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Abstract  

Background: Parity is widely recognized as protective for breast cancer, but breast cancer risk may be 

increased shortly after childbirth. Whether this risk varies with breastfeeding, family history of breast cancer, or 

specific tumor subtype has rarely been evaluated. 

Objective: To characterize breast cancer risk in relation to recent childbirth.  

Design: Pooled analysis of individual-level data from 15 prospective cohort studies. 

Setting: The international Premenopausal Breast Cancer Collaborative Group.  

Participants:  Women younger than 55 years. 

Measurements:  During 9.6 million person-years of follow-up, 18 826 incident cases of breast cancer were 

diagnosed. Hazard ratios (HRs) and 95% CIs for breast cancer were calculated using Cox proportional hazards 

regression.  

Results: Compared with nulliparous women, parous women had an HR for breast cancer that peaked about 5 

years after birth (HR, 1.80 [95% CI, 1.63 to 1.99]) before decreasing to 0.77 (CI, 0.67 to 0.88) after 34 years. 

The association crossed over from positive to negative about 24 years after birth. The overall pattern was driven 

by estrogen receptor (ER)-positive breast cancer; no crossover was seen for ER-negative cancer. Increases in 

breast cancer risk after childbirth were pronounced when combined with a family history of breast cancer and 

were greater for women who were older at first birth or who had more births. Breastfeeding did not modify 

overall risk patterns. 

Limitations: Breast cancer diagnoses during pregnancy were not uniformly distinguishable from early 

postpartum diagnoses. Data on human epidermal growth factor receptor 2 (HER2) oncogene overexpression 

were limited.  
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Conclusion: Compared with nulliparous women, parous women have an increased risk for breast cancer for 

more than 20 years after childbirth. Health care providers should consider recent childbirth a risk factor for 

breast cancer in young women. 

 

Primary Funding Source: The Avon Foundation, the National Institute of Environmental Health Sciences, 

Breast Cancer Now and the UK National Health Service, and the Institute of Cancer Research. 
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Breast cancer is the leading cancer diagnosis among reproductive-aged women worldwide (1). Parity is 

recognized as a protective factor for breast cancer overall, but this may largely apply to the peak ages of 

incidence (after age 60 years) and may not be true for younger women. Previous studies have reported that 

recent childbirth confers a short-term increase in breast cancer risk (2-13), which may last 10 or more years (6, 

11, 14-16) and be amplified in women who are older at first birth (6, 11, 15, 16). Evidence for this increased 

risk often comes from national registry linkage studies in Scandinavian countries (2, 4, 6, 17). Information 

about such behaviors as breastfeeding is often not available or comes from case-control studies (8-11), where 

potential risk factors are assessed after diagnosis and parenting responsibilities could differentially deter study 

participation. 

We used combined data from 15 cohort studies to assess breast cancer risk after childbirth. The use of 

international, prospective data offers a new opportunity to assess the strength and duration of associations 

between recent childbirth and breast cancer risk while considering the effect of such factors as breastfeeding 

and family history of breast cancer (5, 18). It also enables evaluation of risk that is specific to breast cancer 

subtypes that may be differentially influenced by reproductive history (12, 13, 19). Understanding these patterns 

may have implications for identifying risk-reducing strategies and vulnerable subgroups.  

 

Methods 

We used data from the Premenopausal Breast Cancer Collaborative Group, a pooling project involving 

20 prospective cohort studies (20). This work was approved by the relevant institutional review boards. 

In brief, participating studies contributed data from women aged younger than 55 years who did not 

have breast cancer at enrollment; these women were followed prospectively through direct contact or linkage 

with cancer registries (described previously [20]). Studies contributed (as available) age at enrollment and end 

of follow-up, demographic characteristics, lifestyle factors, reproductive history, medical conditions, and first-
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degree family history of breast cancer at enrollment and each round of follow-up. Data harmonization and 

quality control were done by the study coordinating centers in North Carolina and London. 

