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Purpose: To evaluate repeatability of quantitative multi-parametric MRI in retroperitoneal

sarcomas, assess parameter changes with radiotherapy, and correlate pre-operative

values with histopathological findings in the surgical specimens.

Materials and Methods: Thirty patients with retroperitoneal sarcoma were imaged at

baseline, of whom 27 also underwent a second baseline examination for repeatability

assessment. 14/30 patients were treated with pre-operative radiotherapy and were

imaged again after completing radiotherapy (50.4Gy in 28 daily fractions, over 5.5

weeks). The following parameter estimates were assessed in the whole tumor volume

at baseline and following radiotherapy: apparent diffusion coefficient (ADC), parameters

of the intra-voxel incoherent motion model of diffusion-weighted MRI (D, f, D∗), transverse

relaxation rate, fat fraction, and enhancing fraction after gadolinium-based contrast

injection. Correlation was evaluated between pre-operative quantitative parameters and

histopathological assessments of cellularity and fat fraction in post-surgical specimens

(ClinicalTrials.gov, registration number NCT01902667).

Results: Upper and lower 95% limits of agreement were 7.1 and −6.6%, respectively

for median ADC at baseline. Median ADC increased significantly post-radiotherapy.

Pre-operative ADC and D were negatively correlated with cellularity (r =−0.42, p= 0.01,

95% confidence interval (CI) −0.22 to −0.59 for ADC; r = −0.45, p = 0.005, 95% CI

−0.25 to −0.62 for D), and fat fraction from Dixon MRI showed strong correlation with

histopathological assessment of fat fraction (r = 0.79, p = 10−7, 95% CI 0.69–0.86).
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Conclusion: Fat fraction on MRI corresponded to fat content on histology and therefore

contributes to lesion characterization. Measurement repeatability was excellent for ADC;

this parameter increased significantly post-radiotherapy even in disease categorized as

stable by size criteria, and corresponded to cellularity on histology. ADC can be utilized

for characterizing and assessing response in heterogeneous retroperitoneal sarcomas.

Keywords: neoplasm, soft tissue sarcoma, magnetic resonance imaging, radiation therapy, diffusion weighted

MRI, apparent diffusion coefficient (ADC)

INTRODUCTION

Soft-tissue sarcomas are often highly heterogeneous tumors
with variable components that can include cellular tumor,
fat, necrosis, and cystic change. In many soft-tissue sarcoma
sub-types, post-treatment changes often cannot be described
by standard size criteria (response evaluation criteria in solid
tumors, RECIST 1.1), as components within responding tumors
may not shrink, or may increase in size, after radiotherapy (1, 2).
Additionally, where systemic therapies alone are administered in
non-resectable disease (3) or where radiotherapy with systemic
therapies are used as an alternative to surgery (4), sensitive
and reliable non-invasive methods for response assessment are
needed.Magnetic resonance imaging (MRI) enables non-invasive
assessment of the whole tumor, and a multi-parametric approach
can be used to quantify tumor components and assess changes
within these components as tumors respond to treatment.

Diffusion-weighted MRI (DW-MRI) assessment of tumor
cellularity and dynamic contrast-enhanced MRI (DCE-MRI)
assessment of tumor vascularity have been shown to increase
sensitivity of MRI in response assessment to neoadjuvant
treatment in soft-tissue sarcomas (5). Contrast-enhancement has
been shown to be indicative of response after isolated limb
perfusion (6). The transverse relaxation rate, which is sensitive
to paramagnetic deoxyhemoglobin and hypoxia (R2

∗), has been
shown to be predictive of radiotherapy response in pre-clinical
studies (7). Recent recommendations have suggested quantitative
MRI parameters as exploratory end-points in clinical trials but
emphasized the requirement for further validation studies (8).
There is a need, therefore, for assessment of the technical
performance and clinical utility of quantitative MRI techniques
in soft-tissue sarcomas in order to inform protocol development
and selection of summary statistics for reporting. Optimization
of quantitative imaging protocols requires knowledge of tumor
properties, for example selection of diffusion-weightings (b-
values) for estimation of apparent diffusion coefficients (ADCs)

Abbreviations: ADC, apparent diffusion coefficient; CI, confidence interval; CoV,

coefficient of variation; CT, computed tomography; CTV, clinical target volume;

D, diffusion coefficient; D∗, pseudo-diffusion coefficient; DCE-MRI, dynamic

contrast-enhanced magnetic resonance imaging; DW-EPI, diffusion-weighted

echo-planar imaging; DW-MRI, diffusion-weighted magnetic resonance imaging;

EF, enhancing fraction; f, volume fraction; FF, fat fraction; GTV, gross tumor

volume; IMRT, intensity-modulated radiotherapy; IVIM, intra-voxel incoherent

motion; LoA, limit of agreement; MRI, magnetic resonance imaging; PACS, picture

archiving and communication system; PTV, planning target volume; SNR, signal

to noise ratio; R2
∗, transverse relaxation rate; RECIST 1. 1, response evaluation

criteria in solid tumors (version 1.1); ROI, region of interest; VOI, volume

of interest.

