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Abstract 

The different stages of the metastatic cascade present distinct metabolic 

challenges to tumour cells and an altered tumour metabolism associated with 

successful metastatic colonisation provides a therapeutic vulnerability in 

disseminated disease. We identify the aldo-keto reductase AKR1B10 as a 

metastasis enhancer that has little impact on primary tumour growth or 

dissemination but promotes effective tumour growth in secondary sites and, in 

human disease, is associated with an increased risk of distant metastatic 

relapse. AKR1B10High tumour cells have reduced glycolytic capacity and 

dependency on glucose as fuel source but increased utilisation of fatty acid 

oxidation. Conversely, in both 3D tumour spheroid assays and in vivo 

metastasis assays, inhibition of fatty acid oxidation blocks AKR1B10High-

enhanced metastatic colonisation with no impact on AKR1B10Low cells. Finally, 

mechanistic analysis supports a model in which AKR1B10 serves to limit the 

toxic side effects of oxidative stress thereby sustaining fatty acid oxidation in 

metabolically challenging metastatic environments.  

 

Introduction 

A defining characteristic of primary tumour cells is an ability to alter their metabolism, 

which provides the energy and metabolites required to sustain survival in nutrient and 

oxygen limiting conditions. In disseminating tumour cells this need for an altered 

metabolism becomes more acute, as cells have to avoid anoikis-mediated cell death 

in the circulation and face the challenge of surviving at the metastatic site before 

establishment of a productive metastatic colony. Moreover, different metastatic sites 

pose distinct metabolic challenges to the tumour cell1,2. In breast cancers, these 

altered metabolic dependencies are now being defined but the molecular 

mechanisms regulating this metabolic adaptability have yet to be identified.  
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 Here we report the analysis of a syngeneic in vivo RNAi screen to identify 

putative metastasis enhancers. Among the top hits from the screen was the aldo-keto 

reductase, Akr1b8. Akr1b8, and its human orthologue AKR1B103 are NADPH-

dependent enzymes that can reduce a variety of carbonyl substrates4. These include 

the conversion of retinal to retinol5,6 resulting in decreased retinoic acid signalling, 

conversion of the isoprenyl aldehydes farnesal and geranylgeranal to farnesol and 

geranylgeranol7 generating precursors for protein prenylation and the reduction of 

cytotoxic aldehydes8. Although AKR1B10 expression is upregulated in a variety of 

cancers including hepatocellular9,10; lung11, pancreatic12 and breast13,14, the 

mechanism by which elevated levels of AKR1B10 enhances metastasis is not known. 

We demonstrate that AKR1B10High cells are characterised by a reduced glycolytic 

capacity and an increased utilisation of fatty acid oxidation (FAO), and that this 

altered metabolism is required for successful colonisation of secondary sites but not 

primary tumour growth or metastatic dissemination. 

 

Results 

Akr1b8/AKR1B10 promotes breast cancer metastasis  

To identify novel enhancers of breast cancer metastasis we analysed a syngeneic in 

vivo shRNA screen, focusing on shRNAs that were significantly under-represented in 

the 4T1-Luc tumour-bearing lungs of BALB/c mice compared to preinoculation 4T1-

Luc mouse mammary carcinoma cells (Fig. 1a; see Methods). 81 shRNAs were 

found to be significantly depleted (Z-score <-2) in the metastatic lung samples (Fig. 

1b) and were then filtered by removing shRNAs that (a) did not align to the predicted 

target gene, (b) were significantly depleted in less than 3 of the 4 biological 

replicates, (c) targeted genes with expression in the lowest 50th percentile based on 

gene expression profiling of 4T1 cells directly isolated from tumours15, and (d) when 

comparing the preinoculation cells to the initial plasmid library (Fig. 1a) showed a 

significant difference in abundance (Z-score >2 or <-2) indicating an effect on cell 
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viability. Filtering resulted in a shortlist of 23 significantly depleted shRNAs targeting 

genes encoding putative metastasis enhancers (Fig. 1c and Supplementary Table 1). 