Across 15 cohorts that provided information on women’s ages at childbirth (21-35), 890 269 women 

(96% of participants) had available information on total number of births and age at most recent birth or were 

nulliparous. We excluded women who reported a first birth before age 13 years (n = 82), were 50 years or older 

at study entry and at most recent birth (n = 60), or reached parity greater than 10 births before enrollment (n = 

183). These events were considered to have greater potential for data errors. This left 889 944 women for 

analysis (Supplement Figure 1). 

Attained age, ages at first and most recent births, and parity at study enrollment were available in all 15 

studies (21-35). Twelve studies (21-27, 29, 31, 33-35) assessed pregnancy history in at least 1 follow-up 

questionnaire after enrollment; the remaining 3 provided pregnancy information at enrollment only. 

Breastfeeding status was available in 12 studies (21-23, 25-27, 29-34) and family history in 13 (21-27, 29, 31-

35). Thirteen studies (21-23, 25-27, 29-35) reported breast cancer stage and estrogen receptor (ER) status. 

 

Statistical Analysis 

Parity, time since most recent birth, breastfeeding and family history of breast cancer were analyzed as time-

varying exposures over follow-up. We used Cox proportional hazards regression to calculate hazard ratios 

(HRs) and 95% CIs for the association between time since most recent birth and breast cancer, with attained age 

as the underlying time scale (17, 36). Follow-up started at age at study enrollment or the first available follow-

up round with information on age at most recent birth and ended at breast cancer diagnosis, death, last follow-

up, or age 55 years, whichever occurred first. During follow-up, women were censored at the age at which they 

reached parity greater than 10 births (n = 22) or the age at which they had a birth at age 50 years or older (n = 9) 

(Supplement Figure 1). Proportional hazards assumptions were assessed by Schoenfeld residuals (37) and 

were not significantly violated. 
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We first examined study-specific estimates and calculated a pooled estimate across studies using a 

random-effects model that weighted estimates by the inverse of the study-specific variance (38-40). Because we 

detected no significant heterogeneity between studies with the Cochran Q test or I
2
 statistic (41-43) 

(Supplement Figure 2), we pooled individual-level data and did an aggregated analysis stratified by study 

cohort. Supplement Table 1 gives characteristics of the individual cohorts. 

Time since most recent birth and parity were modeled as time-varying exposures in 1-year and 1-birth 

increments, respectively. We accounted for additional births during follow-up by resetting time since birth to 0 

at the time of each birth. The Supplement gives additional detail on these methods. Quadratic splines (44) were 

used to examine time since birth as a continuous, nonlinear exposure, defining time with knots at the 5
th

, 25
th, 

50
th, 

75
th

, and 95
th

 percentiles for the distribution of time since most recent birth for women with a breast cancer 

diagnosis before age 55 years. In spline models, time since most recent birth was set to 0 for nulliparous women 

and an indicator term for parity allowed the risk at 0 years since most recent birth to differ between nulliparous 

and parous women. As an approximation of the 95% CI (in years since most recent birth) for the point where 

the HR crossed 1.0, we used the points where the lower and upper bounds of the 95% CI for the spline 

regression crossed 1.0. In categorical models, exposure was defined as nulliparous or 0 to 2.9, 3 to 4.9, 5 to 9.9, 

10 to 14.9, 15.0 to 19.9, 20.0 to 24.9, 25.0 to 29.9, or 30 or more years since most recent birth.  

Covariates considered as potential confounders were parity, age at first birth, breastfeeding, infertility, 

education, oral contraceptive use, and birth cohort. We identified confounding variables using a directed acyclic 

graph (45, 46) and the prior literature (Supplement Figure 3); the minimally sufficient adjustment set was 

parity and breastfeeding. All models were adjusted for attained age (as the time scale; continuous), study, and 

parity (1 to 10 births; time-varying). Adjustment for breastfeeding was possible only in analyses limited to the 

12 studies with available breastfeeding data.  