(9). Separate assessments of common sub-types are essential since
optimal treatment may depend on histological sub-type (10).
Importantly, quantitative MRI parameters require validation
with histopathology to enable their future use in treatment
planning and response assessment.

The aim of this study was to assess quantitative MRI
techniques for characterization of retroperitoneal sarcomas by
evaluating (i) quantitative MRI parameters in a typical mixed
cohort and in the main sub-types; (ii) repeatability of parameters
at baseline; (iii) post-radiotherapy changes in a cohort and
individual tumors; (iv) the correlation between pre-operative
quantitative imaging parameters and histopathology.

MATERIALS AND METHODS

Patients
Thirty patients with retroperitoneal sarcoma were included in
this prospective single-center study. This study was carried
out in accordance with the recommendations of the Royal
Marsden Hospital committee for clinical research and approval
from a national Research Ethics Committee (East of England—
Cambridge East Research Ethics Committee). All subjects gave
written informed consent in accordance with the Declaration of
Helsinki (Clinical trials registry: ClinicalTrials.gov, registration
number: NCT01902667). Sequential patients were identified
between July 2013 and May 2016 by a multi-disciplinary team
at a specialist sarcoma unit. Patients were eligible for inclusion if
they had retroperitoneal sarcomawith planned surgical resection,
with or without pre-operative radiotherapy. Exclusion criteria
were contraindications for MRI or inability to tolerate the
MRI examination. Two further patients were recruited but
subsequently excluded as they did not meet the inclusion
criteria (one was found not to have retroperitoneal sarcoma; one
had a change in management). Patients underwent a baseline
MRI examination, with a second baseline examination for
repeatability assessment. Tumor types and numbers of patients
are described in Figure 1. Patients treated with radiotherapy
underwent another MRI examination after radiotherapy, prior
to surgery (median interval between final radiotherapy fraction
and MRI examination was 27 days, range 13–33 days). All MRI
examinations took place between July 2013 and July 2016.

Radiotherapy
Patients underwent a contrast-enhanced planning computed
tomography (CT) scan to construct target volumes and organs
at risk. Diagnostic MR images were co-registered to construct
the gross tumor volume (GTV). The clinical target volume
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FIGURE 1 | Study organization. Flow chart showing numbers of patients and

tumor sub-types included in each part of the study. Well-differentiated

liposarcomas refer to fatty neoplasms corresponding histologically with

differentiated adipocytic tumors closely resembling mature fat, and

dedifferentiated liposarcomas as more solid to myxoid tumors corresponding

histologically with non-lipogenic, usually pleomorphic, tumors. In this study,

closely intermingled tumors refer to intermingled well- and dedifferentiated

components, which can be seen histologically.

(CTV) included the GTV with a geometric expansion of 5mm
and adapted to encompass areas of microscopic disease. The
planning target volume (PTV) included CTV plus an additional
geometrical margin of 9mm (anteriorly, medially) and 12mm
(superiorly, inferiorly, posteriorly, laterally) to take into account
patient set-up errors and organmotion. Amedian dose of 50.4Gy
in 28 daily fractions, over 5.5 weeks was prescribed to the
PTV using a 5-field intensity-modulated radiotherapy (IMRT)

technique. Treatment verification was performed on days 1–3
and then weekly with on-board cone-beam CT imaging.

Imaging
Patients were scanned on a 1.5 T MAGNETOM Aera MRI
scanner (Siemens, Erlangen, Germany) equipped with a work-
in-progress diffusion-weighted echo-planar imaging (DW-EPI)
package. Patients were positioned supine using anterior body
matrix and posterior spine matrix receiver coils. Following axial
and coronal T1-weighted and T2-weighted anatomical imaging,
quantitative imaging series were acquired: DW-MRI for ADC
estimation; additional DW-MRI for estimation of intra-voxel
incoherent motion (IVIM) parameters (diffusion coefficient D,
volume fraction f, pseudo-diffusion coefficient D∗); multiple
gradient-echo imaging for R2

