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Abstract 

 

Prostate Cancer (PCa) is a highly heritable disease, and rapid evolution of 

sequencing technologies has enabled marked progression of our understanding of 

its genetic inheritance . A complex polygenic model that involves common low 

penetrance susceptibility alleles causing individually small, but cumulatively 

significant risk, and rarer genetic variants, causing greater risk, represent the current 

most accepted model. Through Genome Wide Association studies, more than 100 

SNPs associated with PCa risk have been identified. Consistent reports have 

identified germline mutations in the genes BRCA1, BRCA2, MMR, HOXB13, CHEK2, 

NBS1, as conferring moderate risks, with some leading to a more aggressive 

disease behaviour. Considering this knowledge, several research strategies have 

been developed to determine if targeted prostate screening using genetic information 

can overcome the limitations of population-based PSA screening. Germline DNA-

repair mutations are more frequent in men with metastatic disease than previously 

thought, and these patients have a more favourable response to therapy with 

poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors.  Genomic 

information is a practical tool that has the potential to enable the concept of precision 

medicine to become a reality in all steps of PrCa patient care. 

 

 

1. Introduction 

Family history, ethnicity and age are the only risk factors for prostate cancer 

(PCa) that have been consistently established. Some families display significant 

aggregation of PCa cases A man with a first degree relative affected by the disease has at 

least twice the chance of developing this condition compared with the general 

population [1]The risk increases even further if more than one relative is affected and 

also if the related case presented with early onset PCa [2]. For first degree relatives of 

cases diagnosed before the age of 65, the estimated relative risk (RR) is 3.4 (95% CI 

[Confidence Interval] 2.7-4.2) [3]. When 2 first degree relatives are affected, the pooled 

RR is 4.39 (CI 2.6-7.4) [4].  Studies analysing Nordic twin registries have demonstrated 

at least a 50% higher risk in monozygotic than dizygotic twins. This, associated with the 

higher incidence in African American men suggests that genetic, rather than shared 

lifestyle factors, are responsible for much of the familial aggregation [5-7]. A large 

prospective cohort study estimated that genetic variation can explain 58% of the 

liability to develop PCa [8] 

2. Genetic Models 



Genetic predisposition variants associated with PCa consist of a mixture of 

models, ranging from rare higher penetrance genes to common variants associated with 

a slightly increased risk per variant (although the cumulative risks can be substantial as 

there are many such variants whose risks are multiplicative). Segregation analyses of 

PCa family pedigrees have suggested a major genetic component as the causative factor. 

The hypothesis of a dominant pattern of inheritance was supported in some specific 

subsets of families [9, 10]. However, the genetic model on further studies has been 

shown to be complex and includes a recessive and X-linked form of inheritance in some 

modelling studies [11, 12]. The suggestion of a potential high risk genetic component 

has spurred the use of linkage studies in pedigrees with multiple affected individuals in 

an effort to identify these genes. 

 

a. Evidence from Linkage Studies 

Linkage is the co-segregation of genetic markers with a disease, and can be used 

to indicate the likely location of disease predisposition genes. The measure of the 

likelihood of linkage is defined as the “logarithm of odds” (LOD) [13].  Different linkage 

studies described associations with several candidate locus, including 1q42, 1p36, 

8p22-23, 17q11, 20p13, Xq27-28, [14-20]. However, these findings were not 

consistently reproduced, casting doubt on their true association with PrCa risk. In 2005, 

the International Consortium for Prostate Cancer Genetics (ICPCG) reported the largest 

study to date, combining data from 1,233 families from 10 international groups [21], 

identifying only one locus with a LOD >3 located on 22q, and was only observed in 

families with high early-onset PCa aggregation. Recently, a successful approach involved 

the sequencing of a linkage region at 17q, which found mutations in the gene HOXB13, 

associated mainly with young onset and familial PCa [22].  Despite these isolated 

successful results, linkage analysis failed to provide definitive findings, suggesting a 

much more complex model of PCa susceptibility. 

 It is clear today that the inheritance model of a highly penetrant gene associated 

with a high risk is clearly not enough to account for all genetic burden of the disease, 

with multiple genes (polygenic inheritance) likely to be involved. A model based on 

several different common and low penetrance mutations is more adequate to account 

for the majority of PCa cases. Conversely, a small proportion of cases, especially those 

with early onset and strong familial aggregation, possibly harbour rarer, higher risk 

mutations.  This came to light as the correct model for PCa predisposition (Fig. 1).  

