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ABSTRACT 64 

 65 

The clustering of different types of B-cell malignancies in families raises the possibility of 66 

shared aetiology. To examine this, we performed cross-trait linkage disequilibrium (LD)-67 

score regression of multiple myeloma (MM) and chronic lymphocytic leukaemia (CLL) 68 

genome-wide association study (GWAS) datasets, totalling 11 734 cases and 29 468 69 

controls. A significant genetic correlation between these two B-cell malignancies was 70 

shown (Rg=0.4, P=0.0046). Furthermore, four of the 45 known CLL risk loci were shown to 71 

associate with MM risk and five of the 23 known MM risk loci associate with CLL risk. By 72 

integrating eQTL, Hi-C and ChIP-seq data, we show that these pleiotropic risk loci are 73 

enriched for B-cell regulatory elements and implicate B-cell developmental genes. These 74 

data identify shared biological pathways influencing the development of CLL and, MM and 75 

further our understanding of the aetiological basis of these B-cell malignancies. 76 

  77 
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INTRODUCTION 78 

 79 

Chronic lymphocytic leukaemia (CLL) and multiple myeloma (MM) are both B-cell 80 

malignancies, which arise from the clonal expansion of progenitor cells at different stages of 81 

B-cell maturity (1-3).  Evidence for inherited predisposition to CLL and MM comes from the 82 

6 and 2-fold increased risk of respective diseases seen in relatives of patients(4).  83 

 84 

Recent genome-wide association studies (GWAS) have transformed our understanding of 85 

genetic susceptibility to the B-cell malignancies, identifying 45 CLL (5-8) and 23 MM risk loci 86 

(9-12). Furthermore, statistical modelling of GWAS data indicates that common genetic 87 

variation is likely to account for 34% of CLL and 15% of MM heritability (6, 13). 88 

Epidemiological observations on familial cancer risks across the different B-cell malignancies 89 

suggest an element of shared inherited susceptibility, especially between CLL and MM (4).  90 

 91 

Linkage disequilibrium (LD) score regression is a method which exploits the feature of a test 92 

statistic for a given single nucleotide polymorphism (SNP), whereby that test statistic will 93 

incorporate the effects of correlated SNPs (14). Conventional LD score regression regresses 94 

trait χ² statistics against the LD score for a given SNP, with the coefficient of the regression 95 

line providing an estimate of trait heritability. This method can be modified by instead 96 

regressing the product of SNP Z scores from two traits against the SNP LD score, with the 97 

slope providing an estimate of genetic covariance between the two traits (15). This method 98 

can be applied to summary statistics, is not biased by sample overlap and does not require 99 

multiple traits to be measured for each individual.  100 

 101 

By analysis of GWAS data for MM and CLL and applying cross-trait LD score regression we 102 

have been able to demonstrate a positive genetic correlation between CLL and MM. We find 103 

evidence of shared genetic susceptibility at 10 known risk loci and by integrating promoter 104 

capture Hi-C (PCHi-C) data, ChIP-seq and expression data we provide insight into the shared 105 

biological basis of CLL and MM.   106 
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METHODS 107 

GWAS datasets 108 

The data from six previously reported MM GWAS (9-12) are summarized in Supplementary 109 

Table 1. All these studies were based on individuals of European ancestry and comprised: 110 

Oncoarray-GWAS (878 cases 7,054 controls) UK-GWAS (2,282 cases, 5,197 controls), 111 

Swedish-GWAS (1,714 cases, 10,391 controls), German-GWAS (1,508 cases, 2,107 controls), 112 

Netherlands-GWAS (555 cases, 2,669 controls) and US-GWAS (780 cases, 1,857 controls).  113 

The data from three previously reported CLL GWAS (8-12) are summarized in 114 

Supplementary Table 2. All these studies were based on individuals of European ancestry 115 

and comprised: CLL UK1 (505 cases and 2,698 controls), CLL UK2 (1,236 cases and 2,501 116 

controls) and CLL US (2,174 cases and 2,682 controls).   117 

 118 

Ethics 119 

Collection of patient samples and associated clinico-pathological information was 120 

undertaken with written informed consent and relevant ethical review board approval at 121 

respective study centres in accordance with the tenets of the Declaration of Helsinki.  122 

