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Abstract 

HSP90 is involved in stability and function of cancer-related proteins. This study was conducted to 

define the maximum tolerated dose (MTD), safety, pharmacokinetics, pharmacodynamics, and 

preliminary antitumor efficacy of TAS-116, a novel class, orally available, highly selective inhibitor 

of HSP90. 

Patients with advanced solid tumors received TAS-116 orally once daily (QD, step 1), or every other 

day (QOD, step 2) in 21-day cycles. Each step comprised a dose escalation phase to determine MTD 

and an expansion phase at the MTD. In the dose escalation phase, an accelerated dose-titration 

design and a “3+3” design were used.  

Sixty-one patients were enrolled in Japan and the UK. MTD was determined to be 107.5 mg/m
2
/day 

for QD, and 210.7 mg/m
2
/day for QOD. In the expansion phase of step1, TAS-116 was administered 

5 days on/2 days off per week (QD × 5). The most common treatment-related adverse events 

included gastrointestinal disorders, creatinine increased, AST increased, ALT increased, and eye 

disorders. Eye disorders have been reported with HSP90 inhibitors; however, those observed with 

TAS-116 in the expansion phases were limited to grade 1. The systemic exposure of TAS-116 

increased dose-proportionally with QD and QOD regimens. Two patients with non-small cell lung 

cancer and one patient with gastrointestinal stromal tumor achieved a confirmed partial response. 

TAS-116 had an acceptable safety profile with some antitumor activity, supporting further 

development of this HSP90 inhibitor.  
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Introduction 

HSP90 is an ATP-dependent molecular chaperone which is crucial for the stability and function of 

numerous proteins, referred to as “client” proteins, including receptor tyrosine kinases, signal 

transducers, cell-cycle regulators, and transcriptional factors (1–5). Most HSP90 clients are 

cancer-related proteins, such as anaplastic lymphoma kinase (ALK), v-raf murine sarcoma viral 

oncogene homolog B1 (BRAF), epidermal growth factor receptor (EGFR), ErbB family 2 (ERBB2), 

insulin-like growth factor-1 receptor (IGF1R), v-kit Hardy-Zuckerman 4 feline sarcoma viral 

oncogene homolog (KIT), and Met proto-oncogene (MET). They have been observed to have gene 

amplification, high expression, and increased activity due to mutation in cancer, and mediate key 

signaling pathways that are involved in tumor development and survival (3). HSP90 itself has also 

been reported to be overexpressed and exist as activated multi-chaperone complexes in cancer cells 

and cancer tissues (6–9).
 

HSP90 has been regarded as one of targets for cancer treatment, as HSP90 inhibition may block 

multiple signaling pathways in tumor cells, resulting in potent, selective anticancer activity (1, 3, 5). 

Although many HSP90 inhibitors including ansamycine-, purine- and resorcinol-derivatives have 

been developed, none of them have been approved for any cancer indication due to their limited 

single-agent clinical activity and off-target and/or HSP-related toxicities, such as eye disorders (10–

13).
 

TAS-116, 

3-ethyl-4-[3-(1-methylethyl)-4-[4-(1-methyl-1H-pyrazol-4-yl)-1H-imidazol-1-yl]-1H-pyrazolo[3,4-b

]pyridin-1-yl]benzamide, is a novel class of orally active inhibitors of HSP90. TAS-116 binds to the 

N-terminal domain of HSP90, and selectively inhibits cytosolic HSP90α and HSP90β, but does not 

inhibit HSP90 paralogs such as endoplasmic reticulum GRP94 or mitochondrial TRAP1 (14). 

TAS-116 demonstrated antitumor activity in human tumor xenograft models including subcutaneous 

and orthotopic transplantation in nude mice, accompanied by depletion of multiple HSP90 client 

proteins, without detectable ocular toxicities in rat models. This may be explained by lower TAS-116 

distribution to non-target eye tissues than in target tumor tissues. Even in the 4-week repeated-dose 

toxicity study of TAS-116 at double dose of the highest non-severely toxic dose in dogs, TAS-116 

did not show ocular toxicity on histopathological evaluation. 

On the basis of preclinical studies, a first-in-human study was designed to evaluate safety, maximum 

tolerated dose (MTD), pharmacokinetics (PK), and antitumor activity when TAS-116 was 

administered orally in multiple dosing schedules. We also evaluated biological changes in HSP70 

protein expression levels in peripheral blood mononuclear cells (PBMCs) as a pharmacodynamic 

(PD) marker of TAS-116 (15). 

