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Abstract 
Purpose: Despite the utility of tumour characterisation using quantitative parameter maps 
from multi-b-value diffusion-weighted MRI (DWI), clinicians often prefer the use of the 
image with highest diffusion-weighting (b-value), for instance for defining regions of interest. 
However, these images are typically degraded by noise, as they do not utilize the information 
from the full acquisition. We present a principal component analysis (PCA) approach for 
model-free denoising of DWI data. 

Methods: PCA-denoising was compared to synthetic MRI, where a diffusion model is fitted 
for each voxel and a denoised image at a given b-value is generated from the model fit. A 
quantitative comparison of systematic and random errors was performed in data simulated 
using several diffusion models (mono-exponential, bi-exponential, stretched-exponential and 
kurtosis). A qualitative visual comparison was also performed for in vivo images in six 
healthy volunteers and three pancreatic cancer patients. 

Results: In simulations, the reduction in random errors from PCA-denoising was substantial 
(up to 55%) and similar to synthetic MRI (up to 53%). Model-based synthetic MRI denoising 
resulted in substantial (up to 29% of signal) systematic errors, whereas PCA-denoising was 
able to denoise without introducing systematic errors (less than 2%). In vivo, the signal-to-
noise ratio and sharpness of PCA-denoised images were superior to synthetic MRI, resulting 
in clearer tumour boundaries. In the presence of motion, PCA-denoising did not cause image 
blurring, unlike image averaging or synthetic MRI. 

Conclusions: Multi-b-value MRI can be denoised model-free with our PCA-denoising 
strategy that reduces noise to a level similar to synthetic MRI, but without introducing 
systematic errors associated with the synthetic MRI method. 

Key words: Diffusion-weighted MRI, Denoising, Intravoxel incoherent motion, Principal 
component analysis, Synthetic MRI, Motion
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1. Introduction 
Diffusion-weighted (DW) MRI (DWI) is an important tool for diagnosis (Koh et al 2011, 2007, Barral et al 2015), 

treatment response monitoring (Koh and Collins 2007, Barral et al 2015, Klaassen et al 2018, Park et al 2014) and 
radiotherapy treatment planning (Gurney-Champion et al 2017, Heerkens et al 2017). For DWI there is a trend to acquire 
images at multiple diffusion-weightings (b-values) that are used to generate quantitative metrics by fitting signal models, 
such as the intravoxel incoherent motion (IVIM), kurtosis and stretched-exponential models (Le Bihan et al 1988, Jensen et 
al 2005, Bennett et al 2003). These models, in turn, allow more specific tissue characterisation than the classically used 
apparent diffusion coefficient (ADC) retrieved from a mono-exponential model; for example, the bi-exponential IVIM model 
gives additional information on tissue perfusion (Le Bihan et al 1988).  

Despite the utility of tumour characterisation using quantitative maps from model fitting, clinicians often prefer assessing 
images and defining regions of interest (ROIs) directly on high b-value DW-images (Koh and Collins 2007) because the 
contrast-to-noise ratio (CNR) of the lesion is optimal in such images. However, high b-value images often have poor signal-
to-noise ratio (SNR), and only utilize a fraction of the information from the DWI acquisition, as measurement time is divided 
among all b-values. For example, it was recently suggested that a minimum of 16 b-values are desired for IVIM in the liver 
(ter Voert et al 2016), resulting in only 6% of acquisition time spent at acquiring a particular b-value. One way of dealing 
with poor SNR is to directly denoise the individual images, which is often done using a smoothing kernel (Bustin et al 2017, 
Manjón et al 2010, 2013, 2015), such as a Gaussian filter. Such approaches use spatial information to denoise the image and 
hence lead to undesirable image blurring.  

Alternatively, for DWI, information from all the b-value images can be used to enhance the SNR in the high b-value 
image. This has previously been achieved using synthetic MRI (also known as computer DWI) (Bobman et al 1985, 
Blackledge et al 2011). In synthetic MRI a diffusion model (typically mono-exponential) is fitted as a function of b-value in 
each voxel to yield corresponding parameter maps. A synthetic image for a given b-value is then generated using the 
parameters from the fit. This technique certainly enhances the SNR of the image but has the disadvantage that synthetic MRI 
only considers effects that are described by the model. Systematic errors (i.e. bias) will occur when the underlying signal-
decay is different from that described by the model, potentially obscuring relevant pathology, as shown using simulated data 
in Fig. 1g. Furthermore, when more complex models and fitting algorithms are used, the computation time of synthetic MRI 
can be prohibitive.  

