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Abstract 36 
  37 
 Despite showing clinical activity in BRAF-mutant melanoma, the MEK inhibitor (MEKi) 38 
trametinib has failed to show clinical benefit in KRAS-mutant colorectal cancer. To identify 39 
mechanisms of resistance to MEKi we employed a pharmacogenomic analysis of MEKi-40 
sensitive versus MEKi-resistant colorectal cancer cell lines. Strikingly, interferon- and 41 
inflammatory-related gene sets were enriched in cell lines exhibiting intrinsic and acquired 42 
resistance to MEK inhibition. The bromodomain inhibitor JQ1 suppressed interferon-43 
stimulated gene (ISG) expression and in combination with MEK inhibitors displayed 44 
synergistic effects and induced apoptosis in MEKi-resistant colorectal cancer cell lines. ISG 45 
expression was confirmed in patient-derived organoid models which displayed resistance to 46 
trametinib and were resensitized by JQ1 co-treatment. In in vivo models of colorectal cancer 47 
combination treatment significantly suppressed tumor growth. Our findings provide a novel 48 
explanation for the limited response to MEK inhibitors in KRAS-mutant colorectal cancer, 49 
known for its inflammatory nature. Moreover, the high expression of ISGs was associated 50 
with significantly reduced survival of colorectal cancer patients. Excitingly, we have identified 51 
novel therapeutic opportunities to overcome intrinsic and acquired resistance to MEK 52 
inhibition in colorectal cancer. 53 
 54 
  55 
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Introduction 56 
 57 
 Common genetic alterations responsible for the development and progression of 58 
colorectal cancer (CRC) include inactivation of the tumor suppressors APC and TP53 and 59 
mutational activation of KRAS (1, 2). A recently described model of inducible Apc and Trp53 60 
loss and KrasG12D expression in colonic intestinal epithelial cells demonstrated this by 61 
recapitulating the progression from adenoma to carcinoma, with a key role of KrasG12D being 62 
to accelerate tumorigenesis and increase the incidence of metastatic disease (3). 63 
Importantly, extinction of KrasG12D in tumors caused them to revert to adenomas, 64 
underscoring their continued dependence on mutant Kras and providing further confirmation 65 
that Kras signaling remains an important driver of late-stage disease. Increasing evidence 66 
implicates oncogenic Ras in the modulation of the tumor microenvironment to support tumor 67 
growth (4, 5). This is achieved by paracrine signaling from tumor cells to the stroma via 68 
secretion of cytokines such as IL-6 and IL-8 (CXCL8) which promote invasion, 69 
neovascularization and inflammatory responses (6, 7). Notably, genetic or pharmacological 70 
approaches to target cytokines or their receptors have shown promising signs of anti-tumor 71 
activity (6, 8, 9). However, there remain concerns that targeting individual cytokines or their 72 
receptors may be insufficient and that broader blockade of cytokine networks may be 73 
required for therapeutic efficacy. 74 
 Current approved targeted therapies for colorectal cancer include anti-angiogenic 75 
drugs such as bevacizumab and regorafenib as well as epidermal growth factor receptor 76 
inhibitors cetuximab and panitumumab for KRAS wildtype cancer (10-13). The demonstration 77 
that oncogenic KRAS prompted activation of the MAPK pathway prompted concerted efforts 78 
to develop inhibitors of MEK, a key intermediary of KRAS signaling (14). This work 79 
culminated in the FDA approval of the MEK inhibitor trametinib for BRAF-mutant melanoma 80 
(15). However, trametinib failed to demonstrate significant clinical activity in other RAS-81 
mutant cancers, including colorectal cancer (16).  82 
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Resistance to MEK inhibitors has been attributed to mutation of the drug-binding site 83 
of MEK (17), or through suppression of negative feedback regulation of receptor tyrosine 84 
kinases such as ERBB3 and FGFR1 (18, 19) and CRAF-mediated reactivation of MEK (20). 85 
Our study has focussed on identifying pre-existing transcriptional states associated with 86 
resistance that may not have been elucidated by the kinome-focussed, RNA interference 87 
screens used in prior studies (18-20). We hypothesised that cell lines exhibiting intrinsic 88 
resistance to MEK inhibition may have distinct transcriptional profiles which render them 89 
indifferent to MAPK pathway inhibition. To this end we utilized a pharmacogenomics analysis 90 
of KRAS-mutant colorectal cancer cell lines with differing sensitivity to pharmacologic MEK 91 
inhibition and identified transcriptional states associated with resistance. We demonstrate a 92 
striking enrichment of interferon- and inflammation-regulated genes in MEK inhibitor-resistant 93 
cell lines and importantly, we further associate these transcriptional states to the 94 
development of acquired resistance to MEK inhibition. Moreover, we describe in colorectal 95 
cell lines, organoids from metastatic patient samples and in xenograft and syngeneic models, 96 
a therapeutic strategy to suppress inflammatory gene expression, restore sensitivity to MEK 97 
inhibition and forestall the emergence of drug-resistant populations.  98 
  99 



