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Abstract

What happens in the early, still undetectable human malignancy is unknown because direct 

observations are impractical. Here we present and validate a “Big Bang” model, whereby tumors 

grow predominantly as a single expansion producing numerous intermixed sub-clones that are not 

subject to stringent selection, and where both public (clonal) and most detectable private 

(subclonal) alterations arise early during growth. Genomic profiling of 349 individual glands from 

15 colorectal tumors revealed the absence of selective sweeps, uniformly high intra-tumor 

heterogeneity (ITH), and sub-clone mixing in distant regions, as postulated by our model. We also 

verified the prediction that most detectable ITH originates from early private alterations, and not 

from later clonal expansions, thus exposing the profile of the primordial tumor. Moreover, some 

tumors appear born-to-be-bad, with sub-clone mixing indicative of early malignant potential. This 
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new model provides a quantitative framework to interpret tumor growth dynamics and the origins 

of ITH with significant clinical implications.

Introduction

The growth of human malignancies cannot be directly observed. In particular, the earliest 

events in the growth of a large tumor are unknown. What happens during these first cell 

divisions may provide clues as to how to better prevent, detect, and treat cancers. Since 

tumor growth is an evolutionary process and the ancestral history is recorded within tumor 

cell genomes1-3, detailed information on the early growth phase may be encoded in patterns 

of genomic intra-tumor heterogeneity (ITH) present in the final neoplasm. Specifically, in 

the absence of selective sweeps, it is feasible to recover the genomic profile of the 

primordial tumor. This task is possible because private (sub-clonal) alterations that occur 

early during growth should be pervasive in the final neoplasm, where pervasive refers to 

private alterations that are found throughout the tumor, but are not dominant. 

Experimentally, pervasive alterations can be detected through systematic sampling and 

genomic profiling of numerous regions of the same neoplasm. The initial events in 

neoplastic transformation are thought to occur through the step-wise accumulation of driver 

alterations4, whereas the growth dynamics of established neoplasms remains poorly 

characterized. In particular, extensive ITH and branching phylogenies revealed by cancer 

genomic studies5-9 suggest that the same linear paradigm does not apply to the subsequent 

growth of established tumors, such as colorectal carcinomas and advanced adenomas. 

However, the origins of ITH are unknown, and a quantitative framework to describe tumor 

growth dynamics is needed.

Here we propose a “Big Bang” model whereby, after the initial transformation, colorectal 

tumors grow predominantly as a single expansion populated by numerous intermixed sub-

clones (Figure 1a). As expected, public mutations in the initiating cell will be present in all 

tumor cells (clonal). In contrast, while new private mutations will be continuously generated 

as a result of replication errors, only the earliest will be pervasive, whereas later alterations 

will be localized in progressively smaller tumor sub-populations. Although private 

mutations acquired during growth may confer survival advantages, selective sweeps that 

significantly alter the clonal composition of the final tumor are predicted to be extremely 

rare due to the rapidly expanding population and spatial constraints10-12. Hence, the timing 

of a mutation, rather than clonal selection for that mutation, is the primary determinant of its 

pervasiveness. Importantly, most observable private mutations that give rise to ITH are 

generated early after the transition to an advanced tumor, well before the neoplasm becomes 

clinically detectable. Given the absence of sequential selective sweeps, our model 

anticipates uniformly high levels of ITH throughout the neoplasm. Moreover, in some 

tumors, early sub-clone mixing followed by scattering to different distant tumor regions may 

occur (e.g. Figure 1a, red sub-clone). This phenomenon results in variegated tumor cell 

populations, where the spatial relationship between cells does not necessarily recapitulate 

their clonal relationship.
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Figure 1b shows an example of the variegation predicted by the Big Bang. Progeny of the 

first initiating tumor cell propagate public mutations, but also acquire new private alterations 

(colored areas), resulting in ITH within the newly formed small primordial tumor, which 

can subsequently scatter to distant regions during growth. For instance, the earliest mutation 

in red can be scattered to opposite sides of the neoplasm during tumor expansion, despite 

remaining private and non-dominant. This mechanism generates patterns of genetic 

variegation in the tumor. Therefore, clones harboring early private mutations (red or yellow) 

will be more pervasive in the final tumor, whereas late arising clones will not have time to 

expand to a detectable size, regardless of their relative fitness advantage (pink, black, green, 

blue). This simple mechanism predicts that early private mutations underlie the extensive 

ITH commonly detected in human neoplasms. Hence, public as well as the majority of 

detectable private mutations occur during early tumor growth.

Here we experimentally evaluate the predictions of the Big Bang model by profiling 349 

individual tumor glands sampled from opposite sides (arbitrarily defined as right and left) of 

15 colorectal carcinomas and large adenomas (Supplementary Table 1) using orthogonal 

multi-scale genomic techniques, namely whole-genome array-based profiling of copy 

number aberrations (CNAs), whole exome sequencing (WES), targeted deep sequencing, 

fluorescent in-situ hybridization (FISH), and neutral methylation tag sequencing. By 

analyzing single tumor glands composed of <10,000 cells, this approach enables the 

detection of alterations that occur in a fraction of tumor cells with remarkable sensitivity. At 

this level of resolution, we find unexpected spatial structure, indicative of order amidst the 

apparent chaos of genomic ITH. By integrating these data in a robust statistical inference 

framework based on a spatial computational model of tumor growth, we also verified that 

most ITH detectable with current technologies arises early during tumor growth and that the 

genomic profile of the primordial tumor can be recovered from the present day neoplasm.