To prevent these systematic errors, a denoising approach that does not use a model is desirable since it has the potential to 
work well for a wide range of tissue properties, including those outside the scope of currently available signal models. We 
believe principal component analysis (PCA) is a promising candidate for denoising as it is fast, has the potential to reduce 
motion between individual images (Melbourne et al 2007), and is model-free. In the past, PCA has been applied mainly in 
neuroimaging in several approaches, including anatomical imaging (spatial domain, using voxels from the same image) 
(Manjón et al 2015, Muresan and Parks 2003), and quantitative imaging (quantitative domain; i.e. same voxel with repeated 
measures such as DWI) (Bydder and Du 2006, Balvay et al 2011) and combined spatial and quantitative denoising (Manjón 
et al 2013). We set out to develop an easily implementable PCA-denoising approach for improving image quality of IVIM 
images that could be applied in any anatomy, including free-breathing abdomen images. 

In this paper, we show that PCA can be used for model-free denoising of multi-b-value DWI data, and we compare its 
statistical properties to synthetic MRI using a range of DWI models.  

2. Materials and Methods 
All image processing was done using MATLAB (2018a, The MathWorks, Inc., Natick, Massachusetts) and plots were 

created with GraphPad Prism (Version 7.0c for Mac, GraphPad Software, San Diego, California). The PCA-denoising Matlab 
script can be found as Supplemental Digital Content 1 to this article. 

2.1 PCA-denoising 
PCA separates potentially correlated observations into linearly uncorrelated orthogonal vectors, called principal 

components (PCs) (Hotelling 1933). After centering the data (subtracting the overall mean), the first PC contains the most 
variation, and each subsequent PC contains the largest remaining variation. In our proposed PCA-denoising approach, after 
subtracting the mean signal decay, PCA was applied to the signal vectors from each voxel of a DWI-dataset, where the vector 
elements in each voxel correspond to each of the acquired b-values and gradient directions. The number of vectors used to 
compute the PCs hence corresponds to the number of voxels, whereas the length of each vector corresponds to the number of 
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acquisitions (b-values, directions, averages). PCA also returns the corresponding vectors of weights per PC (called scores), 
and the sum of all PCs multiplied by their matching scores and addition of the mean signal decay then returns the original 
signal from each voxel: 

 
𝑺! = 𝒎 + 𝑻! ∙𝑾!       [1], 
 

where Sj is a row vector containing the reconstructed denoised attenuation curve for voxel j, m is the mean signal per 
measurement (over all voxels), Tj is the score vector (row vector) for voxel j and W is an orthonormal matrix whose columns 
are the PC vectors. The informative signal decay appears in earlier PCs because the variation in these signals tends to be 
correlated across voxels and have large variation (corresponding to genuine tissue/image contrast), whereas the later PCs 
correspond to noise since they are uncorrelated across voxels and have lower variation. By reconstructing the DW-images 
from only the initial informative PCs, multiplied by their corresponding PC scores per voxel, a denoised DWI dataset can be 
generated. In eq. [1] this denoising is performed by setting the elements of Tj that correspond to the rejected PCs to zero. 

   
In summary  

• DWI image volumes from all acquired b-values, diffusion directions and averages are reformatted into an N×M 
data matrix of N voxels and M measurements (b-values × diffusion directions × averages).  

• PCA is performed over the rows of the data matrix (described in section 2.1.1), returning M PCs (M×M matrix W 
in eq. [1]), as well as their scores per voxel (N×M matrix whose jth row is Tj for voxels j = 1, 2, ..., N).  

• The informative PCs that should be included in the reconstruction of the denoised images are selected using the 
methods described in section 2.1.2.  

• Finally, a denoised image is reconstructed using only the selected PCs by zeroing the corresponding elements of 
the score vectors in eq. [1]. 

Page 3 of 16 AUTHOR SUBMITTED MANUSCRIPT - PMB-108204.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Journal	XX	(XXXX)	XXXXXX	 Author	et	al		

	 4	 	
	

	

Figure 1: Panels a–c show a simplified example of PCA-denoising with only two b-values. Panels d–g show synthetic MRI 
and PCA-denoising on data simulated using the stretched-exponential model. In this example, synthetic MRI produced a 
systematic error that obscured "cancer" on the high b-value image, whereas PCA-denoising did not. Details of this example 
are discussed in the main text. In panel g, voxels with values outside the window level setting range are red (upper limit) and 
blue (lower limit). 

2.1.1 Simplified PCA-denoising 
Figures 1a-c illustrate a simplified example of PCA-denoising from data that was simulated with a mono-exponential 

model with only two b-values (b=0 and 750 s/mm2). In this example, the baseline (b=0 mm2/s) signal magnitude of the model 
varied across data points, while the ADC was fixed. This implies that the noiseless signal data, shown by the red dots in panel 
1a, have only one degree of freedom. After subtracting the mean signal, PCA resulted in two PCs (Fig. 1b). By reconstructing 
the signal with only the first PC, the noise was substantially reduced (Fig. 1c). 