Within this shortlist are known regulators of breast cancer progression and 

metastasis such as matrix metallopeptidase 9 (Mmp9)16, cathepsin D (Ctsd)17, 

insulin-like growth factor 1 (Igf1)18 and MET (Met)19, as well as inhibitors of apoptosis 

such as BCL2-like 2 (Bcl2l), BCL2 associated athanogene 1 (Bag1), nucleolar protein 

3 (Nol3) and protein kinase C eta (Prkch), providing confidence in the ability of the 

screen to uncover novel metastatic regulators.  

 Of particular interest was the presence of the metabolic enzyme aldo-keto 

reductase 1b8 (Akr1b8) in this shortlist. The human orthologue of Akr1b8, AKR1B10, 

has been reported to be upregulated in a number of cancer types including breast 

cancer13,14, but the clinical and metabolic consequences of this altered expression 

have not been investigated. First, 4T1-Luc cells were transduced with lentiviral 

constructs containing empty vector (shCTRL), a non-targeting shRNA (shNTC) or 

two independent shRNAs targeting Akr1b8 (shAkr1b8-4 and shAkr1b8-7) 

(Supplementary Figure 1a). Consistent with the screening data, where we compared 

shRNA representation in the starting plasmid pools with the preinoculation cells, 

Akr1b8 knockdown had no significant effect on cell viability when cultured in full 

medium in vitro (Supplementary Figure 1b). By contrast, following intravenous 

inoculation, the two Akr1b8 knockdown cell lines showed a significant decrease in 

lung colonisation as monitored by in vivo IVIS imaging, ex vivo lung weight, and 

quantification of tumour burden (Fig. 1d).  

 Although these data validate the in vivo shRNA screen, intravenous 

inoculation does not assess the full metastatic ability of tumour cells. Consequently, 

we next performed a spontaneous metastasis assay in which cells were inoculated 

orthotopically into 4th mammary fat pad of BALB/c mice (Fig. 1e, Supplementary 

Figure 2). No differences were observed in tumour take or primary tumour weight at 

the end of the experiment, however, there was a notable reduction in lung metastasis 
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in both the Akr1b8-4 and Akr1b8-7 knockdown groups compared to the control 

shNTC and shCTRL groups. In this experiment, there was no significant difference in 

the number of 4T1-Luc tumour cell colonies derived from arterial blood collected at 

necropsy (Fig. 1f) indicating that the metastatic impairment in the 4T1-Luc 

knockdown cells was not due to reduced survival in the circulation. Consistent with 

this observation, there was no significant difference in cell apoptosis between shNTC 

and shAkr1b8-4 cells when plated into non-adherent culture in vitro (Fig. 1g). Finally, 

to address whether the metastatic impairment resulted from impairment of tumour 

cell survival after lodging in the lung vasculature, 4T1-Luc shNTC and shAkr1b8 cells 

were labelled with cell tracker dyes, mixed at a 1:1 ratio and injected via the tail vein 

into BALB/c mice (Fig. 1h). Imaging of the lungs 1 hour post-injection confirmed that 

equal number of cells had been inoculated. Examination of lungs 16 hours post-

injection revealed no significant difference between the number of control and 

Akr1b8-knockdown tumour cells retained in the lungs. Together these data indicate 

that Akr1b8 expression does not impact on survival in the circulation or lodging in the 

vasculature but is required for efficient colonisation of tumour cells within the 

metastatic site.  

 

Expression of AKR1B10 correlates with metastatic relapse 

To address the clinical relevance of the data obtained with the 4T1 mouse models, 

expression of AKR1B10, the human orthologue of murine Akr1b83, was analysed in 

human primary breast cancers present in the TCGA database. Within the intrinsic 

subtypes, AKR1B10 expression is significantly higher in the HER2-enriched and 

basal-like breast cancers compared to luminal A and luminal B cancers (Fig. 2a) and 

analysis by receptor expression revealed significantly higher AKR1B10 expression in 

ER- compared to ER+ breast cancers, and in HER2+ compared to HER2- breast 

cancers (Fig. 2a). The latter finding is consistent with a previous report that 

overexpression of AKR1B10 correlates with HER2 positivity in ductal carcinoma in 



Page 7 of 35 

situ (DCIS)20. An equivalent pattern of AKR1B10 expression is seen in the Neve et al. 

dataset derived from profiling a large panel of breast cancer cell lines21 

(Supplementary Figure 3a). Consistent with these published data, western blot (Fig. 