Materials and Methods 
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Study design and treatment 

We conducted a first-in-human, open-label, multicenter, phase I study of TAS-116 in Japan and the 

UK. The primary objective was to determine the MTD. Secondary objectives included the safety, 

efficacy, PK, and PD of TAS-116. At first, two dosing schedules of once daily (QD, step 1) and every 

other day (QOD, step 2) were planned. Each step comprised two phases: a dose escalation phase to 

determine MTD and a subsequent expansion phase at the MTD. TAS-116 was administered orally, in 

21-day cycles. In step 1, the starting dose of 4.8 mg/m
2
/day was chosen based on 1/10 of the severely 

toxic dose in 10% of rats (STD10), and the dose was escalated according to an accelerated titration 

design (16), where one patient was enrolled at each dose level followed by a “3 + 3” design. In step 2, 

QOD dosing was subsequently assessed starting at the MTD in step 1, escalating the dose according 

to a “3 + 3” design. Following MTD determination, the expansion phase was conducted to evaluate 

the safety, tolerability, and efficacy at the MTD of two regimens, modified QD (5 days on/2 days off 

per week, QD × 5) and QOD. Patients continued treatment with TAS-116 until disease progression, 

the occurrence of unacceptable adverse events (AEs), or withdrawal of informed consent. 

Eligibility 

Patients with histologically or cytologically confirmed, advanced solid tumors for which standard 

treatment was no longer effective were enrolled. Key inclusion criteria were as follows: age ≥ 18 

years (≥ 20 years in Japan); clinically evaluable tumors; an Eastern Cooperative Oncology Group 

(ECOG) Performance Status of 0 or 1; and adequate bone marrow, liver, and renal function 

[hemoglobin ≥ 8.5 g/dL; absolute neutrophils ≥ 1500 /mm
3
; platelets (PLT) ≥ 10×10

4
μL; total 

bilirubin ≤ 1.5 mg/dL; alanine aminotransferase (ALT) and aspartate aminotransferase (AST) < 3 

times upper limit of normal (ULN); creatinine clearance ≥ 50 mL/min]. Key exclusion criteria 

included a serious illness or medical condition; receiving chemotherapy or radiotherapy within 21 

days before enrollment; or corrected visual acuity of < 0.5 (using the International Visual Acuity 

Measurement Standard) for both eyes. The study protocol was approved by institutional review 

boards/independent ethics committees at each institution. The study was conducted in accordance 

with the study protocol, Good Clinical Practice guidelines, the Declaration of Helsinki, and all 

applicable regulations. All patients provided written informed consent. 

Safety assessment 

AEs were graded according to the National Cancer Institute Common Terminology Criteria for 

Adverse Events version 4.03. Dose-limiting toxicity (DLT) was defined as any of the following 

treatment-related AEs occurred during cycle 1: grade 4 neutropenia lasting ≥ 8 days, febrile 

neutropenia, ≥ grade 3 thrombocytopenia with hemorrhage, grade 4 thrombocytopenia requiring 

platelet transfusion, ≥ grade 3 non-hematological toxicity in which improvement or recovery was not 

seen with symptomatic therapy, toxicity requiring drug interruption for ≥ 8 days, or any toxicity that 

was considered by investigators and the sponsor to be a DLT. The MTD was defined as the highest 

dose level at which less than 33% of patients experienced a DLT during cycle 1. To detect eye 

disorders, one of the class effects of HSP90 inhibitors, ophthalmological examinations including a 
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visual acuity test (corrected), ocular pressure test, ocular fundus examination, slit lamp examination, 

optical coherence tomography (OCT), and color perception test were performed at screening, on day 

21 of cycle 1, and 28 days after the last administration of TAS-116. An electrocardiogram (ECG) was 

performed at baseline, on days 1, 8 and 21 of cycle 1, and day 8 on cycles 2, 3 and 4, and 28 days 

after the last administration of TAS-116. The heart rate, RR interval, PR interval, QRS duration and 

QT duration in all ECG data were measured by an independent central cardiologist. 

PK assessments 

Blood samples for PK analyses were collected at various time points on day 1 and day 8 for QD 

doses (over a 24-hour period); on day 1 and day 15 for QOD doses (over a 48-hour period); and on 

day 1, day 8 (only pre-dose), and day 19 or day 1, day 4, day 11 (only pre-dose), and day 22 for QD 

× 5 doses (over a 24-hour period). Plasma concentrations of TAS-116 were measured using the 

validated liquid chromatography-tandem mass spectrometry method. Standard PK parameters were 

calculated by non-compartmental analysis with Phoenix
®

 WinNonlin
®

 7.0 (Certara LP, Princeton, NJ, 

USA). The dose proportionality of TAS-116 was evaluated on day 1 (step 1 and step 2), and day 8 

(step 1) or day 15 (step 2) using a power regression analysis.  

PD assessments 

Blood samples for PD analysis were collected during the 14 days before the start of treatment, on day 

3 (QD), and on day 15 (QD and QOD) or on day 12 (QD × 5) in cycle 1. Changes in HSP70 protein 

expression levels in PBMCs before and after the treatment with TAS-116 were examined as a 

surrogate marker of HSP90 inhibition (15). The amount of HSP70 protein in PBMCs was measured 

using a validated enzyme-linked immunosorbent assay (ELISA). 