Results

Sampling individual tumor glands

Colorectal cancer (CRC) represents an optimal system in which to study tumor growth 

dynamics as both the normal and neoplastic colon are organized into glandular epithelial 

structures, where neighboring cells within a gland share a recent common ancestry13 and 

microenvironment, with gland fission being the primary mode of growth14,15. Glands 

represent natural ancestral units and are composed of nearly pure tumor populations. Here 

we systematically sampled an average of 23 individual tumor glands and 2 bulk fragments 

from the right and left side (Figure 1c) of 4 large, mitotically advanced adenomas and 11 

carcinomas (Supplementary Table 1), totaling 349 tumor glands and 22 bulks. This enables 

the highly sensitive detection of sub-clonal alterations (i.e. < 10,000 cells per gland out of 

100 billion cells in a tumor; 0.00001%).

Single gland copy number profiles reveal variegation

Copy number profiles can be used to reconstruct tumor phylogenies6,8,16, and by profiling 

single glands it is possible to do so with unprecedented accuracy. We exploited whole 

genome SNP array-based copy number data derived from individual glands (7-10 per tumor, 
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n=127 total), the right and left bulk tumor fragments (>3cm apart) and corresponding 

matched normals to systematically evaluate the spatial distribution of CNAs throughout 

each tumor. These data revealed striking spatial patterns, which were classified as follows:

Public: found in all glands of the tumor

Private:

• Side-specific- found in all glands from one tumor side only

• Side-variegated- found in all glands from one side and some from the opposite 

side

• Variegated- found in a subset of glands from both sides

• Regional- found in more than one, but not all glands from one side only

• Unique- found in a single gland

Consistent with their likely monoclonal origin from a single aberrant colon crypt17, most 

tumors exhibited public alterations acquired prior to initiation and hence present in all 

glands (Figures 2a, Supplementary Figure 1a and Supplementary Table 2). The adenomas 

were more chromosomally stable and less genomically complex than the carcinomas, 

despite their comparably large size (Supplementary Table 1). Adenomas were characterized 

by side-specific and unique CNAs that clearly segregated between tumor sides. In contrast, 

the majority of carcinomas (M, N, O, U, CA, CO and R) exhibited the same private CNA in 

individual glands from opposite sides of the tumor (variegated and/or side-variegated), as 

reflected in the underlying phylogenetic trees (Figure 2a and Supplementary Figure 2). This 

corresponds to the patterns of variegation presented in Figure 1b where an early private 

mutation originating in the primordial tumor will be scattered to distant tumor sites and will 

appear pervasive throughout neoplasm, despite remaining sub-clonal.

Such genetic variegation has been noted in leukemia18 and solid tumors19,20, but is often 

obscured by the prevailing approach of analyzing bulk tissue, rather than individual glands 

or cells. To verify that the individual glands are representative of the larger tumor mass, we 

profiled the right and left bulk tumor fragments (Figure 2a and Supplementary Figure 1a 

bulk tracks, left:LB, right:RB). We found that 99% of non-unique CNAs present in the 

glands were also detected in the bulk tumor, and that the majority of private gland CNAs 

were present as a mixture in the respective bulk (Supplementary Figure 3). All CNAs 

evident in a bulk sample were also detected in one or more corresponding tumor glands. 

Moreover, it is important to emphasize that if we had sampled only a portion of the tumor 

(e.g. only the right or only the left), we would have reconstructed erroneous phylogenies, as 

demonstrated in Supplementary Figure 4 and as noted by others21. While unlikely, we 

cannot exclude the possibility that the same CNA could arise independently in different 

glands. Hence, we also evaluated variegation at the mutational level.

Single gland sequencing confirms variegation

In order to examine mutational heterogeneity we performed WES of the bulk tumor samples 

(right and left) and adjacent normal tissue from each of the adenomas and for carcinomas M, 

N, O, T, U and W. Based on the spectrum of somatic mutations present in each bulk tumor, 
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we selected a panel of patient-specific private mutations and known drivers of CRC for deep 

targeted sequencing (>600× mean target coverage) in individual glands (n=102) and the 

respective bulk fragments (n=20).

All sequenced tumors except for adenoma S and carcinomas O and W (MSI+), harbored 

public nonsense mutations in APC. Public missense mutations in KRAS were found in S, P, 

X, N and W, whereas public non-synonymous TP53 mutations were only found in 

carcinomas (M, N, and T), as previously reported4. Importantly, the mutational data 

corroborated the findings at the CNA level, providing further evidence for the striking 

segregation of sub-clones in all adenomas, whereas variegation, indicative of early sub-clone 

mixing, was observed in the carcinomas. A summary of the characteristic spatial patterns in 

each tumor is reported in Figure 2e. Here, variegation determined based on the presence of 

the same SNV in glands from distant tumor sides, was observed in the majority of 

carcinomas (Figures 2c, Supplementary Figures 1b and 5), despite being biased against 

detecting this phenomenon since only 7 to 10 glands were profiled per tumor.

