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Abstract

Amplification of the oncogenic transcription factor MYCN is a defining genetic feature of high-

risk neuroblastoma. Here, we present the first dynamic chromatin and transcriptional landscape of 
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MYCN perturbation in neuroblastoma. At oncogenic levels, MYCN associates with E-box binding 

motifs in an affinity dependent manner, binding to strong canonical E-boxes at promoters and 

invading abundant clustered weaker non-canonical E-boxes at enhancers. Loss of MYCN leads to 

a global reduction in transcription. However, the most highly enhancer occupied MYCN target 

genes are more sensitive to MYCN perturbation, tissue specific, and associated with poor patient 

survival. Activity of MYCN enhancer occupied genes is dependent on the tissue-specific 

transcription factor TWIST1 which co-occupies enhancers with MYCN and is required for MYCN 

dependent proliferation. These data implicate tissue-specific enhancers in predicating often highly 

tumor specific “Myc target gene signatures” and identify disruption of the MYCN enhancer 

regulatory axis as a promising therapeutic strategy in neuroblastoma.

Introduction

The Myc family of transcription factors (TFs), comprised of MYC, MYCN, and MYCL, are 

together the most commonly altered oncogenes in cancer1, 2. They normally function as 

master integrators of cellular growth signals and mediate a transcriptional response involved 

in a variety of processes including proliferation, cell growth, differentiation, survival, and 

pluripotency. The MYCN oncogene is a characteristic feature of aggressive, relapsed 

neuroblastoma, an aggressive pediatric cancer arising from neural crest tissue3, 4. Targeted 

MYCN overexpression in peripheral neural crest is sufficient to initiate disease in mouse 

models5. MYCN down-regulation broadly reverses tumor stem-like phenotypes6, 7 and 

aberrant proliferation8-11 in a variety of neuroblastoma models12-14, and recent therapeutic 

strategies to indirectly target MYCN production or protein stability have reduced tumor 

growth in vivo15-17.

Whereas MYCN function has not been dynamically characterized using incisive genome-

wide measurements, several recent studies have considered the transcriptional consequences 

of elevated MYC levels, presenting two seemingly conflicting views on the mechanistic 

consequence of MYC deregulation in cancer18-21. First, MYC has been reported to function 

in a context-specific manner, activating or even repressing discrete target genes20, 21. 

Alternatively, MYC has been found to broadly remodel the cancer cis-regulatory landscape 

leading to increased transcription at all active genes promoting global transcriptional 

amplification18, 19. At physiological levels, both models predict MYC binding to high 

affinity canonical (CACGTG) E-box sites at the promoters of genes involved in growth and 

proliferation. At deregulated levels, highly abundant MYC proteins, which can only bind to 

regions of open and accessible chromatin, saturate the cell’s active cis-regulatory landscape, 

binding to prevalent degenerate non-canonical CANNTG E-boxes to effect a complex 

systemic and pleiotropic transcriptional consequence22. This is further complicated by the 

numerous functional roles of MYC family proteins, their complex interaction networks, and 

the difficulty in discriminating direct effects of MYC binding from secondary indirect 

consequences21. These observations suggest that MYC blurs the line between a gene-

specific and global gene control factor, with a small number of genes uniquely evolved to 

rapidly respond to perturbations in MYC levels and other functional responses largely 

predicated on the cell’s pre-established chromatin landscape and gene expression program23.
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To understand the functional consequence of MYCN activation, and to resolve residual 

ambiguity regarding Myc-family TF mechanisms of genome-wide transcriptional regulation, 

we performed kinetic studies of MYCN activation and withdrawal in neuroblastoma.

Results

Deregulated MYCN binds active chromatin and amplifies transcription in neuroblastoma

To first profile MYCN downregulation from oncogenic levels, we experimentally selected a 

panel of human neuroblastoma cell lines with and without MYCN amplification that express 

varying levels of MYCN (Fig. 1a; Supplementary Fig.1a), and employed the well-

characterized tet-off MYCN SHEP-21N cell line model24 (Fig. 1b; Supplementary Fig. 1b 

and Supplementary Table 1). Additionally, we explored the consequences of MYCN 

induction by engineering a tet-on MYCN model in the parental SHEP neuroblastoma cell 

line grown for multiple passages in a low MYCN state (Fig. 1c). Across MYCN-amplified 

neuroblastoma lines, we used chromatin immunoprecipitation coupled to high-throughput 

sequencing (ChIP-seq) to generate a consensus genome-wide map of ~10,000 regions that 

exhibit strong and consistent MYCN occupancy (Supplementary Fig. 1c; supplemental 

methods).

In a deregulated state, MYC binds to virtually all active promoters and subsequently 

‘invades’ promoter-distal enhancer regions18, 19, 21. Comparably, we identify deregulated 

MYCN at active promoters e.g. at NPM1 (Fig. 1d) that are corroborated by the presence of 

active transcription marks/factors (H3K4me3, BRD4, RNA Pol II) in BE(2)-C. Genome-

wide conserved MYCN binding regions occur almost exclusively (96%) at active promoters 

and enhancers and show a strong concordance with active chromatin acetylation (H3K27ac), 

with virtually no overlap with regions of repressive H3K27me3 (Fig. 1e; Supplementary Fig. 

1d-i; supplemental methods)

We next aimed to characterize the hierarchy of binding at active promoters and enhancers. 

We find that MYCN signal correlates with H3K27ac signal and these regions of increased 

binding overlap more with active TSS regions versus distal enhancers (Supplementary Fig. 

1j). Trends in MYCN loading are reflected in the underlying sequence composition of 

binding sites. Strong promoter associated sites are highly enriched for the canonical 

(CACGTG) E-Box whereas weaker sites found at promoters and distal enhancers show 

higher enrichment of clustered non-canonical (CANNTG) E-boxes (Fig. 1e; Supplementary 

Fig. 1j). These trends in E-box occupancy are re-capitulated by de novo motif finding at 

promoters and enhancers (Fig. 1e) and are consistent with MYCN broadly associating with 

active regulatory elements in an affinity dependent manner, as previously observed for 

MYC19, 25. These data support a model that when deregulated, MYCN binds strongly at 

canonical E-boxes found at promoters of active genes (e.g. RPL22) and at clustered non-

canonical E-boxes found at weaker promoters and distal enhancers (e.g. ID2), 

(Supplementary Fig. 1d,e).