2b, upper panel) and RTqPCR (Supplementary Figure 3b) analysis of a smaller panel 

of breast cancer cell lines revealed low levels of AKR1B10 protein and mRNA in the 

ER+ ZR75.1 and MCF7 lines and high levels in the basal-like BT20, MDA-MB-468 

and HCC1395 lines (Fig. 2b, upper panel). For further studies, AKR1B10 was 

ectopically expressed in the AKR1B10Low MDA-MB-231 and MDA-MB-453 lines and 

expression was knocked down by shRNA in the AKR1B10High HCC1395 line (Fig. 2b, 

lower panel). Levels of ectopically expressed protein were equivalent to that found in 

AKR1B10High lines, while shRNA knockdown reduced protein levels to that observed 

in AKR1B10Low lines.  

 As with the 4T1-Luc cells (Supplementary Figure 1b), the human breast 

cancer cell lines with altered AKR1B10 levels showed no difference in in vitro viability 

as monitored in a colony formation assay (Fig. 2c), yet when inoculated intravenously 

into BALB/c Nude mice, AKR1B10High MDA-MB-231 cells gave rise to a significantly 

increased tumour burden in the lungs compared to AKR1B10Low MDA-MB-231 cells 

(see vehicle-treated cohorts in Fig. 6b). Again, there was no significant difference in 

cell survival when cells were plated in non-adherent culture (Fig. 2d) nor in the ability 

of the cells to survive after lodging in the lung vasculature (Fig. 2e), supporting the 

hypothesis that AKR1B10 functions to maintain efficient growth of tumour cells within 

the metastatic tissue.  

 Consistent with these findings, in a dataset of 1,746 unselected breast 

cancers22, high expression of AKR1B10 significantly correlated with reduced distant 

metastasis-free survival when considering all patients or only ER- patients. A similar 

trend was seen in HER2+ patients, however, the number of samples was too low to 

reach statistical significance (Fig. 2f). No association with outcome was seen in ER+ 

only patients. As AKR1B10 has been associated with chemoresistance via its ability 
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to metabolise anti-cancer drugs23, we also examined the subset of untreated patients 

(Supplementary Figure 3c). Again, high expression of AKR1B10 (upper quartile) was 

significantly associated with reduced distant metastasis-free survival in ER-, but not 

ER+, breast cancer patients.  

 

AKR1B10High cancer cells have increased dependency on FAO 

Via their oxidoreductase activity, members of the AKR family including AKR1B10 

have been implicated as regulators of cellular metabolism. Aerobic glycolysis, also 

known as the Warburg effect, is a common feature of many cancers and 

characterised by increased metabolism of glucose to lactate, which is transported out 

of the cell resulting in local acidification. The Seahorse XF Glycolysis Stress test was 

used to assess glycolytic function of cells by measuring the extracellular acidification 

rate (ECAR) in the media (Fig. 3a). Following addition of glucose, the glycolytic rate 

was significantly reduced in AKR1B10High, compared to AKR1B10Low, breast cancer 

cells, as was their glycolytic capacity and glycolytic reserve. Moreover, glucose 

uptake was significantly reduced in all three AKR1B10High cell lines (Fig. 3b), 

indicating that AKR1B10High cells have a reduced requirement for glucose. Consistent 

with this hypothesis, in 2D culture AKR1B10High and AKR1B10Low cells showed only a 

modest difference in cell growth when cultured in full DMEM (4.5 g L-1 D-glucose) 

but in low glucose (LG) DMEM (1 g L
-1

 D-glucose) AKR1B10Low cells showed a 

significantly impaired growth rate (Fig. 3c). These data were recapitulated first in a 