∗ estimation; Dixon imaging for fat
fraction (FF) estimation; and pre- and post-contrast T1-weighted
imaging for estimation of enhancing fraction (EF) and fractional
enhancement (εF) (11) (Supplementary Table 1). At baseline,
DW-MRI and multiple gradient-echo imaging were repeated
after a break during which the patient left the scanner room and
was then repositioned. Acquisition time was 70min for double-
baseline examinations. One patient was contra-indicated for
gadolinium-based contrast agents. For technical reasons, IVIM
series could not be acquired in one patient at baseline, one
patient post-radiotherapy, and one patient at baseline and post-
radiotherapy. 10 patients did not have Dixon imaging as this was
added to the imaging protocol during the study. Patients who
did not undergo post-contrast, IVIM, or Dixon imaging were
excluded from analysis of EF and εF, IVIM, and FF, respectively,
but included in other analysis.

Whole-Tumor Image Analysis
Assessments of baseline values, repeatability, and post-
radiotherapy changes were carried out using quantitative
MRI parameters estimated from the whole tumor volume.
Regions of interest (ROIs) were drawn on axial T2-weighted
images by an experienced soft-tissue sarcoma radiologist (8).
ROIs were drawn around the whole tumor on every slice on
which the tumor appeared, then transferred to each imaging
series, and combined to form a volume of interest (VOI).
Tumor volumes were estimated from the total volume of voxels
in the VOI. ADC and R2

∗ were estimated voxel-by-voxel
using Levenberg-Marquardt least-squares mono-exponential
fits. IVIM parameters were estimated voxel-by-voxel using a
Markov-chain Monte Carlo method for robust bi-exponential
curve-fitting. All ROI drawing and curve fitting was performed
using proprietary software (Adept, Institute of Cancer Research,
London, UK). Median, mean, standard deviation, 10th, 25th,
75th, and 90th centiles, skew and kurtosis of all fitted voxels in
the VOI were reported. A signal intensity threshold was applied
to exclude suppressed fat from ADC, IVIM, and R2

∗ analysis
as DW-MRI and multiple gradient-echo imaging employed
fat suppression. Two tumors (well-differentiated liposarcomas)
composed of more than 80% fat were excluded from ADC, IVIM,
and R2

∗ analysis as they were not evaluable using fat-suppressed
DW-MRI and multiple gradient-echo imaging. Signal-to-noise
ratio (SNR) was estimated in the DW-MRI series used for ADC
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estimation. SNR was estimated in the lowest b-value images
(b = 50 s mm−2) and was estimated as 0.66 × Stumor/SDnoise

where Stumor is the mean signal in the tumor ROI and SDnoise is
the average of the standard deviation in two noise ROIs. Noise
ROIs were drawn in the background near the corners of the
image. SNR was averaged over all slices on which the tumor
appeared, and averaged over all patients included in DW-MRI
analysis. FF was calculated voxel-by-voxel as the ratio of signal in
the Dixon fat image to the sum of signals in fat and water images
and the mean taken across all voxels in the VOI. EF was defined
as the fraction of voxels in the VOI increasing in signal intensity
by more than 5% between pre- and post-contrast T1-weighted
images. εF was defined as (S1 – S0)/(S1+S0), where S0 and
S1 are the signal in a voxel in pre- and post-contrast images,
respectively, as described in other studies (11). Tumor volume
was estimated from the total volume of all voxels in the VOI.

Statistics
All statistical analysis was carried out using Matlab 2016a,
The MathWorks Inc., Natick, MA. Differences between the
two main sub-types (liposarcomas and leiomyosarcomas) were
assessed using Wilcoxon rank sum tests (ranksum, Matlab
2016a). Repeatability was assessed using the method of Bland
and Altman (12). The coefficient of variation (CoV) of repeated

baseline measurements CoV = 100%×
√

exp
(

s2W
)

− 1, and 95%

limits of agreement LoA = 100% ×
[

exp
(

±1.96
√
2sW

)

− 1
]

,

were used to quantify repeatability, where sW is the within-

subject standard deviation sW =
√

1
2N

∑N
i=1 d

2
i , with di the

difference between two baselinemeasurements for the ith patient,
and N the number of patients (13). Repeatability of median,
mean, standard deviation, and 10th to 90th centiles was assessed
using the natural logarithm of the values and reported on a
percentage scale. 95% LoA of skew and kurtosis were estimated
using untransformed values and reported as absolute changes.
95% confidence intervals were estimated for CoV and LoA (14).

Radiotherapy response was assessed clinically using RECIST
1.1 criteria using T2-weighted images on a picture archiving
and communication system (PACS) workstation (15). Post-
radiotherapy changes in quantitative MRI parameters in
the cohort were assessed using Wilcoxon signed rank tests
(signrank, Matlab 2016a). p < 0.05 was used to indicate
significance. Post-radiotherapy changes in individual patients
were identified by comparison with the 95% LoA of repeated
baseline measurements.