We next investigated the dynamic chromatin and transcriptional consequences of direct 

MYCN depletion. Using the controllable tet-off MYCN SHEP-21N cells, we rapidly and 

synchronously eliminated MYCN with a 96% reduction achieved after only six hours (Fig. 
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1b). Distinct from prior studies of MYC inactivation, we characterized rapid kinetic effects 

of dynamic modulation of MYCN (0, 2, and 24 hours post inactivation) to profile changes in 

a high, medium, and low MYCN state. In anticipation of global changes to chromatin and 

transcription that might be masked by relative chromatin enrichment methods, we 

complemented traditional ChIP-seq methods with the cell count normalized ChIP-Rx26 

approach to quantify absolute changes in MYCN, H3K27ac, H3K4me3, CTCF, and RNA 

Poll II occupancy (Supplementary Fig. 2a,b; supplemental methods).

We observe that two hours after shutdown, MYCN is significantly depleted from promoters 

and enhancers (Fig. 1f; Supplementary Fig. 2c,e,f) — a result revealed by ChIP-Rx cell-

count normalization (Supplementary Fig. 2e,f). At the exemplary MYC target gene NPM1, 

loss of MYCN from promoter regions initially results in a decrease of elongating RNA Pol II 

and subsequent loss of NPM1 mRNA, suggesting that MYCN directly promotes 

transcription elongation, again akin to MYC (Fig. 1d,h). Overall early defects in 

transcriptional pause release culminate in loss of active chromatin marks and both initiating 

and elongating RNA Pol II, resulting in a global dampening of mRNA steady state levels 

(Fig.1g-i>; Supplementary Fig. 2d-j). Although both traditional ChIP-seq and ChIP-Rx 

reveal global loss of MYCN at promoters and enhancers, we do observe global loss of 

additional marks (H3K4me3, CTCF, H3K27ac, and RNA Pol II) at 24 hours post MYCN 

shutdown only in ChIP-Rx data (Supplementary Fig. 2g, Supplementary Fig. 3a-c). As all 

ChIP-Rx datasets show this global effect, in the absence of a negative control, we 

hypothesize, but cannot conclude with certainty that MYCN shutdown has global effects on 

chromatin compaction in neuroblastoma, as has been recently reported for MYC in B cell 

activation27. We do note that by global H3K27ac quantification, we observe a global loss in 

chromatin acetylation 24 hours after MYCN shutdown (Supplementary Fig. 2h), an 

observation also consistent with previous reports that MYC regulates global chromatin 

accessibility. In contrast, induction of MYCN in parental SHEP neuroblastoma cells (Fig. 

1c,d) results in loading of MYCN at active promoters and enhancers, and is coincident with 

increases in global H3K27ac (Supplementary Fig. 3d-f). These data are consistent with 

MYCN acting as a global amplifier of transcription in neuroblastoma.

Enhancer invasion shapes MYCN transcriptional response in neuroblastoma

To better assess the direct contribution of MYCN to transcriptional response at individual 

genes, we hypothesized a direct relationship between underlying MYCN sequence affinity at 

promoter/enhancer regions, MYCN loading at these regions, and the resulting transcriptional 

response upon MYCN perturbation (Fig. 2a). Visual inspection of MYCN load at highly 

occupied genes revealed a diversity of binding profiles with some genes exhibiting promoter 

MYCN binding (RPL22) and others a more mixed array of promoter and enhancer binding 

(HAND2 & ID2) (Fig. 2b).

As enhancers are highly tissue specific and context dependent, we sought to determine 

whether similar MYCN enhancer invasion occurred in vivo. Profiling of the TH-MYCN 

genetically engineered neuroblastoma mouse model28 (Supplementary Fig. 4a) revealed 

MYCN binding at the promoters of classic MYC target genes (Npm1/Rpl22), as well as at 

enhancers for key neuroblastoma and/or neural crest associated genes (ID2 and GATA2) 
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(Fig. 2c; Supplementary Fig. 4b,c). Notably, MYCN binding also occurs at additional 

enhancers that others have shown to be lineage or tumor specific29, such as the Mirlet7b and 

Lin28 loci respectively (Supplementary Fig. 4d,e). Let-7 is a prominent miRNA tumor 

suppressor that is often post-transcriptionally attenuated by induction of Lin28 in 

neuroblastoma29. Overall, 69% and 36% of conserved neuroblastoma MYCN bound 

promoters and enhancers in human cell lines exhibited evidence of chromatin acetylation 

(H3K27ac) in TH-MYCN tumors and/or the celiac and superior cervical ganglia, the 

established tumor tissues of origin that display little MYCN activity (Supplementary Fig. 

4a,f). Together, these data suggest that deregulated MYCN binds to and invades 

developmental enhancers that are pre-established. In support of this hypothesis, induced 

MYCN in SHEP parental cells (cultivated over time without MYCN) overwhelmingly binds 

to and invades pre-acetylated promoters and enhancers (Fig. 2d; Supplementary Fig. 3a,b).

Globally, genes with the highest total MYCN signal at proximal regulatory loci (i.e. 

promoter + and nearby <50kb distal enhancer MYCN) exhibited the highest levels of 

MYCN enhancer occupancy and relative fraction of enhancer MYCN contribution (Fig. 2e). 

This enhancer MYCN loading occurred at broad regions of enhancer occupancy with high 

overall levels of MYCN, suggesting that distal enhancers provide a reservoir for excess 

MYCN that is only accessed upon deregulation. This is observed both for MYCN in 

SHEP21-N cells and as well averaged across neuroblastoma cell lines (Supplementary Fig. 

5a,b). Indeed, 2 and 24 hours after MYCN shutdown, weaker MYCN binding sites at 

enhancers are preferentially depleted in SHEP21-N cells when compared to canonical E-box 

enriched promoter sites. Conversely, induction of MYCN results in the opposite effect, with 

promoter sites preferentially gaining MYCN binding sites (Fig. 2f, Supplementary Fig. 3d). 