Figures 1d-g show an example with sixteen b-values, in the range 0–750 s/mm2, that was designed to illustrate the 
drawback of the model dependence of synthetic MRI compared to PCA-denoising. In this example, data were simulated by a 
stretched-exponential with parameters per voxel chosen from a clinically relevant range such that the letters "ICR" appeared 
on the b=0 s/mm2 image and "cancer" on the b=750 s/mm2 image (stretched exponential model parameters described in table 
S1; D=1.8, 1.625, 1.675 and 1.96 ×10-3mm2/s; α=0.4, 1, 1, 0.4; S0=1, 1, 1.04, 10.4). The synthetic MRI was generated by a 
bi-exponential fit. The discrepancy between the models reflects real-life denoising in which the true signal decay is typically 
unknown and is not fully described by the available models used for denoising. An example voxel from the background 
region in Fig. 1g is shown in Fig. 1d. For this voxel, the bi-exponential fit underestimates the signal at high b-values, which 
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ultimately causes the contrast between background and "cancer" to vanish in Fig. 1g, whereas PCA gives an accurate 
estimation of the signal intensity. The three retained PCs that were included in the denoised image and the initial five 
excluded PCs are illustrated in Figs. 1e-f. It is clear that PCA was able to reduce noise while retaining the contrast and 
visibility of the relevant pathology (“cancer” and “ICR”), whereas in synthetic MRI the contrast between cancer and 
background at b = 750 s/mm2 was removed. 

2.1.2 Robust PCA-denoising 
To denoise DWI datasets, the informative PCs derived from the signal decay need to be separated from the PCs that contain 
mainly noise. For this purpose, we developed a two-step approach. The first step aims at identifying the PCs that contain at 
least 97% of the signal information. To achieve this, first, the information contained in each PC was estimated from the PC 
scores Tj (see eq. [1]) using the following equation 

 

  𝑀!",! =
𝑻!,!

!
!!!

!
       [2], 

 
where Tj,m is the mth element of the score vector for voxel j, and MPC,m is the “PC-information” of the mth PC.  Figure 2a plots 
the PC-information as a function of PC index (black line) from in vivo data and the pattern shown, in particular the rapid 
decay followed by a slow roll-off in the latter PCs, is typical for in vivo data. In theory, for a sufficiently large dataset, 
normally distributed noise would give a constant offset in the PC-information of all PCs, so subtracting this from the plot 
would hence give the signal contribution to the PC-information per PC. However, due to the dataset being finite, and PCs 
being sorted according to their variance, the noise contribution gradually decreases as function of PC index. To account for 
this, we assume that the last 2/3 of the PCs only describe noise, and fit a second order polynomial to these PCs to estimate the 
noise contribution per PC. The signal contribution to the PC-information is then given by the distance between the estimated 
noise contribution (red line) and the overall PC-information (black line), and the cumulative sum of this adjusted curve up to 
a given PC represents the total information included in the PCs up to that PC. This adjusted cumulative sum, normalized by 
the sum over all PCs, is plotted in grey in Fig. 2b and was used to determine a threshold where at least 97% of the 
informative signal was retained. 

 
In simulated data, we found this criterion alone still excluded several apparently informative PCs, and hence a second step 

was added to include these PCs. In this step, for each of the PCs we calculated the autocorrelation function (Fig. 2d for 
simulated example and Fig. 2b for in vivo example), defined as  

 
𝑅!(𝑙) =

!
(!!!)!!!

𝑊!,! −𝑊! × 𝑊!!!,! −𝑊!
!!!
!!!     [3], 

 
for delays l = 1, 2, …, M-1, where Wi,j are the elements of the jth PC being tested, and 𝑊! and 𝜎! are the mean and standard 
deviation of Wi,j over the jth PC. We have empirically found in simulations that PCs with positive autocorrelation for small 
delays correspond to genuine diffusion effects, whereas PCs with one or more negative autocorrelation values for small 
delays correspond to noise. This effect can be detected by identifying PCs where R(l)>0 for all l≤L, and we have found that 
L=3 is an appropriate threshold in this application. Therefore, for PCs above the 97% threshold, subsequent PCs were also 
included up to the first PC that failed the autocorrelation criteria. The first PC that failed the autocorrelation criteria and all 
subsequent PCs were discarded as noise and removed during reconstruction of the denoised images. Figures 2c-f show in 
simulated data how this approach selected the first four PCs for reconstructing the denoised images, resulting in a favourable 
trade-off between random and systematic errors. 