 123 

Specifically for the Myeloma-IX trial by the Medical Research Council (MRC) Leukaemia Data 124 

Monitoring and Ethics committee (MREC 02/8/95, ISRCTN68454111), the Myeloma-XI trial 125 

by the Oxfordshire Research Ethics Committee (MREC 17/09/09, ISRCTN49407852), 126 

HOVON65/GMMG-HD4 (ISRCTN 644552890; METC 13/01/2015), HOVON87/NMSG18 127 

(EudraCTnr 2007-004007-34, METC 20/11/2008), HOVON95/EMN02 (EudraCTnr 2009-128 

017903-28, METC 04/11/10), University of Heidelberg Ethical Commission (229/2003, S-129 

337/2009, AFmu-119/2010), University of Arkansas for Medical Sciences Institutional 130 

Review Board (IRB 202077), Lund University Ethical Review Board (2013/54), the Norwegian 131 

REK 2014/97, and the Danish Ethical Review Board (no: H-16032570). 132 

 133 

Specifically, the centres for UK-CLL1 and UK-CLL2 are: UK Multi-Research Ethics Committee 134 

(MREC 99/1/082); GEC: Mayo Clinic Institutional Review Board, Duke University Institutional 135 

Review Board, University of Utah, University of Texas MD Anderson Cancer Center 136 

Institutional Review Board, National Cancer Institute, ATBC: NCI Special Studies Institutional 137 
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Review Board, BCCA: UBC BC Cancer Agency Research Ethics Board, CPS-II: American Cancer 138 

Society, ENGELA: IRB00003888—Comite d’ Evaluation Ethique de l’Inserm IRB #1, EPIC: 139 

Imperial College London, EpiLymph: International Agency for Research on Cancer, HPFS: 140 

Harvard School of Public Health (HSPH) Institutional Review Board, Iowa-Mayo SPORE: 141 

University of Iowa Institutional Review Board, Italian GxE: Comitato Etico Azienda 142 

Ospedaliero Universitaria di Cagliari, Mayo Clinic Case–Control: Mayo Clinic Institutional 143 

Review Board, MCCS: Cancer Council Victoria’s Human Research Ethics Committee, MSKCC: 144 

Memorial Sloan-Kettering Cancer Center Institutional Review Board, NCI-SEER (NCI Special 145 

Studies Institutional Review Board), NHS: Partners Human Research Committee, Brigham 146 

and Women’s Hospital, NSW: NSW Cancer Council Ethics Committee, NYU-WHS: New York 147 

University School of Medicine Institutional Review Board, PLCO: (NCI Special Studies 148 

Institutional Review Board), SCALE: Scientific Ethics Committee for the Capital Region of 149 

Denmark, SCALE: Regional Ethical Review Board in Stockholm (Section 4) IRB#5, Utah: 150 

University of Utah Institutional Review Board, UCSF and UCSF2: University of California San 151 

Francisco Committee on Human Research, Women’s Health Initiative (WHI): Fred 152 

Hutchinson Cancer Research Center and Yale: Human Investigation Committee, Yale 153 

University School of Medicine. Informed consent was obtained from all participants. 154 

 155 

The diagnosis of MM (ICD-10 C90.0) in all cases was established in accordance with World 156 

Health Organization guidelines. All samples from patients for genotyping were obtained 157 

before treatment or at presentation. The diagnosis of CLL (ICD-10-CM C91.10, ICD-O 158 

M9823/3 and 9670/3) was established in accordance with the International Workshop on 159 

Chronic Lymphocytic Leukaemia guidelines. 160 

 161 

Quality control 162 

Standard quality-control measures were applied to the GWAS (16). Specifically, individuals 163 

with low SNP call rate (<95%) as well as individuals evaluated to be of non-European 164 

ancestry (using the HapMap version 2 CEU, JPT/CHB and YRI populations as a reference) 165 

were excluded. For apparent first-degree relative pairs, we excluded the control from a 166 

case-control pair; otherwise, we excluded the individual with the lower call rate. SNPs with a 167 

call rate <95% were excluded as were those with a MAF <0.01 or displaying significant 168 

deviation from Hardy–Weinberg equilibrium (P < 10−5). GWAS data were imputed to >10 169 
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million SNPs using IMPUTE2 v4 (for CLL) and IMPUTE2 v2.3 (for MM) software in 170 

conjunction with a merged reference panel consisting of data from 1000 Genomes Project 171 

