, Brest, France; contours imported into Inveon Research Workplace software, Siemens Healthcare) (20). A spherical 25-mL background VOI was drawn at the same level as the location of the tumor in contralateral healthy lung tissue. Theoretically, adaptive 40% threshold is in best correlation with the true volume for larger tumors (diameter, 15–50 mm) (21). The FLAB approach is based on the probability that each voxel belongs to tumor tissue or background by taking into account the intensity of the voxels in various regions of the image, as well as the spatial correlation with neighboring voxels.
Maximum and mean glucose metabolic rate and volumes of the segmentation methods were recorded.
Static PET Image Analysis
The last time frame (50–60 minutes after injection) was extracted from the dynamic series and was used as static 18F-FDG PET, being equivalent to classic 18F-FDG PET starting 50 minutes after injection with a 10-minute acquisition time. The same tumor VOI definitions were applied on static PET images. Resulting volumes were recorded.
Pharmacokinetic Rate Constants and Blood Volume Analysis
Within the segmentation volume that best corresponds to pathology volume, pharmacokinetic rate constants K1,k2, and k3 and VB were computed for the whole tumor on the basis of tissue and blood time-activity concentration curves with unweighted (no Poisson weighting) nonlinear least-squares regression analysis by assuming a two-tissue, irreversible compartment model. The same IDIF was used. Nonlinear least-squares optimization consisted of 99 random starting points with reproducible results, and intervals were set for acceptable parameter values (0.0–2.0 for rate constants, 0.0–1.0 for VB). For the two patients who moved markedly halfway through the acquisition, pharmacokinetic analysis was performed up to the time of movement—that is, the first 32.5 and 22.5 minutes of data acquisition.
For heterogeneity analysis, tumor volumes were segmented into three subregions of equal volume by using descending glucose metabolic rate thresholds (high, medium, and low). Within these subvolumes, K1, k2, k3, and VB were determined by using the nonlinear least-squares method mentioned earlier.
Pathology Examination
After surgery, the involved lung lobe was fixed in formaldehyde by inflating formaldehyde into the lobar or main bronchus and lobar or main artery. Macroscopic maximal orthogonal tumor dimensions (in millimeters) in the transverse direction (dx and dy in the following calculations) and craniocaudal direction (dz in the following calculations) were measured once 22 hours after fixation (n = 25) by M.G.L.S. (a pathologist with 25 years of specialization in thoracic pathology). Fixated tumors were cut into transverse slices. Here, maximum dx and dy dimensions were measured, and dz was calculated as follows: (craniocaudal length/number of slices) · (number of slices − 1). By subtracting 1, we took into account that the flanking slices mostly did not show full-thickness tumor infiltration. Dimensions of seven tumors were measured on photographs of formaldehyde-fixed tissue (n = 5) or by means of archived formaldehyde-fixed macroscopic tissue (n = 2). The pathologist was blinded to the 18F-FDG PET results. Tumor volumes were estimated by using an ellipsoid volume (V): V = (1/6)π · dx · dy · dz.
For World Health Organization 2015 classification, all slides were revised by M.G.L.S.
Statistics
Statistical analyses were performed by using SPSS version 22.0 statistical software (SPSS, Chicago, Ill). The Pearson χ2 test and Spearman correlation were used to determine associations between histologic findings and clinical-pathologic parameters. Pathology and PET volumes were compared by using the Wilcoxon signed rank test. To quantify the agreement between pathology and PET volumes, the intraclass correlation coefficient (ICC) was used (two-way random, absolute agreement). Differences between pathology volumes and PET volumes were quantified by using Bland-Altman analysis to report the mean difference (accuracy) and the upper and lower limits, defined as mean ± 1.96 · standard deviation (precision). Differences in continuous variables between histologic subtypes were interpreted by using the Mann-Whitney U test or the independent-samples t test. Since the levels of K1, k2, k3, and VB in different regions within a tumor are highly related, they are considered dependent. Therefore, comparison of multiple groups for heterogeneity analysis was performed by using Friedman analysis of variance, followed by Dunn post hoc analysis, which is a Bonferroni multiplicity adjustment of P values. A P value less than .05 was considered to indicate a statistically significant difference.