The targeted sequencing results for private mutations (red) and representative public 

mutations (blue) are presented in Figure 3. As shown for carcinoma M (Figure 3 and 2c), 

mutations in SAMD9, CDH10, and CHAT were variegated and recapitulate the predictions 

of the Big Bang model (Figure 1b), where a private mutation originates in the primordial 

tumor and subsequently scatters due to the expansion. In contrast, early public mutations in 

APC were found in all cells in the neoplasm, and represent a clonal control. Private 

mutations detectable in the bulk specimens were always present in at least one of the 

sampled glands, consistent with the pervasive nature of ITH. In addition, within small gland 

populations, any private mutation will eventually be lost or fixed. Private mutations were 

clonal within the gland, supporting their early acquisition, allowing sufficient time for loss 

or fixation via cell turnover or neutral drift22.

Hypothetically, glands harboring the same private mutations found on opposite tumor sides 

(several centimeters apart) could result from alternative mechanisms such as late arising 

mutations and subsequent migration, or tumor cell reseeding23. However, such migration is 

unlikely because the private mutations were clonal within individual glands, and the 

migration of whole glands is improbable. Instead, sub-clone mixing is efficient in an early 

small malignancy characterized by loss of normal cell adhesion and disorganized growth. 

The ensuing expansion allows early private mutations to become fixed within glands, 

pervasive in the tumor, and scattered to “opposite” tumor sides, thus generating patterns of 

variegation. Indeed, variegation was restricted to the carcinomas (Figure 2e and 4). This 

observation suggests that certain malignant features, such as abnormal mobility, may be 

expressed very early, even before visible invasion and/or metastasis occurs, implying that 

some tumors are “born-to-be-bad”. An illustrative simulation demonstrates that sub-clone 

mixing in an early tumor followed by expansion can create complex patterns of variegation 

(Supplementary Figure 6). In contrast, when the same mutation arises later, sub-clones 

appear segregated irrespective of their relative fitness advantage.
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Single cell profiling reveals uniformly high ITH

The fixation of private mutations within a gland could occur through stepwise selection 

where cells with even a slight selective advantage will sweep through the gland. In this 

scenario, there should be very little intra-gland heterogeneity. By contrast, a single Big Bang 

expansion implies that individual glands in the final tumor are relatively old populations that 

should exhibit similar within-gland diversity. We evaluated CN heterogeneity between 

physically adjacent single cells by FISH in a subset of tumor glands (n=65) and adjacent 

normal glands (n=22). In particular, we assayed for HER2 gene amplification, a driver event 

in breast and gastric cancer, which has been implicated in CRC24. These data reveal a high 

degree of variability in CN between physically adjacent cells within the same gland as 

quantified by the Shannon index19. Importantly, this diversity was uniformly high 

throughout the tumor (Figure 2d, Supplementary Figure 1c and Supplementary Table 3). 

Since mutations should fixate quickly within small populations25, this suggests the absence 

of recent clonal expansions within glands. Variation in CN between nearby cells is 

reportedly common in CRC due to chromosomal instability (CIN)26, and may be important 

for tumor initiation27 and progression28. Moreover, it can be used to assess genetic and 

phenotypic diversity in response to chemotherapy29.

Epigenetic passenger mutations were also evaluated through ultra-deep single-molecule 

methylation tag sequencing of individual glands (n=55), which provides an efficient means 

to infer cell ancestries in normal30,31 and cancerous tissues5,9. These data confirmed 

uniformly high ITH (Supplementary Figure 1d), reflecting similar tumor age in different 

glands and opposite sides of the neoplasm, in agreement with FISH. In particular, numerous 

mitotic sub-clones within the same gland were found in the majority (49/55) of samples 

(Supplementary Figure 1e), supporting the absence of recent selective sweeps, as predicted 

by the Big Bang model.

Statistical inference verifies the Big Bang predictions

The most striking prediction of the Big Bang tumor model is that, whereas new alterations 

occur continuously throughout tumor growth, the majority of private mutations that can be 

detected occur early after the transition to an advanced tumor, rather than as a result of the 

subsequent selection of de novo clones. To quantitatively test this, we extended our 

previously described statistical inference framework approach9 in order to take as input copy 

number and mutational data from multiple tumor glands and to account for sub-clone fitness 

differences and local microenvironmental contributions. The framework utilizes 

Approximate Bayesian Computation (ABC)32 and 3-dimensional mathematical modeling to 

infer patient-specific tumor characteristics, including the mutation rate, sub-clone fitness 

changes and the mutational timeline, given the observed multiple-sampling genomic data 

(Supplementary Figure 7). The model simulates the expansion of a tumor containing ~8 

million glands, corresponding to a realistically sized neoplasm composed of ~80 billion cells 

with a diameter of ~5.3 centimeters, and accounts for gland proliferation in 3-dimensional 

space, somatic alterations (CNAs and point mutations) and sub-clone fitness changes (see 

Online Methods for details).
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The inference results indicate that, although sub-clone fitness changes can be detected 

(Supplementary Figure 8a), their effects on the clonal composition of the tumor are limited, 

as corroborated by the presence of adjacent glands with different fitness (Supplementary 

Figure 8b). The magnitude of fitness changes was variable in the carcinomas, whereas the 

adenomas exhibited limited or no fitness differences between sub-clones. The mutation rates 

were also elevated in the carcinomas (10−6–10−5) as compared the adenomas (10−6) 