Since the autocorrelation function is affected by the ordering of the data (b-values and directions), for in vivo data, R(l) 
was not only calculated for data ordered by b-value but also for data grouped by diffusion direction; only when both 
autocorrelation (R1 and R2) functions fulfil R(l≤3)<0 was the PC was classified as non-informative. In the in vivo example 
(Fig. 2a-b), 24 PCs were selected (green vertical line). 
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Figure 2: Panel a illustrates the initial selection procedure from in vivo data which guaranteed 97% of all information was 
included (see main text for details). Panel b then illustrates that for this patient, the l for which R(l)<0 of the next PC also was 
below 3, so 24 PCs were selected. Panels c-f show an example where four PCs were determined to be the optimal number to 
retain in this example of bi-exponential simulated data (SNR=20). Panel c shows the last two retained PCs: 3rd (red) and 4th 
(green), and the first rejected PC: 5th (blue). Panel d shows the autocorrelation function estimates (points). The blue arrow 
highlights the first PC with R(l≤3)<0. Panels e and f show, respectively, the random and systematic errors as a function of 
the number of PCs taken along. The horizontal dashed lines in c and d show the corresponding random and systematic errors 
to the noisy data.  
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2.2 Synthetic MRI denoising 
For comparison with PCA-denoising, synthetic MRI denoising using mono-exponential, bi-exponential stretched-

exponential and kurtosis models was performed with linear least squares fits. 

2.3 Simulations 
We compared our PCA-denoising approach with synthetic MRI by applying both to training data and test images that were 

generated from mono-exponential (classic ADC), bi-exponential (IVIM) (Le Bihan 1988), stretched-exponential (Bennett et 
al 2003) and kurtosis (Jensen et al 2005) signal decay models with 17 b-values (0, 10, 20, 30, 40, 50, 65, 80, 100, 125, 175, 
250, 375, 450, 550, 650 and 750 s/mm2). Test images of 128×128 voxels consisting of eight 23×51 voxel subpanels were 
generated (Fig. 3) enabling nine regions of distinct simulation parameters (While 2017). The model parameters for the eight 
subpanels were set to combinations of the values given in Table S1 from Supplemental Digital Content 2, giving eight 
combinations for the bi-exponential model, four (repeated twice) for the stretched-exponential and kurtosis models, and two 
(repeated four times) for the mono-exponential model. Gaussian noise was added to the data to simulate SNRs of 10, 20, 50 
and 80 at b=0 s/mm2. The SNR range reflects SNR typically seen in DWI, with the low values typical for anatomy with poor 
SNR (i.e. liver/pancreas with short T2) and individual images, whereas the high values are seen in anatomy with high SNR 
(i.e. brain, with long T2) and when repeated data are averaged.  

PCs were then determined using both the test (3.5%) and training (96.5%) data, and the PCs selected using the 
autocorrelation method described above were used to denoise only the 128×128 test images.  

Since the 128×128 test images consisted of panels of similar behaviour, it was possible to estimate both systematic and 
random errors. The random error was defined as the standard deviation over the signal within each sub-panel and overall 
random error was then defined as the root-mean-square of this. The systematic error (i.e. bias) was defined as the difference 
between the mean denoised signal per panel and the true noiseless signal. The maximum systematic error from the 9 regions 
was then reported. 

2.4 In vivo evaluation 
Local ethics committee approval was granted for healthy (at the ICR/RMH) and patient (at the AMC) volunteer scans, and 

all patient and healthy volunteers gave written informed consent.  
DWI datasets from five healthy volunteers were obtained at the ICR/RMH on two different 1.5T scanners (Aera and 

Avanto; Siemens Healthineers, Erlangen, Germany). To illustrate the flexibility of the denoising approach, each volunteer 
underwent a different protocol in different anatomical regions and data consisted of an axial leg, three abdominal scans (two 
axial, one coronal) and a brain scan. Furthermore, the brain dataset from Peterson (Peterson 2016) 
(https://doi.org/10.6084/m9.figshare.3395704.v1), an online dataset of which we could not trace the acquisition parameters 
other than the b-values, was also analysed to show the flexibility of PCA-denoising. 

DWI datasets from three pancreatic cancer patients were obtained at the AMC on a 3T scanner (Ingenia; Philips 
Healthcare, Best, The Netherlands). These patient data have been previously published (Gurney-Champion et al 2018, 
Klaassen et al 2018) for the purpose of testing the performance of fit algorithms and different diffusion models (without 
PCA-denoising). In our current work, they serve as an example of how PCA-denoising works in patient data. 