[bookmark: _i19]Results

Correlation of Pathology Volumes and PET Volumes
Pathology and PET volumes are described in Table 3 for all tumors (n = 32) and for carcinomas with (n = 9) and without (n = 23) macroscopic necrosis separately. Volume differences between pathology and PET volumes are shown in Table 4. Pathology volumes were significantly larger than PET volumes, except for FLAB volumes in carcinomas without macroscopic necrosis (see Table 4 for statistics). Static PET volumes were significantly larger than glucose metabolic rate–based volumes (P < .001). Uptake-based, relative threshold volumes were smaller than FLAB volumes (P < .001).
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Note.—Data are median values, with ranges in parentheses. A40% MRglc = tumor delineation by using a threshold of 40% of maximum metabolic rate of glucose adapted for background (dynamic PET), A40% static PET = tumor delineation by using a threshold of 40% of maximum activity concentration (in becquerels per cubic centimeter) adapted for background (static PET), FLAB MRglc = tumor delineation by using the FLAB algorithm on parametric (glucose metabolic rate) images obtained with dynamic PET, FLAB static PET = tumor delineation by using the FLAB algorithm on static PET images, 50% MRglc = tumor delineation by using a threshold of 50% of maximum metabolic rate of glucose (dynamic PET), 50% static PET = tumor delineation by using a threshold of 50% of maximum activity concentration (in becquerels per cubic centimeter) (static PET).
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Note.—Numbers in parentheses are ranges. Difference (in cubic centimeters) is calculated as pathology volume minus PET volume. A40% MRglc = tumor delineation by using a threshold of 40% of maximum metabolic rate of glucose adapted for background (dynamic PET), A40% static PET = tumor delineation by using a threshold of 40% of maximum activity concentration (in becquerels per cubic centimeter) adapted for background (static PET), FLAB MRglc = tumor delineation by using the FLAB algorithm on parametric (glucose metabolic rate) images obtained with dynamic PET, FLAB static PET = tumor delineation by using the FLAB algorithm on static PET images, NS = not significant, 50% MRglc = tumor delineation by using a threshold of 50% of maximum metabolic rate of glucose (dynamic PET), 50% static PET = tumor delineation by using a threshold of 50% of maximum activity concentration (in becquerels per cubic centimeter) (static PET).
View larger version
Delineation by using the FLAB algorithm on static PET images resulted in the smallest median difference with pathology volume (Table 4) and the highest ICC (Table 5). Uptake-based, relative threshold methods were especially hampered by necrotic tumors (poor ICC), which was not the case for FLAB volumes (Table 5). Bland-Altman analyses showed the highest precision and accuracy for static FLAB volumes (Fig 3). This is the case for carcinomas with and without macroscopic necrosis but most markedly for carcinomas with macroscopic necrosis (Figs 3, 4).
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Note.—A40% MRglc = tumor delineation by using a threshold of 40% of maximum metabolic rate of glucose adapted for background (dynamic PET), A40% static PET = tumor delineation by using a threshold of 40% of maximum activity concentration (in becquerels per cubic centimeter) adapted for background (static PET), FLAB MRglc = tumor delineation by using the FLAB algorithm on parametric (glucose metabolic rate) images obtained with dynamic PET, FLAB static PET = tumor delineation by using the FLAB algorithm on static PET images, NS = not significant, 50% MRglc = tumor delineation by using a threshold of 50% of maximum metabolic rate of glucose (dynamic PET), 50% static PET = tumor delineation by using a threshold of 50% of maximum activity concentration (in becquerels per cubic centimeter) (static PET).
View larger version
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Figure 3: Bland-Altman plots show the mean difference between pathology volume and PET volume (accuracy) acquired via several segmentation methods on, A–C, static and, D–F, dynamic PET images. Mean, upper limit, and lower limit (precision) are described for all carcinomas. Difference (in cubic centimeters) is calculated as pathology volume minus PET volume. Upper and lower limits are calculated as follows: mean difference ± (1.96 · standard deviation). Carcinomas with macroscopic necrosis are shown in blue, and carcinomas without macroscopic necrosis are shown in green. A40% MRglc = tumor delineation by using a threshold of 40% of maximum metabolic rate of glucose adapted for background (dynamic PET), A40% static PET = tumor delineation by using a threshold of 40% of maximum activity concentration (in becquerels per cubic centimeter) adapted for background (static PET), FLAB MRglc = tumor delineation by using the FLAB algorithm on parametric (glucose metabolic rate) images obtained with dynamic PET, FLAB static PET = tumor delineation by using the FLAB algorithm on static PET images, 50% MRglc = tumor delineation by using a threshold of 50% of maximum metabolic rate of glucose (dynamic PET), 50% static PET = tumor delineation by using a threshold of 50% of maximum activity concentration (in becquerels per cubic centimeter) (static PET).