(Supplementary Figure 8a) similarly highlighting inter-tumor variability in clonal dynamics 

and important phenotypic differences between adenomas and carcinomas. We also 

employed this framework to infer the timeline during which different classes of alterations 

occur and quantitatively show that for each of the tumors assayed, both public and most 

private alterations (side-specific, side-variegated, and variegated) occurred early (Figure 4a) 

when the malignancy was less than 104-105 cells (Figure 4b), where size is used as a 

surrogate for tumor age. This is approximately 100-1000 times smaller than the size at 

which colorectal tumors are potentially detectable (~1 mm3 or 106 cells) and 1 million times 

smaller than is typical at the time of surgical resection (the source of sampled tissue). Even 

regional alterations tend to occur before the tumor is clinically detectable, whereas unique 

alterations arise later, as expected. These findings hold irrespective of tumor-specific 

characteristics. The same conclusions were obtained using mutational data as input to the 

framework (Supplementary Figure 9). By organizing the observed patient-level genomic 

profiles according to the inferred mutational timeline, it is evident that early sub-clonal 

alterations dominate the genomic landscape (Figure 4c).

Using single gland and bulk mutational profiles (shown in Figure 3) we reconstructed tumor 

phylogenies (see Online Methods) in order to define sub-clones, or groups of glands 

harboring the same private mutations. By superimposing the inferred mutational timeline for 

different classes of alterations (Figure 4a and Supplementary Figure 9c), we then determined 

the relative timing during which each sub-clone arose. This allows for the approximate 

reconstruction of patient-specific spatio-temporal evolutionary dynamics, as depicted 

schematically in Figure 5, and shows that the pervasiveness of a private mutation depends 

on when it arose during the expansion, rather than as a result of selection for that mutation. 

This schematic also illustrates that while all tumors exhibit Big Bang dynamics, early sub-

clone mixing in the primordial tumor (square insets) was restricted to carcinomas.

Clonal heterogeneity could alternatively be due to distinct local microenvironmental niches 

within the neoplasm that select for clones with different genomic profiles1. To investigate 

this scenario, we introduce microenvironmental niches in our model (Supplementary Figure 

10 and Online Methods). The inferred parameters are in agreement with the results from the 

microenvironment-free model for both CNAs and mutations (Supplementary Figure 11), 

further supporting our conclusions. This follows from the fact that microenvironmental 

selection acts passively on existing variation. Of note, here we model the microenvironment 

as a static entity and do not account for the possibility that tumor cells may dynamically 

alter their environment, although this may play a role in later growth3. In the future, it will 

be of interest to examine more complex interactions between cells and their 

microenvironment, as well as to measure inter-clonal interactions, which have recently been 

described in breast cancer33,34.
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Discussion

Tumor initiation is characterized by the sequential step-wise accumulation of alterations, 

leading to the expansion of clones with selective growth advantages, such that the fittest 

clone eventually dominates4. The sequential model of colorectal tumorigenesis is 

corroborated by epidemiological data on colorectal cancer incidence35. This model has often 

been postulated to describe the subsequent growth of an established tumor. In this scenario, 

further growth within an advanced tumor results from the acquisition of new driver 

mutations followed by selective sweeps and large clonal expansions. Within this model, ITH 

represents a transitory state between selective sweeps. As this model implies multiple 

sweeps, numerous drivers of tumor growth are anticipated. However, relatively few putative 

driver mutations have been identified in individual tumors36.

Recent studies in primary CRCs indicate that selective sweeps and large clonal expansions 

are infrequent after transformation13,37,38 and predict star-shaped phylogenies13,37. Studies 

in other cancers similarly highlight such branched phylogenies39 and punctuated clonal 

evolution6,40. Moreover, karyotypic chaos41, stress-induced mutational bursts42, and 

chromothrypsis43, a cataclysmic event involving surges of chromosomal rearrangements, 

have been reported. Evidently, sequential clonal evolution does not accurately describe the 

patterns of ITH found in human cancers.

Here we propose and test the predictions of a “Big Bang” model, whereby as a result of a 

single clonal expansion, most detectable ITH occurs early after the transition to an advanced 

tumor. In this model, due to constraints on clonal selection, private mutations are pervasive 

in the final neoplasm, despite remaining non-dominant. Indeed, only very strongly 

advantageous mutations are likely to fixate in realistic time-scales12 within rapidly 

expanding populations, where spatial structure delays the expansion of an advantageous 

mutation10-12. Such spatial constraints in solid tumors1,13,44 underline the limits with which 

selective forces drive the tumor expansion. Hence, both public and the majority of detectable 

private mutations occur early during tumor growth. Although private alterations 

continuously occur, only those that occur early have time to expand to a detectable size. The 

Big Bang model explains why ITH is pervasive in human tumors and provides a theoretical 

framework to describe the underlying clonal dynamics. The star-shaped phylogenies 

predicted by the Big Bang model are also compatible with the long-lived lineages of the 

cancer stem cell model45, wherein the malignancy is driven by a small number of self-

renewing cells. We demonstrate that Big Bang dynamics are robust to changes in sub-clone 

fitness and local microenvironment, which may explain why they are observed in many 

tumors.

The Big Bang model explains many poorly understood features of cancer genomic data, 

with the following implications:

i.) ITH is an inherent characteristic of colorectal tumors that arises early and 

continuously increases during growth, and is not significantly constrained by 

clonal selection. Branched phylogenies naturally follow from the Big Bang 

model.