Histopathological Analysis and
Imaging Correlation
A representative axial slice of the tumor was selected by an
experienced soft-tissue sarcoma radiologist using pre-operative
T2-w images. Following surgery, the surgeon aligned and
marked the tumor for sectioning by an experienced soft-
tissue sarcoma histopathologist. Distinct areas of different
morphology on MRI were selected and ROIs (∼1 cm2) from
matched slices were selected jointly by the radiologist and
histopathologist working in consensus (Figure 2). Anatomical

FIGURE 2 | Example showing positioning of ROI for histopathological and

radiological analysis. (A) Slice cut by histopathologist. (B) fitted b = 0 s mm−2

image from matching slice in DW-MRI series. ROI shown by green square and

dashed arrows. Solid arrow in (B) shows kidney (not removed in surgery). ROIs

were chosen jointly by the histopathologist and radiologist using pre-surgical

imaging, markers inserted by the surgeon, and anatomical landmarks within

tumor. Note ROI lies in a nodule in the posterior part of the tumor.

landmarks on the specimen were used for matching ROIs. Up
to 3 ROIs were chosen in each tumor to be representative
of the tissues present, giving a total of 48 ROIs from
25 tumors.

Specimens were fixed in 10% formalin, placed in processing
cassettes and processed using an automated tissue processor
before embedding in paraffin. Sections 4µm thick were cut using
a Leitz sledge microtome, floated out on a water bath at 37◦C,
mounted onto positively charged, coated glass slides. Slides were
then stored at room temperature. After dewaxing with xylene
and rehydration through alcohols, they were stained using the
standard techniques described as follows: slides were washed in
water, stained with hematoxylin, rinsed in water, differentiated
with 0.3% acid alcohol, rinsed again in water and stained with
eosin for 2min. They were dehydrated in xylene and mounted
with mounting medium.

The following properties were assessed by the histopathologist
in each ROI: cellularity, quantified using the nuclear-to-stromal
ratio, which is defined as percentage of lesional nuclei to stromal
tissue area present; fat fraction; and vessel density. ROIs were
further categorized by stroma type as fibrous (with fibrous
stroma grades 1–5), myxoid, and fibromyxoid. Correlation was
assessed using Spearman’s rank correlation coefficient (corr,
Matlab 2016a). ROIs containingmore than 80% fat were excluded
from analysis of ADC, D, f, D∗, and R2

∗.

RESULTS

Imaging Parameters in the Whole Cohort
and Individual Sarcoma Sub-Types
Figure 3 shows fitted parameters from the same slice as Figure 2.
Wide ranges of each fitted parameter were observed across the
cohort (Table 1), with median ADC estimates between 0.95
× 10−3 and 2.77 × 10−3 mm2 s−1 and a similar range of
median D estimates (0.99 × 10−3 to 2.71 × 10−3 mm2 s−1);
median R2

∗ estimates ranged from 5.19 to 58.27 s−1. Considering
the two main sub-types separately, wide ranges of parameter
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FIGURE 3 | Acquired images and fitted/calculated parameters from the same slice as Figure 2. Left-hand image: T2-weighted image showing ROI. Right-hand

panels: fitted/calculated values in ROI (color) overlaid on acquired images (gray scale). Top row: ADC overlaid on b = 50 s mm−2 image; D, f, and D* overlaid on

b = 50 s mm−2 images. Bottom row: R2
* overlaid on TE = 5ms gradient-echo image; FF overlaid on in-phase image; εF overlaid on pre-contrast image.

TABLE 1 | Baseline estimates of median ADC, IVIM parameters (D, f, D*), R2*, FF, EF, εF, and volume for the cohort, and liposarcomas and leiomyosarcomas assessed

separately.