 6

 100 
Results 101 
 102 
Elevated expression of inflammatory/interferon-stimulated genes is associated with 103 
resistance to MEK inhibition 104 
 105 
 We set out to identify gene expression differences between KRAS-mutant, colorectal 106 
cancer cell lines that were either sensitive or resistant to MEK inhibition.  Utilizing the Cancer 107 
Cell Line Encyclopaedia (CCLE), we classified the 13 cell lines based on their GI50 to the 108 
second generation MEK inhibitor PD0325901 (21). 4 cell lines were classified resistant, 109 
(GI50>8 µmol/L) and 9 were classified as sensitive (GI50<250 nmol/L). We used comparative 110 
marker selection to identify genes that were differentially expressed between the two groups 111 
and focussed on the 140 genes that showed increased expression in the resistant cell lines 112 
by a factor of 2-fold or greater (Figure 1A). We confirmed that the mRNA expression of 113 
USP18, CXCL10, MX1 and IFIT1 was significantly increased in resistant cell lines (Figure 114 
1B). Unbiased gene-set enrichment analysis (GSEA) demonstrated that interferon- and 115 
inflammation-related gene-sets were enriched in the resistant cells (Figure 1C) and the three 116 
top-ranking gene sets were characteristic of responses to interferon alpha and beta (Figure 117 
1D).  118 
 Recently, the MEK inhibitor trametinib was approved for the treatment of BRAF-119 
mutant melanoma. However, trametinib failed to show any activity in BRAF or KRAS-mutant 120 
colorectal cancer (16). Based on our data above and the findings that inflammation can drive 121 
the development of colorectal cancer, that oncogenic KRAS is known to induce an 122 
inflammatory environment in the colon, and that chemotherapies also cause increased 123 
inflammation in the colon, we hypothesized that intrinsic or chemotherapy-induced 124 
inflammation may result in a tumor microenvironment that renders cells resistant to 125 
trametinib (22-24). Therefore, we firstly confirmed that cell lines known to be resistant to 126 
PD0325901 also displayed resistance to trametinib (GI50>10 nmol/L) (Figure S1). We 127 
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assessed the expression of some of the genes identified above at the protein level and found 128 
that IFIT1, MX1 and USP18 were more abundant in MEKi-resistant cell lines T84 and LS123, 129 
whereas ISG15 showed more variable expression (Figure 1E, Fig S2). SNUC2A cells did 130 
not express MX1 or USP18 but did show greater expression of IFIT1 compared to untreated, 131 
sensitive cell lines. In the resistant T84 and LS123 cell lines treatment with trametinib had 132 
little effect on the (already high) expression of MX1, IFIT1 and USP18, but induced the 133 
expression of IFIT1 in the sensitive cell lines and in the SNUC2A cells (Figure 1E). We also 134 
observed a trend for higher levels of NFκB phosphorylation in the MEK-inhibitor resistant cell 135 
lines. Consistent with our data, we found evidence for increased expression of various ISGs 136 
in MEK-inhibitor resistant T84 and LS123 cells in a recently published proteomics dataset 137 
(25)(Figure S3A). GSEA analysis of the proteomics data confirmed significant enrichment of 138 
interferon gene sets in the resistant cell lines (Figure S3B). Overall, these data suggested 139 
that increased ISG expression is not only associated with intrinsic resistance to MEK 140 
inhibition but can be induced by treatment in sensitive cell lines.  141 
 142 
Acquired resistance to MEK inhibition results in ISG expression and subtype-143 
switching 144 
 145 
 Given that IFIT1 expression was induced in sensitive cell lines following 72 h 146 
treatment with trametinib, we hypothesized that an adaptive response to MEK inhibition 147 
would be to upregulate ISGs and this might contribute towards acquired resistance to 148 
trametinib. Therefore, we treated HCT116 human colon cancer cells with increasing 149 
concentrations of trametinib over 2 months. Drug-resistant clones emerged and were 150 
cultured in the presence of 30 nmol/L trametinib. These cells exhibited a greater than 10-fold 151 
increase in the GI50 for trametinib compared to the parental cell line (Figure 2A). RNA-seq of 152 
the resistant clone HCT116_R4 versus the parental cells identified many of the ISGs that we 153 
previously identified to be overexpressed in the intrinsically-resistant cell lines (Figure 2B). 154 
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We confirmed increased expression of some of these immune-related genes, including TNFα 155 
and IL1α by RT-qPCR in additional, trametinib-resistant clones (Figure S4A). Moreover, 156 
addition of recombinant TNFα, or IL1α to the culture medium of HCT116 cells was sufficient 157 
to confer resistance to trametinib (Figure S4B), alongside activation of NFκB (Figure S4C). 158 
GSEA of the RNA-seq data revealed that inflammatory/interferon-related gene sets including 159 
TNFα signaling, NFκB target genes and interferon-response genes were ranked in the top 6 160 
gene sets (Figure 2C, Table S1). Furthermore, a significant enrichment of inflammatory 161 
marker genes that signify the inflammatory subtype of colorectal cancer was present in the 162 
HCT116_R4 cell line (Figure 2D). This suggests that the trametinib-resistant HCT116 colon 163 
cancer cells may have transitioned from the stem-like subtype to the inflammatory subtype, 164 
as defined by Sadanadam et al. (26). Given the increase in NFκB target genes, as 165 
highlighted by the RNA-seq data, the activation state of NFκB was verified by Western 166 
blotting. In the parental HCT116 cell line, treatment with trametinib induced NFκB p65 167 
phosphorylation and increased the expression of IFIT1. In the resistant HCT116_R4 cells, 168 
basal NFκB phosphorylation and expression was notably higher, relative to the parental 169 
cells, and basal IFIT1 expression was also elevated (Figure 2E, Figure S5). Altered 170 
expression of USP18 and MX1 was not detected (data not shown). Taken together, these 171 
data support our hypothesis that an interferon/inflammatory gene expression program 172 
operates both in intrinsically MEKi-resistant colon cancer cells and in those that acquire 173 
resistance to trametinib. 174 
 175 
Inhibition of bromodomain proteins suppresses inflammatory gene expression and 176 
restores sensitivity to trametinib 177 
 178 
 Given that inflammatory gene expression appeared to associate with resistance to 179 
MEK inhibition, we hypothesized that its suppression may restore sensitivity to trametinib in 180 
resistant cell lines. The bromodomain inhibitor JQ1 inhibits inflammatory gene expression by 181 
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the suppression of inflammatory gene super enhancers and via inhibition of NFκB p65 182 
(RELA) and NFκB-driven super enhancers (27, 28). Therefore, we tested the effect of 183 
combined trametinib and JQ1 treatment on MEK inhibitor-resistant cell lines. Treatment of 184 
T84, SNUC2A and LS123 cells with either trametinib or JQ1 alone had only modest effects 185 
on cell proliferation, whereas the combination of both compounds resulted in a reduction of 186 
cell proliferation, including a net loss of cells relative to the number prior to treatment for T84 187 
and SNUC2A cell lines (Figure 3A). Notably, the proliferation rate of CCD841CoN colorectal 188 
normal epithelial cells was reduced by JQ1 alone and the combination of trametinib and JQ1 189 
but not to the same extent as the cancer cell lines. A significantly increased apoptotic 190 
population was observed with the drug combination versus DMSO or single-agent treatment, 191 
as determined by annexin V staining (Figure 3B) and PARP cleavage (Figure 3C). Only a 192 
modest increase in annexin V staining and PARP cleavage was observed in CCD841CoN 193 
cells, which appeared to be mainly in response to JQ1 treatment. In colony assays, 194 
trametinib and JQ1 had little effect on their own but their combination robustly inhibited 195 
proliferation of the cancer cell lines.  However, in the CCD841CoN epithelial cells JQ1 196 
treatment alone did significantly reduce cell proliferation and consequently no additional 197 
benefit of the combination was observed (Figure 3D, Figure S6). We employed the Bliss 198 
independence model to assess the combination of trametinib and JQ1 and observed synergy 199 
across a matrix of concentrations for each agent (Figure 3E). In agreement with the above, 200 
only slight synergy was observed in the CCD841CoN colon epithelial cells. 201 
 Consistent with best practice for the use of chemical probes (29), we used a second, 202 
chemically distinct bromodomain inhibitor, I-BET-151, also shown to suppress inflammatory 203 
gene expression (30), and confirmed that it too could sensitize cells to trametinib (Figure 204 
4A). In addition, we used siRNAs against BRD4 or NFκB p65 to achieve robust decreases in 205 
BRD4 or NFκB p65 protein expression (Figure 4B). Increased antiproliferative activity of 206 
trametinib was observed with the combination of BRD4 or NFκB knockdown (Figure 4C). 207 
Furthermore, knockdown of IFIT1 or MYC, a known BRD4 target gene (31) (Figure 4B), also 208 
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sensitized the cells to trametinib (Figure 4C). Notably, knockdown of BRD4 also led to a 209 
decrease in the expression of IFIT1 (but not MYC) providing further evidence for regulation of 210 
IFIT1 by BRD4 and suggesting it may be necessary to target multiple BET family proteins to 211 
suppress MYC expression (Figure 4B). Therefore, genetic suppression of BRD4, NFκB, 212 
IFIT1 or MYC sensitises cells to MEK inhibition, raising confidence that suppression of 213 
BRD4, NFκB, IFIT1 and MYC may contribute to the effect of JQ1. To investigate this at the 214 
level of transcriptional regulation, we performed RNA-seq of T84 cells treated for 24 h with 215 
DMSO, trametinib, JQ1 or the combination of trametinib and JQ1. Treatment with trametinib 216 
resulted in increased expression of inflammatory genes, with GSEA analysis again showing 217 
inflammation- and interferon-regulated gene sets to be highly enriched under these 218 
conditions (Figure 5A&B). Treatment with JQ1, either alone or in the presence of trametinib 219 
resulted in a marked reduction of inflammatory/interferon-regulated genes with the gene sets 220 
we had previously associated with resistance being ranked as the most depleted (Figure 221 
5A&B). Furthermore, by examining the expression of the 140 genes initially identified in the 222 
CCLE dataset as being upregulated in MEK inhibitor-resistant cell lines, a cluster of JQ1-223 
sensitive inflammatory/interferon genes emerged. These genes were mostly induced by 224 
trametinib treatment and were repressed by JQ1, either alone or in combination with 225 
trametinib (Figure 5C, Table S2). We confirmed the suppression of inflammatory proteins by 226 
JQ1 in T84, SNUC2A and LS123 colon cancer cells treated with trametinib, JQ1, or both 227 
agents combined for 72 h (Figure 5D). The expression of MX1, IFIT1, ISG15 and MYC was 228 
reduced by JQ1, either alone or in combination with trametinib. The combination treatment 229 
also led to slightly greater inhibition of ERK1/2 phosphorylation compared to either agent 230 
alone. 231 
 We hypothesised that treatment with JQ1 would suppress the emergence of acquired 232 
resistance to trametinib. When cultured in the presence of 30 nmol/L trametinib, HCT116 233 
cells initially responded but by 4 weeks of treatment cells became resistant to trametinib and 234 
formed viable colonies. Treatment with 300 nmol/L JQ1 alone had a modest effect on cell 235 
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proliferation but the combination of both agents robustly suppressed the emergence of 236 
resistant colonies (Figure S7A). We further confirmed this in HCT116 cells grown as 237 
spheroids (Figure S7B). We next assessed whether cells that had acquired resistance to 238 
trametinib could be challenged successfully with JQ1 at a later point in time. Compared to 239 
the parental cell line, the trametinib-resistant clones were up to 5-fold more sensitive to JQ1 240 
(Figure S7C). Notably, compared to the parental line, the HCT116_R4 cell line was 241 
dramatically more susceptible to long-term treatment with JQ1, either in the presence or 242 
absence of trametinib, as shown by colony formation assay (Figure S7D). Notably, 243 
proliferation of the HCT116_R4 clone was impaired when trametinib was washed out, 244 
suggesting the cells had adapted to proliferate in the presence of trametinib. JQ1 treatment 245 
suppressed trametinib-induced IFIT1 expression in the HCT116 cells and reduced both basal 246 
and trametinib-induced IFIT1 expression in the HCT116_R4 cells (Figure S7E). Taken 247 
together, these data demonstrate that ISG expression is observed in cell lines exhibiting 248 
intrinsic or acquired resistance to trametinib and that suppression of ISG expression restores 249 
sensitivity to trametinib and suppresses the emergence of acquired resistance. 250 
 251 
Patient-derived colorectal cancer organoids express inflammatory genes, are resistant 252 
to trametinib but are sensitive to dual JQ1/trametinib treatment 253 
 254 
 To test the hypothesis that KRAS-mutant colorectal cancers display high expression 255 
of inflammatory genes, which may predispose them to be resistant to MEK inhibition, we 256 
made use of a panel of patient-derived organoid (PDO) cultures from KRAS-mutant 257 
colorectal cancers (32). Compared to the trametinib-sensitive cell line SW620, and in 258 
common with the T84 and SNUC2A trametinib-resistant cell lines, the PDOs exhibited 259 
elevated expression of inflammatory genes such as MX1, IFI44L, IL1α, IL2 and TNFα 260 
(Figure 6A). Furthermore, all but one of the PDO cultures (R-011 BL, which has a gain of 261 
BRAF) were classified as resistant to trametinib with GI50 values in excess of 10 nmol/L 262 
(Figure 6B). Excitingly, in those PDOs that were most resistant to trametinib we found that 263 
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sensitivity could be restored by co-treatment with JQ1 and that this combination was highly 264 
synergistic in 5/7 PDO cultures (Figure 6C). Trametinib treatment increased CXCL10, MX1 265 
and TNFα mRNA expression but their expression and that of IL1α, IFIT1 and IL6 was 266 
reduced to basal levels or less by JQ1 treatment (Figure 6D). Notably, the combination of 267 
trametinib and JQ1 did lead to more complete suppression of genes that reflect the resistant 268 
state eg. MX1, IL1α, IL6 and MYC expression. Inhibition of MX1, IFIT1 and MYC protein 269 
expression was observed with combined treatment (Figure 6E, Figure S8). These data 270 
therefore provide key, clinically relevant support to our hypothesis that colorectal cancers 271 
may be influenced by inflammatory environments or may engage inflammatory pathways or 272 
transcriptional programs that promote resistance to trametinib, and that the rational 273 
combination of bromodomain inhibitors and trametinib is a potential therapeutic strategy.  274 
 275 
The combination of trametinib and JQ1 suppresses the growth of KRAS-driven tumors 276 
in vivo 277 
 278 
 We wished to confirm that our therapeutic approach of inhibiting bromodomain 279 
proteins to overcome resistance to MEK inhibition is tolerated and efficacious in animal 280 
models and established the KRAS-mutant, T84 cell line as a xenograft model of intrinsic 281 
resistance to MEK inhibition in NCr nude mice. Once tumors were established, we treated 282 
mice with vehicle, trametinib, JQ1 or the combination of trametinib and JQ1 (Figure 7A). JQ1 283 
alone had little effect on tumor growth, whereas trametinib slowed tumor growth by ~50%. 284 
However, the combination of both agents resulted in near-complete suppression of tumor 285 
growth during the 28 d dosing period. This dosing schedule was well tolerated and any 286 
weight loss was within acceptable limits (Figure 7B). On termination of treatment, tumor 287 
growth resumed in the trametinib and combination groups (Figure S9A), with only the 288 
combination group significantly inhibiting tumor growth out to 42 d. The combination led to an 289 
improved median survival of 74.5 d which approached significance (p=0.0512), versus 52.5 d 290 



 13

with trametinib alone, 42 d with JQ1 alone (both not significant) when compared to 44.5 d 291 
with vehicle (Figure S9B). The combination treatment gave a significantly improved survival 292 
compared to JQ1 treatment alone (p=0.0131) but this was not significantly better than 293 
trametinib alone (p=0.4357). To confirm the efficacy of this combination in an 294 
immunocompetent model, we used the Kras-mutant, CT26 mouse syngeneic model in 295 
BALB/C mice. Whereas trametinib and JQ1 failed to slow tumor growth, the combination of 296 
both agents markedly suppressed tumor growth over 14 d (Figure 7C) and was well 297 
tolerated by the mice (Figure 7D).  298 

Given the potential of trametinib and JQ1 to alter the tumor immune cell landscape by 299 
modulating inflammatory gene expression (as described herein) or by direct effects on 300 
immune cells, we assessed immune cell populations within the CT26 tumors by multi-color 301 
flow-cytometry following 14 d of dosing (see Figure S10 for gating strategy). We identified an 302 
increase in tumor-associated CD8+ cells following trametinib treatment that was reversed by 303 
co-treatment with JQ1 (Figure 7E). Trametinib alone and the combination of JQ1 and 304 
trametinib also caused a significant increase in CD4+ T cells (Figure 7E). Notably, the 305 
number of Tregs was increased by trametinib treatment and the combination of JQ1 and 306 
trametinib (Figure 7E). JQ1 treatment alone and when combined with trametinib resulted in 307 
increased PD-1 expression on CD8+ cells, indicative of T cell exhaustion (Figure 7F). 308 
 Hypothesising that increased expression of inflammatory genes may associate with 309 
more aggressive disease in the clinic, we identified a panel of 66 genes that associated with 310 
MEK inhibitor resistance in the CCLE dataset and were suppressed by JQ1 treatment in T84 311 
cells (Table S2). Colorectal cancer patients with amplification or increased mRNA expression 312 
of these genes exhibited a significantly reduced overall survival in the TCGA/cBioPortal 313 
dataset (33, 34) (Figure 7G).  314 
 315 
Discussion 316 
 317 
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 Intrinsic and acquired drug resistance are significant hurdles to overcome to 318 
maximise the utility of precision medicine. Our study focussed on understanding why the 319 
MEK inhibitor trametinib, despite showing good clinical activity in BRAF-mutant melanoma, 320 
failed to show any clinical response in KRAS-mutant colorectal cancer (16). Our data 321 
describe a transcriptional state associated with resistance to selective MEK inhibitors, 322 
defined by interferon and inflammation-mediated responses and involving NFκB activation, 323 
constitutively activated in a high proportion of colorectal cancers (35). To our knowledge this 324 
is the first report to implicate an interferon/inflammatory transcriptional signature in intrinsic or 325 
acquired resistance to MEK inhibition. Given the highly inflammatory, cytokine-rich, 326 
environment of the colon, as observed in colitis-associated cancer and in heavily pre-treated 327 
cancer patients, we propose that inflammation may have rendered tumors resistant to 328 
trametinib (16, 36, 37).  329 
  JQ1 in combination with trametinib synergistically inhibits the proliferation of MEK 330 
inhibitor-resistant cell lines and induces apoptosis. Transcriptional profiling implicates the 331 
expression of inflammatory genes in MEK inhibitor resistance, both abrogated by JQ1. 332 
Notably, MEK inhibition was recently shown to overcome resistance to BRD4 inhibition in 333 
colorectal cancer through suppression of MYC (38). In our RNA-seq analysis of the KRAS-334 
mutant, MEK inhibitor-resistant T84 cell line, a MYC gene signature suppressed by JQ1 335 
treatment was ranked 13th, with 7 of the top 12 gene sets representing signatures of TNF, 336 
interferon and other cytokine-mediated gene expression. However, enrichment of MYC gene 337 
expression signatures was not observed in our model of acquired resistance to trametinib. 338 
Nevertheless, knockdown of MYC by siRNA did sensitize cells to MEK inhibition so is likely 339 
to contribute to the antiproliferative effects observed. Overall, our data link interferon and 340 
inflammatory gene expression to both mechanisms of intrinsic and acquired resistance to 341 
MEK inhibition.  342 
 Importantly, we provide evidence that the combination of trametinib and JQ1 is 343 
efficacious in PDOs and in vivo using models that display resistance to trametinib. Notably, 344 
the PDO cultures did express relatively high levels of cytokines and ISGs that we have 345 
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implicated in resistance to trametinib. This suggests they are reflective of a more 346 
inflammatory state, possibly a consequence of tumor-induced inflammation or in response to 347 
prior chemotherapies. Despite the observed antiproliferative activity of JQ1 towards normal 348 
colon epithelial cells in the colony formation assays, our in vivo studies demonstrate that the 349 
combination of JQ1 and trametinib was tolerated by the mice. However, this does raise 350 
concerns that chronic dosing of JQ1 could have undesirable gastrointestinal toxicities in 351 
patients that could limit the therapeutic window of this approach. Nevertheless, recent clinical 352 
studies have also demonstrated that the first-in-class bromodomain inhibitor birabresib is 353 
tolerated by cancer patients with manageable toxicities (39, 40). The adoption of intermittent 354 
dosing strategies may have the potential to limit such effects and emerging bromodomain 355 
inhibitors with differing selectivity profiles could conceivably exhibit different toxicity profiles 356 
than birabresib. Long-term dosing would likely be required as we have shown that withdrawal 357 
of treatment does eventually lead to regrowth of the tumor. Nevertheless, the combination 358 
group maintained a significant inhibition of tumor growth relative to the vehicle control out to 359 
at least 42 d, which was not observed with the single agent groups. The immunocompetent 360 
CT26 syngeneic model enabled assessment of the immune cell population within the tumor. 361 
The increase in tumor-associated CD4+ cells following trametinib treatment, raises the 362 
possibility that Th1-polarised CD4+ T cells may contribute to the antitumor activity observed 363 
(41). However, as antitumor activity is only observed in combination with JQ1, an increase in 364 
CD4+ cells alone is insufficient to drive efficacy. The combination treatment also significantly 365 
increased the number of Tregs, possibly suggestive of an immuno-suppressive mechanism. 366 
Finally, increased PD-1 expression on CD8+ cells induced by JQ1, which was further 367 
increased when in combination with trametinib, indicates higher levels of T cell activity and T 368 
cell exhaustion. We speculate this could be due to increased antigen release from dying 369 
tumor cells or as yet undiscovered direct effects on immune cells. Overall, given that synergy 370 
between trametinib and JQ1 is observed in vitro and in the NCr nude mouse model, where 371 
the immune system is either absent or substantially impaired, together with the suppressive 372 
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effects of JQ1 on immune cell infiltrates in the CT26 syngeneic model, it is likely that synergy 373 
arises mainly through direct effects on the tumor cells.  374 