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Figure 4a: (a, b) Graphs show the mean difference (accuracy) between pathology volume and PET volumes for NSCLC without macroscopic necrosis (a) and NSCLC with macroscopic necrosis (b) separately. Difference (in cubic centimeters) is calculated as pathology volume minus PET volume. Circles represent mean values, and lines represent upper and lower limits (precision, as defined as follows: mean ± [1.96 · standard deviation]). A40% MRglc = tumor delineation by using a threshold of 40% of maximum metabolic rate of glucose adapted for background (dynamic PET), A40% static PET = tumor delineation by using a threshold of 40% of maximum activity concentration (in becquerels per cubic centimeter) adapted for background (static PET), FLAB MRglc = tumor delineation by using the FLAB algorithm on parametric (glucose metabolic rate) images obtained with dynamic PET, FLAB static PET = tumor delineation by using the FLAB algorithm on static PET images, 50% MRglc = tumor delineation by using a threshold of 50% of maximum metabolic rate of glucose (dynamic PET).
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Figure 4b: (a, b) Graphs show the mean difference (accuracy) between pathology volume and PET volumes for NSCLC without macroscopic necrosis (a) and NSCLC with macroscopic necrosis (b) separately. Difference (in cubic centimeters) is calculated as pathology volume minus PET volume. Circles represent mean values, and lines represent upper and lower limits (precision, as defined as follows: mean ± [1.96 · standard deviation]). A40% MRglc = tumor delineation by using a threshold of 40% of maximum metabolic rate of glucose adapted for background (dynamic PET), A40% static PET = tumor delineation by using a threshold of 40% of maximum activity concentration (in becquerels per cubic centimeter) adapted for background (static PET), FLAB MRglc = tumor delineation by using the FLAB algorithm on parametric (glucose metabolic rate) images obtained with dynamic PET, FLAB static PET = tumor delineation by using the FLAB algorithm on static PET images, 50% MRglc = tumor delineation by using a threshold of 50% of maximum metabolic rate of glucose (dynamic PET).
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Glucose Metabolism and Heterogeneity within NSCLC Histologic Subtypes
Pharmacokinetic analysis was performed by using FLAB volumes. Mean glucose metabolic rate and k3 were significantly higher in SCC, whereas VB was significantly higher in AC (P = .003, P = .036, and P = .019, respectively) (Fig 5a, 5c, 5d). K1 (Fig 5b) and k2 did not differ between these histologic subtypes.
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Figure 5a: Box and whisker plots show glucose metabolic rate constants and VB in the major histologic subtypes of NSCLC. (a) Mean glucose metabolic rate in AC versus SCC. (b) K1 in AC versus SCC. (c) K3 in AC versus SCC. (d) VB in AC versus SCC. The boxes represent lower quartile, median value, and upper quartile, and the whiskers represent minimum and maximum values. MRglc;mean = mean metabolic rate of glucose (in nanomoles per milliliter per minute), NS = not significant.
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Figure 5b: Box and whisker plots show glucose metabolic rate constants and VB in the major histologic subtypes of NSCLC. (a) Mean glucose metabolic rate in AC versus SCC. (b) K1 in AC versus SCC. (c) K3 in AC versus SCC. (d) VB in AC versus SCC. The boxes represent lower quartile, median value, and upper quartile, and the whiskers represent minimum and maximum values. MRglc;mean = mean metabolic rate of glucose (in nanomoles per milliliter per minute), NS = not significant.