Efficacy assessments 

Antitumor activity was assessed by the investigators based on Response Evaluation Criteria in Solid 

Tumors (RECIST) version 1.1 every 6 weeks up to week 24 and every 8 weeks thereafter via the 

diagnostic method (computed tomography, magnetic resonance imaging, X-ray, etc.) used at 

enrollment.  

Results 

Patient characteristics and study drug exposure 

Between March 31, 2014 and February 7, 2017, 61 patients were enrolled into the dose escalation (n 

= 36) and expansion (n = 25) phases and received at least one dose of TAS-116. Sixty patients were 

evaluable for efficacy; one patient was excluded from the efficacy analysis due to prohibited 

concomitant medication usage. Six UK patients were enrolled in the step 1 expansion phase. Data 

cutoff was May 3, 2017, when the last patient completed 4 cycles of treatment. Patient demographics 

and baseline characteristics are listed in Table 1. The dose of TAS-116 was escalated from 4.8 to 

150.5 mg/m
2
/day QD in step 1, and from 107.5 to 295.0 mg/m

2
/day QOD in step 2 (Figure 1). The 

MTDs were 107.5 mg/m
2
/day for QD and 210.7 mg/m

2
/day for QOD. As there was no correlation 

between body surface area (BSA) and oral clearance (CL/F) (Supplementary Fig. S1), the doses of 
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the expansion phases were determined to be a flat-dose of the MTD, ie, 160 mg/body/day for QD × 5 

in step 1 and 340 mg/body/day for QOD in step 2. There were five out of six patients who received 

TAS-116 QD at the MTD and required drug interruption owing to treatment-related AEs during cycle 

1; therefore, the administration schedule was changed from QD to QD × 5 in the expansion phase in 

step 1. The median treatment duration in step 1 was 3.0 cycles (range, 1–16 cycles) for the dose 

escalation phase (QD, n = 16) and 3.0 cycles (range, 1–22 cycles) for the expansion phase (QD × 5, n 

= 19). In step 2 (QOD), it was 4.0 cycles (range, 1–26 cycles) for the dose escalation phase (n = 20) 

and 2.0 cycles (range, 1–3 cycles) for the expansion phase (n = 6). 

Safety 

The most frequently reported treatment-related AEs (≥ 25%) were diarrhea (83.6%), creatinine 

increased (55.7%), anorexia (50.8%), nausea (42.6%), eye disorders (32.8%), AST increased (32.8%), 

ALT increased (29.5%), and fatigue (29.5%). Treatment-related AE that occurred in ≥ 10% of 

patients are summarized in Table 2. The majority of those were grade 1 or 2. 

DLTs are listed in Table 3. In step 1 (QD), DLTs were observed in three patients at level 7 (150.5 

mg/m
2
) with grade 3 night blindness, grade 3 visual impairment, and grade 3 

AST/ALT/γ-glutamyltransferase (γ-GTP) increased and in one patient at level 6 (107.5 mg/m
2
) with 

grade 3 anorexia. In step 2 (QOD), DLTs were observed in two patients at level 4 (295.0 mg/m
2
). 

Grade 3 PLT count decreased was observed in one patient. Grade 4 septic shock, grade 4 respiratory 

failure, grade 4 pneumonia, and grade 3 febrile neutropenia were observed in another patient. As a 

result, the MTD was determined at 107.5 mg/m
2
/day (level 6) for QD and 210.7 mg/m

2
/day (level 3) 

for QOD. 

Eye disorders were mainly night blindness (n = 13), blurred vision (n = 3), and visual impairment (n 

= 3). Eye disorders ≥ grade 2, the AE of special interest in this study, occurred in the dose escalation 

phases at the MTD and maximum administered dose (MAD) on the QD schedule, and MAD on the 

QOD schedule. However, with QD × 5 and at the MTD in the QOD schedule, eye disorders were 

limited to grade 1. Except for macular edema found on ophthalmological examination in one patient, 

eye disorders were found on physical examination by the investigators. All eye disorders were 

reversible with interruption or discontinuation of TAS-116 treatment. 

Thirteen treatment-related serious AEs (SAEs) were observed in six patients (9.8%). Those observed 

in step 1 were pulmonary embolism and interstitial lung disease at level 5 (76.8 mg/m
2
), and 

AST/ALT/γ-GTP increased (n = 1) and visual impairment (n = 1) at level 7 (150.5 mg/m
2
). Those 

observed in step 2 were septic shock, respiratory failure, pneumonia, neutrophil count decrease, and 

PLT count decrease in one patient at level 4 (295.0 mg/m
2
), and dehydration and enterocolitis 

infectious in one patient in the expansion phase (340 mg/body). All treatment-related SAEs 

recovered or resolved after interruption, dose reduction, or discontinuation of TAS-116 treatment. No 

treatment-related deaths were reported. Seven (11.5%) patients discontinued TAS-116 administration 

due to the following AE: grade 3 interstitial lung disease (76.8 mg/m
2
, QD), grade 2 cystitis (107.5 

mg/m
2
, QD), grade 2 macular edema (107.5 mg/m

2
, QD), grade 3 anorexia (107.5 mg/m

2
, QD ), 
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grade 3 night blindness (150.5 mg/m
2
, QD ), grade 3 anemia (295.0 mg/m

2
, QOD), and grade 4 

septic shock with grade 4 respiratory failure and grade 4 pneumonia (295.0 mg/m
2
, QOD).  