Sottoriva et al. Page 8

Nat Genet. Author manuscript; available in PMC 2015 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ii.) Significant clonal expansions or selective sweeps are extremely rare after the 

transition to an advanced tumor due to the dynamics and spatial constraints of 

the rapidly growing population, and the formation of microenvironmental 

niches.

iii.) Both public and the majority of detectable private alterations arise early and 

become pervasive during tumor growth, thereby dominating the genomic 

structure of the neoplasm.

iv.) Potentially aggressive sub-clones may remain rare or even undetectable in the 

primary tumor, despite their relative fitness advantage, providing a 

heterogeneous substrate to fuel resistance in response to treatment selective 

pressures.

A number of clinical implications also follow from the Big Bang model. For example, it is 

uncertain why certain large tumors remain localized, whereas other eventually invade and 

metastasize. Variegated alterations were found in the majority of invasive carcinomas, but 

none of the adenomas. Hence, variegation may reflect the early expression of an invasive 

phenotype (abnormal cell inter-mixing), such that some tumors are ‘born-to-be-bad’. This 

finding is compatible with a Big Bang expansion wherein malignant potential is determined 

early, as previously proposed46,47. Moreover, the degree of sub-clone mixing may be a 

readout of subsequent invasiveness, and could represent a novel biomarker for predicting 

which adenomas will become invasive versus those that will remain indolent. Another 

clinical implication that follows from the timing of mutation being the primary determinant 

of whether a sub-clone is pervasive in a tumor is that “dangerous” treatment-resistant clones 

that occur late will be undetectable, presenting obvious challenges for personalized 

medicine. This is in-line with recent reports that minor cell subpopulations can drive tumor 

growth34, and the presence of preexisting intrinsically resistant sub-clones that contribute to 

poor treatment response48.

Not every tumor may exhibit Big Bang dynamics and “selective bottlenecks” may be 

common for markedly different environments such as in the context of metastatic seeding to 

foreign sites or during treatment. However, for primary tumors that arose predominantly as 

single clonal expansions, this new model represents a theoretical framework in which to 

interpret cancer genomic data, and predicts that the earliest events should be pervasive in the 

final neoplasm. This concept shares an interesting analogy with the cosmic microwave 

background (CMB) of the Big Bang Universe, which is composed of scattered thermal 

radiation originating in the earliest phase of our universe, which subsequently streamed 

through the expanding cosmos. From this CMB signature it is possible to reconstruct the 

events that occurred right after the birth of our universe. Our findings offer a radically new 

way to interpret cancer genomic data, providing new insights into how primary human 

tumors progress, which should facilitate more effective early detection and prognostication 

efforts.
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Online Methods

Sample collection

This study employed de-identified excess patient specimens collected in the course of 

routine clinical care and was approved by the local institutional review board (IRB). 

Individual tumor glands composed of <10,000 adjacent cells were isolated from fresh 

colectomy specimens following EDTA treatment, as previously described30. DNA was 

isolated from individual glands by incubation in a 15 μl Tris-EDTA solution with Proteinase 

K solution (4 hours at 56°C), followed by boiling for 5 minutes. Using this method we 

consistently obtain samples with >95% tumor purity. Bulk tumors and adjacent normal 

samples were composed of a pool of thousands of single gland were also obtained and DNA 

was extracted using the DNeasy Blood & Tissue Kit (Qiagen).

Analysis of copy number data

Individual glands, as well as right and left bulk tumor fragments were profiled on the 

OmniExpress SNP platform (Illumina) according to the manufacturer's protocol. Only 

samples with call rates >85% were analyzed, with an average gland call rate of 97%. Data 

were processed using Genome Studio software, followed by quantile normalization49 and 

segmentation with psCBS50, where adjacent normal tissue was employed as a baseline 

reference for each tumor. To define regions of aberrant copy number, we applied a threshold 

method based on the standard deviation, σ, calculated for the 50th central percentile of the 

probes sorted by the log2 relative ratio (LRR), adapted from Curtis et al. 201251. Briefly, 

copy number alterations were determined as follows: amplifications; LRR>6σ, gains; 

2σ<LRR<6σ, heterozygous losses; 7σ<LRR<−2.5σ, and homozygous deletions; LRR<−7σ. 

The LRR and Beta Allele Frequency (BAF) for each array were manually inspected to 

verify the accuracy of the copy number calls and eventually corrected to maintain a 

conservative approach and to avoid overcalling ITH. Processed CN data were then used to 

generate inter-gland phylogenetic trees (Figure 2b, Supplementary Figure 2 and 4) using 

MEDICC16.