Parameter All tumors

(n = 30a)

Liposarcomas

(n = 22a)

Leiomyosarcomas

(n = 4a)

p-valueb

ADC/10−3 mm2 s−1 1.70

(0.95–2.77)

1.85

(0.95–2.77)

1.31

(1.06–1.76)

0.08

D/10−3 mm2 s−1 1.65

(0.99–2.71)

1.77

(0.99–2.71)

1.26

(1.25–1.63)

0.2

f/% 6.85

(2.08–16.68)

6.37

(2.08–16.68)

12.78

(9.24–14.32)

0.06

D*/10−3 mm2 s−1 41.36

(14.69–85.28)

43.57

(14.69–85.28)

34.05

(15.14–42.67)

0.2

R2
*/s−1 18.50

(5.19–58.27)

19.29

(7.21–58.27)

16.84

(11.11–29.77)

0.6

Fat fraction (FF)/% 10.07

(5.25–85.09)

19.10

(6.30–85.09)

9.76

(9.17–10.36)

0.5

Enhancing fraction (EF)/% 91.03

(2.63–100.00)

83.92

(2.64–100.00)

97.68

(91.55–99.47)

0.06

Fractional enhancement (εF) 0.34

(0.00–0.64)

0.29

(0.00–0.64)

0.40

(0.39–0.53)

0.09

Volume/cm3 1,002.30

(5.37–3,882.20)

1,584.80

(5.37–3,882.20)

53.54

(20.13–222.84)

0.01

Table shows median values for cohort and sub-types. Values in brackets show ranges. Other summary statistics and repeatability are reported in Supplementary Table 2. In patients

undergoing two baseline examinations, the mean of two estimates was used.
aNumbers of patients: All tumors ADC n= 28, IVIM n= 26, R2* n= 27, FF n= 20, EF n= 29; liposarcomas ADC n= 20, IVIM n= 20, R2* n= 19, FF n= 14, EF n= 22; leiomyosarcomas

ADC n = 4, IVIM n = 3, R2* n = 4, FF n = 2, EF n = 4.
bp-values show results of Wilcoxon rank sum tests between liposarcomas and leiomyosarcomas.

estimates were observed within sub-types, for example median

ADC between 0.95 × 10−3 and 2.77 × 10−3 mm2 s−1 for
liposarcomas and between 1.06 × 10−3 and 1.76 × 10−3 mm2

s−1 for leiomyosarcomas. Wilcoxon rank sum tests did not
show significant differences between sub-types for any of the
quantitative MRI parameters studied (Table 1, p > 0.05), but

there was a significant difference in tumor volumes (Table 1,
p < 0.05). SNR in DW-MRI (b= 50 s mm−2) was 386.

Repeatability of Baseline Measurements
Repeatability of median ADCwas excellent with CoV= 2.5% and
upper and lower 95% LoA 7.1 and−6.6%, respectively (Figure 4;
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FIGURE 4 | Bland-Altman plots showing percentage change between two baseline estimates of median parameter vs. their geometric mean. (A) median ADC, (B)

median D, (C) median f, (D) median D*, (E) median R2
*. Solid lines show the mean difference between two baseline examinations (mean differences were 1.9, 1.4,

5.5, −5.0, and 9.7% for ADC, D, f, D*, and R2
*, respectively). Dashed lines show 95% limits of agreement.

Supplementary Table 2). Repeatability of mean ADC and other
ADC centiles was also good (CoV = 2.5–4.4% for 10th, 25th,
75th, and 90th centiles) with poorer repeatability of standard
deviation (CoV= 12.3%). Repeatability of D was similar to ADC,
but repeatability of f and D∗ was poor (CoVs of 2.5, 20.5, and
35.8% for median D, f, and D∗, respectively). Repeatability of R2

∗

was poorer than for ADC (CoV= 13.7% for median R2
∗).

Post-radiotherapy Changes
All patients were assessed by RECIST 1.1 criteria as having
stable disease post-radiotherapy (n = 14). However, a
significant increase in median ADC was observed in the
cohort (Figure 5, Wilcoxon signed rank test, p = 0.02).
Considering patients individually, four tumors (one synovial
sarcoma, one dedifferentiated liposarcoma, one leiomyosarcoma,
one pleomorphic sarcoma not otherwise specified) exhibited
a post-radiotherapy increase in median ADC outside the 95%
LoA, indicating a post-treatment change outside the expected
variation of repeated measurements with 95% confidence
(Figure 5, Supplementary Table 3). Cohort assessments also
showed significant increases in the mean, standard deviation,
25th, 75th, and 90th centiles of ADC (Wilcoxon signed rank test,
p< 0.05), and in themean, 75th and 90th centiles of D (p< 0.05),
but no significant post-radiotherapy changes were observed in f,
D∗, R2

∗, FF, EF, or εF (p > 0.05). The majority of tumors (10/14)

increased in volume following radiotherapy (median volume
change +4%, range −10 to +31%). No correlation was observed
between volume changes and post-treatment changes in any of
the quantitative MRI parameters studied.