 



  

Figure1. Genetic predisposition to prostate cancer. 

Modified From: Mikropoulos et al. [23] 

 

a. Genome wide association studies and clinical implications  

The pitfalls of the linkage analysis to search the genome, especially to identify 

low-penetrance and high frequency risk determinants, exposed the need for a different 

approach. In contrast with hypothesis-based previous studies, in Genome Wide 

Association Studies (GWAS) an agnostic approach is employed, comparing the 

frequency of Single Nucleotide Polymorphism (SNPs) between cases and controls 

throughout the genome. 

A SNP is one the most common type of human genetic variation. It is a difference 

in a single nucleotide base pair in the DNA sequence between members of the same 

species. The frequency of this allelic variation is usually at least 1% to be considered a 

polymorphic SNP (Pearson and Manolio 2008)[24]. Tag-SNPs’ are SNPs in genomic 

regions of linkage disequilibrium with a causal variant. Tag-SNPs are useful as they can 

infer associations with other SNPs, but they are limited in that they might just be 

markers of the pathogenic SNPs [25, 26]. Frequently 300,000 to over two million SNPs 

can be genotyped in several thousands of samples on high- density microarrays. It has 

been an excellent tool to identify low penetrance susceptibility loci for many complex 

diseases. As so many data points are analysed at once, the level of genome-wide 

significance that needs to be achieved is P <of 5x10-8  

8q24 was the first region identified [27] and is the region that has the highest 

number of independently associated variants, with different groups reporting 16 



independent SNPs in genome wide searches, in diverse ethnic groups of men  [28-32]. 

The contribution to the total risk seems to be larger in men of African ancestry [32, 33], 

and a recent report identified 2 risk variants only found in men of African ancestry and 

a novel signal, rs111906923, in this region [34]. These SNPs are located near or within 

many PCa associated long non-coding RNAs (lncRNAs). This finding reinforces the 

hypothesis that lncRNAs might have a role in ancestry-specific PCa predisposition [35, 

36]. Additionally, the 8q24 region is located in the vicinity of MYC, a known oncogene. 

Using a chromosome conformational capture essay (3C), Ahmadyeh et al [37] presented 

evidence that support the role  of 3 independent 8q24 subregion (region1: 128.54-

128.62, region 2 128.14-128.28, region 3 128.47-128.54) as regulatory enhancers, with 

interaction with  C-MYC. 

Another SNP (rs11568818) with potential prognostic value is situated at 11q22 

within a region containing the gene MMP7. MMP7 encodes for a matrix metal-

loproteinase, which is pivotal for tumour metastasis, and overexpression of MMP7 is a 

potential biomarker for PCa aggressiveness and risk of metastatic disease [38]. Also 

high serum concentration of MMP-7 [38] and polymorphisms in this gene [39] are 

correlated with poorer outcome after radical treatment. 

rs7141529 is within the locus of RAD51B. The RAD51 protein family is involved 

in DNA repair mechanisms [40], and disruption of the DNA repair pathway is now 

thought to be important in the development of many cancers [41]. 

SNP rs2735839 was identified between the KLK2 and KLK3 genes on 

chromosome 19 in which there is a kallikrein gene cluster [46]. Kallikreins are serine 

proteases and the most recognized member of this group is the prostate-specific 

antigen (PSA). Fine mapping of the region at 19q13 led to the identification of a coding 

SNP in KLK3 that showed a stronger association with PrCa risk than the original SNP 

identified from GWAS, and this novel SNP potentially changes some characteristics of 

the PSA molecule  [42]. 

Different groups reported the same hit on chromosome 10, rs10993994, close to 

the transcription start site of the microseminoprotein beta (MSMB) gene [30, 43]. The 

product of this gene is a 10.7 kD non-glycosylated cysteine-rich protein that is 

synthesized by epithelial cells in the prostate and secreted into seminal fluid [44]. It can 

be measured in the plasma and urine, and it is one of the three most common proteins 

secreted by the prostate gland [45]. Reduced levels are seen in early disease, in tumour 

tissue, as demonstrated by immunohistochemistry, and also in the urine [46]. Also, a 

comprehensive recent report assessed tissue and serum expression using 

immunohistochemistry, RT-qPCR and genotyping of rs10993994 in patients with 

benign hyperplasia, early and advanced PCa, demonstrated that decreased expression of 

MSMB parallels cancer progression, and adjusted MSMB serum levels correlates with 

PCa risk [47].  These characteristics make MSMB a potential screening target and 



prognostic determinant, probably to be used in addition to PSA rather than replacing it 

[48]. 