Our association of a 66-gene signature with poor survival in colorectal cancer patients 375 
is suggestive of the potential clinical relevance of this study and supports the investigation of 376 
combinatorial strategies to counter the intrinsic resistance to MEK inhibitors observed in 377 
colorectal cancer (16). Inflammatory cytokines such as IL1β, CXCL1 and CXCL8 (IL8) have 378 
been linked to cetuximab resistance in colorectal cancer (42). Combining MEK inhibitors with 379 
clinical stage antagonists of cytokine receptors such as anakinra which blocks the IL1 380 
receptor, infliximab which binds TNFα and MABp1 which binds IL1α may yield novel 381 
therapeutic strategies to suppress cytokine-mediated resistance (43-45). However, targeting 382 
individual components may conceivably be inferior to a broader blockade. Thus, 383 
bromodomain inhibitors may overcome multiple mechanisms of resistance to targeted 384 
therapy. Recently, bromodomain inhibition has been shown to suppress enhancer 385 
remodelling induced by trametinib and overcome resistance in breast cancer (46). Moreover, 386 
JQ1 treatment has shown synergistic activity with trametinib in MPNSTs driven by NF1 387 
mutation and PRC2 loss (47), suggesting further utility of this therapeutic approach in other 388 
tumor types. Our data support the continued development of bromodomain inhibitors and 389 
further investigation of their utility in combinatorial therapeutic strategies for KRAS-mutant 390 
colorectal cancer, to maximise response to targeted agents and suppress mechanisms of 391 
intrinsic and acquired resistance.  392 
 393 
Materials and methods 394 
 395 
Cell culture and reagents  396 
 397 

Human and mouse cancer cell lines were obtained from the American Type Culture 398 
Collection (Teddington, UK) or the Deutsche Sammlung von Mikroorganismen und 399 



 17

Zellkulturen (Braunschweig, Germany) and grown in the recommended culture medium, 400 
supplemented with 10% FBS, at 37°C and an atmosphere of 5% CO2. Cell lines were 401 
routinely tested for mycoplasma and not cultured for longer than 20 passages. Patient 402 
derived organoids (PDOs) and their culture conditions have been previously described (32). 403 
KRAS mutations in PDOs and matching parental tissue were confirmed by targeted Next 404 
Generation Sequencing (NGS) (32). Inhibitors were purchased from Stratech Scientific Ltd. 405 
(Ely, UK). Recombinant cytokines were purchased from Peprotech (London, UK). 406 
 407 
Immunoblotting 408 
 409 

Cell lysis and immunoblotting techniques were as previously described (48, 49). The 410 
antibodies used against specific proteins and their concentrations for immunoblotting in this 411 
study are listed in the Table S3.  412 
 413 
Cell proliferation assays 414 
 415 

Cell proliferation assays were as previously described and quantified using CellTiter-416 
Blue (Promega, Southampton, UK) (49). The drug response assay used for PDOs has been 417 
described in detail (32). Colony formation assays were conducted as previously described 418 
(49). Where cell counting was used to assay cell proliferation, cells were seeded into 6 well 419 
plates in triplicate per condition and treated with compounds for 72 h. Viable cell number was 420 
determined by trypan blue staining and normalized to the cell number prior to treatment. For 421 
3D spheroid culture, cells were seeded into 96 well ultra-low attachment plates (Corning, 422 
Amsterdam, The Netherlands) and allowed to establish for 48 h prior to treatment. Spheroid 423 
diameter was measured over time using imaging cytometry (Celigo, Nexcelom, Manchester, 424 
UK). 425 
 426 
Apoptosis assay 427 
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 428 
Cells were treated with either DMSO or the indicated compounds. After 72 h cells 429 

were stained with annexin V and propidium iodide using the Annexin V Apoptosis Detection 430 
Kit (eBioscience, Renfrew, UK) and analyzed by flow cytometry (LSRII, BD Biosciences, 431 
Wokingham, UK).  432 
 433 
Quantitative real-time PCR 434 
 435 

Total RNA was extracted from cells using the miRNeasy Mini Kit (Qiagen, 436 
Manchester, UK) and reverse-transcribed using the high capacity cDNA reverse-transcription 437 
kit (Applied Biosystems, Renfrew, UK). The PCR was performed using the Fast SYBR Green 438 
Master Mix (Applied Biosystems) on a ViiA 7 Real-Time PCR System (Applied Biosystems). 439 
Primer combinations were designed using the Harvard Primer Bank 440 
(http://pga.mgh.harvard.edu/primerbank) (Table S4). 441 
 442 
RNA-sequencing 443 
 444 

Total RNA was isolated using the miRNeasy kit (Qiagen, Manchester, UK). RNA 445 
samples were quality controlled and sequenced by the Tumour Profiling Unit of the Institute 446 
of Cancer Research (ICR, London). NEB (Hitchin, UK) polyA kit was used to select the 447 
mRNA. Strand specific libraries were generated from the mRNA using the NEB ultra 448 
directional kit. Illumina paired-end libraries were sequenced on a HiSeq2500 (Illumina, Little 449 
Chesterford, UK) using v4 chemistry acquiring 2 x 100 bp reads. Bcl2fastq software (v1.8.4, 450 
Illumina) was used for converting the raw base calls to fastqs and to further demultiplex the 451 
sequencing data. The paired-end fastq files were used for further analysis. Tophat2 spliced 452 
alignment software was used to align reads to the reference genome (GRCH37) in 453 
combination with Bowtie2. Once the reads were aligned, HTSeq-count was used to count the 454 
number of reads mapping unambiguously to genomic features in each sample. Differential 455 
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expression analysis of the count data was done in R using the DESeq2 Bioconductor 456 
package. The lists of up- and down-regulated differentially expressed genes were then tested 457 
for enrichment of gene sets uniquely defining the previously defined CRC subtypes (26) 458 
using the Gage Bioconductor package (50). RNAseq data were deposited at the Gene 459 
Expression Omnibus database: GSE118490 for the parental HCT116 cells and HCT116_R4 460 
clone and GSE118548 for the T84 trametinib/JQ1 combination experiment. 461 
 462 
siRNA assays 463 
 464 

siRNAs targeting BRD4 (L-004937-00-0005), NFkB p65 (L-003533-00-0005), IFIT1 465 
(L-019616-00-0005) and MYC (L-003282-02-005) (ON-TARGET plus SMARTpool, 466 
Dharmacon, Cambridge, UK) and a non-targeting siNT-control (D-001810-01-05) were pre-467 
incubated with Lipofectamine RNAiMAX (ThermoFisher, Renfrew, UK) and Opti-MEM culture 468 
medium (Gibco, Renfrew, UK) according to the manufacturer’s instructions. Cells were 469 
reverse-transfected with the siRNA-lipid complexes and incubated at 37 °C for the indicated 470 
time points until further analysis. 471 
 472 
In vivo studies 473 
 474 

T84 tumors were established by subcutaneous injection of 5 x 106 cells into the right 475 
flank of female NCr mice and randomly allocated into treatment groups. Treatment using 476 
published, efficacious schedules was initiated when tumors reached a mean diameter of ~6 477 
mm (indicated as day 0). Control mice (n=10) received vehicle (1% 478 
Hydroxypropylbetacyclodextrin (2-hydroxypropyl)-β-cyclodextrin) po, 10% DMSO in 10% w/v 479 
Hydroxypropylbetacyclodextrin ip), and treated mice (n=10) were given 1 mg/kg trametinib 480 
orally or 50 mg/kg JQ1 administrated by intraperitoneal injection or the combination of both 481 
drugs daily for of 28 d (51, 52). Tumor volumes, using formula 4.91 x (1st diameter/4 + 2nd 482 
diameter/4)3, and body weights were determined three times weekly. A dosing holiday was 483 
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given to all groups on day 21 to aid tolerability. CT26 tumors were established by injection of 484 
5 x 105 cells into the right flank of female BALB/C mice and treated as above. All animal 485 
studies were approved by the local research ethics committee and carried out in accordance 486 
with the UK Animals (Scientific Procedures) Act 1986 and national guidelines (53). 487 
Appropriate group sizes were determined by power analyses (G*Power ver 3.1.5) and are 488 
guided by extensive experience in running such studies. No blinding of groups was done. 489 
 490 
Tumor dissociation 491 
 492 

Tumors were dissociated into a single-cell suspension using a gentleMACS Octo 493 
Dissociator with Heaters (Miltenyi Biotec, Bisley, UK) and the Mouse Tumor Dissociation Kit 494 
(Miltenyi Biotec). Samples were run on the 37C_m_TDK_1 program, applied to a 70 μm 495 
MACS SmartStrainer and washed in PBS. Erythrocytes were removed from samples by 496 
suspension in red blood cell lysis buffer for 5 minutes at room temperature. Samples were 497 
resuspended in PBS for flow cytometry staining. 498 
 499 
Flow cytometry  500 
 501 