Histopathological Correlation
Figures 6, 7 show examples of tumors with high/low cellularity
and high/low fat fraction, respectively. Figure 8A demonstrates
negative correlation between ADC and nuclear-to-stromal ratio,
with high ADCs in ROIs with low nuclear-to-stromal ratio and
lowADCs in ROIs with high nuclear-to-stromal ratio (r=−0.42,
p = 0.01, 95% confidence interval (CI) −0.22 to −0.59).
Figure 8A also shows a dependence of ADC on stroma type and
stroma grade. In fibrous stroma, higher ADCs were observed in
fibrous grades 1 and 2, with lower ADCs in fibrous grades 3–5
(Wilcoxon rank sum test, p = 0.01). Myxoid and fibromyxoid
stroma also exhibited high ADCs. Figure 8B shows similar
dependence of D on nuclear-to-stromal ratio (r = −0.45,
p = 0.005, 95% CI −0.25 to −0.62), and stroma type, and
stroma grade. There was no significant difference in ADC,
D, or nuclear-to-stromal ratio between post-radiotherapy and
surgery-only cohorts. FF estimated from Dixon MRI showed
strong correlation with histopathological assessment (Figure 9A,
r = 0.79, p = 10−7, 95% CI 0.69–0.86). Estimates from Dixon
MRI were slightly higher than histopathological assessment at
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FIGURE 5 | Median ADC estimates pre- and post-radiotherapy. Ladder plot

showing median ADC estimates for 13 patients pre- and post-radiotherapy

(solid lines). In patients undergoing two baseline examinations, the mean of

two estimates was used. Dashed line shows mean values for the cohort.

Asterisks show four patients exhibiting post-treatment increases in median

ADC outside baseline 95% LoA (One patient who underwent radiotherapy was

excluded from ADC analysis as the tumor [well-differentiated liposarcoma] was

composed of more than 80% fat and was therefore not evaluable using

fat-suppressed diffusion-weighted imaging).

low FF, but lower than histopathological assessments at high
FF (Figures 9A,B). There was no clear relationship between
histopathological assessment of vessel density and either f, fD∗,
R2

∗, EF, or εF, in the whole cohort nor in post-radiotherapy or
surgery-only cohorts assessed separately.

DISCUSSION

The baseline estimates of quantitative MRI parameters reported
in this cohort of 30 patients, together with their repeatability,
provide essential information for planning multi-parametric
imaging studies in soft-tissue sarcomas, including clinical trials
of new therapies. The significant post-treatment changes in ADC
suggest that ADC is a useful biomarker for response assessment
in soft-tissue sarcomas. However, the wide ranges of baseline
ADCs and high ADCs in many tumors at baseline should be
considered when characterizing tumors and assessing response.
Previous studies have suggested that a two-point scheme should
employ an upper b-value of 1.1/ADC (9), suggesting that b-
values of 397 and 1,158 s mm−2 would be appropriate for ADCs
of 0.95 × 10−3 and 2.77 × 10−3 mm2 s−1, respectively. In
a clinical study, however, a compromise may be required to
accommodate the range of ADCs expected within the study.
The mixture of sarcoma sub-types included in this study, which
is typical of trials in this rare tumor type, showed that wide
ranges quantitative MRI parameters are also present within sub-
types and must still be taken into account in studies with more
restricted inclusion criteria.

The ADCs in this study are in broad agreement with other
soft-tissue sarcoma studies although the wider range and higher

ADCs reported here may reflect the mixtures of sarcoma sub-
types (Table 2 and Figure 10). ADCs in soft-tissue sarcomas are
notably higher than other tumor types, including osteosarcomas,
which highlights the importance of establishing ranges of
quantitativeMRI parameters in soft-tissue sarcomas (Table 2 and
Figure 10). Response thresholds established in other tumors may
also differ (22).

The excellent repeatability, particularly median and mean
ADC, indicates that ADC is a robust metric in clinical studies
in retroperitoneal sarcomas. ADC repeatability was better than
in some other extra-cranial soft-tissue tumors, where CoVs up
to 7% have been observed (23). Retroperitoneal sarcomas also
exhibit good repeatability of other ADC centile values (10th to
90th centiles), in agreement with studies in other solid tumors
(24). Good baseline repeatability confers high sensitivity to post-
treatment changes, as demonstrated by the significant ADC
increase post-radiotherapy. A post-treatment increase of 7.1% in
median ADC would be outside the upper 95% LoA, indicating a
change outside the expected variation of repeated measurements.

The correlation between restricted diffusion (low ADC or D)
and high cellularity (high nuclear-to-stromal ratio) demonstrates
that the degree of restricted diffusion relates to the density
of tumor cells. A similar relationship between ADC and
cellularity was observed previously in soft-tissue sarcomas (25).
However, the present study suggests that the relationship is more
complicated than a simple correlation owing to the differences
in ADC or D between stroma types and stroma grades. ADCs
of myxoid and fibromyxoid regions are high compared with
other tumor types, while low ADCs may be indicative of
fibrous regions.