Although each susceptibility allele is known to confer only a small increased risk 

individually their risks act multiplicatively [49, 50]. From the current 41 GWAS, more 

than 100 SNPs are independently associated with PCa risk and explain approximately 

33% of the familial risk of the disease (Table 1). Fine-mapping of these GWAS region 

also proved to be  very important as it can not only discover multiple independent hits 

in a region but also often can replace the original tag SNPs with a better,  more 

significantly associated variant, hence risk prediction will also be more precise using 

these newly discovered variants [51].  Men in the top 1% of the genetic risk profile of a 

population typed for these SNPs would have a 5.7-fold increased relative risk of PCa 

development in comparison with the average of the population [52]. In the near future, 

the novel findings from the Oncoarray Consortium will add new and relevant 

information about the association of common genetic variants and PCa. 

This risk stratification approach can lead to a new way to select men for early 

detection programmes, potentially overcoming many of the limitations of PSA-based 

screening. Using 26 SNPs and family history,  MacInnis et al. [53] developed an 

algorithm that has the potential to predict individual PCa development risk. Newly 

discovered SNPs can be added to the equation, as long as they contribute 

multiplicatively to the risk, allowing updated SNP-based risk stratification as new 

discoveries are confirmed. Once validated in prospective series, this can become a 

useful tool in screening decisions in clinical practice. 

Recently, the results of the Stockholm 3 (STHLM3) study were published. This 

prospective screening cohort involved 58,818 participants, aged 50–69 years. A PSA-

only based detection protocol was compared with the STHLM3 model, which employed 

plasma protein biomarkers (PSA, free PSA, intact PSA, hK2, MSMB, MIC1), genetic 

polymorphisms (232 SNPs), and clinical variables (age, family history, previous prostate 

biopsy, prostate examination). The model outperformed PSA alone for detection of 

cancers with a Gleason score ≥7 (P<0.0001), with an area under the curve (AUC) of 0.74 

(95% CI 0.72–0.75), compared with an AUC of 0.56 (95% CI 0.55–0.60) for PSA alone 

[54]. 

 A study investigated targeted screening in men with family history. The 

PROFILE feasibility study involved 115 men with a PrCa family history and who were of 

Caucasian origin. One hundred patients underwent a TRUS prostate biopsy at study 

enrollment, and the results were correlated with clinical variables and a polygenic risk 

score (PRS), based on 71 SNPS. Twenty-five PrCa cases were detected, with 12 (48%) 

classified as intermediate or high-risk disease, requiring active treatment. This number 

is almost twice as expected based on the Prostate Cancer Prevention Trial data [55]. Age 

at study entry and PSA were predictors of PrCa diagnosis. No significant association was 

found between the PRS and biopsy outcome. However, this initial pilot was not powered 



to detect this difference [56]. A more extensive main PROFILE study of 700 men is in 

progress and has incorporated multiparametric MRI into the screening algorithm. The 

conclusion of the main study will provide invaluable evidence as to whether a SNP 

profile will be helpful in the screening of higher risk men. 

The routine use of risk SNPs profiling in public health would require further 

evidence. In the next few years large studies in this area will be crucial to determine the 

role of this tool in population-based screening programs [57]. 

Copy number variations (CNV) are a distinct class of germline polymorphisms 

and recently have been associated with cancer predisposition [58]. In an analysis of 

1900 Caucasian men, Demichelis et al, reported 2 low-frequency CNV strongly 

associated with PCa [59]. The firs locus, mapping to 15q21.3, overlaps a noncoding 

element that hold multiple activator protein 1 (AP-1) transcription factor binding sites. 