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Figure 5c: Box and whisker plots show glucose metabolic rate constants and VB in the major histologic subtypes of NSCLC. (a) Mean glucose metabolic rate in AC versus SCC. (b) K1 in AC versus SCC. (c) K3 in AC versus SCC. (d) VB in AC versus SCC. The boxes represent lower quartile, median value, and upper quartile, and the whiskers represent minimum and maximum values. MRglc;mean = mean metabolic rate of glucose (in nanomoles per milliliter per minute), NS = not significant.
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Figure 5d: Box and whisker plots show glucose metabolic rate constants and VB in the major histologic subtypes of NSCLC. (a) Mean glucose metabolic rate in AC versus SCC. (b) K1 in AC versus SCC. (c) K3 in AC versus SCC. (d) VB in AC versus SCC. The boxes represent lower quartile, median value, and upper quartile, and the whiskers represent minimum and maximum values. MRglc;mean = mean metabolic rate of glucose (in nanomoles per milliliter per minute), NS = not significant.
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Regional variation of K1, k2, k3, and VB in AC versus SCC is demonstrated in Figure 6. AC was less heterogeneous than SCC in terms of mean glucose metabolic rate, k3, and VB, as shown by the lower Friedman statistics in AC (Fig 6a, 6c, 6d). k3 and VB in AC did not differ between VOIs with high levels of glucose metabolic rate and VOIs with medium levelsor between VOIs with medium and low levels. In SCC, VB significantly increased from VOIs with medium levels to VOIs with low levels, while the opposite was found for k3 (Fig 6c, 6d) (adjusted P < .05 for both). VB and k3 differed between VOIs with high levels and VOIs with low levels in both AC and SCC, with a higher significance level for SCC (adjusted P < .0001 vs P < .01). No significant regional variation in K1 and k2 was observed except for a significant difference for K1 between VOIs with high levels and VOIs with low levels (adjusted P < .01 for both histologic subtypes) (Fig 6b).
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Figure 6a: Heterogeneity of glucose metabolic rate constants and VB in AC versus SCC. (a) Heterogeneity of mean glucose metabolic rate in AC versus SCC. (b) Heterogeneity of K1 in AC versus SCC. (c) Heterogeneity of k3 in AC versus SCC. (d) Heterogeneity of VB in AC versus SCC. The boxes represent lower quartile, median value, and upper quartile, and the whiskers represent minimum and maximum values. MRglc;mean = mean metabolic rate of glucose (in nanomoles per milliliter per minute), NS = not significant. * = P < .05, ** = P < .01 (adjusted P values calculated with the Dunn [Bonferroni] post hoc test).
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Figure 6b: Heterogeneity of glucose metabolic rate constants and VB in AC versus SCC. (a) Heterogeneity of mean glucose metabolic rate in AC versus SCC. (b) Heterogeneity of K1 in AC versus SCC. (c) Heterogeneity of k3 in AC versus SCC. (d) Heterogeneity of VB in AC versus SCC. The boxes represent lower quartile, median value, and upper quartile, and the whiskers represent minimum and maximum values. MRglc;mean = mean metabolic rate of glucose (in nanomoles per milliliter per minute), NS = not significant. * = P < .05, ** = P < .01 (adjusted P values calculated with the Dunn [Bonferroni] post hoc test).
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Figure 6c: Heterogeneity of glucose metabolic rate constants and VB in AC versus SCC. (a) Heterogeneity of mean glucose metabolic rate in AC versus SCC. (b) Heterogeneity of K1 in AC versus SCC. (c) Heterogeneity of k3 in AC versus SCC. (d) Heterogeneity of VB in AC versus SCC. The boxes represent lower quartile, median value, and upper quartile, and the whiskers represent minimum and maximum values. MRglc;mean = mean metabolic rate of glucose (in nanomoles per milliliter per minute), NS = not significant. * = P < .05, ** = P < .01 (adjusted P values calculated with the Dunn [Bonferroni] post hoc test).
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Figure 6d: Heterogeneity of glucose metabolic rate constants and VB in AC versus SCC. (a) Heterogeneity of mean glucose metabolic rate in AC versus SCC. (b) Heterogeneity of K1 in AC versus SCC. (c) Heterogeneity of k3 in AC versus SCC. (d) Heterogeneity of VB in AC versus SCC. The boxes represent lower quartile, median value, and upper quartile, and the whiskers represent minimum and maximum values. MRglc;mean = mean metabolic rate of glucose (in nanomoles per milliliter per minute), NS = not significant. * = P < .05, ** = P < .01 (adjusted P values calculated with the Dunn [Bonferroni] post hoc test).