Acquisitions were done using 2D multi-slice DW echo-planar imaging (Table 1). All images were denoised using PCA-
denoising. In vivo data requires additional pre-processing to remove background pixels that are outside the anatomy and 
therefore contain only noise.  These voxels were identified using a manually chosen threshold on the mean b=0 s/mm2 image, 
and were excluded in PCA-denoising. As the bi-exponential synthetic MRI approach gave the least systematic errors in the 
simulated data, we denoised the in vivo dataset with bi-exponential synthetic MRI as comparison.  
		

Table 1: MRI settings 

 Volunteer  Patient 
Region Leg Abdomen axial/ 

axial #2†  
Abdomen 
coronal 

Brain Brain #2 
(Peterson 2016) 

Pancreatic 
cancer 

Scanner Aera (1.5 T, 
Siemens) 

Avanto (1.5 T, 
Siemens) 

Avanto (1.5 T, 
Siemens) 

Avanto (1.5 T, 
Siemens) 

Unknown Ingenia (3T, 
Philips) 

Orientation Axial Axial Coronal Axial Axial Axial 
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3. Results 

3.1 Simulations 
Figure 3 shows an example of how PCA-denoising reduced the noise without creating a systematic error, whereas 

synthetic MRI using the non-matching models caused pronounced systematic errors in this simulated stretched-exponential 
data.  

All denoising approaches decreased the random error, whereas only PCA was capable of doing this for every dataset 
without introducing systematic error (Fig. 4). The difference images in Fig. 3 and the plots in Fig. 5 show that PCA reduced 
the noise most effectively for intermediate b-values, but was also effective at high b-values. For high b-values, PCA-
denoising decreased the random noise by up to 55%, while the maximum systematic error was less than 2% (Fig. 4). For the 
synthetic MRI approaches, the maximum decreases in random errors were 53%, 48%, 51% and 38%, whereas the maximum 
systematic errors were 29%, 7%, 14% and 24% for the mono-exponential, bi-exponential, stretched-exponential and kurtosis 
models, respectively. Two to four PCs were selected for denoising, with generally more PCs selected at higher SNR levels 
and for data simulated by models with more parameters.  

Resolution (mm2) 2.4×2.4 2.7×2.7 1.6×1.6 2.3×2.3 0.94×0.94 3.0×3.0 
FOV (mm2) 188×400 284×350 400×400 243×300 240×240 432×108 
Slice thickness 
(mm) 

5.0 8.0  5.0 8.0  2.5 3.7 

Slice gap (mm) 0.0 0.8 0.0 8.0 0.0 0.3 
Slices 25 8 20 8 54 18 
TR/TE (ms) 4800/58 1300§/113 5000/60 2900/113 Unknown 2200§/45 
Respiratory 
compensation 

- Triggered 
(bellow) 

None - - Triggered 
(navigator) 

b-values (s/mm2) 0, 10, 20, 25, 
40, 50, 75, 
100, 300, 500, 
700, 900 

0, 2, 7, 10, 20, 
30, 40, 50, 65, 
85, 110, 150, 
250, 350, 450, 
(650, 900)† 

0, 20, 40, 60, 
120, 240, 480, 
900 

0, 2, 7, 10, 20, 30, 
40, 50, 65, 85, 
110, 150, 250, 
350, 450, 650, 
900 

0, 10, 20, 30, 
40, 60, 80, 100, 
120, 140, 160, 
180, 200, 300, 
400, 500, 600, 
700, 800, 900, 
1000 

0, 10, 20,  30, 
40, 50, 75, 100, 
150, 250, 400, 
600 

Directions 6 6 3 6 Trace image (3 
directions) 

15, 9, 9, 9, 9, 9, 
4, 12, 4, 4, 16 

Averages b<75 à 1 
b≥75 à 2 

1 5 1 Unknown 1 

CPU time (s)  Axial/Axial#2    Mean (range) 
PCA-denoising 1.3 0.41/0.46 7.3 0.37 21.1 0.74 (0.67–0.86) 
Mono-
exponential  

67.0 12.3/19.0 289.8 13.6 626.3 28.6 (24.5–33.8) 

Bi-exponential 196.9 29.6/54.2 937.3 26.5 1355.2 80.8 (70.1–92.1) 
 † Both volunteers were scanned with the same protocol, except axial #2 included a 8 mm slice gap and b=650 and 