(17) (phase 1 integrated release 3 March 2012) and UK10K (18). Genotypes were aligned to 172 

the positive strand in both imputation and genotyping. We imposed predefined thresholds 173 

for imputation quality to retain potential risk variants with MAF >0.01 for validation. Poorly 174 

imputed SNPs with an information measure <0.80 were excluded. Tests of association 175 

between imputed SNPs and MM were performed under an additive model in 176 

SNPTESTv2.5(19). The adequacy of the case–control matching and possibility of differential 177 

genotyping of cases and controls was evaluated using a Q-Q plot of test statistics. The 178 

inflation λ was based on the 90% least-significant SNPs and assessment of λ1000. Details of 179 

SNP QC are provided in in Supplementary Table 3 and 4. Four principal components, 180 

generated using common SNPs, were included to limit the effects of cryptic population 181 

stratification in the US-CLL dataset. Eigenvectors for the GWAS data sets were inferred using 182 

smartpca (part of EIGENSOFT) by merging cases and controls with Phase II HapMap samples. 183 

 184 

Meta-analysis 185 

Meta-analyses were performed using the fixed-effects inverse-variance method using META 186 

v1.6 (20). Cochran's Q-statistic to test for heterogeneity and the I2 statistic to quantify the 187 

proportion of the total variation due to heterogeneity was calculated. 188 

 189 

LD score regression 190 

To investigate genetic correlation between MM and CLL we implemented cross-trait LD 191 

score regression by Bulik-Sullivan et al (15). Using summary statistics from the GWAS meta-192 

analysis we implemented filters as recommended by the authors (15). Specifically, filtering 193 

SNPs to INFO >0.9, MAF >0.01, and harmonizing to Hap Map3 SNPs with 1000 Genomes EUR 194 

MAF >0.05, removing indels and structural variants, removing strand-ambiguous SNPs and 195 

removing SNPs where alleles did not match those in 1000 Genomes. This was performed by 196 

running the munge-sumstats.pr script included with ldsc. We ran ldsc.py, part of the ldsc 197 

package, excluding the HLA region. We report heritability estimates on the observed scale. 198 

There is no distinction between observed and liability scale genetic correlation for 199 

case/control traits (15). 200 

 201 
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Shared risk loci 202 

To identify pleiotropic risk loci, that is genetic loci that influence two traits, we identified 203 

SNPs previously reported to be associated with each disease at genome-wide significance (P 204 

< 5 × 10-8), as well as highly correlated variants (r2 > 0.8) at the 45 and 23 known risk loci for 205 

CLL and MM respectively. Within these correlated variant sets at each locus, we determined 206 

how many of the CLL susceptibility loci were associated with MM at region-wide significance 207 

after Bonferroni correction for multiple testing (i.e. Padj < 0.05/45). We then repeated the 208 

process, examining MM susceptibility SNPs in CLL, applying a significance level of Padj < 209 

0.05/23. A full list of results is summarized in Supplementary Data File 1 and 2. 210 

 211 

Partitioned heritability 212 

A variation of LD score regression, namely stratified LD score regression, can be used to 213 

partition heritability according to different genomic categories. For both MM and CLL we 214 

applied stratified LD score regression across the baseline model used in Finucane et al (21). 215 

We plotted the enrichment of functional categories for each disease- this is defined as 216 

proportion heritability divided by the total heritability. We excluded from our plot additional 217 

flanking regions around each functional category, which authors designed to allow 218 

observation of enrichment of SNP heritability in intermediary regions. A plot of the results is 219 

found in Supplementary Figure 1.   220 

 221 

Variant set enrichment 222 

To examine enrichment in specific histone mark binding across shared risk loci, we adapted 223 

the method of Cowper-Sal lari et al. (22). Briefly, for each risk locus, a region of strong LD 224 