Local reading of ECGs demonstrated QTc prolongation in 14.8% (9 out of 61) of patients. Upon 

central review by the independent cardiologist, eight of these nine patients did not show increase in 

QTc > 450ms; the remaining one was grade 1 and recovered following TAS-116 discontinuation. 

According to review by the independent central cardiologist, three patients showed an increase in 

QTc > 450ms. In one patient, QTc prolongation was reported as a grade 1 AE by the investigator. In 

the other two patients, the QTc changes were confirmed as not clinically significant by the 

investigator because it was transient or there was little change from baseline. No other clinically 

significant changes were detected by the independent cardiologist who reviewed all ECG data. 

PK 

The plasma concentration-time profiles of TAS-116 in the dose escalation phase of step 1 are shown 

in Figure 2. Systemic exposure was dose proportional over the range tested, from 4.8 to 150.5 mg/m
2 

on QD and from 107.5 to 295.0 mg/m
2
 on QOD. There was no unexpected accumulation in TAS-116 

exposure between day 1 and day 8 of cycle 1. The PK parameters for all schedules are presented in 

Supplementary Table S1. The PK parameters (Cmax and AUClast) after multiple administrations in QD 

× 5 were comparable between Japanese and Caucasian patients, although the number of Caucasian 

patients in this study was small. 

PD 

The expression of HSP70 protein in PBMCs was evaluated in 41 patients. After the results from first 

15 patients, sampling points were determined to be at baseline and once post-treatment (day 12 or 

day 15) for the rest of the patients. Induction of HSP 70 protein expression after TAS-116 

administration tends to be in a dose-dependent manner from 4.8 to 107.5 mg/m
2 
in step 1. In step 2, 

induction of HSP 70 protein expression after TAS-116 administration occurred at all levels (107.5–

295.0 mg/m
2
) (Figure 3). 

Efficacy 

Figure 4 shows the greatest change in tumor size from baseline in patients who had at least one target 

lesion. Confirmed durable partial responses (PRs) by RECIST were observed in three patients (Table 

4). Disease control rate (DCR) including PR and stable disease (SD) ≥ 12 weeks were 27% (16/60 

patients). Response durations of three PR patients were 173 days in non-small cell lung cancer 

(NSCLC) without detectable EGFR and ALK mutations (107.5 mg/m
2
 QD), 463 days (at the time of 

data cutoff) in NSCLC with an EGFR exon 19 deletion mutation (150.5 mg/m
2
 QOD), and 239 days 

in gastrointestinal stromal tumor (GIST) without a detectable KIT mutation (150.5 mg/m
2
 QD, one 

dose level higher than the MTD, who continued on TAS-116 treatment for more than 6 months after 

dose reduction to the MTD on Day 42).  

A long period of stable disease was also confirmed in a GIST patient who had received 5 prior 

treatments (imatinib, sunitinib, regorafenib, an investigational drug, and imatinib-rechallenge), and 

had secondary KIT mutations in exon 17 (D820Y and N822K) at enrollment. Although such KIT 
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mutations were associated with resistance to standard treatment for GIST—imatinib and other 

tyrosine kinase inhibitors—the progression-free duration was as long as 393 days. PET/CT scans one 

and four months after the start of TAS-116 treatment (160 mg/body, QD × 5) showed remarkable 

decreases in fluorodeoxyglucose (FDG) accumulation (Figure 4). 

Discussion 

In Japan and the UK, we conducted the first-in-human phase I study of TAS-116, an orally 

administered, potent and highly selective inhibitor of HSP90α and HSP90β. We examined three 

dosing regimens, QD, QD × 5, and QOD, established MTD, determined a dosing regimen for further 

development and observed activity in tumors. 

We noted that the AEs with TAS-116 were similar to those reported with previous clinical studies of 

HSP90 inhibitors: gastrointestinal disorders, hepatic enzyme increased, and eye disorders such as 

night blindness and blurred vison (12, 13, 17, 18).  

HSP90 plays a critical role also in retinal function, and sustained HSP90 inhibition may be 

associated with eye disorders (19–21). Effects of TAS-116 on retina have yet to been examined, it 

was reported that reduction of rhodopsin kinase (GRK1), one of HSP90 client proteins, by sustained 

HSP90 inhibition adversely affects visual function (22).  