3D in vitro assay where AKR1B10High tumour spheroids showed increased growth in 

LG DMEM compared to the AKR1B10Low spheroids (Fig. 3d) and in colony forming 

assays where AKR1B10High cells were significantly more tolerant to low glucose 

conditions (Fig. 3e)  

  In addition to aerobic glycolysis, tumour cells can utilise glutamine and/or 

fatty acids to generate sufficient ATP and metabolites to support cellular activities. As 
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AKR1B10High cells have a reduced glycolytic function, take up less glucose and are 

better able to survive in low glucose conditions, we used the Seahorse XF Mito Fuel 

Flex Test to monitor the dependency on glutamine or fatty acids as an alternative 

source of energy. In none of the three cell lines was there evidence of an increased 

dependency on glutamine oxidation in the AKR1B10High cells (Fig. 4a, left panel), 

whereas two out of three AKRB10High breast cancer cell lines showed an increased 

dependency on fatty acid oxidation (FAO) compared to their matched AKR1B10Low 

counterparts (Fig. 4a, right panel). Moreover, AKR1B10High cells showed a 

significantly increase change in OCR (OCR) following addition of the FAO substrate 

palmitate-BSA (Fig. 4b).  

 To address clinical relevance of these findings, we used a FAO 88-gene 

signature (FAO88; see Methods) and demonstrated that AKR1B10 expression 

positively correlated with a high FAO88 score in triple negative (TN) and ER- breast 

cancer, but not in ER+ breast cancers (Fig. 4c) both in the TCGA dataset and in the 

dataset of Hatzis et al. containing 508 breast cancer patients treated with 

neoadjuvant chemotherapy24. In the Hatzis dataset there were insufficient numbers of 

HER2+ breast cancers for analysis, however, in the intrinsic subtype of HER2-

enriched tumours high AKR1B10 expression again positively correlated with a high 

FAO88 score (Fig. 4c). 

 The processes of FAO and fatty acid synthesis are usually mutually exclusive 

due to their regulation by negative feedback25. It was notable that AKR1B10 

expression in human breast cancers positively correlated with the key FAO 

transcriptional regulator, peroxisome proliferator-activated receptor gamma 

coactivator 1 alpha (PPARGC1A, also known as PGC-1α) (P=0.009) and negatively 

correlated with the activators for fatty acid synthesis, acetyl-CoA carboxylase β 

(ACACB; P=0.047) and acyl-CoA synthetase long chain family member 1 (ACSL1; 

P<0.001), Spearman’s correlation. Consistent with these clinical datasets, fatty acid 

synthesis as monitored by incorporation of 14C-acetate in lipids was significantly 
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reduced in AKR1B10High cells (Fig. 5a). Given this negative correlation between 

AKR1B10 expression and lipid synthesis, AKR1B10High tumour cells must rely either 

on increased uptake of exogenous fatty acids or increased release from intracellular 

fatty acid stores. All three AKR1B10High cell lines showed increased fatty acid uptake 

(Fig. 5b) whereas staining of intracellular neutral lipids with the lipophilic fluorescent 

dye BODIPY 493/503 revealed no significant difference in lipid droplet content 

between AKR1B10High and AKR1B10Low cells (Fig. 5c,d), indicating that AKR1B10High 

cells predominantly fuel FAO via the uptake of free fatty acids.  

 

AKR1B10 sustains FAO-dependent metastatic colonisation 

 The finding that increased AKR1B10 expression promotes metastatic 

colonisation of the lungs (Fig. 1 and Fig. 2d-f) and is associated with an increased 

dependency on FAO (Fig. 4) and enhanced tolerance of low glucose culture 

conditions (Fig. 3c-e) raises two important questions. First, what is the mechanism by 

which AKR1B10 modulates these activities? AKR1B10 is distinguished from the 

other well-characterised AKR1B subfamily member AKR1B1 by its increased 

catalytic activity for retinals, isoprenyl aldehydes and, importantly, for cytotoxic 

aldehydes such 4-hydroxy-2-nonenal (4-HNE)23. The latter is a toxic lipid peroxide 