(defined as r2 > 0.8 and D′ > 0.8) was determined, and these SNPs were considered the 225 

associated variant set (AVS). Publically available ChIP-seq data for 6 histone marks from 226 

naïve B-cells was downloaded from Blueprint Epigenome Project (23). For each mark, the 227 

overlap of the SNPs in the AVS and the binding sites was assessed to generate a mapping 228 

tally. A null distribution was produced by randomly selecting SNPs with the same 229 

characteristics as the risk-associated SNPs, and the null mapping tally calculated. This 230 

process was repeated 10,000 times, and P-values calculated as the proportion of 231 

permutations where null mapping tally was greater or equal to the AVS mapping tally. An 232 

enrichment score was calculated by normalizing the tallies to the median of the null 233 
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distribution. Thus, the enrichment score is the number of standard deviations of the AVS 234 

mapping tally from the median of the null distribution tallies. An enrichment plot for naïve B 235 

cells is shown in Supplementary Figure 2. 236 

 237 

Cell type specific analyses 238 

We considered chromatin mark overlap enrichment for genome-wide significant loci in 239 

different cell types using the methodology of Trynka et al (24).This approach scores GWAS 240 

SNPs based on proximity to chromatin mark and fold-enrichment of respective chromatin 241 

mark, assessing significance using a tissue-specific permutation method. We obtained chip-242 

seq data for H3K4me3 from primary blood cells and CLL samples downloaded from 243 

Blueprint Epigenome project (23). In addition, we included in our analysis 4 MM cell lines- 244 

KMS11, JJN3, MM1-S and L363 processed as previously described (25). A heat map of results 245 

is shown in Supplementary Figure 3.   246 

 247 

eQTL 248 

eQTL analyses were performed using publicly available  whole blood data downloaded from 249 

GTeX (26). The relationship between SNP genotype and gene expression we carried out 250 

using Summary-data-based Mendelian Randomization (SMR) analysis as per Zhu et al (27). 251 

Briefly, if bxy is the effect size of x (gene expression) on y (slope of y regressed on the genetic 252 

value of x), bzx is the effect of z on x, and bzy be the effect of z on y, bxy (bzy/bzx) is the effect 253 

of x on y. To distinguish pleiotropy from linkage where the top associated cis-eQTL is in LD 254 

with two causal variants, one affecting gene expression the other affecting trait we tested 255 

for heterogeneity in dependent instruments (HEIDI), using multiple SNPs in each cis-eQTL 256 

region. Under the hypothesis of pleiotropy bxy values for SNPs in LD with the causal variant 257 

should be identical. For each probe that passed significance threshold for the SMR test, we 258 

tested the heterogeneity in the bxy values estimated for multiple SNPs in the cis-eQTL region 259 

using HEIDI. 260 

 261 

GWAS summary statistics files were generated from the meta-analysis. For the disease 262 

discovery GWAS, we set a threshold for the SMR test of PSMR < 2.5 × 10-5 corresponding to a 263 

Bonferroni correction for the number of probes which demonstrated an association in the 264 

SMR test. For all genes passing this threshold we generated plots of the eQTL and GWAS 265 
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associations at the locus, as well as plots of GWAS and eQTL effect sizes (i.e. input for the 266 

HEIDI heterogeneity test). HEIDI test P-values < 0.05 were considered as reflective of 267 

heterogeneity. This threshold is, however, conservative for gene discovery because it 268 

retains fewer genes than when correcting for multiple testing. SMR plots for significant 269 

eQTLs are shown in Supplementary Figure 4-5 and a summary of results are shown in 270 

Supplementary Table 5.  271 

 272 

Data availability 273 

SNP genotyping data that support the findings of this study have been deposited in Gene 274 

Expression Omnibus with accession codes GSE21349, GSE19784, GSE24080, GSE2658 and 275 

GSE15695; in the European Genome-phenome Archive (EGA) with accession code 276 

EGAS00000000001; in the European Bioinformatics Institute (Part of the European 277 

Molecular Biology Laboratory) (EMBL-EBI) with accession code E-MTAB-362 and E-TABM-278 

1138; and in the database of Genotypes and Phenotypes (dbGaP) with accession code 279 

phs000207.v1.p1. The remaining data are contained within the paper and Supplementary 280 

Files or available from the author upon request. Naïve B-cell HiC data used in this work is 281 

publicly available from Blueprint Blueprint Epigenome Project [https://osf.io/u8tzp/]. ChIP-282 

seq data for H3K27ac, H3K4Me1, H3K27Me3, H3K9Me3, H3K36Me3 and H3K27Me3 from 283 

naïve B-cells is publicly available and was obtained from Blueprint Epigenome Project 284 