Referring to the monitoring guidelines on the ocular toxicity of targeted therapies (23), we performed 

intensive ophthalmological examinations including OCT that is a noninvasive retinal imaging 

technique and was not mandatory in other previous clinical studies of HSP90 inhibitors (17, 24). 

Initially, eye disorders ≥ grade 2 were observed in this study, however, changing treatment frequency 

from daily to intermittent dosing greatly improved the safety profile. 

Another report may account for differences in the incidence of ocular toxicity among HSP90 

inhibitors. Slow elimination of 17-DMAG and AUY922 from the retina compared to 17-AAG and 

ganetespib could have caused prolonged HSP90 inhibition and photoreceptor cell death in a rat 

model (21). In rats, TAS-116 is distributed less in the retina than in the plasma, and is more rapidly 

eliminated from retina than the other HSP90 inhibitors. Consequently, repeated oral administration of 

TAS-116 did not produce any detectable photoreceptor injury (14). The terminal elimination half-life 

(T1/2) of TAS-116 observed in this study was slightly longer than in animals, which may explain the 

occurrence of eye disorders observed in this clinical trial. Thus, the effect of TAS-116 on the retina 

was considered clinically non-significant. 

Diarrhea has been reported with other HSP90 inhibitors, such as ganetespib and AT13387, and was 

the most frequent AE observed in this study (all grade; 83.6%, ≥ grade 3; 6.6%). The diarrhea with 

TAS-116 was manageable by dose reduction, interruption, or antidiarrheal agents. Dosing schedule 

tested in this study is considered feasible. Another common toxicity with HSP90 inhibitors, 

hepatotoxicity was not frequent with TAS-116; ≥ grade 3 AST increased and ALT increased occurred 

in 6.6% and 3.3% of patients, respectively, all of which resolved/were resolving after interruption or 

discontinuation of TAS-116. Hematological side-effects were not frequently seen with TAS-116 as 
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with other HSP90 inhibitors. Overall, TAS-116 had an acceptable safety profiles, particularly with 

QD × 5 and QOD. 

This study enrolled six patients from the UK, and the preliminary assessment based on the small 

number of Caucasian patients dosed, is that there seemed to be no ethnic differences in PK between 

Japanese and Caucasian patients after multiple administrations of TAS-116 in QD × 5. Further 

information on PK in Caucasians will be obtained from further studies with larger number of 

Caucasians. From the safety and PK profiles, the recommended doses (RDs) and schedule for further 

study of TAS-116 were established to be a fixed dose of 160 mg/body/day QD × 5 and 340 

mg/body/day QOD that are pharmacodynamically relevant. 

Durable target inhibition and antitumor activity was seen with weekly administered HSP90 inhibitors 

in a human NSCLC xenograft mouse model (25, 26). However, suppression of the client proteins in 

humans could be more transient. In a phase II study of ganetespib in patients with GIST, analysis of 

client proteins in paired tumor biopsies from four patients did not demonstrate prolonged suppression 

of KIT client protein on weekly infusion, and the conclusion was that an alternative schedule to 

prolong suppression of KIT may be necessary to increase activity (27, 28). However, excessive 

exposure to an HSP90 inhibitor has the potential for safety concerns. As for TAS-116, the favorable 

PK profiles were confirmed in preclinical and this studies. In rats, TAS-116 was distributed more in 

tumors than in retina or plasma (14). In humans, T1/2 was around 8 to 14 hours, which means that 

TAS-116 would be eliminated during 2 days drug rest. Orally available TAS-116 makes it easy to be 

administered with more frequent dosing schedules, and to be discontinued or dose adjusted when 

necessary.  

This trial demonstrates that TAS-116 can be administered frequently (QD, QD × 5 and QOD) at 

doses that increased HSP70 protein expression. HSP70 has been selected as a PD marker also in 

other clinical studies of HSP90 inhibitors, such as SNX-5422 (29) because it is difficult to measure 

the activity of HSP90 directly in tissue or blood samples. Inhibition of HSP90 activates heat shock 

transcription factor-1 (HSF-1) which induces expression of HSP70 (15). Induction of HSP70 was 

observed at RDs in this study, although the limitation of this study was that induction of HSP70 was 

not considered in direct relation to antitumor effect, as relationship between client protein reduction 

and antitumor effect by monitoring client proteins during the study period was not assessed. 

However, in order to avoid patients’ burdens from multiple biopsies, tumor samples were not 

required to evaluate the activity of TAS-116. 