Cells were stained with a fixable viability dye (Thermo Fisher Scientific) and blocked 502 
with an anti-mouse CD16/CD32 antibody (Thermo Fisher Scientific). A panel of fluorescence-503 
conjugated antibodies was added to cell suspensions at specified dilutions (Table S5) and 504 
incubated at 4oC for 30 minutes. Intracellular staining was performed using the 505 
Foxp3/Transcription factor staining buffer set (Thermo Fisher Scientific). Cells were fixed in 506 
4% paraformaldehyde solution. Finally, cells were resuspended in PBA, counting beads were 507 
added and samples were analyzed on a BD LSR II flow cytometer. Data analysis was 508 
performed using FlowJo software (Tree Star Inc., Ashland, Oregon, USA). Gating strategies 509 
are shown in Figure S9. Absolute cell counts were calculated as follows: absolute count 510 
(cells/µL) = (cell count x counting bead volume) / (counting bead count x cell volume) x 511 
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counting bead concentration. Cell counts were normalised by dividing the cell count obtained 512 
using counting beads by tumor volumes. 513 
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Figure legends 683 
 684 
Figure 1. Multiple inflammatory gene expression signatures are enriched in MEK 685 
inhibitor-resistant colorectal cancer cell lines.  686 
A. Differential expression analysis (comparative marker selection, Morpheus, The Broad 687 
Institute) of basal gene expression profiles for KRAS-mutant colorectal cancer cell lines 688 
identified genes that were differentially over-expressed in cells resistant to the MEK inhibitor 689 
PD0325901 (top 50 genes shown).  690 
B. Box and whisker plots representing the expression of candidate resistance genes in MEK 691 
inhibitor-sensitive versus MEK inhibitor-resistant cell lines. Box indicates the 25-75% 692 
percentiles and whiskers are the minimum to maximum values. 693 
C. Gene Set Enrichment Analysis (GSEA) of the rank-ordered, differentially expressed genes 694 
in MEK inhibitor-resistant cell lines identifies an enrichment of multiple inflammation-related 695 
gene sets. 696 
D. GSEA identified interferon response genes to be significantly enriched in the resistant cell 697 
lines (FDR<0.001, p<0.001).  698 
E. Cells were treated with DMSO or 30 nmol/L trametinib for 3 d and cell lysates analyzed by 699 
Western blotting for the indicated proteins. 700 
 701 
Figure 2. Acquired resistance to trametinib is associated with inflammatory gene 702 
expression and NFκB activation.  703 
A. Trametinib-resistant HCT116 subclones were derived through chronic exposure to the 704 
compound over 4-8 weeks. These clones demonstrated a >10-fold increase in the GI50 for 705 
trametinib compared to the parental control. Mean cell proliferation values shown as a 706 
percentage of control cells is plotted, with error bars representing standard error (n=3). 707 
B. RNA-seq of the HCT116 and HCT116_R4 cell lines was used to profile transcriptional 708 
changes in the trametinib resistant clone. Increased expression of various inflammatory 709 
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genes identified in Figure 1A was observed (mean log2 values shown, n=3 replicates per 710 
condition).  711 
C. GSEA of RNA-seq data identified an enrichment of inflammatory gene signatures in the 712 
HCT116_R4 clone, with TNFα and NFκB gene sets being the most highly ranked 713 
(FDR<0.001, p<0.001). 714 
D. Significant enrichment of genes associated with the inflammatory molecular subtype, 715 
indicates potential change of the parental HCT116 stem-like subtype to the inflammatory 716 
subtype with an increased set of inflammatory-specific genes. 717 
E. HCT116 and HCT116_R4 cells were treated with 30 nmol/L trametinib for 72 h and 718 
lysates were analyzed by Western blotting for the indicated proteins. 719 
 720 
Figure 3. Synchronous inhibition of MEK and bromodomain-containing proteins 721 
inhibits cell proliferation and induces cell death in colon cancer cell lines.  722 
A. MEK-inhibitor resistant human colon cell lines, T84, SNUC2A and LS123 or the normal 723 
colon epithelial cell line CCD841CoN were treated with 30 nmol/L trametinib or 1 µmol/L JQ1 724 
for 72 h. Cell proliferation was determined by cell counting and expressed as a percentage of 725 
the cell number prior to treatment. Mean values are presented, ± standard error (n=3). 726 
Statistical significance was determined using a one-way ANOVA *p<0.05, **p<0.01, 727 
***p<0.001, ****p<0.0001. 728 
B. Cells were treated as in A and then analyzed for annexin V positivity by flow-cytometry. 729 
The mean percentage of annexin V-positive cells relative to DMSO controls is shown, ± 730 
standard error (n=3). 731 
C. Cells were treated as in A and cell lysates were analyzed by Western blotting for the 732 
indicated proteins. 733 
D. T84, SNUC2A and LS123 cells, or the normal colon epithelial cell line CCD841CoN were 734 
treated with 30 nmol/L trametinib, 1 µmol/L JQ1 or the combination of both compounds for 14 735 
d and cell proliferation was assessed by colony formation assay. 736 
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E. T84, SNUC2A and LS123 cells, or the normal colon epithelial cell line CCD841CoN were 737 
treated with a matrix of trametinib and JQ1 for 4 d, and cell proliferation was assessed by the 738 
CellTiter-Blue assay (decrease in proliferation is shown by a shift from blue to red). Synergy 739 
was determined by the Bliss independence model (the excess above bliss score is indicated, 740 
with red indicating synergy). 741 
 742 
Figure 4. Inhibition of BRD4 via I-BET-151 or siRNA enhances sensitivity to trametinib. 743 
A. T84 and SNUC2A cells were treated with a matrix of trametinib and I-BET-151 for 4 d and 744 
cell proliferation was quantified by the CellTiter-Blue assay. Inhibition of cell proliferation is 745 
indicated by a shift from blue to red, and synergy, as determined by the Bliss independence 746 
model, is indicated by a shift from green to red.  747 
B. T84 cells were reverse-transfected with 100 nM of an siRNA Smart Pools targeting BRD4, 748 
NFκB, IFIT1, MYC or a non-targeting control for 7 d and cell lysates were analyzed by 749 
Western blotting for the indicated proteins (n=3).  750 
C. Cells were treated as in B in the presence of DMSO or 30 nmol/L trametinib and cell 751 
proliferation was determined by the CellTiter-Blue assay. Mean values are presented, ± 752 
standard error (n=6). Statistical significance was determined using a one-way ANOVA 753 
****p<0.0001. 754 
 755 
Figure 5. Inhibition of inflammatory gene expression by JQ1. 756 
A. T84 cells were treated with DMSO, 30 nmol/L trametinib, 1 µmol/L JQ1, or their 757 
combination for 24 h and analyzed by RNA-seq in triplicate. GSEA showed the enrichment of 758 
inflammatory-related gene sets following trametinib exposure, and their subsequent depletion 759 
following treatment with JQ1 or the combination of JQ1 and trametinib. Gene sets are 760 
ordered by the normalised enrichment score for the trametinib-treated condition. Gene sets 761 
unaffected in the JQ1 or JQ1 and trametinib conditions were excluded from the data. 762 
B. GSEA plots of specific gene sets enriched in MEK inhibitor-resistant cell lines, previously 763 
identified in the CCLE dataset. Enrichment is further enhanced by trametinib-treatment; 764 
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however, following treatment with JQ1, or JQ1 and trametinib combination, these genes sets 765 
are among the most significantly depleted gene sets. 766 
C. Data for the 140 genes implicated in resistance to PD0325901 in the CCLE dataset were 767 
extracted from the RNA-seq analysis of T84 cells treated as in A. Hierarchical clustering was 768 
used to group genes according to their pattern of expression across the different treatments. 769 
A cluster of 66 genes that was induced by trametinib and suppressed by JQ1 or JQ1 and 770 
trametinib combinatorial treatment was apparent. 771 
D. T84, SNUC2A and LS123 cells were treated with DMSO, 30 nmol/L trametinib, 1 µmol/L 772 
JQ1, or their combination for 72 h. Cell lysates were analyzed for the indicated proteins. 773 
 774 
Figure 6. The combination of trametinib and JQ1 is efficacious in patient-derived 775 
organoid models of KRAS-mutant colorectal cancer.  776 
A. Patient-derived organoid cultures generated from KRAS-mutant colorectal cancer biopsies 777 
were profiled for mRNA expression of the indicated genes by qRT-PCR. Values are 778 
expressed relative to the MEK-inhibitor sensitive SW620 cell line.  779 
B. Organoid cultures were treated with a titration of trametinib for 7 d and proliferation was 780 
assessed by the CellTiter-Blue assay. Data are presented as percentage of DMSO-treated 781 
organoids (n=3). 782 
C. 7 different organoid cultures were treated with a matrix of trametinib and JQ1 for 7 d. 783 
Organoid proliferation was assessed as in B; a shift from blue to red indicates reduced 784 
proliferation. Synergy was determined using the Bliss independence model; a shift from 785 
green to red indicates an excess above bliss, indicative of synergy (n=3).  786 
D. RT-qPCR was performed on the C-003 organoid culture treated with either DMSO, 10 nM 787 
trametinib, 100 nM JQ1, or their combination for 24 h for expression of the indicated genes. 788 
Mean values are relative to DMSO-treated control, normalised to GUSB expression; error 789 
bars represent standard error (n=2-3). 790 
E. The C-003 organoid culture was treated as described in D for 48 h and protein lysates 791 
were analyzed for the indicated proteins.  792 
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 793 
Figure 7. The combination of trametinib and JQ1 is efficacious in MEK-inhibitor-794 
resistant animal models. 795 
A. Human T84 cells (5x106/mouse) were inoculated subcutaneously into the flank of NCr 796 
mice, n=10 mice per group. Mice were treated with either vehicle, 1 mg/kg/d po trametinib, 797 
50 mg/kg/d ip JQ1, or the combination of trametinib and JQ1 for up to 28 d. Dosing on day 798 
21 was withheld from all groups to aid tolerability. Tumor volume was measured by callipers 799 
every 3-5 d, and the mean volume per group was expressed as a percentage relative to day 800 
0; error bars represent standard error. Statistical significance was determined using a two-801 
tailed t-test of relative tumor volumes after 28 d of dosing. 802 
B. The body weight of the mice from each group in A was measured and the mean per group 803 
was expressed as a percentage change from day 0; error bars represent standard error.  804 
C. Mouse CT26 cells (5x105/mouse) were inoculated subcutaneously into the flank of 805 
BALB/c mice. When tumors reached approximately 100 mm3 mice were treated with 1 806 
mg/kg/d po trametinib, 50 mg/kg/d ip JQ1, or the combination of both compounds (n=7-8 807 
mice/group). Tumor volume was measured by callipers every 3-5 d, and the mean volume 808 
per group was expressed as a percentage relative to day 0; error bars represent standard 809 
error. Statistical significance was determined using a two-tailed t-test of relative tumor 810 
volumes after 14 d of dosing. 811 
D. The body weight of the mice from each group in C was measured and the mean per group 812 
was expressed as a percentage change from day 0; error bars represent standard error.  813 
E. Quantification of T cell populations (CD8+, CD4+, Tregs) in CT26 tumors from C, 814 
assessed by multi-colour flow-cytometry. Cell numbers are expressed as the number of cells 815 
per cm3 of tumor, presented in the box and whisker plot. Statistical significance was 816 
determined using a one-way ANOVA, n=6 mice per group, *p<0.05, **p<0.01, ***p<0.001. 817 
F. The expression of PD-1 was determined by flow-cytometry in CD8+ T cells isolated from 818 
CT26 tumors from C. An example histogram is shown for each condition and aggregate data 819 
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is presented in the box and whisker plot. Statistical significance was determined using a one-820 
way ANOVA, n=6 mice per group, *p<0.05, **p<0.01, ***p<0.001. 821 
G. Overall survival of 379 colorectal cancer patients with high expression (mRNA z-score >2) 822 
of 66 genes identified in Figure 5C (cBioportal). Significance was determined by Log-rank 823 
(Mantel-Cox) test. 824 
 825 



Resistant Sensitive 

0.8 

0.6 

0.4 

0.2 

0 

En
ric

hm
en

t s
co

re
 

FDR<0.001 
NES: 3.139 

HALLMARK_INTERFERON_ALPHA_RESPONSE 

Resistant Sensitive 

0.8 

0.6 

0.4 

0.2 

0 

En
ric

hm
en

t s
co

re
 FDR<0.001 

NES:2.946 

HECKER_IFNB1_TARGETS 

Resistant Sensitive 

0.8 

0.6 

0.4 

0.2 
0 

En
ric

hm
en

t s
co

re
 

FDR<0.001 
NES:2.915 

MOSERLE_IFNA_RESPONSE 

Figure 1.