We evaluated potential effect modification by parity (primiparous [1 birth], biparous [2 births], or 

multiparous [3 births]), age at first birth (<25, 25 to 34, or 35 to 39 years), breastfeeding, and family history of 
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breast cancer. Interactions between these factors and time since most recent birth were assessed using likelihood 

ratio tests (47). We examined risk for invasive nonmetastatic disease (stage I to III breast cancer) by treating 

breast cancer of stage 0 (in situ) or IV as a censoring event. Augmentation models were used to assess 

differences in HRs by ER status by using the Wald test (48). 

In additional analyses, we restricted the cohort to parous women only, censored follow-up at age 45 

years or the last age at which pregnancy history was assessed if younger than 45 years (to minimize the 

potential for additional pregnancies after the most recent questionnaire), excluded each study in turn to identify 

potentially influential studies, and excluded women with multiple births (for example, twins).  

We also calculated the weighted cumulative incidence of breast cancer according to attained age for 

categories of time since most recent childbirth (nulliparous and 0 to 2.9, 3 to 6.9, 7 to 14.9, 15 to 24.9, and 25 or 

more years), adjusted for the distribution of parity in the overall pooled sample using an inverse probability of 

exposure approach, described further in Supplement Figure 4 (49).  Because our data were left-truncated, we 

also provided a standardized weighted cumulative incidence function calculated over a common age interval 

that had participants in each category of time since most recent birth. The standardized weighted cumulative 

incidence function starts at 0 at the beginning of the common age interval and cumulates throughout the 

interval, which allows comparison of the cumulative incidence across categories of time since most recent birth 

(Supplement Figure 5).   

Analyses were done with SAS, version 9.3 (SAS Institute); figures were produced in SAS and R (R 

Foundation for Statistical Computing).   

Role of the Funding Source 

The funding sources for this analysis had no role in the design, conduct, or interpretation of the study. 

 

Results 
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During 9 625 727 person-years of follow-up (mean, 10.8 years [SD,6.4]), 18 826 incident cases of breast 

cancer were diagnosed before age 55 years among 889 944 women. At enrollment, 720 555 women were 

parous; 71 609 women contributed 1 or more births during follow-up. The mean age at study entry was 41.8 

years (range, 16.0 to 54.9 years). The last update of pregnancy information occurred at a mean age of 50.0 years 

(range, 16.0 to 76.7 years). Overall, 12.4% of person-years were contributed by women who reported a family 

history of breast cancer (Table). For parous women, 72.9% of person-years were contributed by women who 

reported breastfeeding.  

Figure 1 shows the association between time since most recent birth and breast cancer risk, modeled 

nonlinearly as a continuous exposure. Compared with nulliparous women, parous women had an HR for breast 

cancer associated with time since most recent birth that peaked 4.6 years after birth (HR, 1.80 [95% CI, 1.63 to  

1.99]) before decreasing to its lowest observed point (HR, 0.77 [CI, 0.67 to 0.88]) 34.5 years after birth; the 

crossover in risk occurred 23.6 years (CI, 21.9 to 25.0 years) after birth. Over a common age interval starting at 

age 41.5 years, the standardized cumulative incidence of breast cancer per 100 000 women among nulliparous 

women was 620 at age 45.0 years, 1252 at age 47.5 years, and 1955 at age 50.0 years. For comparison, the 

standardized cumulative incidence among women who had their most recent child 3 to 6.9 years before was 661 

at age 45.0 years, 1422 at age 47.5 years, and 2202 at age 50.0 years (Supplement Figure 5). This corresponds 

to 41, 170, and 247 excess cases of breast cancer per 100 000 women at each respective age for women whose 

most recent birth was 3 to 6.9 years before, compared with nulliparous women.   