by-product of the elevated reactive oxygen species (ROS) levels associated with 

oxidative stress. The interaction between FAO and ROS is complex. It is well 

documented that FAO, via its ability to generate NADPH, reduces ROS levels26 but, 

conversely, it has been demonstrated that elevation of ROS in cells, for example as a 

result of loss of matrix attachment or treatment with rotenone or tumour necrosis 

factor-alpha, inhibits FAO27,28. Consistent with the observation that AKR1B10Low cells 

have reduced viability when cultured in LG DMEM (Fig. 3c-e), glucose deprivation 

resulted in elevated levels of lipid peroxidation as detected by BODIPY 581/591 C11 

fluorescence (Fig. 5e,f; Supplementary Figure 4). However, lipid peroxidation levels 

did not increase when AKR1B10High cells were cultured in LG DMEM, suggesting that 
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in metabolically challenging conditions AKR1B10 functions to limit the toxicities 

associated with oxidative stress and maintain FAO activity.  

 Second, do these cellular mechanisms operate in physiologically relevant 

settings? To address this, 3D tumour spheroids were treated with the FAO inhibitor 

etomoxir. Etomoxir had no effect on growth of AKR1B10Low tumour spheroids but 

inhibited the increased growth observed in the AKR1B10High tumour spheroids (Fig. 

6a). More importantly, mice were inoculated intravenously with MDA-MB-231-Luc 

AKR1B10High or AKR1B10Low cells and, after 7 days when the tumour cells will have 

extravasated into the lung tissue, treated with or without etomoxir. As previously 

shown (Fig. 2d), MDA-MB-231High cells gave rise to a significantly increased lung 

tumour burden as monitored by in vivo IVIS imaging, ex vivo measurement of lung 

weight and quantification of metastatic burden (Fig. 6b) and this increased 

AKR1B10High metastatic colonisation was effectively impaired by etomoxir treatment, 

with no effect of etomoxir on the metastatic growth of AKR1B10Low cells.  

 Together these data support a model in which AKR1B10 functions to maintain 

FAO in tumour cells, particularly during metastatic colonisation of the pro-oxidative 

lung microenvironment2. 

 

Discussion  

The data presented here demonstrates that AKR1B10 expression is elevated in ER- 

and HER2+ breast cancers and that within these breast cancer subtypes, high 

AKR1B10 expression is associated with an increased incidence of metastatic relapse 

at secondary sites. In contrast to previous reports29,30, we find that AKR1B10High 

breast cancer cells do not display altered survival or proliferation properties when 

cultured in vitro in full medium (Fig. 2c, Fig. 3c, Fig. 3e) or when grown as primary 

tumours in the fat pads of recipient mice (Fig. 1e). However, AKR1B10High cells are 

more successful than AKR1B10Low cells when cultured in nutrient poor conditions 
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such as in low glucose (Fig. 3c,d) or when colonising the lungs (Fig. 1d, Fig. 6b) and 

this is associated with an increased utilisation of FAO.  

 The ability to modulate metabolic characteristics is a feature of metastasising 

tumour cells as they adapt to the unique environments that they encounter1,2. FAO, 

until recently relatively understudied in cancer, is a key source of ATP, NADH, 

NADPH and FADH2 providing a survival advantage to tumour cells, particularly under 

challenging conditions such as hypoxia, nutrient stress or under therapeutic 

challenge31,32. Moreover, by analysing multiple breast cancer clinical data sets, 

Camarda and colleagues have demonstrated dysregulation of fatty acid metabolism 

genes in triple negative (TN) compared to receptor positive breast cancers and, in 

particular, increased expression key activators of FAO, such as PGC-1α 

(PPARGC1A) and decreased expression of genes encoding regulators of fatty acid 

synthesis33, a pattern demonstrated here to be recapitulated in AKR1B10High 

tumours. Although the role of PGC-1α expression in metastasis is controversial34, 

increased expression has been demonstrated to promote breast cancer metastasis in 

a variety of models systems35-37 and to be associated with increased FAO and an 

enhanced ability of cells to survive in 3D acini assays31. Conversely, impairment of 

FAO decreases cell survival in acini assays27 and reduces tumour burden in the 

lungs and livers following intravenous inoculation38. Here we demonstrate that 

AKR1B10High cells fuel FAO by an increased uptake of exogenous fatty acids. To 

date, the best characterised fatty acid transporters are CD36, fatty acid translocase 

and low density lipoprotein receptor, and it is of particular interest is the recent 

identification of CD36bright cells marking a population of metastasis-initiating cells39, 

and that these cells display an upregulated FAO signature. 