The second on 12q21.31, maps directly to α-1,3-mannosyl-glycoprotein 4-β-N 

acetylglucosaminyltransferase C (MGAT4C) gene. This glicosyltransferase is 

involved in regulationg cell-cell adhesion in epithelia. These findings were replicated 

in an independent cohort, and illustrate that germline CNV may be involved in 

mechanisms of carcinogenesis regulation and progression.    

2. Rare Variants  

 The evidence from GWAS allowed clarification of a significant proportion of the 

inherited PCa risk. This technique is powered to detect common variants, with 

frequency >5%, not detecting less common risk alleles. Studies employing direct testing 

in a large number of cases and controls using next-generation sequencing have 

consistently reported a few rare genes, with moderate to highly penetrance that confer 

moderate to high individual risk. 

 

a. BRCA1/2 and implications for targeted screening 

The most reproducible results came from analysis of germline mutations in 

breast cancer predisposition cancer genes 1 and 2 (BRCA1 and BRCA2). BRCA1 and 

BRCA2 are tumour suppressor genes, coding large proteins, inherited in a dominant 

fashion with incomplete penetrance [60]. BRCA1 is a protagonist in cellular control 

mechanisms, acting in DNA damage response and repair, transcriptional regulation and 

chromatin modelling. BRCA2 is likely to be related to DNA recombination and 

restoration processes, via interactions with RAD51 and PALB2 [61]. BRCA1/2 

impairment results in a deficiency in repairing DNA double-stand breaks by the 

conservative approach of homologous recombination (HR) [62]. Affected cells start to 

employ potentially mutagenic pathways to repair these lesions [63]. 

Tumorigenesis in individuals with germline mutations in BRCA genes usually 

demands somatic inactivation of the remaining wild type allele in a tumour suppressor 



model, although there are rarer reports of haplo-insufficiency from loss of the mutant 

copy [64]. The genomic instability generated is believed to be the mechanism for the 

cancer predisposition observed 

Clear evidence has shown that mutations of the tumour suppressor BRCA2 gene 

predispose men to PCa. This predisposition was reported by the Breast Cancer Linkage 

Consortium (BCLC), which analysed men in families with a history of breast and ovarian 

cancers (also BRCA-driven malignancies). Their data estimated that men with germline 

BRCA2 mutations have an approximately five-fold higher relative risk of PCa than men 

without BRCA2 mutations. This risk increases to over seven-fold in families with men 

with early onset PCa (<65 years) [65, 66]. Subsequent studies pointed to an even higher 

risk with an estimated lifetime absolute PCa risk around 15% at the age 65, 

corresponding to an increased relative risk of approximately 8.6-fold [67]. 

By contrast, the relative risk of prostate cancer in young BRCA1 mutation 

carriers is controversial. These patients have been shown to have a smaller, though 

consistent, increased relative risk, with an estimate of 1.8- fold to 4.5-fold, representing 

a cumulative risk at 65 years of up to 8.6% [68, 69]. 

Despite representing a small fraction of PCa cases (0.45% and 1.2% for BRCA1 

and 2, respectively) [67, 68], BRCA mutation carriers have repeatedly been shown to 

have aggressive disease [70-73]. In the largest analysis of clinical characteristics of PCa 

patients who are BRCA carriers to date, Castro et al. [74] reported a larger proportion of 

high grade disease, Gleason score >8, nodal involvement and metastatic presentation 

amongst carriers than controls. Moreover, cancer specific survival and metastasis free 

survival were both significantly higher in noncarriers.  It is possible that this occurs 

because there is a higher incidence of copy number variation in PCa tumour and normal 

prostatic tissue in germline BRCA  mutation carriers [75].The sum of all evidence points 

toward the rationale for a more aggressive early detection strategy and management of 

PCa in BRCA mutated patients. 

Currently, a large multicentre international study is investigating the use of 

targeted PSA screening in BRCA mutation carriers. The IMPACT study (Identification of 

Man with a genetic predisposition to ProstAte Cancer: Targeted screening in men with 

BRCA1/2 mutations) [76, 77] has recruited to date 2481 mutation carriers and controls. 

The results of the first screening round, published in 2014, showed a predictive positive 

value (PPV) of biopsy using a PSA threshold of 3 of 37.5% in BRCA1 carriers and 23.3% 

in controls;   48% in BRCA2 carriers and 33.3% in BRCA2 controls. Furthermore, the PPV 

for detection of clinically significant disease (intermediate and high grade) was higher 

in the BRCA2 carrier group when compared to controls, 2.38% and 0.71%, respectively 

(Pearson p=0.04) [78]. The final report will present the results of 5 screening rounds. 