[http://www.blueprint-epigenome.eu/].  285 

  286 
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RESULTS 287 

 288 

Genetic correlation and heritability 289 

We performed cross trait LD-score regression using summary statistics from two recent 290 

GWAS meta-analyses based on 7,717 MM cases and 21,587 controls and 4,017 CLL cases 291 

and 7,881 controls (Figure 1, Supplementary Table 1-4). While these datasets have been 292 

previously subject to quality control (QC) (5-7, 9-11) for the current analysis we 293 

implemented additional filtering steps as per Bulik-Sullivan et al (15), resulting in 1,055,728 294 

harmonized SNPs between the two datasets. Heritability estimates from cross-trait LD score 295 

regression of 9.2 (±1.8%) and 22 (±5.9%) were comparable with previous estimates for MM 296 

(13) and CLL (6). LD-score regression revealed a significant positive genetic correlation 297 

between MM and CLL with an Rg value of 0.44 (P = 4.6×10-3).  298 

 299 

Identification of pleiotropic risk loci  300 

We identified SNPs previously reported to be associated with each disease at genome-wide 301 

significance (P < 5 × 10-8), as well as highly correlated variants (r2 > 0.8) at the 45 and 23 302 

known risk loci for CLL and MM respectively. To identify pleiotropic risk loci, that is genetic 303 

loci that influence two traits, we determined how many of the CLL susceptibility loci were 304 

associated with MM at region-wide significance after Bonferroni correction for multiple 305 

testing (i.e. Padj < 0.05/45). We then repeated the process, examining MM susceptibility SNPs 306 

in CLL, applying a significance level of Padj < 0.05/23. Of the 45 CLL risk loci, four were 307 

associated with MM (Padj < 0.0011) while, of 23 MM risk loci, five were significantly 308 

associated in CLL (Padj < 0.0022) (Table 1, Figure 2). Correlated SNPs (r2 > 0.8) at 3q26.2 are 309 

associated with both CLL and MM at genome-wide significance (Figure 2), bringing the total 310 

number of pleiotropic loci to 10.  311 

 312 

Biological inference 313 

Trynka et al. have recently shown that chromatin marks highlighting active regulatory 314 

regions overlap with phenotype-associated variants in a cell-type specific manner (24). Since 315 

H3K4me3 was shown to be the most phenotypically cell-type specific chromatin mark, we 316 

examined cell-type specificity of the 10 pleiotropic risk loci by analysing H3K4me3 chromatin 317 

marks in normal haematopoietic cells and CLL patient samples from Blueprint, and de novo 318 
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data on KMS11, MM1S, JJN3 and L363 MM cell lines. Cell types showing the strongest 319 

enrichment of risk SNPs at H3K4me3 marks included naïve B-cells and CD38-B cells. Notably, 320 

variants at 2q31.1, 6p25.3, 8q24.21, 16q23.1 and 22q13.33 were enriched for H3K4me3 in 321 

naïve B-cells (Supplementary Figure 3).  322 

 323 

Most GWAS signals map to non-coding regions of the genome (28, 29)  and influence gene 324 

expression through chromatin looping interactions (30, 31). Application of partitioned 325 

heritability analysis, stratifying across 53 genomic categories demonstrated enrichment of 326 

CLL and MM heritability in functional elements of the genome, in particular FANTOM5 327 

enhancers (CLL and MM)  transcription start sites (CLL) and 5’ untranslated region and 328 

coding regions (MM)  (Supplementary Figure 1). Furthermore, we found significant 329 

enrichment of SNPs in the shared loci within regions of active chromatin, as indicated by the 330 

presence of H3K27ac and H3K4Me3 marks in naïve B-cells, supporting the principle that 331 