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In other studies with a limited number of patients, investigators compared static 18F-FDG PET images with NSCLC specimens. Different segmentation methods were in best agreement with pathologic findings—for example, source-to-background ratio (22) and 50% of maximum intensity level (23). Cheebsumon et al found several segmentation methods (50%, 41% adapted for background, contrast-oriented method, and more) that are used to measure maximum diameter at pathologic examination with moderate accuracy in 19 patients with NSCLC (24). Wanet et al opt for gradient-based segmentation over uptake-based, relative thresholds (25).
The question remains which autosegmentation method to use in clinical practice. One of the problems in reaching a final conclusion is that it is unclear whether pathology volume is a reliable representation of the true in vivo tumor volume, since lung and tumor tissue collapse after resection because of loss of negative intrathoracic pressure. We attempted to mimic the original pathology volumes by means of inflation and fixation of tissue with formaldehyde. However, this will not result in the exact in vivo volume, and formaldehyde fixation can also lead to shrinkage of tumor tissue in 10% of NSCLCs (26). To calculate pathology volumes, we assumed that tumors are ellipsoids. Yet, tumor boundaries usually have irregular shapes, for which this approximation is not perfectly valid. Also, differences between PET volumes and pathology volumes in necrotic tumors arise because the nonmetabolic necrotic center is not included in the (metabolically active) PET volume, while it is included in the measurement of pathology specimens. A second problem is that 18F-FDG PET has a lower spatial resolution relative to that of morphologic imaging modalities. Furthermore, autosegmentation has difficulty excluding normal tissue with high 18F-FDG uptake (such as heart and liver) adjacent to tumor. Therefore, tumor volumes generated with automated segmentation on 18F-FDG PET images can be useful as a starting point but should be manually adjusted by using both 18F-FDG PET and CT (27,28). This combined approach reduces interobserver variability and is less time consuming than complete visual delineation (22). We suggest that the FLAB method be applied and manually edited in clinical practice, as this method results in sufficient delineation of both necrotic and nonnecrotic NSCLC. Uptake-based, relative threshold methods were especially hampered by necrotic tumors. For future perspectives regarding NSCLC autodelineation, see Appendix E2 (online).
Differences in glucose metabolism between the major NSCLC histologic subtypes were observed in this study, with SCC being highly glycolytic and less vascularized, while AC demonstrates a lower phosphorylation rate of glucose under better perfused (and likely oxygenated) conditions. Moreover, SCC has a more heterogeneous metabolism throughout the tumor, showing increased transport and phosphorylation of glucose in areas of reduced blood volume (3). This pattern is less obvious in AC. This is in agreement with histopathologic findings of metabolic transporters and enzymes and level of metabolites (10–12). SCC is characterized by high lactate and low glucose levels (ie, glycolytic profile) and a high amount of glutamate and glutathione (ie, glutaminolytic profile). Metabolic alterations in AC are related to phospholipid metabolism and protein catabolism (11). However, the range of dynamic PET parameters was quite large (Figs 5, 6). Therefore, metabolism likely varies within AC and SCC. For further discussion of AC subclassification, see Appendix E3 (online).
Despite the statistical differences in metabolic indexes between the major NSCLC histologic subtypes, these data cannot be applied on an individual patient basis because of the large overlap between the different tumor types. Regarding the differences in tumor metabolism between and likely within NSCLC histologic subtypes, future preclinical and clinical studies should take into account that NSCLC is a heterogeneous set of diseases, with possibly dissimilar response to metabolic inhibitors and radiation therapy dose escalation toward regions with high 18F-FDG uptake.