 AKR1B10 belongs to the aldo-keto reductase (AKR) superfamily of NADP(H)-

dependent enzymes4, and together with AKR1B1 and AKR1B15 form the AKR1B 

subfamily of enzymes characterised by their ability to reduce a variety of endogenous 

and xenobiotic aldehydes, dicarbonyl components and some drug ketones23. The 



Page 13 of 35 

AKR1B10 gene promoter contains both an activator protein-1 (AP-1) element and an 

antioxidant response element (ARE)40 and AKR1B10 expression can be regulated by 

AP1 downstream of IRAK1 or EGFR signalling41,42 and by NRF2 (nuclear factor 

erythroid 2-related factor 2) binding to the ARE element40,43. Consistent with the 

latter, induction of oxidative stress results in NRF2-mediated upregulation of 

AKR1B10 expression44. The lungs, due to the high levels of oxygen and exposure to 

toxic compounds, are characterised by a high level of oxidative stress creating a 

challenging microenvironment for metastasising tumour cells2. In addition, all 

metastasising tumour cells will experience oxidative stress particularly in the early 

stages of metastatic colonisation when they have yet to form stable cell:cell and 

cell:matrix attachments and nutrient deprivation1,45 and, in experimental models, 

successful metastasis is associated with metabolic changes that permit cells to 

withstand oxidative stress 46-48. Pro-oxidative conditions result in elevated ROS 

production driving peroxidation of lipids that can then be degraded to reactive 

electrophilic lipid peroxidation products, which in turn can form covalent adducts in 

DNA, proteins and membrane lipids. Unchecked, these lipid peroxide breakdown 

products are highly damaging and cytotoxic to cells. Further, under such conditions 

where production of ATP via FAO would be desirable, these elevated ROS levels 

inhibit FAO27,28,31. Interestingly, there is now increasing evidence that antioxidants, 

which inhibit ROS production, or loss of function mutations in Keap1, which result in 

hyperactivation of the NRF2-mediated endogenous antioxidant transcriptional 

programme, promote lung tumour progression and increase metastatic colonisation 

of melanomas46-49. These studies highlight the need for tumour cells in pro-oxidative 

environments to employ strategies to combat oxidative stress, and that this may be 

particularly pertinent for disseminated tumour cells that have yet to re-establish 

cell:cell and cell:matrix attachments27,50. Via its ability to detoxify lipid peroxidation 

products by reduction of the carbonyl-groups to the corresponding alcohol 

metabolite8,51-53, increased AKR1B10 activity could serve to protect tumours cells 



Page 14 of 35 

from oxidative stress-induced damage and cytotoxicity and permit maintained FAO 

activity. Certainly, elevated levels of FAO are associated with the increased 

metastasis of AKR1B10High cells as treatment of mice with the FAO inhibitor etomoxir 

impairs the enhanced metastatic growth of AKR1B10High cells whilst having no impact 

on AKR1B10Low metastasis. 

 In conclusion, the experimental and clinical data presented support a role for 

AK1B10 in promoting metastasis of breast cancers functioning to support an altered 

metabolic program during secondary site colonisation. The findings raise the 

opportunity to use AKR1B10 expression to identify breast cancers patients with an 

increased risk of distant metastatic relapse, and further develop AKR1B1023 and 

FAO32 inhibitors in the advanced breast cancer setting. This is particularly pertinent 

given that ER- breast cancer patients in general have a poorer prognosis and limited 

therapeutic options, making appropriate stratification for targeted therapies to control 

disease burden of paramount importance. 
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Methods 

All animal work was carried out under UK Home Office Project licenses 70/7413 and 

P6AB1448A (Establishment License, X702B0E74 70/2902) and was approved by the 

Animal Welfare and Ethical Review Body at The Institute of Cancer Research. All 

animals were monitored on a daily basis by staff from the ICR Biological Service Unit 

for signs of ill health. 