Preferential enhancer loss corresponds to increased transcriptional sensitivity as measured 

using both cell count normalized and relative profiling of mRNA levels and elongating RNA 

Pol II density (Fig. 2g,h; Supplementary Fig. 5c-f). These findings are recapitulated in 

BE(2)-C cells by JQ1, a BET bromodomain inhibitor that we have previously shown to 

selectively deplete MYCN in neuroblastoma (Supplementary Fig. 6)17. Overall, we observe 

a strong dose dependence between MYCN signal and transcriptional response suggesting 

that MYCN affinity of underlying promoter and enhancer regions shapes MYCN dependent 

transcriptional amplification in neuroblastoma. Importantly, the top 25 highly loaded and 

MYCN sensitive genes can accurately stratify neuroblastoma overall survival in all patients 

and specifically in patients without evident MYCN amplification, a cohort that is generally 

considered low risk30 (Fig. 2i and Supplementary Table 2).

Enhancer invasion accounts for tumor specific MYC/MYCN signatures

Cellular processes and developmental transitions are regulated by cell type specific 

enhancers. The observed enhancer invasion by deregulated MYCN suggests that MYC 

family transcription factors may act through pre-established enhancers to amplify tissue-

specific gene expression31, 32. Toward a general explanation, we investigated active enhancer 

landscapes in the context of both MYCN (neuroblastoma) and MYC (four tumor types) 

deregulation. We first examined enhancer structure and MYC/MYCN occupancy at 

canonical tissue-specific genes. In neuroblastoma cell lines, we observe neuroblastoma 

specific enhancer activity and coinciding MYCN binding at the enhancer for tyrosine 
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hydroxylase (TH), a neural crest lineage marker28, while we observe multiple myeloma 

specific enhancer activity and coinciding MYC binding at the enhancer for the plasma 

lineage factor IRF433. Lastly, at the promoter dominant gene NPM1 we observe conserved 

MYC/MYCN binding, which is active in both tumor types (Fig. 3a).

To test this hypothesis globally, we ranked the top 5,000 MYCN loaded genes by their 

relative promoter/distal enhancer MYCN contribution and performed leading edge 

functional analysis (Fig 3b-e). We find that promoter dominant genes statistically enriched 

for the classically defined core MYC target gene set34-39, whereas distal enhancer dominant 

genes included key neuroblastoma oncogenes (HAND2 & ID family TFs) and neural crest 

markers (TH), and were enriched for known signaling signatures in neuroblastoma including 

response to Tretinoin (retinoic acid), a pro-differentiating agent used clinically to treat high-

risk neuroblastoma40. Similar analysis comparing MYCN to the enhancer mark H3K27ac in 

BE(2)-C cells produced distinct promoter/distal enhancer signatures (Supplementary Fig. 

7a-h,k), suggesting a MYCN specific pattern of enrichment. Notably, genes on both the 

promoter dominant and enhancer dominant leading edge were capable of stratifying 

neuroblastoma patient overall survival suggesting that both promoter and enhancer dominant 

genes contain important oncogenic gene expression programs (Supplementary Fig. 7i,j and 

Supplementary Table 2).

Importantly, shutdown of MYCN preferentially depleted distal enhancer gene signatures, 

whereas induction of MYCN first established promoter gene signatures prior to distal 

enhancer signatures (Fig. 3f; Supplementary Fig. 7l). These data suggest that deregulated 

MYCN invades enhancers to drive tumor specific processes in neuroblastoma.

When this same analysis was performed with 4 additional models of MYC driven cancers 

(MYC amplified small cell lung cancer, IgH/MYC translocated multiple myeloma, Burkitt 

lymphoma, and glioblastoma), we again resolved increased enhancer contribution at highly 

occupied genes (Supplementary Fig. 8). Consistent with the tissue/tumor specific nature of 

enhancers, we observed much stronger correlation of MYC promoter binding relative to 

enhancers (Fig. 3g,h). Distal enhancer/promoter analysis revealed the MYC core target gene 

set and associated housekeeping gene signatures at the promoter dominant leading edge 

conserved across tumors. However, in contrast to neuroblastoma, distal enhancer dominant 

MYC bound genes enriched for their respective tumor-specific pathways including chr16p13 

amplification in small cell lung cancer41, chemokine and CD40 signaling in multiple 

myeloma42-45, Epstein-Barr Virus in multiple myeloma and Burkitt lymphoma46, and 

FOXO3 targets in glioblastoma47. Notably chromatin pathways appeared as a MYC/MYCN 

enhancer regulated signature in multiple tumors contexts48, 49 (Fig. 3i). These data suggest 

that enhancer invasion can account for the divergent and often puzzling consequences of 

oncogenic MYC/MYCN activation and provide a rationale for the tumor specific oncogenic 

phenotypes observed upon MYC/MYCN deregulation.

TWIST1 co-occupies enhancers with MYCN and is required for expression of the MYCN 
enhancer axis

If MYCN enhancer invasion accounts for the tumor specific consequences of MYCN 

deregulation, then the TFs that establish tissue specific enhancers likely define MYCN 
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enhancer responsive gene expression programs. In any given cell type, a small set of tissue 

specific TFs are regulated by large clusters of enhancers (so-called super-enhancers or SEs), 

and these SE-associated TFs themselves often occupy the vast majority of active enhancers 

and super-enhancers as a core regulatory circuit50, 51. Thus, an integrated computational 

analysis of TF motif occupancy at SEs may allow the inference of TFs that define enhancer 

landscapes. We applied a recently reported methodology developed by our lab to define the 

highly-interconnected core regulatory circuitry of enhancer regulating TFs52, 53 

(Supplementary Fig. 9a-d). The consensus circuitry includes several well established 

regulators of neuroblastoma identity including MEIS1/2, GATA2/3, PHOX2A/B and 

HAND254-56 that are not present in other unrelated tumor circuitries (Supplementary Fig. 

10). These data are consistent with recently reported studies identifying at least two distinct 

cell states as defined by core regulatory circuitries including an adrenergic/sympathetic 

noradrenergic and a mesenchymal/neural crest cell state57, 58. Specifically, we find that cell 

lines BE(2)-C, NGP, and Kelly correspond to the adrenergic/sympathetic noradrenergic state 

characterized by PHOX2B, PHOX2A, and GATA3 (Supplementary Fig. 9b-c). SHEP-21N 

which was derived from the parental SHEP line corresponds to the mesenchymal/neural 

crest cell state and is defined by PRRX1 and members of the AP-1 TF family 

(Supplementary Fig. 9b-c). From this analysis, we also retrieve the TFs TWIST1 and 

HAND2 across cell lines of both states which are lineage specific bHLH TFs with a well-

established role in promoting tumorigenesis in several human cancers including 

neuroblastoma59-61 (Supplementary Fig. 9d).