900 s/mm2. §True echo time depends on respiratory triggering. 1300 ms (volunteer) and 2200 ms (patient) were the 
minimum repetition times set.  
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Figure 3: Left panel: Simulated stretched-exponential images with SNR=20, showing b=0, 100 and 750 s/mm2 (left to right), 
noisy data; mono-exponential, bi-exponential, stretched-exponential and kurtosis synthetic MRI; and PCA-denoising (top to 
bottom). Voxels with values outside the grey level range are red (upper limit) and blue (lower limit). Right panel: Difference 
in signal between the input and the denoised images, similar layout to the left panel. Mono-exponential and bi-exponential 
synthetic MRI introduced systematic errors for some, or all b-values, which resulted in some sub-panels appearing above the 
noise in the difference image. Testing panel configuration taken from While et al. 2017 (While 2017). 
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Figure 4: Random (left) and systematic (right) error fractions (error normalised to total signal intensity) from simulated noisy 
data (black) and denoised data using either PCA (green) or synthetic MRI (orange, red, blue, cyan) in the highest b-values 
image (750 s/mm2). The change in signal fraction (=magnitude of error divided by total signal) is plotted as a function of 
SNR of the simulated data. The root-mean-square of the random error maximum systematic error from the 9 regions is 
shown. 
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Figure 5: Plot of the performance of PCA-denoising over all b-values of simulated stretched-exponential data with SNR=10. 
Synthetic MRI using a bi-exponential model is plotted as a reference.	

3.2 In vivo evaluation 
In vivo, PCA-denoising decreased the noise at least as effectively as synthetic MRI for different scanners, sequences and 

anatomical regions (Figs. 6 and 7). The systematic error introduced by synthetic MRI cannot be quantified in vivo, where 
there is no ground truth. There is less noise (random variation of voxel brightness) apparent in the PCA-denoised images than 
in the competing approaches (e.g. Fig. 6: livers in the abdominal scans; green arrow in brain #2). Figures 6 and 7 suggest that 
PCA-denoising retained more image detail than synthetic MRI, which could potentially be due to reduced systematic errors 
with PCA-denoising, but may also be related to patient motion effects and diffusion anisotropy. In the presence of motion, 
PCA-denoising appears to have sharper boundaries than synthetic MRI (e.g. Fig. 6: several vessels visible in liver [blue 
arrows abdominal axial and abdominal coronal]). Signal intensity in PCA-denoised images better reflects the signal intensity 
in the noisy image (e.g. Fig. 6 in kidneys from abdominal axial #2 [green arrow]), which enables taking diffusion 
directionality into account in this approach of denoising (e.g. Fig. 6, the extent of ventricles in the brain [blue arrow]). The 
combined increase in SNR and sharpness allows for better depiction of tissue types (e.g. fascia in the leg image [blue arrow]; 
pancreas in abdominal axial [green arrow] and axial #2 [blue arrow]; in abdomen coronal green arrows indicate small 
hypointense regions; sharper borders between white and grey matter in brain #2 [blue arrow]). In the pancreatic cancer 
patients (Fig. 7) the sharper imaging and increased SNR resulted in more conspicuous borders of the organs and tumour (red 
arrow), particularly visible on the coronal reconstructed images.  

When the full dataset was denoised in healthy volunteers, 15, 22, 20, 24, 19 and 4 PCs were selected for the leg, abdomen 
axial, abdomen axial #2, abdomen coronal, brain and brain #2, respectively. Note that brain #2 only included one image per 
b-value. For the three pancreatic cancer patients, 19, 21 and 21 PCs were selected. PCA-denoising was on average 168 (range 
72–645) times faster than bi-exponential synthetic MRI and 37 (22–45) times faster than mono-exponential synthetic MRI in 
vivo, with the biggest gain in larger datasets (Table 1 shows timing data).  
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Figure 6: In vivo example of PCA-denoising (3rd column), compared to mean image over all repeated measures (2nd 
column) and bi-exponential synthetic MRI (4th column). All show the highest b-value image from the series, except abdomen 
axial #2, which shows the second highest b-value b=650 mm2/s as no signal was left at the highest b-value due to the long TE 
(113 ms) combined with short T2-times in the abdomen. Arrows are discussed in the main text. 
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Figure 7: Axial slices and coronal reconstructions of the b=600 s/mm2 image from pancreatic cancer patients after PCA-
denoising (3rd column) compared to the original data (1st column), averaging (2nd column) and bi-exponential synthetic 
MRI (4th column). Red arrows indicate tumour locations. Compared to PCA-denoising, the other approaches blur the image 
(mainly visible in the coronal reconstruction), preventing accurate boundary detection. 