Treatment with TAS-116 led to three confirmed, durable PRs in one patient with advanced GIST and 

two patients with NSCLC. Among three patients with PR, one NSCLC patient had an EGFR (one of 

HSP90 clients) mutation. Another NSCLC (histological type unknown) patient did not have any 

detectable mutation in HSP90 client proteins such as EGFR, ALK, ROS proto-oncogene 1 (ROS1), 

and rearranged during transfection (RET). The GIST patient who achieved PR had no detectable KIT 

mutations. Not only KIT, but also many other proteins found in GIST without KIT mutations, such as 

platelet-derived growth factor receptor alpha (PDGFRA), hypoxia inducible factor (HIF)-1α, 
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VEGFR, and BRAF are HSP90 clients. GIST without KIT mutations often has other mutations in 

PDGFRA, BRAF, neurofibromatosis type 1 (NF-1), or those encoding subunits of succinate 

dehydrogenase (SDH) (30); however, the status of other mutations in this patient was not known. 

SDH-deficient GIST has been found in approximately 88% of GIST patients without KIT or 

PDGFRA mutation (31) and it has been reported that HIF-1α accumulation and VEGFR 

overexpression were involved in disease progression in SDH-deficient GIST (30). Therefore, 

inhibition of HSP90 might have a positive antitumor effect on GIST regardless of KIT mutations. 

The QD × 5 regimen has been chosen for further clinical development, based on safety, tolerability 

and PK profiles of TAS-116 in this phase I study. We did not put a high priority on response rates 

because tumor types and other patient characteristics were different among the three regimens. In the 

QD × 5 regimen, there were no CRs or PRs observed, but a long duration of SD was confirmed in a 

GIST patient. Generally, it is known that responses to GIST treatment are not always accompanied 

by reductions in tumor size (32). Therefore, we considered it to be clinically significant as the PET 

images of liver metastasis showed a remarkable decrease in FDG accumulation. The TAS-116 dosing 

regimens investigated in this study have the potential to achieve sustained HSP90 inhibition leading 

to maximal antitumor activity of this compound.  

In conclusion, three oral dosing schedules, QD, QD × 5 and QOD of TAS-116 were evaluated in this 

first-in-human phase I study, and dosing regimens were identified for further development with 

promising preliminary clinical activities and safety profiles. Studies of TAS-116 are currently 

underway in patients with GIST, NSCLC, and human epidermal growth factor receptor 2 positive 

(HER2+) breast cancer. 
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Tables 

Table 1. Baseline patient demographics and disease characteristics (All Treated Patients) 

 Step1 

Dose escalation 

Step1 

Expansion 

Step2 

Dose escalation 

Step2 

Expansion 

Regimen QD QD × 5 QOD QOD 

Dose 
4.8 - 150.5 

mg/m
2
 

160 mg/body 
107.5 - 295.0 

mg/m
2
 

340 mg/body 

Number of patients (n) 16 19 20 6 

Sex, n (%)     

Male 10 (62.5) 11 (57.9) 8 (40.0) 4 (66.7) 

Female 6 (37.5) 8 (42.1) 12 (60.0) 2 (33.3) 

Age, years     

Median 55.5 61.0 54.5 56.0 

(Min, Max) (34, 74) (40, 73) (34, 72) (40, 75) 

Race, n (%)     

Asian 16 (100.0) 13 (68.4) 20 (100.0) 6 (100.0) 

Caucasian 0 (0.0) 6 (31.6) 0 (0.0) 0 (0.0) 

ECOG performance 

status, n (%) 
    

0 12 (75.0) 11 (57.9) 11 (55.0) 3 (50.0) 

1 4 (25.0) 8 (42.1) 9 (45.0) 3 (50.0) 

Tumor type, n (%)     

NSCLC 10 (62.5) 0 (0.0) 11 (55.0) 2 (33,3) 

GIST 2 (12.5) 4 (21.1) 1 (5.0) 0 (0.0) 

Pancreas cancer 0 (0.0) 3 (15.8) 1 (5.0) 1 (16.7) 

Biliary tract cancer 0 (0.0) 3 (15.8) 0 (0.0) 1 (16.7) 

Thymic cancer 2 (12.5) 2 (10.5) 0 (0.0) 0 (0.0) 

Cancer of unknown 

primary 
0 (0.0) 1 (5.3) 2 (10.0) 0 (0.0) 

Other 2 (12.5) 6 (31.6) 5 (25.0) 2 (33.3) 

Abbreviations: ECOG, Eastern Cooperative Oncology Group; GIST, gastrointestinal stromal 

tumor; NSCLC, non-small cell lung cancer; QD, once daily; QD × 5, 5 days on/2 days off per 

week; QOD, every other day. 
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Table 2. Treatment-related adverse events (incidence ≥ 10%) 

 Total 
QD 

Step 1 Dose escalation 

QD × 5 

Step 1 Expansion 

Adverse events, n (%) n = 61 
Lv. 1 to 5 (4.8 - 76.8 mg/m2) 

n = 7 

Lv. 6 (107.5 mg/m2) 

n = 6 

Lv. 7 (150.5 mg/m2) 

n = 3 

(160 mg/body) 

n = 19 

 G1 G2 ≥ G3 G1 G2 ≥ G3 G1 G2 ≥ G3 G1 G2 ≥ G3 G1 G2 ≥ G3 

Anorexia 11 (18.0) 17 (27.9) 3 (4.9) 1 (14.3)   3 (50.0) 1 (16.7) 2 (33.3)  2 (66.7)  2 (10.5) 7  (36.8)  