Since bHLH TFs recognize E-box CANNTG motifs, we hypothesized that the clustered 

non-canonical E-boxes at enhancers invaded by MYCN might be proximally occupied by 

TWIST1 and HAND2, and that these factors may collaborate to drive oncogenic enhancer 

transcription. Indeed, high affinity TWIST1 and HAND2 sites are predicted at > 80% of all 

MYCN enhancer sites (Fig. 4a). As TWIST1 has been implicated in MYCN amplified 

neuroblastoma62, we sought to investigate its role and relation to MYCN in regulating 

neuroblastoma enhancer driven transcription. Performing ChIP-seq for TWIST1 in the 

SHEP-21N and BE(2)-C lines, we observe strong overlap of MYCN and TWIST1 at 

enhancers and show by de novo motif finding that TWIST1 recognizes a CANNTG E-box 

similar to enhancer bound MYCN (Fig. 4b-c). Inspection of individual MYCN invaded 

enhancer loci reveal spatially proximal co-localization of MYCN/TWIST1 at clustered non-

canonical E-box motifs (Fig. 4d). Unexpectedly, MYCN shutdown broadly depletes genomic 

bound TWIST1 at 24 hours with minimal change in TWIST1 protein levels (Fig. 4e,f), 

suggesting an important regulatory link that is further emphasized by the correlative 

relationship between MYCN loss and TWIST1 at MYCN/TWIST1 co-occupied regions 

(Supplementary Fig. 9e). Overall, genes with proximal and strong MYCN/TWIST1 

occupied enhancers are more potently down-regulated by MYCN shutdown than genes 

associated with strong MYCN only (Fig. 4g). Finally, these high MYCN/TWIST1 occupied 

genes also stratify patient overall survival (Fig. 4h and Supplementary Table 2), implicating 

the MYCN/TWIST1 regulated gene expression program in neuroblastoma.

As a regulator of mesenchymal lineage and de-differentiated cell state in tumors, TWIST1 

specifies target genes, but relies on other cues, including potentially MYCN, to enforce 

transcriptional activation or repression. To evaluate TWIST1 as a deregulated MYCN-
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specific neuroblastoma dependency, we utilized CRISPR Cas9, siRNA, and shRNA genetic 

approaches to perturb TWIST1. First, CRISPR Cas9 mutagenesis scanning of the TWIST1 

locus and its large proximal enhancers with a multiplexed library of 3,351 single guide 

RNAs (sgRNAs) revealed TWIST1 cis-regulatory enhancer elements as required for 

neuroblastoma proliferation (Fig. 4i,j and Supplementary Table 3) — a result not seen with 

similar CRISPR Cas9 scanning of the expressed chromatin regulator NSD1 (Supplementary 

Fig. 9f,g and Supplementary Table 4). These data provide initial validation for the 

essentiality of cis-regulatory enhancers participating in the predicted neuroblastoma core 

regulatory circuitry. Second, siRNA depletion of TWIST1 revealed a MYCN dependent 

effect in neuroblastoma as seen across cell lines with high (BE(2)-C) vs. low (SH-SY5Y) 

MYCN, and in the isogenic SHEP21-N system at high and low MYCN states 

(Supplementary Fig. 9h,i and Supplementary Table 4). Finally, induced shRNA mediated 

kinetic TWIST1 knockdown reduces neuroblastoma proliferation in BE(2)-C cells (Fig. 4k 

and Supplementary Table 3) and selectively down-regulates only genes with high MYCN 

enhancer signal and fails to preferentially down-regulate high MYCN promoter loaded genes 

(Fig. 4l). This observation is in contrast to MYCN shutdown which preferentially down-

regulates genes ranked either by promoter or enhancer MYCN signal (Supplementary Fig. 

9j). These data establish TWIST1 as a key regulator of the MYCN enhancer axis and 

suggest a potent oncogenic collaboration between TWIST1/MYCN in driving enhancer 

dependent neuroblastoma gene expression.

Discussion

When deregulated, MYCN dominates the active cis-regulatory landscape of neuroblastoma 

to enforce both proliferation through promoter binding and de-differentiation through 

enhancer invasion. We establish that MYCN load at promoters and proximal enhancers 

predicts transcriptional responsiveness to MYCN shutdown and that MYCN enhancer 

binding occurs prominently at the most strongly occupied and down-regulated genes, 

suggesting a role for these tissue specific elements in predicating MYCN responsive “target” 

genes.

In neuroblastoma, oncogenic collaboration of MYCN and TWIST1 at enhancers demarcates 

a set of developmental genes important to neuroblastoma tumorigenesis and highly sensitive 

to both MYCN and TWIST1 perturbation. In contrast, in the B-cell malignancies multiple 

myeloma and Burkitt lymphoma that do not express HAND or TWIST factors, we instead 

identify and validate TCF3 (E2A) as a bHLH TF that is selectively required for growth of 

MYC deregulated multiple myeloma, and may play an equivalent role as TWIST1 

(Supplementary Fig. 10 and Supplementary Table 5). These data demonstrate the 

extensibility of an approach to identify unrecognized tumor dependencies among core 

regulatory TFs, via collaborative gene control with Myc family oncoproteins.

Finally, instead of focusing only on the overall global transcriptional consequences of 

MYCN shutdown, or more narrowly at the most differentially regulated target genes, our 

results prompt a more quantitative consideration of MYCN as a dose dependent amplifier of 

transcription that is shaped by E-box rich cis-regulatory elements at promoters and 

enhancers. Whereas highly MYC/MYCN bound promoters are active in a majority of cell 
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types, the enhancer dominant MYC/MYCN bound genes vary greatly between tumor types, 

suggesting that enhancers and the factors that form them are responsible for imparting gene 

selectivity and producing the often divergent and tumor specific MYC/MYCN responses63. 

Notably, highly MYCN loaded genes stratify patient overall survival, an effect that is 

improved by incorporating the MYCN enhancer axis. Interestingly, this gene set is able to 

stratify patients without genomic MYCN amplification, a cohort with typically favored 

prognosis for which there are few means to reliably identify high risk individuals. 

Additionally, these data suggest that certain neuroblastoma tumors without MYCN 

deregulation are able to activate this oncogenic gene expression program. These data provide 

the first molecular characterization of the direct MYCN occupied gene expression program 

and its role in patient disease progression.

Online Methods

Cell lines.