A B C

D

E
4 128

S
W

62
0

H
C

C
56

S
W

40
3

N
C

IH
74

7
LS

51
3

S
K

C
O

1
S

W
48

0
H

C
T1

16
C

O
LO

67
8

H
C

T1
5

T8
4

LS
12

3
S

N
U

C
2A

PD0325901
GI50 (µM)

USP18
CALM3
GFOD1
SLCO1B3
HERC6
HERC5
MASTL
HYMAI
HSH2D
CXCL10
MID2
ITPKC
TAGLN
LOC285812
APOL2
PEX3
AKAP7
CSRNP1
IFIT5
MFAP3L
MX1
LGALSL
FUCA2
IFIH1
SLC9A7
GYS1
IFIT1
INPP5E
MARC2
TNFRSF1A
PARP9
C6orf72
IFI44L
SERTAD2
IRF7
ZNF165
OAS3
SPINT1
SP110
SLC41A2
CITED2
SWAP70
GAS2L3
IL28RA
CMPK2
IFI6
MFSD8
PLOD2
TMTC3
ISG15

Gene
7.10
2.30
2.49
34.03
8.68
17.02
2.20
2.59
2.53
8.41
2.67
2.61
5.10
2.27
2.51
2.14
2.42
2.19
3.10
5.01
17.92
2.35
2.10
6.73
2.17
2.46
38.79
2.13
2.84
2.80
4.56
2.87
14.52
2.06
5.19
2.17
6.06
2.02
4.51
2.78
6.28
2.04
2.29
2.31
18.85
13.04
2.10
7.68
2.08
7.16

Fold Change

8

0

Log2 mRNA Expression

Sensitive Resistant

Sen Res

4

6

8

10

12

14

Lo
g 2 

U
S

P
18

 m
R

N
A

p<0.00001

Sen Res

4

6

8

10

12

14

Lo
g 2 

C
X

C
L1

0 
m

R
N

A

p=0.0007

Sen Res

4

6

8

10

12

14

Lo
g 2 

M
X

1 
m

R
N

A

p=0.0015

Sen Res

4

6

8

10

12

14

Lo
g 2 

IF
IT

1 
m

R
N

A

p=0.0021
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

FD
R

 q
va

lu
e

Normalized Enrichment Score

C2/C6/Hallmark Gene Sets
Interferon
TNF/NFkB
Inflammatory

MX1

IFIT1

ISG15

USP18

pERK1/2

ERK1/2

pNFκB

Vinculin

NFκB

HCT116SW620 NCIH747 T84 LS123SNUC2A

−     +     −    +      −     +     −     +     −    +     −     +    Trametinib:



Figure 2.

A B

C

D E
H
C
T1
16

H
C
T1
16
_R
4

TNF
IL1B

IFI44L
IL1A

CXCL10
IFI44
MX1
IFIT3
IFIT2
IFIT1
ISG15
MYC 0

Lo
g 2 

m
R

N
A

 E
xp

re
ss

io
n

4

8

12

0.0001 0.001 0.01 0.1
0

50

100

[Trametinib] (µmol/L)

C
el

l p
ro

lif
er

at
io

n 
(%

 C
on

tr
ol

)