Analysis of mutational data

For all adenomas and carcinomas M, N, O, T, U and W, right and left bulk tumor fragments 

were subject to whole exome sequencing (WES) to a depth of coverage of 20× on the 

HighSeq 2000 (Illumina). For adenomas K, S and P and carcinomas M and N, the samples 

subsequently underwent additional sequencing to 60× coverage on the HighSeq 2500 

(Illumina). For each tumor, a panel of sub-clonal mutations identified in the bulks and a set 

of clonal mutations, including putative drivers (for comparison) were profiled in individual 

tumor glands on the Ion Torrent PGM platform (Life Technologies) using custom AmpliSeq 

panels. Resultant data were aligned to hg19 and processed using MuTect52 for mutation 

calling and quantification of allelic frequencies. For the WES bulk samples, mutations were 

only called if the coverage exceeded 10× with 3 or more variant reads. Furthermore, to filter 

false positives introduced due to paralogous regions, we used BLAST to verify that the 40bp 

region around each mutation matched the reference genome uniquely. For the targeted 

sequencing data, mutations were only called if the coverage exceeded 50× with 20 or more 

variant reads. To avoid overcalling ITH as a result of false negatives due to low coverage, 

Sottoriva et al. Page 10

Nat Genet. Author manuscript; available in PMC 2015 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the absence of a mutation in a gland was indicated not only by a mutation not being called, 

but also by the presence of at least 50× coverage at the locus, of which >95% of the reads 

had to indicate no mutation. If a mutation was not called in a gland and there was 

insufficient evidence (due to low coverage) to confirm its absence, the allelic frequency was 

indicated as NA. Mutations for which more than half of the glands had NA values were 

discarded (only 4 mutations were filtered out due to this problem). The mean coverage for 

the targeted sequencing data was 626.58±20.2 95% CI (Supplementary Figure 12). Public 

canonical driver mutations (APC, KRAS, or TP53) serve as a clonal control and are reported 

alongside the private sub-clonal events in Figures 2c, Supplementary Figures 1b and 5. For 

tumor O, APC, KRAS, and TP53 mutations were not detected and a clonal CTNND1 

mutation is plotted instead. Amongst the mutations reported, those for which data was 

available for all glands of a given tumor (i.e. no NA glands; totaling 167/194 mutations) 

were employed as input to the statistical inference framework for comparison with the 

results based on whole genome copy number profiles. We also employed the mutational 

profiles of individual glands to infer tumor phylogenies using MEDICC16. This allows for 

the identification of sub-clones or groups of glands harboring the same private mutation, 

where each node in the phylogeny represents a new clone (branching event). By combining 

the tumor phylogenies and the inferred mutational timeline for different classes of 

alterations based on our 3D computational model (Figure 4, Supplementary Figure 9c), we 

can approximately reconstruct the spatio-temporal evolutionary dynamics for each patient 

(Figure 5).

Analysis of neutral methylation tag data

Molecular clock analysis based on neutral methylation tag data was performed as previously 

described9. Briefly, DNA was extracted from individual tumor glands, subject to bisulfite 

conversion, followed by PCR amplification of the ZNF454 molecular clock locus and ultra-

deep targeted sequencing (average >1,100× per gland) on the Roche 454/GS JR platform. 

Data were then processed using our custom pipeline, as previously described9.

FISH analysis

FISH analysis of the HER2 gene and chromosome 17 centromere copy number was 

performed using the Vysis HER-2 DNA Probe Kit (Abbott Molecular) in the M.F.P lab, 

which routinely performs CLIA certified HER2 assays. Fluorescence microscopy was 

employed to quantitatively evaluate the copy number status of 20 cells per gland for 3-6 

glands from the left and 3-6 from the right side of each tumor and 20 cells from 3-4 crypts 

for each matched normal. Thus 120 to 240 cells were counted per tumor and 60 cells per 

normal. Of note, this is 6 times more cells than the 20 that are routinely counted for the 

diagnosis of HER2 amplification in breast cancer53. As the tissue sections employed for 

FISH analyses were 5 μm thick, whereas CRC cells are 8-10 μm, we verified that this did 

not introduce bias in estimating the number of amplified cells by analyzing multiple planes 

and by comparing counts from the tumor and adjacent normal glands (Supplementary Figure 

13 and Supplementary Table 3).
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Computational framework

We extended our previously described computational framework9 in order to i) 

accommodate whole genome copy number and targeted mutational data, ii) to model fitness 

effects, corresponding to different survival probabilities, and iii) to account for 

microenvironmental niches. This framework exploits Approximate Bayesian Computation 

(ABC), an established approach commonly used in population genetics32 in order to obtain 

posterior parameter distributions by fitting a computational model of tumor growth to the 

single gland level genomic data (Supplementary Figure 7a). The cellular automaton 3-

dimensional model of tumor growth (Supplementary Figure 7b) accounts for gland growth 

by fission, the occurrence of CNAs and mutations, and the variable gland growth rates. The 

3D position of each gland at any point in time is recorded and glands can have different 

survival (and growth) fitness due to copy number alterations or point mutations. In 

particular, we simulate the growth of a realistically sized malignancy composed of 8 million 

glands (~80 billion cells, 5.3 cm in diameter) and incorporate copy number alterations at a 

rate μ that may induce a change in fitness. As simulating changes in fitness for 80 billion 

cells would be computationally intractable, we assume that cells within a gland have the 

same fitness and that fitness changes occur at the gland level as a result of acquired somatic 

alterations within the gland (e.g. modal copy number changes). Beginning with a single 

gland with normalized fitness 1, and an associated survival probability, we simulate the 

possibility that deleterious, neutral, and advantageous mutations may change the fitness 

according to a transition distribution. The input parameters are the mutation rate (μ) and the 

magnitude of fitness changes (σ), where the model produces as output multi-sampling data 

for each simulated tumor. At the end of the simulation, glands are virtually sampled as they 

are physically sampled in practice from the tumor, thus maintaining information on the 

proximity of sub-clones. In this manner, we faithfully simulate the experimental system 

(which for practical reasons is restricted to sampling 7-10 glands) several thousand times.