SK-N-AS, SH-SY5Y, NGP, BE(2)-C, and KELLY cells were kindly provided by Dr. 

Kimberly Stegmaier (Dana Farber Cancer Institute) and cultured in Dulbecco’s Modified 

Eagle Medium (DMEM) supplemented with 10% FBS. SHEP-21N cells were kindly 

provided by Dr. William Weiss (University of California, San Francisco) and cultured in 

RPMI supplemented with 10% Tetracycline-Free FBS (Clontech). SHEP-TetOn_MYCN 

cells were lentivirally engineered (the parental SHEP line was kindly provided by Dr. 

William Weiss) and cultured in identical conditions to the SHEP-21N cells. BE(2)-

C_shTWIST1,2 cells were lentiviral engineered and cultured in DMEM supplemented with 

10% Tetracycline-Free FBS. Controllable expression in each respective system was 

performed by addition of doxycycline (0.2 - 0.5 μg/mL) to growth media. The Multiple 

myeloma cell lines MM.1S and U266 were purchased from American Type Culture 

Collection (ATCC) and cultured in RPMI supplemented with 10% FBS. All cell lines were 

tested for mycoplasma using the MycoAlert kit (Lonza, LT07-218) following manufacturers 

instructions.

Cell line engineering.

Lentiviral vector cloning.—A MYCN cDNA was cloned into the Tet-On pLIX401 

vector obtained from Addgene (a gift from David Root, Addgene plasmid # 41393) via 

gateway recombination. All clones were digest confirmed and sequence verified. Inducible 

shRNA constructs targeting TWIST1 were purchased from Cellecta in the following vector: 

pRSIT16-U6Tet-sh-CMV-TetRep-2A-TagRFP-2A-Puro. Human TCF3 shRNA vectors were 

purchased from Dharmacon in the GIPZ lentiviral shRNAmir vector (Clone 

V2LHS_168969, Clone V2LHS_168972, Clone V2LHS_221776).

Lentiviral production and infection.—Lentiviral particles were produced using 2nd 

generation packaging plasmids psPAX2 and pMD2.G obtained from Addgene (a gift from 

Didier Trono, Addgene plasmid #s 1226 and 12259). 293FT cells (ThermoFisher) were 

cultured in DMEM supplemented with 10% FBS, NEAA, and sodium pyruvate per 

manufactures instructions and transfected using Lipofectamine 2000 (ThermoFisher,). Viral 

supernatant was collected 48 and 72 hours after infection, filtered through a 0.45μM filter 
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(EMD Millipore), and concentrated with Lenti-X concentrator (Clontech). Target cells were 

transduced with concentrated virus in the presence of 8μg/mL of polybrene via spin-fection 

(2000 rpm for 1 hour). After 24 hours, cells were re-plated in the presence of 0.5-2μg/mL 

puromycin for 48-72 hours. SHEP parental cells (kindly provided by Dr. William Weiss, 

UCSF) were transduced with Tet-On MYCN lentiviral particles to generate the SHEP-

TetOn_MYCN cell line. BE(2)-C cells were transduced with each respective inducible 

shRNA targeting TWIST1 to generate the BE(2)-C_shTWIST cell lines. Multiple myeloma 

cells (MM.1S and U266) were transduced with shRNAs to targeting TCF3 to generate stable 

TCF3 knockdowns.

Immunoblotting.

For whole cell lysates, cells were lysed using RIPA buffer supplemented with protease 

inhibitor cocktail (Roche) for 20 minutes. Lysates were clarified at 16,000 g for 15 minutes 

at 4°C and protein concentration was determined using BCA assay (Pierce). For cell 

normalized blots, cell numbers were determined using the Countess automated cell counter 

(Invitrogen) prior to RIPA lysis. A histone extraction was performed for histone blots on cell 

normalized pellets by acid extraction. Cells were lysed in Triton Extraction Buffer followed 

by an overnight acid extraction in 0.2N HCL overnight. Antibodies for western blot were 

purchased as follows: MYCN (Santa Cruz, sc-56729), Vinculin (Santa cruz, sc-25336), 

GAPDH (Cell signaling, 2118), H3K27Ac (abcam, ab4729), H3 (Cell Signaling, 3638S), 

TWIST1 (abcam, ab50887). Blots were imaged using fluorescence-labeled secondary 

antibodies (LI-COR) on the OdysseyCLX Imager (LI-COR). All western blots are shown as 

cropped images with full scan blots provided with molecular weight/size markers labeled 

(Supplementary Figure 11-12).

RNA isolation.

Prior to RNA isolation, cell numbers were determined using the Countess automated cell 

counter Invitrogen. Total RNA isolation was performed using the miRvana miRNA total 

RNA isolation kit (ThermoFisher Scientific, AM1560) according to manufacturers 

instructions. Following isolation, RNA was digested with DNase (Ambion). During 

isolation, external RNA spike-ins (ERCC, Ambion) were added at the time of cell lysis. 

Total RNA was subject to polyA selection and adapter ligation in preparation for next-

generation sequencing (Illumina stranded mRNA library prep) on Nextseq (75 basepair, 

single-end).

siRNA transfection.

Neuroblastoma cells were reverse transfected (Lipofectamine RNAiMAX, Invitrogen) with 

40 nM individual siRNA duplexes (Dharmacon). Protein knockdown was assessed 48 hours 

post transfection and viable cell count measurements were made 72 hours post transfection 

using the Countess automated cell counter (Invitrogen) in biological triplicate.

Quantitative RT-PCR analysis.

Expression of human TCF3 transcript was determined using real-time quantitative reverse 

transcriptase-polymerase chain reaction (qPCR) based on TaqMan fluorescence 
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methodology, following manufacturer protocols (Applied Biosystems, Foster City, CA). The 

GAPDH gene was used as housekeeping control. Relative expression was calculated using 

the comparative delta delta (Ct) method.

Cell proliferation, viability and apoptosis assay.

MM cell proliferation was measured by (3H)thymidine uptake incorporation assay following 

manufactures instructions (PerkinElmer, Boston, MA). Cell viability was analyzed by 

CellTiter Glow (CTG) following manufactures instructions (Promega). Apoptosis was 

evaluated by flow cytometric analysis following Annexin-V (PE) and DAPI staining.

RNA cell count microarray expression analysis.