 

Cells  

4T1 cells were obtained from ATCC in 2013 and transduced with firefly luciferase 

lentiviral expression particles (Amsbio, LVP326) to generate 4T1-Luc cells. HEK293 

cells and human breast cancer cell lines (MDA-MB-231, MDA-MB-453, MDA-MB-

468, BT20, HCC38, HCC1395) were obtained from ATCC, and MDA-MB-231-Luc 

from (SibTech Inc.) between 2005 and 2012 and short tandem repeat tested every 4 

months (StemElite ID System; Promega). Subtype assessment using the absolute 

assignment of breast cancer intrinsic molecular subtype (AIMS) assigned MDA-MB-

231 and HCC1395 cells as 100% probability of basal-like and MDA-MB-453 cells as 

a 100% probability of HER2-enriched. All cell lines were used within 10 passages 

after resuscitation and were routinely subject to mycoplasma testing. HCC1395 cells 

were cultured in Roswell Park Memorial Institute (RPMI) medium. All other cell lines 

were cultured in Dulbecco’s Modified Eagle's Medium (DMEM). Culture media were 

supplemented with 10% foetal bovine serum (FBS; Invitrogen), 50 U mL-1 penicillin 

and 50 U mL-1 streptomycin. Where indicated cells were cultured in full DMEM (4.5 g 

L-1 D-glucose) or low glucose (LG) DMEM (1 g L-1 D-glucose).  

 4T1-Luc cells were transduced with Mission shRNA lentiviral particles 

(Supplementary Table 2) at multiplicity of infection of 5. Stably transduced cells were 

selected in 2.5 µg mL-1 puromycin. HCC1395 cells were transduced with GIPZ 

shRNA lentiviruses (Dharmacon; SupplementaryTable 3), selected in 2.5 µg mL-1 

puromycin and FACSorted for GFP positive cells. For ectopic expression of 
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AKR1B10, MDA-MB-231 and MDA-MB-453 cells, cells were transduced with empty 

vector or AKR1B10 pReceiver-Lv156 lentivirus (Genecopoeia; Supplementary Table 

3) and selected in 2.5 µg mL-1 puromycin. The cells were cultured for an additional 3 

passages in selective medium to enrich the infected cell population.  

 

In vivo shRNA screen 

As previously detailed54 the screen was performed with 4T1-Luc cells transduced in 

24 subpools (each subpool containing 96 shRNAs) with the miR-30–based shRNA 

library targeting the Cancer 1000 mouse gene set55 and inoculated intravenously into 

female BALB/c mice. On day 21, lungs were removed at necropsy and gDNA 

extracted from preinoculation cell pellets and tumour bearing lungs. shRNA 

representation in the original library plasmid DNA, preinoculation 4T1-Luc cells and 4 

independent metastatic lung samples (samples A - D) per subpool was assessed by 

next generation sequencing (Fig. 1a).  

 shRNA representation in the preinoculation 4T1-Luc cells was compared to 

the representation in the 4 lung samples. Hits were defined as shRNAs that had 

decreased representation (Z-score >-2) in ≥3 lung samples compared to the 

preinoculation cells and had no significant effect on viability when comparing shRNA 

representation in the plasmid pool to the preinoculation cells. 

 

In vivo studies 

6-8 week old female BALB/c or BALB/c Nude (CAnN-Cg-Foxn1nu/Crl) mice were 

purchased from Charles River. For experimental lung metastasis assays, 1x105 4T1 

or 1x106 MDA-MB-231 cells in 100 µL PBS were injected via the lateral tail vein. 