SNPs in shared loci influence risk through regulatory effects (Supplementary Figure 2). To 332 

identify target genes we analysed PCHi-C data on naïve B-cells from Blueprint (23). We also 333 

sought to gain insight into the possible biological mechanisms for associations by 334 

performing an expression quantitative trait locus (eQTL) analysis using mRNA expression 335 

data on blood from GTEx. Applying Summary data-based Mendelian Randomization (SMR) 336 

methodology, we tested for pleiotropy between GWAS signal and cis-eQTL for genes to 337 

identify a causal relationship. Broadly, our analysis of the shared loci groups them into those 338 

which act on a B-cell regulation and differentiation and those which underpin the distinctive 339 

biology of cancer; specifically, loci relating to genome instability, angiogenesis and 340 

dysregulated apoptosis (Supplementary Table 6). 341 

 342 

Of the shared loci, three were related to B-cell regulation. This included composite evidence 343 

at 10q23.31, from looping interactions in naïve B-cells and correlation in GWAS effect size 344 

and expression, which provide evidence for two candidate genes ACTA2, encoding smooth 345 

muscle (α)-2 actin, a protein involved in cell movement and contraction of muscles (32) and 346 

FAS, a member of the TNF-receptor superfamily. FAS, has a central role in regulating the 347 

immune response through apoptosis of B-cells (33, 34). At 2q31.1, looping interactions 348 

implicated transcription factor SP3, which has been shown to influence expression of 349 
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germinal centre genes, (35, 36). Variants at 6p25.3 reside in the 3’UTR of IRF4, which has an 350 

established role in B-cell regulation (37, 38) and MM oncogenesis (39, 40).  351 

 352 

Three of the 10 loci contain genes with roles in maintenance of genomic stability. 353 

Specifically, evidence from expression and PCHi-C data implicated RFWD3 at 16q23.1. This 354 

gene encodes an E3 ubiquitin-protein ligase, which has been shown to promote progression 355 

to late stage homologous recombination through ubiquitination and timely removal of 356 

RAD51 and RPA at sites of DNA damage (41) and is necessary for replication fork restart 357 

(42). Variants in this locus demonstrated enrichment of H3K4me3 marks in two samples of 358 

naïve B-cells, which represents a plausible cell of disease origin. rs58618031 (7q31.33) maps 359 

5′ of POT1, the protection of telomeres 1 gene, which is part of the shelterin complex and 360 

functions to maintain chromosomal stability (43, 44). Variant rs1317082 at 3q26.2 is located 361 

proximal to TERC, a gene which has been shown to influence telomere length (45). 362 

Additionally, we observed looping interactions to a number of genes at 3q26.2 including 363 

SEC62, which has been proposed as a cancer biomarker (46-49). Intriguingly, variants at 364 

3q26.2 this locus have been implicated in colorectal (50), thyroid (51) and bladder (52) 365 

cancer. 366 

 367 

Several genes were implicated at 22q13.33 by looping interactions for SCO2, LMF2, ODF3B, 368 

TYMP/ECGF1, NCAPH2, SYCE3 and ARSA, with TYMP/ECGF1 and SCO2 demonstrating 369 

evidence of correlation in GWAS and eQTL effect size, albeit not significant after multiple 370 

testing (PSMR = 2.38×10-4 and 3.19×10-4). Variants within this locus were enriched in 371 

H3K4me3 chromatin marks in both CD38- B cells and inflammatory macrophages. TYMP 372 

(alias ECGF1) encodes thymidine phosphorylase, which is often overexpressed in tumours 373 

and has been linked to angiogenesis (53, 54).  A detailed study on this gene has implicated 374 

TYMP in the development of lytic bone lesions in MM, via a mechanism involving activation 375 

of PI3K/Akt signalling and increased DNMT3A expression resulting in hypermethylation of 376 

RUNX2, osterix, and IRF8(55). Furthermore, SCO2 (synthesis of cytochrome c oxidase), also 377 

mapping to this locus, has been implicated in the development of breast (56, 57), gastric 378 

(58) and leukemia (59), through glucose metabolism reprogramming (60), a hallmark of 379 

cancer (61). Tumour suppressor, p53, regulates metabolic pathways, p53-transactivated 380 
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TP53-induced glycolysis (TIGAR), and regulation of apoptosis in part through SCO2 (57, 58, 381 

60).   382 

 383 

Finally, while these data were indifferent to decipher 8q24.21, this locus has also been 384 

shown to harbour risk SNPs for other cancers which localize within distinct LD blocks and 385 

likely reflect tissue-specific effects on cancer risk through regulation of MYC (29). 386 