Biotinylated RNA was prepared according to the standard Affymetrix protocol from 100 

nanograms total RNA. Following fragmentation, 12.5 μg of RNA were hybridized at 45°C 

for 16 hours at 60 RPM on GeneChip Arrays (PrimeView). GeneChips were washed and 

stained in the Affymetrix Fluidics Station 450 according to the manufacturers instructions, 

using the buffers provided in the Affymetrix GeneChip hybridization, wash and stain Kit. 

GeneChips were scanned using the GeneChip Scanner 3000 and images were extracted with 

Affymetrix GeneChip Expression Console.

TH-MYCN tumor/tissue harvesting

All experimental protocols were monitored and approved by The Institute of Cancer 

Research Animal Welfare and Ethical Review Body, in compliance with guidelines specified 

by the UK Home Office Animals (Scientific Procedures) Act 1986 and the United Kingdom 

National Cancer Research Institute guidelines for the welfare of animals in cancer research 

(Workman et al., 2010). TH-MYCN mice were genotyped to detect the presence of human 

MYCN transgene 28. Palpable intra-abdominal tumors or ganglia from TH-MYCN mice at 

12-14 days of age were dissected and harvested for ChIP and immunohistochemistry. For 

ChIP, tumors and ganglia were immediately flash frozen in liquid nitrogen and stored at 

−80°C. For immunohistochemistry, tumor and ganglia tissue were immediately fixed in 4% 

paraformaldehyde before being processed.

Immunohistochemistry

Paraformaldehyde fixed mouse tumor and ganglia tissue were processed for 

immunohistochemistry using standard methods. Tissue specimens were subject to heat-

induced epitope retrieval using citrate buffer (pH 6). The M.O.M kit (Vector Laboratories) 

was used to minimize non-specific labeling. Tissues were stained with a MYCN antibody 

(OP13, Calbiochem) followed by a biotynlated mouse secondary antibody (M.O.M kit). 

Stained specimens were developed using ImmunoPACT substrate (Vector Laboratories) and 

counterstained with Haematoxylin. After counterstaining, specimens were dehydrated, 

cleared, and mounted using DPX mountant.

Neuroblastoma patient survival analysis

Matched patient outcome and expression data were obtained for 425 patients from Oberthuer 

et al., 201064. To link expression of various gene sets overall survival, we first identified 
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genes with expression data present in the Oberthuer dataset. Across samples, expression 

values were rank transformed and the median rank of the gene set was used to stratify 

patients into a high (top 5th percentile) and low (bottom 5th percentile) cohorts. Kaplan-

Meyer curves were generated using the R package survival and a KM plotting script 

authored by Abhijit Dasgupta (see URL section). The statistical significance of the 

difference between KM curves was tested using a chi-squared test with p-values reported. 

This analysis was applied for 4 gene sets: top 1,000 genes ranked by total (enhancer + 

promoter) MYCN load (Fig. 2i), top 1,000 genes ranked by either promoter dominance or 

enhancer dominance (Supplementary Fig. 7i,j), and top TWIST1 + MYCN occupied genes 

(Fig. 4h). Analysis was applied to either all neuroblastoma patients (n of 22 in each high/low 

cohort) or to patients specifically without MYCN genomic amplification (19 in each 

high/low cohort).

Chromatin immunoprecipitation (ChIP).

Antibodies for ChIP.—Antibodies for ChIP were purchased as follows: MYCN (abcam, 

ab16898), TWIST1 (abcam, ab50887), H3K27Ac (abcam, ab4729), BRD4 (Bethyl, 

A301-985A), H3K4me3 (EMD Millipore, 07-473), CTCF (EMD Millipore, 07-729), RNA 

Pol II (Santa cruz, sc-899).

ChIP.—Chromatin immunoprecipitations were performed as described with minor 

changes65. Neuroblastoma cell lines were grown to 75% confluence in 15 cm plates and 

cross-linked with 1% formaldehyde (10 minutes) followed by quenching (125 mM glycine). 

Cells were washed in cold PBS and harvested by cell scraper in cold PBS with protease 

inhibitors (Roche). Cells were centrifuged at 1650 x g for 5 minutes and flash frozen and 

stored at −80°C 50E06 cells per pellet. Pellets were resuspended in cytosolic then nuclear 

lysis buffer and DNA was sheared at 4°C using a waterbath sonicator (Bioruptor, 

Diagenode) for 25 minutes at high output (30” on, 30” off) in 1mL of sonication buffer 

supplemented with 0.5% SDS. Sonicated lysates were cleared by centrifuging at 20,000g for 

10 min and incubated overnight end-over-end at 4°C with magnetic beads prebound with 

antibody. Beads were washed three times with sonication buffer, one time with sonication 

buffer with 500 mM NaCl added, one time with LiCl wash buffer (20 mM Tris pH 8.0, 1 

mM EDTA, 250mMLiCl, 0.5% NP-40, 0.5% Na-deoxycholate) and once with TE. DNA was 

eluted in elution buffer (50 mM Tris-HCl pH 8, 10mM EDTA, and 1% SDS). Cross-links 

were reversed overnight at 65°C. RNA and protein were digested with 0.2mg/mL RNase A 

for two hours followed by 0.2mg/mL Proteinase K for one hr. DNA was purified with 

phenol chloroform extraction and ethanol precipitation.

ChIP-Rx.—ChIP-Rx was performed as described previously substituting mouse embryonic 

stem cells in place of Drosophila S2 cells 66. Mouse embryonic stem (ES) cells were grown 

to 75% confluence and cross-linked with 1% formaldehyde followed by quenching (125 mM 

glycine) as described in the previous section. Cells were washed in cold PBS and harvested 

by cell scraper in cold PBS with protease inhibitors (Roche). Cells were centrifuged at 1650 

x g for 5 minutes and flash frozen and stored at −80°C 10E06 cells per pellet. Fixed mouse 

ES cell pellets were resuspended in a cytosolic lysis buffer and then spiked directly into the 

cytosolic lysate of fixed neuroblastoma cells at a ratio of 5% of the total number of cells. 
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The lysate (neuroblastoma cells spiked with mouse ES cells) was then carried through the 

ChIP protocol.

TH-MYCN tumor/tissue ChIP.—Flash frozen tumor tissue (30-50 mg chunks) and 

ganglia (pool of 10-15 ganglia per ChIP) were minced in 1% formaldehyde and incubated 

for 10 minutes followed by quenching (125 mM glycine). Quenched tissue pellets were 

resuspended in cytosolic lysis buffer and homogenized with a Dounce homogenizer using 10 

strokes with pestle A and 10 strokes pestle B. The homogenized pellets were then spun 

down, resuspended in nuclear lysis buffer and all subsequent steps were carried out as 

described for ChIP of neuroblastoma cell lines.