Eye disorder 14 (23.0) 4 (6.6) 2 (3.3)  1 (14.3)  3 (50.0) 2 (33.3)    2 (66.7) 5 (26.3)   

Diarrhea 31 (50.8) 16 (26.2) 4 (6.6) 3 (42.9)   2 (33.3) 3 (50.0) 1 (16.7) 2 (66.7) 1 (33.3)  8 (42.1) 6 (31.6) 1 (5.3) 

Nausea 16 (26.2) 9 (14.8) 1 (1.6)  1 (14.3)  1 (16.7) 2 (33.3) 1 (16.7) 1 (33.3) 1 (33.3)  8 (42.1) 2 (10.5)  

Vomiting 10 (16.4) 3 (4.9)  1 (14.3)   2 (33.3)      2 (10.5) 1 (5.3)  

Stomatitis 7 (11.5) 1 (1.6)     2 (33.3)         

Rash 7 (11.5) 3 (4.9)  1 (14.3)   1 (16.7) 2 (33.3)  1 (33.3)   1 (5.3)   

Dermatitis acneiform 9 (14.8)      2 (33.3)      3 (15.8)   

Fatigue 12 (19.7) 6 (9.8)  1 (14.3)   2 (33.3) 1 (16.7)   2 (66.7)  3 (15.8) 2 (10.5)  

Pyrexia 8 (13.1)   2 (28.6)   1 (16.7)   1 (33.3)   1 (5.3)   

Creatinine increased 13 (21.3) 21 (34.4)  2 (28.6) 2 (28.6)   5 (83.3)  1 (33.3) 2 (66.7)  3 (15.8) 5 (26.3)  

AST increased 13 (21.3) 3 (4.9) 4 (6.6) 2 (28.6)   3 (50.0)    1 (33.3) 1 (33.3) 2 (10.5) 1 (5.3) 1 (5.3) 

ALT increased 10 (16.4) 6 (9.8) 2 (3.3) 1 (14.3) 1 (14.3)  2 (33.3)     1 (33.3) 1 (5.3) 2 (10.5) 1 (5.3) 

ALPincreased 10 (16.4) 3 (4.9) 1 (1.6) 2 (28.6)   2 (33.3)   1 (33.3)   2 (10.5) 2 (10.5)  

Protein urine present 2 (3.3) 11 (18.0)  1 (14.3) 1 (14.3)   1 (16.7)      2 (10.5)  

Blood phosphorus increased 10 (16.4) 1 (1.6)     2 (33.3)    1 (33.3)  3 (15.8)   

Electrocardiogram QT prolonged 7 (11.5) 2 (3.3)  1 (14.3)   3 (50.0)    1 (33.3)  1 (5.3)   

Haemoglobin urine present 7 (11.5) 1 (1.6) 1 (1.6) 1 (14.3) 1 (14.3)  1 (16.7)   1 (33.3)   2 (10.5)   

Platelet count decreased 7 (11.5)  2 (3.3)    2 (33.3)         

 
QOD 

Step 2 Dose escalation 

QOD 

Step 2 Expansion 
   

Adverse events, n (%) 
Lv. 1 to 2 (107.5 - 150.5 mg/m2) 

n = 9 

Lv. 3 (210.7 mg/m2) 

n = 6 

Lv. 4 (295.0 mg/m2) 

n = 5 

(340 mg/body) 

n = 6 
   

 G1 G2 ≥ G3 G1 G2 ≥ G3 G1 G2 ≥ G3 G1 G2 ≥ G3    

Anorexia 2 (22.2) 1 (11.1)  2 (33.3) 1 (16.7)  1 (20.0) 3 (60.0)   2 (33.3) 1 (16.7)    

Eye disorder 2 (22.2)   1 (16.7)   3 (60.0) 1 (20.0)        

Diarrhea 6 (66.7)  1 (11.1)  5 (83.3) 1 (16.7)  1 (20.0) 2 (40.0) 2(40.0) 4 (66.7) 2 (33.3)     

Nausea 2 (22.2)   3 (50.0)   1 (20.0) 2 (40.0)   1 (16.7)     

Vomiting 2 (22.2)   2 (33.3)    2 (40.0)  1 (16.7)      

Stomatitis       4 (80.0)   1 (16.7) 1 (16.7)     

Rash 1 (11.1)      2 (40.0) 1 (20.0)        

Dermatitis acneiform 2 (22.2)   1 (16.7)   1 (20.0)         

Fatigue 1 (11.1)   2 (33.3) 1 (16.7)  2 (40.0)   1 (16.7)      