 387 

  388 
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DISCUSSION 389 

 390 

Our analysis provides evidence of a genetic correlation between MM and CLL. Furthermore, 391 

we have identified shared genetic susceptibility at 10 known risk loci. While requiring 392 

biological validation, integration of data from PCHi-C, chromatin mark enrichment and eQTL 393 

at shared loci has provided insight into how these loci may confer susceptibility to both CLL 394 

and MM. Applying a working hypothesis that the loci may act in pleiotropic fashion, we 395 

selected relevant cells representing a common tissue of disease origin; namely naïve B-cells.  396 

 397 

A significant genetic correlation between MM and CLL, as well as the discovery of risk loci 398 

shared between them, supports epidemiological data demonstrating elevated familial risks 399 

between these B-cell malignancies (4). Furthermore, the shared loci we identified could be 400 

broadly grouped into those containing genes related to B-cell regulation and differentiation 401 

and those containing genes involved in angiogenesis, genome stability and apoptosis, 402 

supporting the tenet that these alleles can influence aetiology of either disease. With the 403 

expansion of GWAS of the B-cell malignancies, more detailed characterisation of common 404 

underlying risk alleles and affected pathways can inform the biology of B-cell oncogenesis. 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 
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TABLE AND FIGURE LEGENDS 733 
 734 
Table 1: Risk loci demonstrating association of alleles at respective loci in both chronic 735 

lymphocytic leukaemia (CLL) and multiple myeloma (MM). – indicates SNP not present in 736 

filtered data.  737 

 738 

Figure 1: Schematic outlining the processing of datasets used in the genetic correlation. 739 

 740 

Figure 2: Overlap of loci in multiple myeloma and chronic lymphocytic leukaemia.  741 

*correlated variants at 3q26.2 had been previously published as genome wide significant in 742 

each dataset prior to this analysis. 743 

 744 

 745 

 746 

 747 
  748 
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TABLES 749 

 750 

Locus Discovery  
GWAS 

Sentinel  
Variant 

Correlated 
Variant 

Position  
(hg19) 

Risk allele Odds Ratio P 

CLL MM CLL MM CLL MM 

2q31.1 MM rs4325816   174,808,899 T T 1.11 1.12 2.0 ×10-3 6.4 ×10-7 

      rs72919402 174,750,200 T - 1.13 - 4.6 ×10-4 - 

3q26.2 
MM  

& CLL 
rs1317082 

 
169,497,585 A A 1.20 1.19 7.1 ×10-8 2.2 ×10-16 

rs3821383 169,489,946 A A 1.20 1.18 4.2 ×10-8 4.5×10-15 

6p25.3 CLL rs872071   411,064 G G 1.37 1.10 2.8 ×10-27 7.5 ×10-7 

      rs1050976 408,079 T T 1.37 1.10 1.9×10-27 3.7×10-7 

6p22.3 MM rs34229995 15,244,018 G G 1.37 1.36 8.5 ×10-3 5.6 ×10-8 

rs13197919 15,282,334 T T 1.35 1.32 1.3 ×10-3 3.42 ×10-7 

7q31.33 MM rs58618031   124,583,896 T T 1.15 1.11 3.2 ×10-5 1.7 ×10-7 

      rs59294613 124,554,267 C - 1.16 - 4.4 ×10-6 - 

8q24.21 MM rs1948915 128,222,421 C C 1.17 1.15 7.6 ×10-7 2.5 ×10-12 

- - - - - - - - 

10q23.31 CLL rs6586163   90,752,018 A A 1.28 1.06 1.1 ×10-16 1.8 ×10-3 

      rs7082101 90,741,615 - C - 1.06 - 8.2 ×10-4 

11q23.2 CLL rs11601504 113,526,853 C C 1.20 1.09 2.3 ×10-5 8.5 ×10-4 

- - - - - - - - 

16q23.1 MM rs7193541   74,664,743 T T 1.12 1.12 1.0 ×10-4 3.7 ×10-10 

  CLL   - - - - - - - - 

22q13.33 rs140522 50,971,266 T T 1.17 1.08 3.7 ×10-7 1.2 ×10-4 

      - - - - - - - - 
 751 
Table 1: Risk loci demonstrating enrichment of alleles at respective loci in both chronic 752 

lymphocytic leukaemia (CLL) and multiple myeloma (MM). – indicates SNP not present in 753 

filtered data. 754 
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