4. Discussion 
We have presented a novel PCA-based approach for model-free denoising of multi-b-value DW-images. We showed in 

simulated data that PCA-denoising was able to reduce random noise in DW-images at least as well as model-based 
techniques, such as synthetic MRI. We have also shown in simulations that PCA-denoising did not add systematic errors 
across a range of simulated attenuation models, whereas synthetic MRI adds systematic errors that can be substantial, 
depending on the level of agreement between the true and assumed models. We also show that PCA-denoising works well in 
vivo, in healthy volunteers and patients, and resulted in sharper and less noisy images compared to synthetic MRI. In patients, 
this can lead to sharper tumour boundaries, which would improve assessments of the tumour extent. These examples also 
demonstrate sharper tumour edge visualisation, which will be beneficial when determining tumour extent. This may improve 
tumour delineation for e.g. radiotherapy, where accurately determining tumour extent is crucial. Therefore, we believe that 
PCA-denoising is a valuable tool for denoising of multi-b-value DWI for clinical assessments. 

So far, PCA has been applied to anatomical imaging (spatial domain) (Manjón et al 2015, Muresan and Parks 2003), 
multi-echo imaging (quantitative domain) (Bydder and Du 2006), DCE (quantitative domain) (Balvay et al 2011) and 
diffusion tensor imaging (combined) (Manjón et al 2013). In particular, (Pai et al 2011) used PCA prior to removing noisy 
outliers when calculating maximum intensity projection in cardiac DWI. Furthermore, (Chen et al 2018) recently utilized 
diffusion-matched PCA on the magnitude and phase DW data to denoise high-resolution brain diffusion tensor imaging. 
(Spinner et al 2018) introduced k-b PCA in IVIM images, which enables higher parallel imaging without adding additional 
noise.  

The approaches cited above in which PCA was applied for DWI mostly focus on brain imaging (Manjón et al 2013, Chen 
et al 2018, Spinner et al 2018), meet very specific denoising needs (reduce noise for MIP (Pai et al 2011), enable higher 
parallel imaging (Spinner et al 2018)) and are evaluated with regard to their effect on diffusion modelling. We set out to 
develop a generalizable and simple approach for improving image quality for diagnostic purposes that could be easily applied 
in any anatomy. We have evaluated its performance with this purpose in mind. By only utilizing the quantitative domain (i.e. 
b-value information), we minimize potential blurring of the image. We quantified the improvement of PCA-denoising by 
comparing it to the ground truth in extensive simulations, and we demonstrate its performance in exemplary clinical data.  

For synthetic MRI, the performance strongly depends on how well the denoising model matches the model underlying the 
data. The data simulated using bi-exponential and stretched-exponential models result in the largest systematic errors. The 
systematic error introduced by synthetic MRI is less apparent, but still present, when data are simulated using the Kurtosis 
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model. This might be explained by the fact that we have chosen b-values typically used for IVIM experiments, whereas the 
Kurtosis model is more appropriate for capturing effects that appear at higher b-values (>1000 mm2/s). In vivo, the processes 
contributing to the signal decay are more complex than our current simplified diffusion models, and hence synthetic MRI 
does probably never fully describe the data. 

We showed that for the range of b-values used in these simulations, the performance of PCA-denoising is best for 
intermediate b-values (Fig. 5). Because PCA is a subspace projection technique, the PC vectors implicitly encode some 
degree of data sharing between the different b-value images, and this will tend to be strongest for images with similar b-
values. Therefore, images that are in the middle of the acquired b-value range will have a larger pool of images having 
relevant data to share from. Therefore, if images with a given b-value are desired for diagnosis or delineation, it is advisable 
to acquire b-values above and below this to ensure best denoising performance. 

We found that reconstructing denoised images with fewer PCs generally resulted in a lower random error (e.g. Figs. 2c–d). 
However, when insufficient PCs were used, the systematic error increased, as the diffusion attenuation signal could not be 
fully captured. Our method for selecting the optimal number of PCs resulted in the systematic error reaching negligible 
levels, while the random error was similar to synthetic MRI (Figs 2c, 2d and 4). In contrast, the systematic errors for the 
synthetic MRI depended strongly on whether the denoising model matched the true model. 

Denoising of the in vivo images used more PCs (4–24) than the simulations (2–4). There are several reasons why selecting 
more PCs may be essential in vivo. Our in vivo data had more b-values than the simulations, which might require more 
components to be described properly. Furthermore, motion can lead to more PCs with coherency. Also, the effect of diffusion 
directions may have required more PCs to be included. Finally, the actual signal decay in vivo may be more complex than in 
our simulations, resulting in more PCs being required. The latter is especially interesting, as denoising by synthetic MRI 
would cause systematic errors here. 