 

b.  Lynch Syndrome 



A patient group in which a higher PCa risk has been reported is men with Lynch 

syndrome. Lynch syndrome is a multicancer syndrome caused by germline mutations in 

the MMR genes; MLH1, MSH2, MSH6, and PMS2. Colorectal cancer and endometrial 

cancer are a predominant feature, with a 70% and 50% lifetime risk, respectively [79]. 

There is increasing evidence that PCa risk is also increased in Lynch syndrome. From 

the Manchester Regional Lynch Syndrome Database, enrolling 821 men, Barrow et al 

[80] described a 10.41-fold increase in PCa risk (95% CI 2.8–26.65). In one of the largest 

cohorts to date, Engel et al. [81] analysed 2,118 MMR gene mutation carriers, and found 

a cumulative incidence of 9.1% with a standard incidence ratio of 2.5 (95% CI 1.4–4.0). 

Both of these studies agreed that there is a preponderance of MSH2 mutations among 

PCa patients with Lynch syndrome. In a recent meta-analysis, Ryan et al [82] estimates 

a 2.28-fold increased PCa risk (95% CI, 1.37–3. 29) for all men from mutation-carrying 

families. 

c. HOXB13 

 Another gene currently of interest is the HOXB13,   Homeodomain-containing 

proteins (HOX) are a large class of sequence-specific transcription factors. Humans have 

39 HOX genes, arranged in 4 chromosomal clusters, named HOXA, HOXB, HOXC, and 

HOXD [83]. The core function is to specify the identity of body segments along the AP 

axis during embryonic development, and HOXB13 plays a crucial role in the prostate 

development [84]. Interaction of HOXB13 and Androgen receptor has been 

demonstrated in normal and PrCa cells [85], with functions of different androgen 

targets. Therefore, HOXB13 seems to be an important regulator of cellular response to 

androgens [84, 86]. 

Ewing et al. [22] reported the association of a rare germline mutation (G84E) in 

the HOXB13 gene with an increased risk of hereditary PCa. This mutation (G84E) was 

genotyped in 2443 PCa families recruited by the International Consortium for Prostate 

Cancer Genetics and was found in 4.6% of families,  all of  European descent. It was 

more common in Nordic countries and less common in North America and Australia. 

And within HOXB13 carrier families the G84E mutation was more common in men with 

a diagnosis of PCa [70]. A meta-analysis of 24 trials with 97,844 participants by Shang et 

al. identified that the frequency of the G84E mutation was higher among cases with 

younger age at onset with an OR (odds ratio)  of 10.1 (95% CI: 5.97–17.12) and among 

patients with family history, with an OR of 5.01 [71]. The meta-analysis by Huang et al. 

of 11 studies with 120,617 men measured the relative risk of PCa as 4.51-fold for 

HOXB13 G84E carriers and also highlighted that this variant is associated with early-

onset (OR: 9.73), familial (OR: 7.27) and high-risk (OR: 5.81) PCa [72]. A large case-

control study involving Caucasian British men reported an incidence of 1.5% of the 

variant among PCa cases, associated with a 2.93-fold increased risk [87].  

The clinical utility of this finding remains to be determined. 

 



d. CHEK2 

In response to genotoxic insults causing double strand DNA breaks, CHEK2 is 

activated and propagates the checkpoint signal along diverse pathways, leading to cell 

cycle arrest, activation of DNA repair mechanisms and eventually apoptotic cell death 

[88]. CHEK2 variants have been associated with PCa risk. A recent report from the 

Copenhagen general population study found that CHEK2*1100delC heterozygotes had 

an adjusted hazard ratio for PCa of 1.6. A pooled analysis of 5 studies described an OR of 

1.98 (95%CI 1.23–3.18) in unselected cases and 3.39 (95%CI 1.78–6.47) in familial 

cases. [89]   

e. NBS1 

 The product of the gene Nijmegen Breakage Syndrome NBS1 is a component of 

the BRCA1 DNA-damage response pathway [90].  A candidate gene analysis involving 

1861 individuals reported a higher frequency of the founder mutation 657del5 in 

patients with familial PCa, when compared with patients with sporadic PrCa and 

controls  (OR = 16, P=0.0001).  In a study involving 7706 patients, the same founder 

mutation was more frequent in cases than controls with an OR = 2.5 (P=0.0003). 