When a CNA occurs, the fitness change is sampled from a Gaussian distribution with mean 

0 and variable standard deviation, σ. This models the possibility of both advantageous and 

disadvantageous mutations. Higher values of σ, correspond to a greater likelihood that a new 

clone exhibits an increase/decrease in its fitness, whereas for σ=0 no change in fitness 

occurs, corresponding to the neutral model of growth in which all clones have equal fitness. 

Here the fitness, F, is expressed in terms of a survival increase, ranging from 1 to 5, with all 

simulations initiated with a single gland with F=1. At each division, a gland has probability 

Pα=α/F of dying, where α is set to 20%. Recent studies indicate the possibility that fitness 

changes in driver mutations may be as low as 1%54, but values on the order of 10% are also 

typically employed55. We evaluated two key parameters, namely, the magnitude of fitness 

changes σ ∈ {0, 0.2, 0.6}, corresponding to no change, moderate and large changes, 

respectively and the mutation rate μ ∈ {10−8, 10−7, 10−6, 10−5, 10−4} per gland per division. 

Since σ is the standard deviation of a normal distribution with mean=0, for σ=0.2 we expect 

a fitness increase of 10% or greater in 30.7% of the cases, whereas for σ=0.6, a fitness 

increase of 10% or greater is expected in 48.8% of the cases. Thus, these values correspond 

to a range of small to large variations in fitness. Other complex and poorly characterized 

processes, such as cellular migration and apoptosis within a gland are not modeled, nor is 

the contribution of the surrounding normal tissue or angiogenic factors.
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The simulation initiates with a gland in the center of a 400×400×400 point lattice, where 

glands then split by fission until a volume of 8 million glands is reached. Subsequently, 5 

glands from the left and 5 glands from the right side of the tumor are virtually sampled from 

the simulation, in accordance with the experimental sampling scheme performed on the 

tumor specimen. The CNA profiles of the sampled glands are saved for comparison with the 

actual data (Supplementary Figure 7a). We employ ABC to fit the model to the data, in 

order to generate posterior probability distributions of the parameters (σ, μ) for each patient, 

assuming uninformative uniform priors. Every CNA was associated to a binary string, 

indicating its presence (1) or absence (0) in each sampled gland. Public alterations were 

excluded from the inference as the vast majority likely occurred during pre-neoplastic 

stages, prior to the transition to an established neoplasm, and thus do not belong within the 

simulated scenario. Nevertheless, relaxing this rule yielded similar results (data not shown). 

Summary statistics were then computed using these binary patterns, including the number of 

distinct CNAs (the number of different strings), the Shannon index of the binary patterns, 

the total number of alterations, the number of variegated alterations and the number of side-

variegated alterations. As a measure of the distance between the actual data and the 

simulated data, we employed the average distance of the summary statistics, normalized to 

mean=0 and s.d.=1. The inference framework was validated using synthetic data to 

demonstrate that the correct parameter value is accurately recovered in the majority of cases 

(Supplementary Figure 14).

To examine the influence of differences in local tumor microenvironment, we developed a 

version of the model in which specific CNAs were selected depending on the surrounding 

tumor area by incorporating static microenvironmental niches of differing size (env 

parameter: 5×5, 20×20, 150×150) in the simulation. Each block in the grid selects for a 

random CNA/mutation on a specific chromosome by inducing a high apoptotic rate (20%) 

for glands that do not exhibit that particular alteration, such that the overall apoptotic rate is 

quite high, representing positive selection. In this manner, rudimentary microenvironmental 

niches that select for different gland populations are represented (Supplementary Figure 10). 

The same approach as described above was applied to perform inference on the mutational 

profiles in both the niche-based and microenvironment-free models (Supplementary Figure 

11) These results imply that distinct, yet static local microenvironments do not alter Big 

Bang dynamics. In the future, it will be of interest to examine contributions due to dynamic 

interactions between tumor cells and their microenvironment, as well as clonal cooperation 

and interference.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Big Bang model of tumor growth
(a) After initiation, a tumor grows predominantly as a single expansion populated by 

numerous heterogeneous sub-clones. ITH results from private mutations (colored 

arrowheads) continuously accumulating due to replication errors. In addition to public 

mutations present in the first transformed cell, private mutations acquired early persist and 

become pervasive in the final tumor, while remaining non-dominant (colored segments). 

Late-arising mutations are only present in small regions of the tumor. (b) In the Big Bang 

model, the pervasiveness of private mutations depends on when the mutation occurs during 

growth, rather than selection for that mutation. The schematic illustrates how early private 

alterations, despite remaining non-dominant, are pervasive within the tumor (e.g. red and 

yellow), and can be found in distant regions, thus appearing variegated (e.g. red). This is due 

to aberrant sub-clone mixing in the primordial tumor, followed by scattering during 

expansion. Late alterations will be restricted to small regions (e.g. black) and are essentially 

undetectable by conventional whole exome sequencing (WES). Distance from the dashed 

vertical axis indicates increasingly late mutations. Dashed boxes indicate sampled regions. 