The PCA-denoised in vivo images had visually sharper boundaries than the synthetic MRI and averaged images. We 
believe that this is due to the fact that motion can be captured and removed by removing latter PCs, as shown in other 
research on DCE data (Melbourne et al 2007). In preliminary simulations (Supplemental Digital Content 3) performed on the 
downloaded brain dataset (brain #2, Peterson 2016), we investigated how induced motion impacted PCA-denoising. Here, we 
saw that contrary to averaging and synthetic MRI, the PCA-denoised images did not show blurring in the presence of motion. 
For large motion, more PCs were required for reconstruction, substantiating our suggestion that motion is taken into account 
in the PCs. The exact interplay between motion and PCA-denoising is an interesting topic for future research.  

Reconstruction times were considerably shorter for PCA-denoising (0.41–7.3 seconds) compared to synthetic MRI (26.5–
937.3 seconds). We used the "pca" function from the Matlab statistics toolbox, which uses efficient optimized routines for the 
required matrix computations that avoid the need for explicit looping. However, for synthetic MRI with least squares fitting, 
for which we used the "fminsearch" command from Matlab, it is necessary to explicitly loop over voxels, which results in 
considerably longer run times. The synthetic MRI was implemented using parallel for loop ("parfor" in Matlab) over four 3.5 
GHz cores (Intel Core i7-4771). There are more advanced fitting algorithms available than the fit used (Gurney-Champion et 
al 2018, Barbieri et al 2016, While 2017), but these often take significantly longer and still suffer from model-dependency. 

The only manual step in the analysis was selecting the threshold level to determine relevant foreground and background 
voxels. Automated solutions are available for more homogenous data (as done in pre-processing DWI by vendors), but due to 
the multi-vendor, multi-protocol nature of our data, we decided to manually select this threshold. 

There are several limitations to PCA-denoising. PCA-denoising is limited to reconstructing only the acquired b-value 
images whereas synthetic MRI allows for reconstructing any b-value image (Blackledge et al 2011, Winfield et al 2016) 
However, when synthetic MRI is used to reconstruct images outside the range of acquired b-values, noise can be magnified 
due to the extrapolation of the data. Therefore, synthetic MRI is still often used to generate images at b-values close to the 
acquisition range.  

Another limitation is that, in this work, PCA-denoising was optimised for typical IVIM datasets with a large number of b-
values. However, some research suggests that shorter acquisitions with 4–7 b-values can be used for IVIM modelling 
(Dyvorne et al 2014, Gurney-Champion et al 2016), where the number of measurements is only equal to, or a little larger 
than, the number of parameters in the model. When used for denoising, PCA is operating as a data reduction technique, which 
implies the data dimensionality should be larger than the space onto which it is reduced. Hence, for short acquisitions, PCA 
might not work as well and further work is needed to evaluate how few b-values and/or averages are required for denoising to 
be feasible. This is also true for synthetic MRI, which, to be able to remove any noise, requires data from at least one b-value 
more than the model's degrees of freedom.  

A limitation of this study is the small sample size of 9 subjects that were used for evaluation. However, the examples 
presented here cover a broad spectrum of data acquisition schemes, all of which PCA-denoising performed well in, 
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highlighting the flexibility of the algorithm. The algorithm is also being shared (Supplemental Digital Content 1) such that 
readers can test it on their own dataset.  

In the patient data, PCA-denoising resulted in sharper and less noisy images than using the alternative denoising 
approaches. This could greatly benefit any application where accurately determining the boundary and extent of tumours is of 
importance. This is of particular relevance in radiotherapy applications, where the ability to conform high prescription dose to 
arbitrary regions, with sharp dose falloff to nearby surrounding tissue, is now commonplace, and so it is necessary that the 
imaging used to determine this region is of the best quality possible. As high b-value images have good contrast in relation to 
the solid parts of tumours, high b-value DW images are of interest in tumour radiotherapy (Gurney-Champion et al 2017, 
Heerkens et al 2017). On the other hand, tumour response may be related to both perfusion and diffusion effects (Hauser et al 
2014, Xiao et al 2015, Li and Padhani 2012, Park et al 2014), which can be assessed by acquiring a wide range of b-values, 
including many low ones. We demonstrated that PCA-denoising has potential to greatly improve the quality of the high b-
value DW images from such IVIM datasets, which can enable more accurate tumour delineation. 

In conclusion, multi-b-value MRI can greatly benefit from model-free denoising with our PCA-denoising strategy. We 
showed that the random error is reduced without introducing systematic errors. Also, in vivo images denoised by PCA were 
generally sharper than synthetic MRI or averaging. The technique has great potential for use in applications where knowledge 
of exact tumour extent is important, for example for diagnosis or in radiotherapy. 
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