Additionally, this variant was associated with a worse prognosis [91].   

 

3. Germline Genetic variants and treatment outcomes 

Evidence is emerging that germline variants can influence diverse treatment 

modalities has been accumulating in recent years, making the use of genetic information 

to guide treatment decisions a realistic perspective. 

 Using the 23 SNPs discovered with the Collaborative Oncological Gene-

Environment Study array (iCOGS)  Kearns et al. described that rs11568818 was 

associated with pathological upgrading in a prospective cohort of surgically treated 

patients. This finding was confirmed in a second cohort of patients on active 

surveillance (AS), in which rs11568818 was associated with pathological upgrading on 

surveillance biopsies [92]. It has been shown that on average 30% of patients on AS will 

move to definitive treatment in the first 5 years, and genetic information that could 

inform a more precise stratification before AS enrolment would be of great value. 

The mechanisms involved in radiation-induced tissue damage are complex, and 

it is likely that genetic variation is one of determinants of individual response. A three-

stage GWAS identified association between a locus comprising TANC1 at 2q24.1 and late 

radiotherapy toxicity, with a combined P value = 4.64x10-11 [93].  An additional GWAS 

enrolling 663 patients treated with radical radiotherapy described more association 

between common variants and treatment toxicity than expected by chance, at a 

significance level of p= 5x10-7 [94]. In a study of 1560 patients from 4 radiotherapy 

cohorts, Ahmed et al demonstrate that 75 SNPs associated with PrCa risk are not 



predictors of radiotherapy toxicity, showing that men with genetic predisposition due 

to common variants can be safely treated with current radiotherapy regimens, and 

illustrating that many of the individual determinants of radiation toxicity are yet to be 

identified [95]. 

Castro et al. investigated the influence of BRCA mutations on PCa treatment 

outcomes in a cohort of 1302 patients, including 67 BRCA mutation carriers. The 

authors reported that carriers when treated with curative intent modalities (either 

radiotherapy or radical prostatectomy) develop metastasis sooner and had shorter 

survival than noncarriers [96]. BRCA mutation carriers with organ confined PCa were 

treated on protocols developed for noncarriers, and this study provided the first 

evidence that this may not be the ideal approach. 

 A recent multicentre study described that deleterious germline DNA-repair 

mutations are more frequent in men with metastases than described in the overall PCa 

population, including patients with localized disease. These mutations were identified 

in 11.8% (82) of 692 patients with documented metastatic disease. BRCA2 (5.3%), ATM 

(1.6%) and CHEK2 (1.9%) were the most frequent (Fig. 2) [97], A previous report in 191 

familial PCa cases showed a frequency of 7.3% of mutations in at least one of 22 crucial 

tumour suppressor genes (BROCA panel) [98].  

 

Figure 2. Distribution of DNA-repair germline mutations among 82 patients with 

metastatic prostate cancer. From Pritchard et al. [97] 

In a phase 2 study of castration-resistant PCa patients, Mateo et al. described that 

patients with somatic or germline mutations in DNA-repair genes had a significantly 

higher response to poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) 

inhibitors. From 16 patients which such mutations, 88% responded, including 100% of 

patients with BRCA2 loss [99]. Also, BRCA2 biallelic loss appears to be related with 

platinum-based chemotherapy sensitivity [100] . These findings, associated with the 



increased incidence of germline mutations in the metastatic setting, illustrate the 

potential for a genomic-based approach to treatment. The presence of an increased  

frequency of germline mutation in the metastatic setting has been demonstrated mainly 

for breast and prostate, however, there is a clear rationale for its role as a common  

feature of aggressive cancer.  

4. Conclusion 

 Our understanding of PCa genetics is growing at an accelerated pace. The 

potential clinical implications are applicable at every crucial step of the patient care 

pathway:  from selection of patients for screening, guiding treatment decisions at 

diagnosis to targeted systemic therapy in the metastatic setting, thus making genomic 

information as a practical tool to enable the concept of precision medicine to become a 

reality.  
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