Library Preparation.—Libraries for sequencing were prepared using the Rubicon 

Thruplex DNA-seq/FD library preparation kit. An input of 50 ng of DNA or less were used 

and following ligation libraries were amplified per manufacturers instructions. Amplified 

libraries were then size-selected using AMPure beads (Agencourt AMPure XP) per 

manufacturers instruction. Further size selection was performed using a 2% gel cassette in 

the Pippin Prep (SAGE Sciences) set to capture fragments between 200 - 700 base pairs. 

Libraries were multiplexed at equimolar ratios and run together either on a HiSeq2000 (40 

base pair, single end) or on a NextSeq (75 base pair, single-end).

Assay for transposase-accessible chromatin (ATAC).

For each cell line, 50,000 cells were lysed for 10 minutes at 4°C in lysis buffer 10 mM Tris-

HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-360). After lysis, the pellets 

were subject to a transposition reaction (37°C, 60 minutes) using the 2X TD buffer and 

transposase enzyme (Illumina Nextera DNA preparation kit, FC-121-1030). The 

transposition mixture was purified using a Qiagen MinElute PCR purification kit. Library 

amplification was performed using custom Nextera primers and the number of total cycles 

determined by running a SYBR-dye based qPCR reaction and calculating the cycle number 

that corresponds to ¼ the maximum. Amplified libraries were purified using a Qiagen PCR 

purification kit and sequenced on a single lane of an Illumina NextSeq.

CRISPR-Cas9 mutagenesis scanning.

Cas9 was stably expressed in the BE(2)-C cell line via lentiviral transduction (a gift from 

Feng Zhang, Addgene #52962). Cells were selected in 10μg of Blasticidin and expression 

checked by western blot (Cas9 antibody: EMD Millipore, MAC133).

sgRNAs were designed to target all possible PAM sequences on both the plus and minus 

strand of the TWIST1 and NSD1 regions as part of a larger library (total of 5,337 guides). 

Any sgRNAs that were predicted to align to more than one unique region in the genome 

were excluded. Single stranded oligos were purchased from CustomArray, Inc. in pooled 

format, PCR amplified, and cloned by Gibson assembly into the U6-sgRNA-EFS-GFP 

vector (Addgene #65656). The ligation product was transformed into electrocompetent cells 

and quality of the library was evaluated via Illumina sequencing for proper representation.
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For lentiviral packaging, HEK293T cells were transfected with pVSVg, psPAX2, and 

sgRNA using Lipofectamine 2000 (Invitrogen). Viral supernatants were harvested, filtered 

and concentrated via Lenti-X Concentrator solution (Clontech, 631232) following 

manufacturers instructions. Viral titer was calculated by a dilution series with measurements 

of GFP positivity (Guava Easycyte flow HT, Millipore). We aimed for one sgRNA per cell 

with a multiplicity of infection (MOI) of approximately 0.3 - 0.4. A total of 24E06 cells 

were transduced and maintained at all times during the screen to ensure at least 1000x 

coverage.

The genomic DNA was isolated at day 15 using the Blood and cell culture DNA maxi kit 

(Qiagen, 13362) following manufacturers instructions. Libraries were constructed as 

described previously 67. A set of 60 PCR reactions were carried out to amplify the sgRNA 

cassette, pooled, and subsequently prepared for Illumina sequencing on a NextSeq 500.

The read counts for each individual sgRNA were calculated at an early time point (day 4) 

and a late time point (day 15). The log2 fold change of the early over the late time point was 

calculated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Deregulated MYCN binds active chromatin and amplifies transcription in 
neuroblastoma
Cropped western blot of MYCN protein levels in human neuroblastoma cell lines., a. 

Cropped western blot of MYCN protein levels upon MYCN shutdown in the SHEP21-N cell 

line. The percent of MYCN remaining versus 0hr is indicated and calculated based on pixel 

intensity quantification., b. Cropped western blot of MYCN protein levels upon MYCN 

expression in the tet-on engineered SHEP cell line. c. ChIP-seq signal (rpm/bp) of the 

indicated marks at the NPM1 locus across a panel of neuroblastoma cell line models 

(MYCN amplified cell lines and inducible MYCN systems). Meta track representation 
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across four neuroblastoma cell lines shown for MYCN and H3K27ac (top). , d. (Left) Pie 

chart showing the genomic distribution of conserved MYCN binding regions across four 

neuroblastoma cell lines. (Middle) De novo motif analysis of conserved MYCN binding 

regions across four neuroblastoma lines. (Right) Heat map of conserved MYCN binding 

occupancy at E-box sequences. , e. Box plots of MYCN ChIP-seq signal at promoters (left) 

and enhancers (right) upon MYCN shutdown. Significant differences at 0, 2, and 24hrs 

denoted; Welch’s two tailed t-test: *** p-value < 1e-9. **p-value <1e-6., f. RNA Pol II meta 

gene across all active genes upon MYCN shutdown. The TSS and gene body is magnified 

and significance denoted. (Bottom right) Distribution plots of RNA Pol II TR for all active 

genes. Differences in the TR distribution at 0hr and 2hr are significant; Welch’s two tailed t-
test: *** p-value < 1e-9. **p-value <1e-6., g. mRNA levels of the NPM1 transcript during 

MYCN shutdown. Units are cell count normalized fpkm for triplicate biological replicates. 