The increase in ADC post-radiotherapy agrees with other
studies (16) and was significant, although behavior across the
cohort was mixed, which may reflect the mixture of tumor sub-
types. Double-baseline measurements enable identification of
significant post-treatment changes in individuals, showing that
ADC was able to reflect radiotherapy response despite stable
disease categorization by RECIST 1.1.

Although D exhibited similar repeatability to ADC, the
repeatability of other IVIM parameters (f, D∗) was poorer, in
agreement with previous studies (24, 26–28). IVIM parameters
did not contribute additional information on post-treatment
changes, since D provided similar information to ADC (29),
while f and D∗ did not change significantly post-treatment.
Estimates of f were lower than in other tissues where the IVIM
model has been more widely applied (26). The attenuation of
the DW-MRI signal with increasing diffusion weighting did
not exhibit the steep deviation from mono-exponential behavior
at low diffusion-weightings that is characterized by the IVIM
model, and no correlation was observed between vessel density
and f or fD∗, suggesting that this model may not describe
perfusion and diffusion components of the DW-MRI signal in
these tumors. The difficulty of fitting a bi-exponential model
at low perfusion fractions has also been explored in other
studies (30).

The poorer repeatability of R2
∗ compared with ADC and

D agrees with previous studies of pelvic (31), prostate (32),
and head-and-neck tumors (33). The poor repeatability and
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FIGURE 6 | (A) Example of tumor exhibiting high cellularity, with patternless distributions of markedly pleomorphic cells dispersed in moderate amounts of

collagenous stroma (200× magnification). (B) Example of tumor exhibiting low cellularity, comprising loose fascicles of relatively bland spindle cells, dispersed in

abundant collagenous stroma (200× magnification).

FIGURE 7 | (A) Example of high-fat fraction tumor showing prominent lobules and sheets of adipocytes, intersected by sparsely cellular fibrous septa. Occasional

atypical hyperchromatic nuclei are apparent within the fibrous stroma (400× magnification). (B) Example of low-fat fraction tumor largely composed of prominent

spindle cells arising in loose fascicles within delicately collagenous stroma. Only small numbers of adipocytes are scattered within the neoplasm (100× magnification).

FIGURE 8 | Histopathological assessment of cellularity. Natural logarithm of nuclear-to-stromal ratio (estimated from histopathological analysis) vs. (A) apparent

diffusion coefficient (ADC, estimated from DW-MRI) and (B) diffusion coefficient (D, from IVIM model of DW-MRI). Each point represents one ROI. Solid black line

shows line of best fit. Points are labeled by histopathological assessment of stroma type (myxoid, fibromyxoid, or fibrous), with fibrous stroma types labeled by stroma

grade (lower grades 1–2, and higher grades 3–5). ROIs that consisted of more than 80% fat were excluded from analysis of ADC and D.

absence of post-radiotherapy changes suggest R2
∗ may be of

limited value for response assessment in a clinical setting in
soft-tissue sarcomas.

FF was not useful for detecting post-treatment changes
but the large range of baseline FF highlights the presence

of fatty components in soft-tissue sarcomas. The absence of
any significant difference in FF between liposarcomas and
leiomyosarcomas may be due to dedifferentiated components
in most of the liposarcomas. Strong correlation between
FF from Dixon MRI and histopathology demonstrates the
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FIGURE 9 | Histopathological assessment of fat fraction. (A) Fat fraction estimated from Dixon MRI vs. fat fraction estimated from histopathological assessment. Solid

black line shows line of best fit. Gray line shows line of identity. (B) Difference between fat fraction estimated from Dixon MRI and fat fraction estimated from

histopathological assessment, plotted against the mean of the two measurements. Gray line shows line of no difference between two measurements.

TABLE 2 | ADC estimates reported in previous studies of soft-tissue sarcoma and osteosarcoma.