This study has its limitations. First, the manual IDIF VOI definition of the descending aorta might introduce inter- and intraobserver variability. However, Kramer et al investigated the repeatability of 18F-FDG metrics in NSCLC. Double whole-body static 18F-FDG PET/CT scans were performed within 3 days. Correlations between test and retest data for all uptake measures were high and were also high for mean standardized uptake value of the 3.3-mL VOI of the ascending aorta (ICC > 0.98) (29). Furthermore, high correlations were observed between glucose metabolic rate based on IDIFs and serial arterial sampling–based glucose metabolic rate (reference standard) (ICC, 0.98 for ascending aorta, 0.94 for left ventricle, and 0.96 for abdominal aorta). Therefore, using IDIF is accurate and represents a clinically viable alternative to arterial blood sampling (30). We used the descending aorta as IDIF instead of the ascending aorta, as the ascending aorta was not fully imaged in all dynamic scans.
Another limitation is the number of patients included. The study was a priori powered to be able to detect an expected correlation coefficient of 0.90 between pathology volumes and PET volumes (22), which is higher than the accepted minimal correlation coefficient of at least 0.80 (α = .05, power = 0.80, one-tailed exact test). This required 54 evaluable patients. Owing to logistical changes in clinical routine (a reduced interval between diagnosis and treatment, resulting in a reduced time window for participation), the inclusion rate decreased. Therefore, the study was terminated after including 38 patients with 36 evaluable lesions, which led to an achieved power of 0.65 or a somewhat lower acceptable correlation coefficient (0.77, with power of 0.80), which we considered sufficient.
Biological validation of K1, k2, k3, and VB is hard because of sampling errors. Furthermore, expression of glucose transporters and hexokinases as assessed with immunohistochemical staining might not reflect transporter and enzyme activity. Despite these limitations, Okazumi et al found a correlation (r = 0.66) between hexokinase activity and k3 in liver tumors (31). In colorectal tumors, a correlation (r) of 0.75 was obtained for the expression of six glucose transporters (assessed with gene array) and k3, and a correlation (r) of 0.61 was found for the expression of hexokinase 1–3 and k3 (32). The limitation of true in vivo pathology volume has already been discussed earlier.
In conclusion, the FLAB algorithm shows higher accuracy and precision for NSCLC tumor delineation on 18F-FDG PET images when compared with uptake-based relative threshold delineation, with no added value of dynamic imaging over static imaging. This is the case for both nonnecrotic and necrotic carcinomas but is most marked for carcinomas with macroscopic necrosis. Therefore, applying FLAB is an appropriate automated tool for NSCLC delineation. However, automatically generated tumor volumes should always be manually edited by using both 18F-FDG PET and CT, since no autosegmentation method is always reliable. The variations found in glucose metabolism and vascularization between and likely within NSCLC histologic subtypes might be relevant for further research in metabolic targeting agents and radiation therapy dose escalation.
Advances in Knowledge
1. ■ Non–small cell lung cancer (NSCLC) tumor delineation on 18F fluorodeoxyglucose (FDG) PET images by using a fuzzy locally adaptive Bayesian (FLAB) algorithm shows better correspondence to pathology volume than uptake-based relative threshold delineation (intraclass correlation coefficient [ICC], 0.72 for the FLAB method vs 0.29–0.45 for uptake-based relative threshold delineation on static PET images; median difference between pathology volume and PET volume, 8.7 cm3 for the FLAB method vs 15.7–22.4 cm3 for threshold-based delineation on static PET images).
2. ■ Dynamic (metabolized 18F-FDG) PET does not have added value over static (total 18F-FDG) PET for tumor delineation of NSCLC by using pathology volume as the reference standard (ICC, 0.72 for FLAB on static PET images vs 0.68 for the FLAB method on dynamic PET images; median difference between pathology volume and FLAB-based volume, 8.7 cm3 on static PET images vs 10.8 cm3 on dynamic PET images).
Implications for Patient Care
1. ■ FLAB-based segmentation on static 18F-FDG PET images is useful as an automated tool for tumor delineation of NSCLC for radiation therapy planning; however, since tumor volumes generated with the FLAB method lead to underestimation of pathology volume (median difference, 8.7 cm3; P = .006), these automatically generated tumor volumes are useful as a starting point and should be adjusted manually.
2. ■ Differences in glucose transport over the cell membrane, intracellular glucose phosphorylation, and blood volume fraction between adenocarcinoma and squamous cell carcinoma could be relevant for research into agents that target tumor metabolism and radiation therapy dose escalation.
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