HCT116_R2

HCT116

HCT116_R4

HCT116_R5

HCT116_R3

30 nmol/L Trametinib- + - +

IFIT1

pNFkB p65

NFkB p65

Vinculin

HCT116 HCT116_R4● ●
● ●

●● ●

●●

●

●● ●
●

●
●●●

● ●● ● ●● ●●●
●●

● ●●●
●●
● ●

●
●

●
●●● ● ● ●●●●●● ●●●

● ●
● ●●

●
● ● ●●●● ●●●●●

●● ●● ●●
●● ●●● ● ●●● ●●● ● ● ●●●

●● ●●● ●● ●● ●
●●

● ●● ● ●●● ● ●●● ●● ●● ●● ●● ●●●● ●● ● ●●●● ●●●●
●● ●●● ●●● ●● ● ● ●●

●●●● ●●● ● ●● ●●● ● ●
●● ●● ● ●● ●● ● ● ●●● ●● ●●●● ●● ●● ●● ● ●●● ● ● ●●● ●●●● ●● ●●● ●●●● ●●● ●●●● ●● ●● ●●●●●● ● ●●● ●●● ● ●● ●●● ●● ●● ●●●● ●●●●● ● ● ●● ●● ●● ● ●● ●●● ●● ●●●●● ● ●● ● ● ●● ●●● ● ●● ● ●●●●●● ●● ●●●● ● ●● ●●●● ●● ●● ●● ●● ● ●●●● ●● ●● ●● ●●●● ●●● ● ●● ● ●● ●● ●● ● ● ●●● ●● ●● ● ●●●● ● ●● ●●● ● ●●● ●●● ●●● ●●● ●●● ●●● ● ●● ●● ●● ●●● ●● ● ●● ●● ●●●●●● ● ●●● ● ● ●●●●● ●● ●● ●● ●●●●● ●● ●●●●● ●● ●● ●● ●●●● ● ●●● ●●●● ●●● ●● ● ●● ●●● ●●● ●● ●● ●● ●●●●●● ●●●● ● ●● ●●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●●● ●●● ●● ● ●●●● ●●● ● ●● ●●●●● ●●●●●●●● ●● ●●●● ●● ●● ●●● ●● ●●●●● ● ●●●● ●●● ●●● ● ●● ●●● ●●● ●●●● ● ●●● ●● ●● ●●●●● ●● ●●● ●● ●●● ●●● ● ● ●●●● ● ●●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ●●● ● ●● ●●● ●●●●● ●●●● ●●● ●●● ●● ●●●●● ●●● ● ●●●● ● ●●● ●● ●●● ●● ●●● ●● ● ●● ●●● ● ●●●● ● ●● ●● ●●● ●● ●●●●●● ● ●●● ● ●● ●● ● ●● ●●● ●● ● ●●● ● ●●● ●●● ●●● ●● ●● ●●● ●●● ●● ●● ●●● ●● ●● ●●● ● ●●● ●●●● ● ●●● ●●● ●● ●●● ● ●● ● ●● ●●●●●● ●●● ● ●● ●●● ● ●●● ●●●● ●●● ● ●●●● ●●● ●●●● ●●●● ●●●● ●●●● ●●● ●●● ●●● ●● ●●●● ●●● ●● ●●●● ● ●● ●●● ●●● ●● ● ●● ●● ●●● ●● ●● ●●● ● ●●●● ● ● ●●●●●● ●● ●●●●● ●● ●●●● ●●● ●●● ●●●●● ●●●●●● ●●●●● ●● ● ●● ●●●● ●● ●●● ●● ●● ●● ●●●● ●● ●● ●● ●●● ●● ●● ●●●●● ●● ●●●●● ● ●●● ● ●● ● ● ●● ● ●●●● ●● ●●●● ●●● ● ● ●●●●● ●●● ●● ●●● ●● ● ●●●●● ●●●● ● ● ●● ●●● ●● ● ●●● ● ●●●● ●● ●● ● ●● ●●● ● ●●● ● ●●● ●● ●● ●● ●●●●●● ●● ● ●● ●● ●● ●●●●● ●●● ●●● ●● ●●●● ● ●●●●●● ●● ●●● ●●● ●●● ●● ●●● ●●● ● ●● ●● ●●●●● ●●●● ●●●●● ●●●●● ●●● ●●●●● ●● ●●●● ●● ●● ●●●● ●● ● ●● ●●● ●● ● ●●● ● ●● ● ●● ●●●●●●●●●●●●● ●● ● ●● ● ●●●● ● ● ●●● ● ●●●●● ●●●● ● ●●●●●● ●● ● ●● ●● ●●●●●● ●● ● ● ●●●●●●●● ●●●●● ●●●● ●● ●● ●●● ● ●●●●● ●● ● ●● ●● ● ●●● ● ●●●● ● ●●●●●●● ●● ●●● ● ●●●● ● ● ●● ●●● ●●● ●● ●● ●●●● ● ●●● ● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●●● ●●● ●●●● ●● ● ●●● ● ●●● ● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●●● ●●● ●●● ● ●●●●● ● ●●●●● ●●●●● ●● ● ●● ●●●●● ● ●●● ●●●●● ● ●●● ● ●● ●● ● ●● ● ●●●● ●● ● ●● ● ●●●● ● ●● ●●● ●●● ● ●● ●●● ●● ●●●●● ●● ●● ●●●● ● ●●● ●●● ● ● ●●●● ●● ●●●●●● ●● ●●●●●● ●●●● ●●●● ●●●●● ●●● ●●●●● ●● ●●● ●●● ● ●● ●●●● ●● ●● ●●●● ●● ●●●●●● ●●●●● ●●●●●●● ● ●●●● ●● ●●● ●● ●●● ● ● ●●● ●●●●● ● ●●● ●●● ●●●●●● ●●● ●●●●● ●● ●●● ●● ●● ● ●● ●●● ●●● ●●● ●●● ●●● ●●● ● ●●● ●● ●●● ●● ●●● ●● ●●●●● ●● ● ●●●●● ●● ●●●● ●●● ●● ● ●●●●● ●● ●● ●●● ●● ●● ●●●● ●●●●●● ●● ●● ●●●● ● ● ●● ●●●● ●● ●●●●● ●●●●●● ● ●●● ● ●●● ● ● ●●● ●● ●●● ●● ●●● ●●● ●●●● ●● ●●● ●●●●●● ●●●● ●●●● ●● ●●●●●● ● ●●●● ● ●●●●● ●●● ●● ●● ●● ● ●●●●●● ●●● ●● ●●●● ●● ●● ●● ●●● ●● ●●●● ●●●●●● ●● ●●● ●●● ●●● ●●● ●●● ●●●●●● ●● ●●●●●● ●● ●● ● ●●● ●●●●● ● ●● ●● ●●● ● ●●● ●● ● ●●●●●● ●● ●●●● ●●●●●●● ●● ●● ● ●● ● ●●●●● ●●● ●● ●●●● ●● ●● ●●●● ● ●●● ●●●● ●● ●● ●●● ●● ●●●●●● ●● ●● ●● ●●● ● ● ●●●●● ● ●●●●● ●●● ●●●● ●●●● ●●● ●● ●● ●● ●●● ●●● ●● ● ●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●●●● ● ●● ●●●●● ●●● ●●● ●● ●●● ●●●●●● ● ●●● ●●● ●● ●●● ●● ●●●●● ●● ●●● ●● ●● ● ●●● ●●● ●●●● ●● ●●●●●●●● ● ●● ●●● ●● ●● ●●●●●●● ●● ● ●●●●●●●● ●●● ●● ●●●●●●● ●●● ●●●●●●●● ●●●●●●● ●●●● ● ●● ●● ●●●● ●●●● ●●●●● ●● ● ●●● ●● ●●●●● ● ●●● ●● ●●●● ●● ●●●● ●●●●● ●●● ●●●● ●●●● ● ●● ●●● ● ●●● ● ●●●●●● ●●●● ●● ●● ●● ●●●● ●●● ●● ● ●● ●●●●●● ●●●● ●●●● ●●● ●● ●●● ●●● ●●● ●●● ●● ●● ●● ●●● ●●●●● ●●●●●● ●● ● ●●● ●●● ●●● ● ●●●● ●●●●●●● ●● ●●●●●● ●●● ●● ●● ● ●●● ●● ●● ●●●● ●●● ●● ●● ●● ●● ● ● ●● ●● ●●●●● ●●●● ●●● ●● ● ● ●●●● ●●● ●● ●● ●● ●● ●● ●● ●●● ●●●●●●● ●● ●● ● ●●● ●●●●● ●● ●● ●● ●●● ●●● ●● ●●●●● ●● ●●●●●●● ●●● ●● ●●●●● ●● ●●● ●●●●●● ●● ● ●●●● ●● ●●● ●● ●●● ●●● ●●● ●●●● ● ●●● ●● ● ●● ● ●● ●●● ●●● ●● ●● ●●●● ●● ●● ●● ●●●● ●●● ●●● ● ●●● ● ●●● ● ●●● ●●● ●●●●●● ●● ●●● ●●●● ● ●●●● ●●●● ●●●● ●●●● ●●● ●●●● ●● ●●● ●●● ●●●● ●●●● ● ●● ●●● ●● ●●●● ●● ●● ●●●●● ● ●●● ●●● ●●● ● ● ●●●●●●● ●●●●●●● ●●●●● ●● ●● ●●●● ●● ●● ●● ●●● ●● ●●● ●●● ●●●●● ●●● ●● ●●● ● ●● ● ● ●●●● ●●●● ●●●● ●●● ●●●●● ●●● ●●● ●●●●●● ●● ●● ●● ●●●● ●●● ● ●● ●● ●●● ●●● ●● ●●● ●● ●● ●●● ●●● ●● ●●●●●● ●● ●●● ●●●●●●●● ●●● ● ● ●●●●●● ●●●● ● ●●● ● ●● ● ●●●● ● ●●● ●●● ●● ●● ●●●●●● ●● ●●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●●●●● ●●●● ●●●●● ●●● ●●● ●●●● ●●●●● ● ●●● ●● ●●● ●● ●●●● ● ●●● ●●● ●● ●●●●●●●●●●●● ●● ●●●●●●●●● ●●● ● ●●● ●●●● ●●● ●●●●● ●● ●●● ●● ●●●● ●● ●●●● ●●● ●●●●● ●● ●●●● ●●●●● ●●● ●●● ●● ●●●●● ●●●● ●●●● ● ●●● ●● ●● ●●●● ● ●●●●● ●●● ●●● ●● ●● ●●●●● ●● ●● ●●●●● ●●●● ● ●●● ●●● ● ●●●●●● ●●●●● ●● ●● ●● ●● ●● ●●● ●●●●● ●●●●● ●● ●●●● ●● ● ●● ●●● ● ●● ●● ●●● ●●●● ●●● ●●●●●● ●●● ●● ●●●● ●●● ●●●● ● ● ●●● ●●●● ●●● ● ●●●● ●● ●●●● ●● ●●● ● ● ●●●●● ● ●● ●●●●●●● ●●●●● ●● ●●●● ●●● ● ●●●●●● ●●●● ●●● ●● ●● ● ●● ●● ●●● ●●●● ●●●● ●● ●●●● ●● ●●● ●●● ●●● ●●●●●● ●●●●● ●●● ●●● ●●●● ●● ●●●●● ●●● ●●● ●● ●● ●● ●● ●●●● ●●● ● ●●● ●●●●●●● ● ●●● ●●● ●● ●● ●●● ●●●●●● ●●● ●●●● ●● ● ●●● ●● ●● ●●● ●● ●● ●● ●● ●●●● ● ● ●●●● ●● ●●● ●●● ●●●● ● ●● ●●●●● ●●●●● ● ●●●●● ●●●●●● ●●●●●● ●● ● ●● ●●● ●●●●● ●● ●●●●● ● ● ●●● ● ●●●●● ●●●●● ●●● ●●● ●●●● ● ●●● ●● ●●● ●●● ●●● ●● ●●● ●● ●●● ●● ●●● ● ● ●●●●● ●●●●●●●● ● ●●● ●●● ●● ●● ●● ● ●● ●●● ● ●●● ●●● ●●●● ● ●●● ● ●●●●●●●● ●●● ●●●●● ● ●●●● ●● ●●●●● ●●●● ●●●● ●● ●● ●●●●● ●●●● ●● ●● ●●●● ●●●●● ●●● ● ●● ●●●● ●●●● ●●● ●●● ●●● ●●● ●●●● ● ●●●● ●●●● ●●● ● ●● ●●●● ●● ● ●● ● ●●●●● ●● ●● ●●● ●●●● ●●●● ●●● ●●● ●●● ●● ●●●●●●● ●● ●●●●●●● ●●●●●● ●●●●● ●● ●● ●●●● ●●●●●●● ●●● ●●● ●●●● ●● ●●● ● ●● ●● ●● ●●●●● ●●● ●●● ●●●● ●● ●●● ● ●●●●●● ● ●● ●● ●●●● ●● ●● ●●● ●●●●● ●●●● ●●●●● ●●●● ●● ● ●●● ●●● ● ●●●●●● ●●●● ●● ●● ●●● ●● ●● ● ●●●●●● ● ●●●●● ●●● ●●● ●●● ●●●●● ●● ●●●●●● ●●● ●●● ●●●● ●●●● ●●● ● ●● ●● ●●●● ●● ●● ●●●●●● ●●● ● ●● ●● ●● ●●●● ●● ●●● ●● ●●● ● ●●● ●●● ●● ●●● ●●● ●●● ●● ●●●●●●● ●● ●●● ●● ●●● ●● ●●●● ●● ●●● ● ●● ●● ●●●● ●● ●● ●●●● ● ●●●●● ●●● ●●● ●● ● ● ●● ●● ● ●●●● ●●● ●●● ●●●● ●● ●● ● ●●●●● ●● ● ●●● ●●● ●● ●● ●●●● ●●●● ●● ●●●●● ●●●● ●● ●● ●●●● ●● ●●● ●● ●●● ●●● ●●●● ●● ●●● ●● ● ●● ●● ●●●●●●● ●●● ●●● ●● ●●● ●●●● ● ●● ●● ● ●●● ●● ●● ●● ● ●● ●● ●● ●●● ●●●●● ●● ●● ●● ●● ●● ●●●● ●● ●●●●●●●● ● ●●●●●●●● ●● ● ● ●●● ●● ● ●●●●●●● ●● ●●●●● ●●● ●● ●●●●● ●●● ●●● ●●● ●● ●● ●● ●●●●● ●● ●●● ●●●● ●● ●●● ●●● ●●●● ● ●● ●●●● ●●●● ● ●●●● ●●●●●● ●●● ●●● ●● ●●● ● ●●●●● ● ●●● ● ●● ●●●● ●●● ●●●●●● ● ●● ●●●●● ●● ●●● ●●●●● ● ●● ●●●●● ●● ●● ●● ●●●●● ●●●●● ●● ●●● ●●●● ●●●●● ●● ● ●●● ●●● ●●●●● ● ●● ●●●●● ●●● ●●●● ●●● ●●● ●●● ● ●● ●●●● ●● ●●● ●● ●● ●● ●● ●● ● ●●● ●● ●●●● ●●●●● ●●● ●● ●●● ● ●● ●● ●●●● ●●● ●● ●● ●●●●● ● ●●● ●●● ● ●●● ●● ●●●● ●●●● ●● ●●● ● ●● ●●● ● ●●●● ●●● ●●●●● ●●●●●● ●●● ●●●● ●●●● ●●●● ●●●●● ●● ●● ●●●● ●●● ●●●● ●● ●●●● ●● ●●● ●●●● ●●●●●●● ●●● ● ●● ●●● ●●● ●● ●●●● ●●●●●●●● ●●●●● ●● ● ●● ●● ●●● ● ●● ● ●● ●● ●●●● ●●● ●●● ●● ●● ● ●●●●● ●●● ●●● ●●●● ● ●●●●● ●●● ●●●● ●● ●●● ●●●●● ● ●●●●●●●● ●● ●● ●● ●●●● ●● ●● ●●●●● ●●●●● ●●● ●●● ● ●●● ●●●●● ●● ● ●● ●●● ●● ●●● ● ●●●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●● ●●● ●● ●●●● ●●●● ●●●●●● ●●● ● ●●●●● ●●● ●●●●● ● ●●●●●● ●●● ●●● ● ●●●● ●● ●●●● ●●●●● ●●●● ●● ●● ●●● ●●●● ●●● ●● ●●●● ●● ●●●●●● ●●● ●● ●● ●● ●●● ●● ●● ●● ●●●● ●●●● ●● ● ●● ●●● ●●● ●●● ●●●●●● ●●● ●●●●● ●● ●● ●● ●●● ●●● ●●●● ●●●● ●●●●●●●●●● ●●●●●●●●● ●● ●●● ●● ●●● ●●● ●●● ●●● ●● ●●●● ●● ●● ●● ● ●● ●● ●●●● ● ●●●● ●●● ●●● ●● ●●● ●●●● ● ●●●● ● ●●● ● ●●●● ●●●● ●● ●●●● ●● ●●●● ●● ●●●●● ●● ●● ●●●●● ●●●● ●●● ●● ●●● ●● ●●●● ● ●●●● ●● ● ●●● ●● ●● ●●●●●●● ●●●● ●●●● ●●●●●● ●●● ●●●● ●●●● ●●●●●● ●●●● ● ●● ● ●●●●●●●●● ●● ●●● ● ●●●●● ●●●● ●●●● ● ●● ●●●●● ● ●●●●● ●●●●● ●● ●● ●● ●● ●●● ●●●●●●●●● ● ●● ●● ●●● ●● ●● ● ●●● ●●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ●●● ●●●●●● ●●●●● ●●●●● ●●● ●● ●●●● ● ●●●●● ●● ●●●● ●● ●●●● ● ●● ●●●●● ●●●●● ●●● ●●●● ●● ●●● ● ●●● ●● ●●● ●●● ●● ●●● ●●●●●●● ●● ●●●●● ●●●●●● ● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●● ●● ●● ●● ● ●● ●● ●●●●●●● ● ●● ●● ●●● ●● ●● ●● ●●●●● ●● ●●● ● ●●● ●●● ●● ●●● ●●●● ● ●●● ●●●●● ● ●●● ●●●●● ●● ●● ●●●● ●● ●● ● ●●● ●●●● ●●●● ●●● ●●● ●● ●● ●● ● ●● ● ●● ●●● ●●●● ●●●●●● ● ●●●● ●●● ●●● ●● ●● ●●● ●● ● ●●●●●● ●●● ● ●●●●● ●●●●●●● ●●● ●●● ●● ●●●● ●● ●●●●● ●● ●● ●●●●●●● ●● ●●●●● ●● ●●●● ●●●● ●● ●●● ●● ● ●●●● ●●●●● ●●●●●● ●●●●● ●● ●● ●● ●●● ● ●●●●●● ●●● ●● ●● ● ●● ●●● ●●●●●● ●●●●● ●●● ●●●● ● ●● ●● ● ●● ●●● ●●● ● ●●●● ●●● ●●● ●●●● ● ●● ●● ●● ●● ●● ●●● ●● ●●●●● ●●●●●● ●●●● ●●●●●● ●● ● ●●●●●●● ●●●●● ● ●●●●● ●●●●● ●● ●● ●● ●●●●● ●●●●● ● ●●● ●●● ●●●●●● ● ● ●●●● ●●● ●●●●● ●●● ●●● ●● ●●●●●●●●●● ●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●●●●●● ●● ●● ●●● ●●●● ●●● ●●● ●● ● ●● ●●● ●●● ●●● ●●●● ●● ●●●● ●●● ●●●●● ●●● ●●●● ●●●● ●●●● ●●●●● ●● ●●●●● ●●●● ● ●●● ●●● ●●●● ●● ● ●●●● ● ●●●● ●●●● ●● ●●●●●● ● ●●● ●●●● ●●●●● ●●●●●● ●● ●●●●●●● ●● ●● ●●●●● ●●●●● ●● ●●●●●●● ●● ●● ●● ●●● ●●●●● ●● ●●● ●●●●●●●● ●●● ●●●● ●●●●● ●● ●● ●●● ●● ●●●●● ●● ●● ●●●● ●● ● ●● ●●●●● ●● ●●●●● ●● ● ●●●●● ●● ●●● ●● ●●● ●●●● ●● ●● ●● ●●● ●●●● ●●● ●●●● ●●● ●●● ●●● ●●●●●●● ●●●● ●● ●●● ● ●●● ●●● ●●● ●●●● ●●● ● ●● ●● ● ●●● ●● ● ●●●●● ●●●●● ●●● ●●●● ●●● ●● ●●● ●●●●● ●●●● ●●● ●●●●● ●● ●● ●● ●●● ●●● ●●● ●●● ●● ●●●● ● ●●●●● ●● ●● ●●● ●●● ●● ●● ●●●●● ●● ●●●●● ●●●● ●● ●●●● ●● ●●●● ● ●●● ●●●●●● ●●● ●● ●●●●●● ●●●●●●●●●● ●●● ●●●●● ●●●●●●●●● ●●● ●●● ●●●● ●●● ● ●●●●●●●●● ●● ●●●●●●●●● ●●● ●● ●●● ●● ●●● ●● ●● ●●●● ●● ● ●●● ●●●● ●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●● ●● ● ●●●●● ●●● ●●●● ●●●●●● ● ●● ●●● ●●●●● ●● ●● ● ● ●●●● ●●●●●● ●●●●● ●●● ●● ●● ●●● ●●●●● ●● ●● ●●● ●●● ●●●● ●● ●●●●●● ● ●● ●● ●●●● ●● ●● ●● ●●●●● ●●●●●● ●●● ● ●●● ●● ● ●● ●●● ●●●●●●●●● ● ●●●● ●●● ●●● ●● ●●● ● ●● ●● ●●●●● ●●●●●●● ●●●●●●● ● ●●● ●● ●●●● ●●● ●●●● ●● ● ●●●● ●● ●● ● ●● ●●● ●● ●●●● ●●● ●● ●●● ●●●●● ●●● ●● ●● ● ● ●●● ● ●●●●● ●● ●●●●● ●●● ●● ●● ●●● ●●● ●● ●●●● ●● ●● ●●●● ● ●●●● ●●●● ● ●●●● ●●● ●● ●●●● ●● ●● ●●● ● ●● ●●●● ●●●●● ●● ●● ●● ●●● ●●● ●●● ●●●●●● ●●●● ●●● ●● ● ●●● ●●● ●●●● ●●●●●●●● ●●● ●● ●●● ●●●●●●●●●● ●● ●●● ●●●●●●●● ●● ●●●●● ●●● ● ● ●●● ●● ●●● ●● ●●●● ● ●●● ●●●●● ●●● ●●● ●● ●●● ●●● ●●●● ●●● ●●● ● ●●●● ●●● ●●● ●● ●●● ● ●● ●●●● ●●● ●● ●● ●●●●●●● ● ●●● ● ●● ●●●● ● ●●● ●● ●● ●●●● ●●● ●● ●● ●● ● ●● ● ●● ●●●●● ●●●● ●● ●● ●● ● ●●●● ●● ● ●●●● ●● ●● ●● ● ●● ●● ●● ●●● ●●●● ●● ● ●● ●●● ●●● ●● ●●● ●● ●● ●●● ●●● ●●● ● ● ●● ● ●●● ●● ● ●●●●●● ●● ● ●●●● ● ●● ●●● ●● ●● ●●● ●● ●●●● ●● ●● ●● ●●● ●● ●●●● ●● ●● ●●●●●● ●●●● ●● ● ●●●● ●●● ●● ● ●●● ● ●● ●●●●● ●●● ●●●●●● ● ●● ●●● ● ●●● ● ●●●● ●●●● ●● ●●● ●●● ●● ● ●● ● ●●●● ●●● ●● ●● ●● ● ●● ●● ●●●● ●●●● ●●● ●●● ●●●●● ●●●● ●●●● ●● ●●● ●●●●●● ●●●● ●● ●● ●● ●●●●● ●●●●● ●●●●● ●● ● ●●●●● ●● ● ●● ●● ●● ●● ●●● ●● ● ●● ●●●● ●● ●●●●● ●●●● ● ●● ●●●● ● ●● ●● ●● ● ●●●●●● ● ● ●●● ●● ●● ●● ●●● ●● ●●●●● ● ●●● ●●● ●● ●● ●●●● ●●● ●● ●● ●●●●●● ●● ●●●●●●● ●●●●●●● ●● ●●● ●●● ●● ● ●● ●●●● ●● ●●●● ●●● ●●●● ● ●●●● ●● ●● ●●●● ●● ●● ● ● ●●● ●●●● ●●● ●● ●● ●●●● ●●● ●● ●●●●● ●●●● ●●●● ● ●●●● ●● ●●●● ●● ●● ●●● ●●● ●● ●● ●●●●● ●●● ●●●● ● ●●●●● ●●●●●●● ●●● ●●●● ●● ●● ●● ● ●● ●●● ●● ●●●● ●●●● ●● ●●● ●● ●●●●● ●●● ●● ●●●●● ●●●●●●● ●●●●● ●●●● ●●●● ●●●● ●●●● ● ●●● ●●●● ●● ●● ●● ●●●● ●●● ● ●●●●● ●● ●●●● ●● ●●● ●●●●●●●●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●●● ●●● ●●●●● ●●●● ●●● ●● ●●●● ●●● ● ●●●●●● ● ●●● ● ●●● ●●● ●●● ●● ●● ●●●● ●● ●● ●● ● ●●● ● ●● ● ●●●● ●●● ● ●● ●● ●●● ●●●●●● ● ●●●● ●● ● ● ●●● ●● ●● ●● ●●● ● ●●● ●●●● ●● ● ●●● ● ●● ●● ●●●●●●● ●●●●● ● ●● ●● ●●●● ●●●●● ●● ●●●●● ● ●● ●● ● ●●●● ●●●● ●●● ● ● ●●●●● ●●●● ● ●●●● ● ●● ●●●● ●●●●●●● ●● ●● ●● ●●● ●●● ● ●●● ●●● ●● ●● ●● ●●●●● ●●●● ●● ●●●●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●●● ●● ●●● ●●● ●●●●●● ●● ●●●● ●●●● ●●● ●●● ● ●● ●●● ●●● ●● ● ●● ●● ●●● ●● ● ●●● ●●●●● ●●● ●●●● ●●●● ● ●● ●●●●● ●●●● ●● ●●● ●●● ● ●●● ●● ●● ●● ●●●●●●●● ●● ●●● ●●●●●● ●● ● ●● ●●●●●●●●● ●●● ● ●●●● ● ●● ● ●●● ●●● ● ●● ● ●●●●●● ●●●● ●● ●●●● ●●●●●● ●●●●● ● ●●●● ●●● ●●● ●●●●● ●●● ● ●●●●● ●●● ●●● ●●● ●●●●● ●● ●● ●● ●● ●●● ●● ● ●●●● ●●● ● ●●●● ●● ●●●●●●●● ●● ●● ●● ●●●●● ●● ●●● ●● ●●●●●● ● ●●● ●● ●●●●●● ●●●● ●●●● ●● ●●● ●● ● ●● ●●●●●● ●●● ●●●● ●● ●● ●●●●●●● ●● ● ●●●●●● ● ●●● ●● ●●● ●● ●●●●●● ●●●● ● ●●●●●●● ●● ●●●● ●●●●● ● ●●● ●●● ●●● ●● ● ●● ●● ●● ●● ● ●● ●● ●●●●●● ●●● ●● ●●●● ● ●● ●● ●●●●●● ●●●●●●●●● ●● ●●●● ●●●● ●●●●●● ●●● ●● ●● ●●●●●● ●●●● ● ●●●● ●●●●●●●●●●●●●● ●●● ●●●● ●●●●●● ●● ●●●● ● ●●●●●●● ●●● ●● ● ●●●● ●●●●●● ●●●●● ●● ● ●●● ● ●● ●● ●●● ●●● ●●● ●●● ●●●●●●● ●● ●● ●●● ●● ●● ●● ● ●●●●● ●●● ● ●●●● ●●●●● ●●● ●●● ●● ●● ●●● ●●●●● ●●●● ●●●●● ●●●●● ●● ●●● ●●● ●● ●●● ●●●● ●●● ●●●●● ●●●● ●● ●● ●●● ●●● ●●●●●●● ● ●●●●●● ●●●● ●●●●●● ●●●●● ●● ●●●● ● ●●●●● ●●●●● ●● ●●● ●●● ●●● ●●●●●●● ●●● ●● ●●● ●●●● ●●●● ● ●●● ●●● ●●●● ● ●● ●●●● ● ●● ●● ●●● ●● ●● ●● ●● ●●●●● ●●●●●● ●●● ●●●● ●●● ●●●●●● ●●●● ●● ●● ●●● ●●● ● ●● ●●● ●●●● ●● ●●●●●● ●●●●●● ●● ●●● ● ●● ●●● ●● ●● ●● ●●●● ●● ●●● ● ●●●●● ● ●●● ●● ●● ●● ●● ●●●●● ●●● ●●●● ●● ●● ●● ●●●● ●● ●● ●● ● ●● ●●● ●● ●●●●●●●● ●●●●● ●●● ●● ●●●●●●●● ●●●● ●●●● ●●● ●●● ●●●●●●● ● ●● ● ●●● ● ●●●●● ● ●●●●● ●● ●●●●● ●● ●● ●●●● ●●●●●●●● ●●●●●●●● ●● ●●●●●● ●●● ● ●●●●●●●●● ●● ● ● ●●● ●● ●●● ●●●●●●●● ●●●● ●●●● ●●● ●● ●●● ●●●●● ●●● ●● ●● ●● ●● ●● ●●●● ●●●●●●●● ●●● ●●●● ● ●●●●● ● ●● ●● ●● ●●● ●●●●● ●● ●●● ●●●●● ●●● ●●● ● ●●●● ●● ●●●● ●● ● ●● ●● ●●●● ●● ●●● ●●● ●● ●● ●●● ●● ●●● ●● ●●● ●● ● ●●● ●● ●● ●●●● ●●● ●●● ●● ●● ● ●● ●● ●●●● ●●● ●●● ●● ●●● ●● ●●● ●● ●●●● ●●● ● ●●●●●●● ●●● ●●● ●●●●●●● ●●●●●●●● ●● ●●●● ●●●●●●●●●● ●●● ●●●●●● ●●●●● ●● ●●●●●●● ●● ●●●● ●●●●●●●●●●● ●●●● ●●● ●●● ●● ●● ●●● ●●● ●● ●●●● ● ●●●●● ●●●●●●● ●● ●●● ●●● ●●●●● ●● ●● ●●● ●●● ●●●● ●●● ●● ●●● ●●● ●●● ●●●●● ●●● ●●● ●●● ●● ●●●● ●●● ●● ●●● ● ●● ● ●●●●● ●●●●●●● ● ●● ●●● ●● ●●●●● ●● ●● ●●●●●● ●●●●●●●● ●●●●●● ●● ●●●●● ● ●●●●●● ●●●● ●●● ●●● ●●●● ● ●●●● ●● ●●●●●●● ●●●●● ● ●● ●●● ●●● ● ●● ●● ●●● ●●●● ●●●● ●●●● ●● ●●●●●● ●●● ●●●●●●●● ●●●● ●●●●● ●●●●● ●● ●●● ● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ● ●●●●● ●●●●●●● ●●● ●●●● ●● ●● ● ●●● ●●●●●● ●●●●●●●●● ●● ●●●●● ●●●●● ●● ●●●●●●● ●●●● ●●●● ●● ●● ●●●●●● ●●●●● ●●● ●● ●●●●●●●●●●●●● ●●●●●●● ●●● ●● ●● ●●● ● ●●●● ●● ●●●●●●●●●●●● ●●●● ●● ●●●●●●● ●●● ● ● ●●●● ●●● ●● ●●●● ●● ●●● ●●● ●●●●●● ●●●●●●● ●● ●●●●●●● ●●● ●● ●●● ●●● ●●●●●●●●●●● ●● ●●● ●●●●●● ●●●●●● ● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●●● ●●●●● ● ●● ●●● ●●●●●●● ●●●● ● ●●● ●●● ●●●●●●●●●●●● ●●● ●● ●●● ●● ●●●● ● ●● ●● ●●●● ●●● ●● ●●●●●●●●●● ●● ●●● ●● ●●●● ●●● ●●● ●●●●● ● ●●● ●● ●●●● ●● ●● ●●●●● ●●●●● ●● ●●● ●●●●●●●● ●●● ●●●● ●●● ●●●●●● ●● ●● ●●● ●● ●●● ●●●●● ●●●●● ●●●● ●●● ● ●●● ● ●● ●● ●●● ●●●●●●●● ●●●● ●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●● ●●● ●● ●● ●●● ●●●● ●●●●●●●●● ●●● ● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●● ●●●●●●●●● ●●●●● ●●●●● ● ●●●●●●●● ●●●● ●●● ●●●●● ●●●●●●●●●● ●●● ● ●●●●●●● ●●● ● ●●●●●●●●●●●● ●●●●●●●● ●● ●●● ● ●●●● ●●● ●●●●● ● ●●●●●● ●●● ●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●● ●●●● ●●●●● ●●● ● ●●●● ●●●● ●●●●●● ●●●●●●●●●● ●●● ●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●● ●●●●● ●●● ●●●● ●● ●● ●●●●● ●● ●●●● ●●●● ●●● ●●● ●●●● ●●●●●●●●●●●●●● ●●● ●●●● ●● ●●●● ●● ●●● ●● ●●●● ●● ●●●●●●● ●●●●● ●●●●●● ●●●● ●●● ●● ●● ●●●● ●●● ●● ●●●●● ●●●●●● ●●●● ●●●●● ●● ●● ●●●● ●●●● ●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●● ●●● ●●●● ●●●●● ●●● ●● ●●● ●●●●●● ●● ●● ●●●● ● ●●●●●●●●●●●●●● ●●● ● ●●●●●●●●● ●●● ●●●●●● ●●●●●●●●● ●●●● ●● ●● ●● ●●●●●●●●● ●●●● ●●●●●●●●●● ●●● ●●● ●●● ●●●●●● ●● ●●●● ●●● ●●●● ●● ●●● ●●●● ●●●● ● ●●●● ●●●●● ●●●●●●●● ●● ●●● ●●●●●● ●●●●●● ●●● ●●●● ●●● ●●●●● ●●● ●●● ●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ● ●●●●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●● ●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●● ●● ●● ●●●●●●●● ●●●●● ●● ●●●●● ●●●●● ● ●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●● ● ●●●●● ●● ●●●●● ●● ●●● ● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●● ●●● ●●● ●● ●●● ●●● ●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●●●●● ●● ●● ●●● ●●●● ●● ●●●●●●● ●●●●●● ●●●●●● ● ●●● ●●●●● ●●●●●●●● ●● ●●● ●●● ●●●●● ●●●●● ●●●●● ●●●●●●●● ●●●● ●● ●●●● ●●●●●●● ●● ●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●● ●●● ●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●● ●● ●●● ●●●●●●●●●●●●●● ● ●●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●● ●● ●●●●●●● ●●● ●●●●●●● ●●●●●●● ●●● ●●● ●●●●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●●●●●● ●● ●● ●●●●●●●●●● ●●●●● ●● ●●●● ●●●●●●●● ●●●●●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●●●● ●● ●●●● ●●●●●●●● ●● ●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●● ●● ●●●●●●●●● ●●● ●●●● ●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●● ●●●● ●●●●●●●● ●●● ●●●●●●●●●●● ●● ●●●●●●●● ●●●●●●●● ●● ●● ●●●●●●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●● ●●●●●●●● ●●●●●●●●●●●● ●● ●● ●●●●●● ●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−10 −5 0 5 10