Tumors Patients ADC estimates

Soft-tissue sarcomas (mixed

sub-types) in trunk and limbs

13 Mean ADCs between 0.9 × 10−3 mm2 s−1 and 2.3 × 10−3 mm2 s−1 in

pre-treatment measurements (16)

Soft-tissue sarcomas (mixed

sub-types) in trunk, limbs, and head

23 Mean ADCs between 0.79 × 10−3 mm2 s−1 and 2.01 × 10−3 mm2 s−1 in

pre-treatment measurements (17)

Osteosarcoma 31 Mean ADCs between 0.92 × 10−3 mm2 s−1 and 1.67 × 10−3 mm2 s−1 at baseline

and between 1.08 × 10−3 mm2 s−1 and 2.24 × 10−3 mm2 s−1 after

chemotherapy (18)

Osteosarcoma 35 Mean ADCs (1.24 ± 0.17) × 10−3 mm2 s−1 at baseline and (1.93 ± 0.39) × 10−3

mm2 s−1 after chemotherapy (19)

Osteosarcoma (pediatric) 8 Mean ADCs (2.1 ± 0.4) × 10−3 mm2 s−1 at baseline and (2.5 ± 0.4) × 10−3 mm2

s−1 after chemotherapy (20)

Osteosarcoma and Ewing sarcoma 18 Mean ADCs 1.35 × 10−3 mm2 s−1 at baseline and 1.64 × 10−3 mm2 s−1 after

chemotherapy in tumors with <90% necrosis post-treatment; mean ADCs 1.09 ×
10−3 mm2 s−1 at baseline and 2.01 × 10−3 mm2 s−1 after chemotherapy in

tumors with more than 90% necrosis post treatment (21)

value of MRI in quantifying fat, which may be valuable in
distinguishing fat in low-grade liposarcomas and quantifying
well and dedifferentiated elements. FF was estimated from
signal intensities in fat and water images reconstructed using
the manufacturer’s Dixon algorithm. Proton density-weighted
imaging was used to minimize T1-related bias (34) but noise
bias may contribute to errors, particularly at very high and low
FF (35).

Baseline EF estimates ranged from strongly enhancing
to largely non-enhancing tumors, reflecting the inter-
tumor heterogeneity. No significant post-radiotherapy
change was observed in EF. DCE-MRI has been shown
to be indicative of response in smaller tumors (6) but
whole-tumor assessments of EF were employed here as
large volume coverage limited the temporal resolution for
pharmacokinetic modeling. The absence of correlation between
histopathological assessment of vessel density and MRI
parameters relating to vascular properties (f, fD∗, R2

∗, EF)
may arise since these parameters also relate to functional
properties of the vasculature, such as flow, oxygenation
and permeability.

The functional imaging parameters described here
characterize components of these highly variable tumors.
The repeatability and relation to histopathology suggest that
functional imaging parameters can be incorporated confidently
as secondary end-points in clinical trials. Development of
methods to quantify heterogeneous post-treatment changes may
be valuable in soft-tissue sarcomas.

There were limitations to the study. Firstly, only 30 patients
were recruited but, nevertheless, significant post-radiotherapy
changes were detected. Secondly, the small numbers of rare sub-
types, which is typical of many sarcoma trials, precluded separate
sub-type assessments; the comparison between liposarcomas and
leiomyosarcomas is also limited by small sample sizes. Thirdly,
it was not possible to assess repeatability of EF at a second
baseline on the same day. It was therefore possible to assess
cohort changes in EF, but not individual post-treatment changes.
Fourthly, the strong correlation between FF from Dixon MRI
and histopathology may also arise from the high numbers
of samples with very high and very low FF; larger numbers
of samples across the range of FF are, therefore, required to
fully assess agreement between FF estimates. Finally, there was
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FIGURE 10 | Graph showing ADC data from the literature (described in

Table 2), alongside data from the present study. References are shown on the

x-axis. Double-headed arrows show multiple data points from the same

reference. Red lines show ADC estimates from soft-tissue sarcomas at

baseline. Black and gray lines show ADC estimates from osteosarcomas [and

Ewing sarcomas in Hayashida et al. (21)] at baseline and post-treatment,

respectively. Studies reporting mean ± standard deviation are shown as

markers (×) with error bars representing standard deviation. Studies reporting

only an average value are shown as markers (×) without error bars. Studies

reporting a range are shown as error bars (upper and lower ends of range)

without markers.

a degree of subjectivity in matching ROIs in MR images to
histology samples, which introduces some uncertainty in the
MRI-histopathology correlation.

In conclusion, the wide ranges of ADCs in retroperitoneal
soft-tissue sarcomas reflect intra- and inter-tumor heterogeneity.
ADCs are higher than in other soft-tissue tumors. ADCs
exhibit excellent baseline repeatability, and can detect
response by identifying post-treatment changes >7.1%. ADC
increased significantly post-radiotherapy in a mixed cohort of
retroperitoneal soft-tissue sarcomas and significant individual
responses were detectable in disease classed as stable by RECIST
1.1. ADC and D correlate with cellularity, stroma type, and
stroma grade, and Dixon estimates of fat fraction show strong
correlation with tissue composition.
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