The association between time since most recent birth and breast cancer risk was modified by family 

history of breast cancer (P = 0.044). Supplement Figure 6 shows analyses done separately for women who did 

and did not have such a history. The peak HRs associated with time since most recent birth were 1.74 (CI, 1.54 

to 1.96) at 4.6 years after birth for women without a family history and 1.82 (CI, 1.48 to 2.24) at 4.9 years in 

women with a family history. However, compared with women with neither risk factor (that is, nulliparous 

women without a family history of breast cancer), those with both (parous women with a family history) had a 

peak HR for breast cancer of 3.53 (CI, 2.91 to 4.29) at 4.9 years after birth (Figure 2).  
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We observed significant heterogeneity in the association between time since most recent birth and breast 

cancer risk according to age at first birth (P = 0.013) (Figure 3) and parity (P = 0.030) (Figure 4), but not 

breastfeeding (P = 0.38) (Supplement Figure 7). Peak HRs for breast cancer associated with recent childbirth 

seemed to be higher with increasing age at first birth; women in the youngest group at first birth (<25 years) did 

not have an increased risk for breast cancer compared with nulliparous women (Figure 3). The magnitude of 

peak HRs was smaller than that seen overall owing to the inability to adjust for parity continuously (1 to 10 

births) across age-at-first-birth groups because few women who were older at first birth had 3 or more children. 

When primiparous, biparous, and multiparous women were evaluated separately, the magnitude of peak HRs 

was greatest (and the time to crossover toward an inverse association longest) among multiparous women 

(Figure 4). 

The association between time since most recent birth and breast cancer risk differed by ER status (P < 

0.001) (Figure 5). Risk for ER-negative breast cancer was highest 2.2 years after birth (HR, 1.77 [CI, 1.34 to 

2.33]) and decreased to an HR of 1.38 (CI, 1.01 to 1.88) at 34.5 years after birth but did not cross over to a 

protective association. The pattern for ER-positive breast cancer, which accounted for 76% of all breast cancer 

cases, was similar to the overall results. Additional adjustment for breastfeeding history changed results only 

slightly for ER-negative breast cancer risk and did not detectably change ER-positive risk (Supplement Figure 

8). In risk models for ER-negative breast cancer, the test for interaction between time since most recent birth 

and breastfeeding was statistically significant (P = 0.020).  Risk for ER-negative cancer was generally higher 

for parous women compared with nulliparous women, regardless of breastfeeding status, although the pattern of 

risk with increasing time since most recent childbirth was less consistent among women who never breastfed, 

potentially because of smaller sample sizes (Supplement Table 2). 

Supplement Table 3 shows analyses according to ER status and restricted to parous women. In models 

that defined the reference group as women 10 to 14.9 years from most recent birth, we continued to see a long-

term crossover toward a protective association for ER-positive (but not ER-negative) breast cancer. Hazard 
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ratios for breast cancer were similar in models that included all breast cancer diagnoses (stages 0 to IV) or that 

censored in situ (stage 0) or distant (stage IV) diagnoses (Supplement Table 4).  

Results were essentially unchanged in sensitivity analyses that censored women at the last age where 

pregnancy was assessed if it was less than 45 years (to minimize the potential for additional pregnancies after 

the most recent questionnaire), excluded 1 study at a time, or excluded multiple births (data not shown).  

 

Discussion 

Our analysis combined individual-level data from about 890 000 women from 15 prospective cohort 

studies across 3 continents to investigate breast cancer risk in reproductive-aged women. Compared with 

women who had not given birth, parous women had an elevated breast cancer risk that peaked around 5 years 

after childbirth and lasted about 20 years. Our results provide evidence that, overall, this association is not 

modified by breastfeeding and that it varies according to ER expression, age at first birth, parity, and family 

history of breast cancer.  

To our knowledge, the effect of breastfeeding on breast cancer risk after childbirth has not been directly 

addressed before. Breastfeeding has been associated with an estimated 12% to 25% lower risk for 

premenopausal breast cancer overall (50, 51) and is thought to be particularly beneficial in reducing risk for ER-

negative breast cancer, which is relatively more common at young ages than older ages. Although higher parity 

is associated with an overall increase in risk for ER-negative breast cancer (13, 52, 53), parous women who 

breastfeed have comparable risk to nulliparous women (13), suggesting that breastfeeding may mitigate parity-

related increases in risk for ER-negative cancer. 