Error bars represent standard deviation (s.d.)., h. Box plots of log2 fold changes in active 

gene expression at the indicated time points versus 0hr post MYCN shutdown. Differences 

between 2 vs. 8hrs and 4 vs. 24hrs are significant; Welch’s two tailed t-test: *** p-value < 

1e-9. **p-value <1e-6.
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Figure 2: Enhancer invasion shapes MYCN transcriptional response in neuroblastoma
a. Schematic illustrating a model in which clusters of low affinity E-boxes at enhancers 

shape deregulated MYCN transcriptional amplification b. ChIP-seq tracks of MYCN and 

H3K27ac at 0, 2 and 24hrs post MYCN shutdown at RPL22, HAND2 and the upstream ID2 
enhancer. c. Meta track representation of MYCN and H3K27ac ChIP-seq signal (rpm/bp) 

across (top) four neuroblastoma cell lines and (bottom) and three TH-MYCN tumors at the 

GATA2 locus. d. ChIP-seq tracks of MYCN and H3K27ac at 0, 2 and 6hrs post MYCN 

induction at RPL22, HAND2 and the upstream ID2 enhancer. e. (Top) Plot showing the top 

5,000 genes (x-axis) in SHEP21 ranked by total proximal MYCN signal (y-axis). (Bottom) 

Dot plot of % enhancer contribution (enhancer/total MYCN signal) sampled across bins 

(100 genes/bin) with a best fit line superimposed (loess correlation).f. Box plots of the log2 
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fold change of MYCN load at the TSS and distal enhancers of the top 5,000 genes ranked by 

proximal MYCN signal. (Top) log2 fold change at 2hr and 24hr (versus 0hr) post MYCN 

shutdown. (Bottom) log2 fold change at 2 and 6hr (versus 0hr) post MYCN induction. g. 

Cell count normalized log2 fold change (versus 0hr) of gene expression changes during 

MYCN shutdown in the SHEP-21N system. Genes are grouped according to rank ordered 

MYCN proximal load (promoters and enhancers). Error bars represent 95% confidence 

interval (CI) of the mean.h. Box plots of the log2 fold change (versus 0hr) of the amount of 

RNA Pol II (ChIP-Rx) at the TSS (left) and gene body (right) of genes grouped according to 

rank ordered MYCN proximal load. Significance is denoted by Welch’s two tailed t-test: 

*** p-value < 1e-9. **p-value <1e-6. *p-value <1e-3. i. Overall survival of patients ranked 

by expression (high or low) of the top 25 genes defined by total MYCN load for all 

neuroblastoma patients (top) and patients without MYCN amplification (bottom). 

Significance is denoted by a chi-squared test and p-values are shown.
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Figure 3: Enhancer invasion accounts for tumor specific MYC/MYCN signatures
a. (Top) Meta track representation of MYCN and H3K27ac ChIP-seg signal (rpm/bp) across 

four neuroblastoma cell lines at the indicated loci. (Bottom) ChIP-seq tracks of MYC and 

H3K27ac signal in the MM.1S cell line. mRNA expression levels are shown as a bar plot in 

each with expression in arbitrary units (A.U.). b. Differential MYCN signal contribution 

across NB lines for promoters (red) and enhancers (blue) of associated genes (y-axis) of the 

top 5,000 proximal MYCN bound regions are shown ranked by difference in MYCN 

enhancer to promoter contribution (x-axis). c. GSEA plots of MYCN bound promoter (red) 
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versus enhancer (blue) dominant gene sets defined by leading edge analysis. d. Normalized 

enrichment score (NES) of target gene signatures (Molecular Signature Database) are 

plotted on the x-axis versus the FDR (false discovery rate) on the y-axis. e. Highly 

significant gene signatures from promoter (red) and enhancer (blue) bias gene sets are 

highlighted and tabulated.f. Normalized enrichment score (NES) of target gene signatures 

(Molecular Signature Database) are plotted on the x-axis versus the FDR (false discovery 

rate) on the y-axis at 0, 2 and 24hrs post MYCN shutdown. g. Clustering of MYC/MYCN 

ChIP-seq signal at promoters across MYC/MYCN deregulated cell lines.h. Clustering of 

MYC/MYCN ChIP-seq signal at enhancers across MYC/MYCN deregulated cell lines.i. 

Heat-map of gene signatures enriched across MYC/MYCN deregulated cell lines. Selected 

signatures are annotated at a FDR <0.01 & NES > 2 cutoff.
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Figure 4: TWIST1 co-occupies enhancers with MYCN and is required for expression of the 
MYCN enhancer axis
a. (Left) Schematic of the computational approach to identifying a core regulatory circuit 

based on TF enhancer binding. (Right) Histogram plot ranking core regulatory circuit TFs 

based on motif co-occupancy with MYCN. b. Pie chart showing the genomic distribution of 

overlapping TWIST1 and MYCN bound sites. c. De novo motif analysis of enhancer regions 

for MYCN and TWIST1 binding sites. d. Meta track representation of MYCN ChIP-seq 

signal, H3K27ac ChIP-seq signal, and ATAC-seq signal (rpm/bp) at the HAND2 locus. 

Corresponding ChIP-seq signal of TWIST1 in the BE(2)-C and SHEP-21N cell lines during 
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MYCN shutdown is shown. e. Boxplots of TWIST1 signal at 0, 2 and 24hrs post MYCN 

shutdown. Significance is denoted, Welch’s two tailed t-test: *** p-value < 1e-9f. Cropped 

western blot of Vinculin, MYCN, and TWIST1 levels upon MYCN shut down. g. Cell count 

normalized log2 fold change (versus 0hr) of gene expression changes during MYCN 

shutdown in the SHEP-21N system. Genes are grouped by MYCN and/or TWIST1 binding: 

MYCN and TWIST1 co-bound sites (yellow), MYCN highly bound sites alone (black) and 

MYCN and TWIST1 lowly co-bound sites (gray). Error bars represent 95% CI.h. Overall 

survival of patients ranked by expression (high or low) of genes highly loaded with MYCN 

and TWIST1 in all neuroblastoma patients (left) and patients without MYCN amplification 

(right). Significance is denoted by a chi-squared test and p-values are shown.i. CRISPR scan 

of the TWIST1 locus and its downstream enhancers. (Top) Illumina sequencing readout of 

log2 fold enrichment/depletion (early versus late time point) of 3,351 sgRNAs. (Bottom) 

Simple moving average of log2 fold enrichment/depletion is shown. j. ChIP-seq signal of 

H3K27ac (blue), ATAC-seq (green), MYCN (red), and TWIST1 (yellow) at the TWIST1 

locus and enhancers with respect to CRISPR sgRNAs. Red shaded boxes highlight regions 

of marked log2 fold depletion. k. (Top) Cropped western blots of Vinculin, MYCN, and 

TWIST1 levels upon TWIST1 knockdown. (Bottom) Viable cell counts at 3 and 7 days post 

inducible TWIST1 knockdown. l. Log2 fold change (versus 0hr) of gene expression changes 

upon TWIST1 knockdown of genes ranked by MYCN promoter load (top) or MYCN distal 

enhancer load (bottom). Error bars represent 95% CI.
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