0
50

10
0

15
0

20
0

25
0

30
0

HCT116 Inflammatory

log2FoldChange

−l
og

10
(p

ad
j)

● ●
● ●

●● ●

●●

●

●● ●
●

●
●●●

● ●● ● ●● ●●●
●●

●●●
●

●
●

●
●

●● ● ●●●●●● ●●●
● ●

● ●

●●●● ●
●

●●●
● ●●● ●●● ●●● ● ● ●●

●● ●● ●● ● ●
●

● ● ●●● ● ● ●● ●
● ●

● ●●●
● ● ●●●● ● ●

●●●
● ●● ●

●
●●● ●● ● ●● ●● ●●● ●● ●● ●●● ●

●● ●●●● ● ●●●●● ●● ●
● ● ● ● ●● ● ●●●● ● ●● ●● ●●● ● ● ●● ●●

●● ●●● ●●● ●● ●●● ● ●●● ●● ●●● ●● ●● ● ●●●● ●● ●●●● ● ●● ●●● ● ●●● ●● ●●● ●●● ● ●●● ● ● ●● ● ●●● ●●● ● ●● ●● ●● ●●● ●●● ● ●● ●●● ● ●●● ●● ●●●●●● ● ●● ●●●● ● ● ●● ●● ●● ●● ●●●● ●● ●●● ●● ● ●●● ● ●● ● ● ●● ●● ●● ● ●●●● ●● ●●● ● ● ●● ●● ●● ●●● ●● ●●● ●●●● ●●● ●● ●● ●● ●● ●● ●● ●●●●● ● ●● ● ●● ●●● ● ●●● ● ●●● ● ●● ●●●● ●● ●● ●● ● ●● ●● ●●● ●● ●● ●●● ●● ●●●● ●● ●●● ●● ●●● ●●● ●● ●●● ●●●● ●● ● ●●●● ●●● ●●●●● ●●● ●●●●● ● ●●●● ●●●●●●● ●● ●● ●●●● ●● ●● ●●

●

●

●

●

●●

●●

●●

●
●

●
●●

PSMB9

BST2
IFIT3

APOL6IFIT2

CASP1GBP1RARRES3IFI44
SLAMF7RSAD2SAMD9L

FRMD5

LCKANXA10

Enrichment BH p−val = 0.016

Resistant Sensitive

0.8
0.6

0.4

0.2

0

En
ric

hm
en

t s
co

re FDR<0.001
NES: 2.593

SANA_TNF_SIGNALING_UP

Resistant Sensitive

0.8
0.6

0.4

0.2

0

En
ric

hm
en

t s
co

re FDR<0.001
NES: 2.445

HINATA_NFKB_TARGETS_KERATINOCYTE_UP

Resistant Sensitive

0.8

0.6

0.4

0.2

0

En
ric

hm
en

t s
co

re FDR<0.001
NES: 2.373

HECKER_IFNB1_TARGETS



DMSO

GSK11
2

JQ
1

GSK11
2/J

Q1
-200

0

200

400

600

800

%
 C

ha
ng

e 
in

 c
el

l t
ite

r 
(fr

om
 s

ta
rt

in
g 

tit
er

)

CCD841CoN

DMSO

Tra
meti

nib
JQ

1

Tra
meti

nib+J
Q1

0

20

40

60

80

100

%
 A

po
pt

os
is

DMSO

GSK11
2

JQ
1

GSK11
2/J

Q1
-200

0

200

400

600

800

%
 C

ha
ng

e 
in

 c
el

l t
ite

r 
(fr

om
 s

ta
rt

in
g 

tit
er

)

LS123

*

DMSO

Tra
meti

nib
JQ

1

Tra
meti

nib+J
Q1

-200

0

200

400

600

800

%
 C

ha
ng

e 
in

 c
el

l t
ite

r 
(fr

om
 s

ta
rt

in
g 

tit
er

)

SNUC2A

****

DMSO

Tra
meti

nib
JQ

1

Tra
meti

nib+J
Q1

-200

0

200

400

600

800

%
 C

ha
ng

e 
in

 c
el

l t
ite

r 
(fr

om
 s

ta
rt

in
g 

tit
er

)
T84

****

DMSO

Tra
meti

nib
JQ

1

Tra
meti

nib+J
Q1

0

20

40

60

80

100

%
 A

po
pt

os
is

**

DMSO

Tra
meti

nib
JQ

1

Tra
meti

nib+J
Q1

0

20

40

60

80

100

%
 A

po
pt

os
is

***

DMSO

Tra
meti

nib
JQ

1

Tra
meti

nib+J
Q1

0

20

40

60

80

100

%
 A

po
pt

os
is

****

Figure 3.

A C

D

B

E

Vinculin

Cleaved PARP

PARP

D
M

SO

C
om

bi
na

tio
n

G
SK

11
2

JQ
1

T84

SNUC2A

CCD841CoN

Vinculin

Cleaved PARP

PARP

Vinculin

Cleaved PARP

PARP

Vinculin

Cleaved PARP

PARP

LS123

0 1 3 10 0 1 3 10 0 1 3 10 0 1 3 10

100 1.0 0.2 0.1 0.1 1.0 0.6 0.6 0.5 0.6 0.4 0.3 0.2 0.9 0.7 0.6 0.5

30 1.0 0.5 0.3 0.2 1.1 0.7 0.6 0.6 0.6 0.6 0.4 0.3 1.0 0.6 0.6 0.6

10 1.1 0.8 0.7 0.6 0.9 0.8 0.6 0.6 0.7 0.7 0.6 0.5 1.1 0.7 0.6 0.6

0 1.0 1.1 1.1 1.1 1.0 1.0 1.1 1.0 1.0 1.1 1.0 1.0 1.0 0.7 0.7 0.7

100 0.0 0.9 1.0 1.0 0.0 0.4 0.5 0.5 0.0 0.2 0.3 0.4 0.0 0.0 0.1 0.1

30 0.0 0.6 0.8 0.9 0.0 0.4 0.6 0.5 0.0 0.1 0.3 0.3 0.0 0.0 0.0 0.1

10 0.0 0.4 0.5 0.6 0.0 0.2 0.4 0.3 0.0 0.1 0.1 0.3 0.0 0.0 0.1 0.1

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Tr
am

et
in

ib
 (n

m
ol

/L
)

Tr
am

et
in

ib
 (n

m
ol

/L
)

CCD841CoN
JQ1 (µmol/L)

Cell Proliferation Excess above Bliss

JQ1 (µmol/L) JQ1 (µmol/L) JQ1 (µmol/L)

T84 SNUC2A LS123

DMSO Trametinib JQ1 Trametinib + JQ1

SNUC2A

CCD841CoN

T84

LS123



Figure 4.

A

CB

0 0.03 0.1 0.3 1 3 10 0 0.03 0.1 0.3 1 3 10

100 0.8 0.8 0.7 0.6 0.3 0.2 0.1 0.7 0.5 0.5 0.4 0.3 0.2 0.2

30 0.9 0.9 0.9 0.8 0.5 0.3 0.2 0.7 0.6 0.5 0.4 0.4 0.3 0.2

10 1.0 0.9 0.9 0.9 0.9 0.4 0.3 0.9 0.7 0.6 0.5 0.4 0.4 0.3

3 1.0 0.9 0.9 0.9 0.9 0.6 0.4 0.8 0.6 0.6 0.5 0.5 0.4 0.3

1 1.0 0.9 0.9 0.9 0.9 0.7 0.5 1.0 0.8 0.7 0.6 0.5 0.5 0.4

0 1.0 1.0 1.0 1.0 0.8 0.7 0.6 1.0 1.0 0.9 0.8 0.7 0.6 0.5

100 0.0 0.0 0.0 0.2 0.4 0.4 0.4 0.0 0.2 0.2 0.2 0.2 0.2 0.2

30 0.0 0.1 0.0 0.1 0.3 0.4 0.4 0.0 0.2 0.2 0.2 0.2 0.2 0.2

10 0.0 0.1 0.0 0.1 0.0 0.3 0.3 0.0 0.2 0.3 0.2 0.2 0.2 0.2

3 0.0 0.1 0.0 0.1 -0.1 0.1 0.2 0.0 0.2 0.2 0.1 0.1 0.1 0.1

1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.2 0.1 0.1 0.1 0.1

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5

Tr
am

et
in

ib
 (n

m
ol

/L
)

Cell Proliferation Excess above Bliss

T84
Tr

am
et

in
ib

 (n
m

ol
/L

)
I-BET-151 (µmol/L)

SNUC2A
I-BET-151 (µmol/L)

Mo
ck
siN
T
siB
RD
4

siN
Fk
B p
65

siI
FIT
1

siM
YC

BRD4

NFkB p65

IFIT1

MYC

Vinculin

Moc
k

Moc
k +

 tr
am

eti
nibsiN

T

siN
T + 

tra
meti

nib

siB
RD4

siB
RD4 +

 tr
am

eti
nib

siN
FkB

siN
FkB

 + 
tra

meti
nib

siI
FIT

1

siI
FIT

1 +
 tr

am
eti

nib

siM
YC

siM
YC + 

tra
meti

nib
0

50

100

150

C
el

l P
ro

lif
er

at
io

n 
(%

 c
on

tr
ol

)

****

****
****

****



Figure 5.
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