In the current analysis of 12 international studies, risks for both ER-positive and ER-negative breast 

cancer were elevated for 20 years after most recent birth in parous compared with nulliparous women, 

regardless of breastfeeding. With longer follow-up, the expected inverse association between childbirth and 

breast cancer became apparent for ER-positive breast cancer, but risk remained elevated for ER-negative 

disease. These findings are consistent with a sustained increase in risk for ER-negative breast cancer for at least 
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25 years after birth in parous compared with nulliparous women, as reported in a pooled analysis of 4 U.S. 

studies that enrolled African American women (12). However, our findings disagree with that study’s report of 

no increase in ER-positive breast cancer in the first 15 years after last birth.  

Familial breast cancer tends to occur at a younger age than breast cancer in women without a genetic 

predisposition. Family history might therefore modify associations between recent childbirth and breast cancer 

risk. A study in Denmark (5) found stronger associations between recent childbirth (<5 years prior) and breast 

cancer risk among women with a mother or sister diagnosed with breast cancer than among those without. In 

Norway (18), short-term elevations in risk after childbirth were more apparent in women with a family history 

of breast cancer than in a common reference group of nulliparous women without such a history, although 

differences were not statistically significant. In our analysis, women who had given birth recently and had a 

family history of breast cancer had a 3.5-fold increase in breast cancer risk compared with women with neither 

characteristic.  

The large number of cases in our pooled analysis allowed us to evaluate potential variation in the 

association between recent childbirth and breast cancer according to modifiable behaviors, familial 

susceptibility, and clinical subtypes. These considerations can rarely be addressed in individual studies because 

of the lower incidence and correspondingly small numbers of breast cancer diagnoses at young ages. However, 

calendar month was not uniformly available for ages at childbirth and breast cancer diagnosis, so we could not 

distinguish breast cancer cases diagnosed during pregnancy from those diagnosed in the months immediately 

postpartum. The small number of breast cancer cases and births that occurred at same integer age (n = 39) 

resulted in wide CIs for the HR estimate for the first year after childbirth. Our analyses do not address breast 

cancer risk after age 55 years because of limits of the data provided to the Premenopausal Breast Cancer 

Collaborative Group (20).   

We did not address associations according to intervals between births; 1 prior study has suggested that 

longer intervals could magnify childbirth-related increases in breast cancer risk (17). Available breastfeeding 
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information was not specific to each birth; therefore, if women breastfed some children but not others, 

breastfeeding status may be misclassified for the most recent birth. Finally, we had limited data on HER2 

oncogene overexpression and did not evaluate whether associations differed by the HER2 status of the tumor. In 

a case-only study of Hispanic women, those within 10 years of their last full-term pregnancy (vs. >10 years) had 

higher risk for HER2-positive disease (OR, 1.78 [CI, 1.08 to 2.93]) compared with ER and/or progesterone 

receptor positive/HER2- disease (19).  

Several biological explanations for an increase in breast cancer risk after childbirth have been proposed. 

Proliferation of breast cells during pregnancy could promote accelerated development of latent initiated tumor 

cells (46, 54). In this way, a greater magnitude of risk conferred by older age at first birth could be due to a 

higher proportion of initiated cells at older ages. The postpartum breast microenvironment, characterized by 

lactational involution, may also facilitate cancer cell migration and metastasis; the observation that breast 

tumors diagnosed postpartum have more advanced stages at diagnosis than those diagnosed during pregnancy 

supports this mechanism (55-58). Although the higher proportion of advanced-stage tumors could also be due to 

less timely detection of breast cancer in lactating women, our similar results in analyses limited to stage I to III 

cancer and stratified by breastfeeding suggest that differential detection after childbirth is not the sole cause.  

Breast cancer is the most common cancer type in reproductive-aged women. We report an increased risk 

for breast cancer after childbirth that can last more than 20 years. This risk may be enhanced when a woman is 

older at first birth, multiparous, or has a family history of breast cancer, and it is not mitigated by breastfeeding. 

Women and health care professionals should take these factors into account when considering individual risk 

profiles for breast cancer. 
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