(c) We sampled an average of 23 individual tumor glands (<10,000 cells) from distant 

regions (~0.5cm3 in size, 1cm scale shown) and bulk (left, right) samples. Samples were 

profiled using several genomic techniques, including copy number analysis, WES and 

targeted sequencing, neutral methylation tag sequencing, and FISH, providing a panoramic 

view of genomic alterations throughout the tumor at multiple spatial scales.
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Figure 2. The spatial distribution of ITH reveals sub-clone mixing and the absence of clonal 
expansions
(a) Circos plot representation of CNAs in individual glands and bulk samples for carcinoma 

M (shown throughout this figure). (b) Gland-level CNAs were employed to reconstruct the 

tumor phylogeny. Mixing of glands from opposite regions is apparent, where right and left 

glands are colored orange and purple, respectively. (c) Targeted sequencing of patient-

specific mutations in individual glands revealed variegation in subsets of glands from 

opposite sides, thus confirming sub-clone mixing at the mutational level. A public APC 

mutation is illustrated as a clonal control (with LOH noted on chr 5). (d) FISH performed 

using HER2 probes (red) and corresponding chr 17 centromere (green) probes revealed high 

variability in copy number states between cells within a gland, as summarized by the 

Shannon Index. For each group, boxplots show the median, limited by the 25th (Q1) and 

75th (Q3) percentiles, where whiskers represent the most extreme of the maximum or 

Q3+1.5(Q3–Q1) and the minimum or Q1–1.5(Q3–Q1), respectively. The maximum possible 

ITH value (“Max Heterogeneity”) corresponds to an index of 1.79 (99% of the FISH counts, 

range 0–5). (e) Summary of the characteristic spatial patterns and types of alterations in each 

tumor. While adenomas were characterized by low chromosomal instability and the 

segregation of alterations, carcinomas harbored side-variegated and variegated alterations 

(7/11 at the copy number level and 6/6 at the mutational level).
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Figure 3. Single-gland targeted sequencing confirms the predictions of the Big Bang model and 
exposes variegation in carcinomas but not adenomas
Heat maps indicate the presence of representative public and private mutations across 

multiple individual glands per tumor, where targeted sequencing and whole-exome 

sequencing of the bulk tumor is included for comparison. In all the adenomas, private 

mutations are confined to a single tumor side (regional and side-specific events), whereas in 

invasive carcinomas the same private mutation is found in distant regions of the neoplasm, 

despite remaining non-dominant. These patterns of genetic variegation are indicative of sub-

clone mixing in the early neoplasm followed by scattering. For representative carcinoma M, 

the mutational data are summarized according to the schematic in Figure 1b, where 

variegated mutations (red) occurred early and scattered to distant tumor regions. Regional 

mutations (yellow) occurred later and were confined to smaller regions of the neoplasm.
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Figure 4. Inference on the genomic data verifies that most detectable ITH occurs early during 
tumor growth
(a) The inferred mutational timeline is indicated for different classes of CNAs for all tumors, 

where time is represented in relation to tumor volume. In particular, the posterior probability 

distribution of tumor size (number of cells) is illustrated for each class of alteration. The 

results show that both public alterations, as well as the majority of private alterations 

(including side-specific, side-variegated, and variegated) occur very early after the transition 

to an advanced neoplasm, whilst the tumor is less than one million cells, whereas unique 

mutations occur late. Error bars represent the standard deviation. (b) A schematic 

representation of the mutational timeline (from panel a) illustrates that the majority of 

detectable non-unique alterations occur early, while the tumor is orders of magnitude 

smaller than can be clinically detected. As reliable estimates of cell cycle time are not 

available and somatic alterations depend on cell division rates rather than time, tumor size is 

used as surrogate of time. (c) By applying the inferred mutational timeline to the whole 

genome CNA profiles for each patient, it is apparent that early CNAs dominate the genomic 

landscape. Here, early events correspond to alterations that took place when the tumor was 

<106 cells and late alterations correspond to those that occurred after the tumor reached 109 

cells. For simplicity, only private alterations are represented since all public alterations 

occur early.
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Figure 5. Schematic representation of spatio-temporal Big Bang growth dynamics
For each tumor profiled at the mutational level, the phylogeny was reconstructed from the 

single gland and bulk tumor data (see Online Methods) in order to define sub-clones, or 

groups of glands harboring the same private mutations. The relative timing during which 

each sub-clone arose was specified based on the inferred mutational timeline (Figure 4a and 

Supplementary Figure S9c) for the different classes of private alterations (variegated/side-

specific/regional/unique). By combining information on the mutational timeline and tumor 

sub-clonal architecture, we can approximately reconstruct patient-specific spatio-temporal 

evolutionary dynamics, as shown in this schematic. Here the topographical distribution of 

different sub-clones is illustrated by distinct colors and distance from the tumor origin 

(arrowhead) indicates increasingly late alterations. Variegated and side-variegated sub-

clones occurred very early within the primordial tumor (<1 million cells) and are shown 
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within the inset square representing the zoomed-in view of the primordial neoplasm. 

Regional and unique sub-clones arose later and are represented outside the inset square. 

Dashed boxes represent regions of the tumor that were experimentally sampled. This 

schematic shows how in the Big Bang tumor model, the prevalence of a private mutation 

depends on when it arose during tumor expansion, rather than selection for that mutation. 

The schematic also illustrates that although all tumors exhibit Big Bang dynamics, sub-clone 

mixing is restricted to carcinomas, whereas adenomas are characterized by sub-clone 

segregation.
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