Pyrexia 1 (11.1)      2 (40.0)         

Creatinine increased 1 (11.1) 1 (11.1)  2 (33.3) 2 (33.3)  3 (60.0) 2 (40.0)  1 (16.7) 2 (33.3)     

AST increased 2 (22.2) 1(11.1)  3 (50.0)   1 (20.0)  1 (20.0)   1 (16.7)    

ALT increased 4 (44.4)   2 (33.3) 1 (16.7)   1 (20.0)   1 (16.7)     

ALP increased 2 (22.2)   1 (16.7)    1 (20.0)    1 (16.7)    

Protein urine present 1 (11.1) 2 (22.2)   2 (33.3)   2 (40.0)   1 (16.7)     

Blood phosphorus increased 2 (22.2)      2 (40.0)   1 (16.7)      

Electrocardiogram QT prolonged 1 (11.1)      1 (20.0)    1 (16.7)     

Haemoglobin urine present    1 (16.7)   1 (20.0)     1 (16.7)    

Platelet count decreased 1 (11.1)   2 (33.3)   2 (40.0)  2 (40.0)       

Abbreviation: G, grade; QD, once daily; QD × 5, 5 days on/2 days off per week; QOD, every other day. 
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Table 3. Dose-limiting toxicities 

Dosage Level Dose 

(mg/m
2
) 

Regimen DLT 

Step 1 Level 6 107.5 QD Anorexia (Grade 3) 

Step 1 Level 7 150.5 QD AST, ALT and γ-GTP increased (Grade3) 

Step 1 Level 7 150.5 QD Night blindness (Grade 3) 

Step 1 Level 7 150.5 QD Visual impairment (Grade 3) 

Step 2 Level 4 295.0 QOD PLT count decreased (Grade 3) 

Step 2 Level 4 295.0 QOD Septic shock, Respiratory failure, 

Pneumonia (Grade 4), Febrile neutropenia 

(Grade 3) 

Abbreviations: QD, once daily; QD × 5, 5 days on/2 days off per week; QOD, every other day. 
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Table 4 Tumor response by the Response Evaluation Criteria in Solid Tumors (RECIST) 

version 1.1 in the per protocol set 

 QD 

n = 16 (%) 

QD × 5 

n = 18 (%) 

QOD 

n = 26 (%) 

Best overall response, n (%)    

Partial response (PR) 2 (12.5) 0 (0.0) 1 (3.8) 

Stable disease (SD) 7 (43.8) 9 (50.0) 9 (34.6) 

Progressive disease (PD) 5 (31.3) 8 (44.4) 15 (57.7) 

Not evaluable (NE) 2 (12.5) 1 (5.6) 1 (3.8) 

Response rate (CR + PR), n (%) 2 (12.5) 0 (0.0) 1 (3.8) 

Disease control rate  

(CR + PR + SD for ≥ 12 weeks) 
5 (31.3) 7 (38.9) 4 (14.4) 

Abbreviation: CR, complete response; QD, once daily; QD × 5, 5 days on/2 days off per week; QOD, every other day. 
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Figure Legends 

Figure 1. Study design outline for the dose escalation and expansion phases. A, In step 1, the dose of 

TAS-116 (once daily, QD) was escalated according to an accelerated titration design followed by a 

“3+3” design, and the MTD was determined to be 107.5 mg/m
2
. B, In step 2, dose escalation was 

started from the MTD in step 1 using a “3+3” design, and the MTD was determined to be 210.7 mg/ 

m
2
. Both the MTDs were further tested in the expansion phase. 

 

Figure 2. Plasma concentration-time profile of TAS-116. Each line represents the mean plasma 

concentration (+SD) in patients in the dose escalation phase of step 1 when TAS-116 was 

administered once daily (QD) at a given dose. 

 

Figure 3. Change in HSP70 level by TAS-116. TAS-116 was administered QD/QD×5 in step 1 (A), 

and QOD in step 2 (B), and expression of HSP70 was analyzed in 41 patients at baseline and during 

TAS-116 treatment. Every point represents HSP70 ratio (during treatment/at baseline) and TAS-116 

dose for each patient. 

 

Figure 4. Preliminary clinical responses of TAS-116. A, Best changes in target lesion size from 

baseline for the 53 patients in the per protocol set. One patient (indicated with *) was on treatment as 

of data cutoff of May 3, 2017. The solid line indicates partial response (at least 30% decrease from 

baseline), and the dashed line indicates progressive disease (a change of greater than 20% from 

baseline) according to RECIST. B, PET/CT scans of the abdomen of a 43-year-old patient with 

heavily treated GIST. The patient received 160 mg/body (QD×5) of TAS-116. Although the tumor 

response of the patient was stable disease by RECIST, PET/CT scan showed prolonged regression of 

the liver metastases and peritoneal dissemination. 
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