Where indicated, mice were randomised into 2 groups on day 7 and treated with 

etomoxir (Tocris) at 40 mg kg-1 or vehicle (water) intraperitoneally every other day. At 

termination, lungs were IVIS imaged ex vivo, weighed, formalin-fixed and paraffin-

embedded. 3-4 µm thick sections were cut and stained with haematoxylin and eosin 
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(H&E). Total number of individual nodules was counted manually in 3-4 lung 

sections, approximately 150 µm apart, per animal. Where indicated, lung metastatic 

area was quantified as the mean percentage of the area of the metastatic nodules 

normalised to the total lung area. For spontaneous metastasis assays, 1x104 4T1-

Luc cells in 50 µL PBS were injected into the 4th mammary fat pad of female BALB/c 

mice. Tumour growth was measured twice a week using callipers up to a maximum 

diameter of 17 mm. Tumour volume was calculated using the following formula: 

Volume = 0.5236 x diameter3. At the end of the experiment, orthotopic tumours and 

lungs were harvested at necropsy. Where indicated, 300 µL arterial blood was 

isolated by cardiac puncture and 50 μL per well plated in DMEM plus 10% FCS in a 

6-well plate per mouse. Tumour cell colonies were stained 14 days later with crystal 

violet. Plates were scanned at 300 dpi on EpsonV700 scanner and total number of 

colonies counted per mouse. 

 For lung retention assays, 4T1-Luc shNTC and shAkr1b8-4 cells were 

labelled with CellTracker Red CMTPX or Green CMFDA dyes (Molecular Probes), 

trypsinised, mixed at a 1:1 ratio and a total of 0.7×106 cells injected intravenously into 

BALB/c mice. Mice were sacrificed at 1 and 16 hours post injection and 6 images per 

lung taken on a Zeiss LSM 710 microscope (x20 lens). Tumour cell colonisation 

within the lung was quantified in Fiji, by converting red and green images into 

separate binary images and measuring total tumour cell coverage per field of view. 

Alternatively, 1x106 MDA-MB-231-Luc cells were injected intravenously into BALB/c 

Nude mice. Mice were sacrificed at 1 and 8 hours post injection and lung sections 

stained for human lamin A/C. Number of lamin A/C positive cells were quantified 

using Fiji in whole lung sections. 

 

Metabolic assays 

 For all assays, 1.5x104 (MDA-MB-453) or 2.0x104 (HCC1395, MDA-MB-231) 

cells were seeded in XF96 cell culture plates incubated in a 5% CO2 incubator at 
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37°C overnight and results were normalised to cell number using CyQuant DNA 

staining (ThermoFisher).  

 Seahorse XF Glycolysis Stress Test. Culture medium was replaced with 175 

μL pH 7.4 ±0.1 bicarbonate-free DMEM supplemented with 2 mM L-glutamine, and 

the plate incubated at 37°C for 1 hour in a non-CO2 incubator. ECAR was measured 

using the Seahorse XF Glycolysis Stress Test Kit (Agilent) on an XFe96 Analyzer. 

Final concentrations of 10 mM glucose, 2 μM oligomycin and 100 mM 2-

deoxyglucose (2-DG) were used for all conditions. Glycolysis, glycolytic capacity and 

glycolytic reserve were calculated as follows:  

 

Glycolysis = (maximum rate measurement before oligomycin injection) - (final rate 

measurement before 2-DG injection) 

Glycolytic capacity = (maximum rate measurement after oligomycin injection) - (final 

rate measurement before glucose injection) 

Glycolytic reserve = (glycolytic capacity) - (glycolysis) 

 

 Seahorse XF Mito Fuel Flex Test. Culture medium was replaced with 180 μL 

pH 7.4 ±0.1 bicarbonate-free DMEM supplemented with 10 mM glucose, 1 mM 

sodium pyruvate and 2 mM L-glutamine, and the plate incubated at 37°C for 1 hour 

in a non-CO2 incubator. OCR was measured using the Seahorse XF Mito Fuel Flex 

Test Kit (Agilent) on an XFe96 Analyzer. In the Mito Fuel Flex Test the import of 

three major metabolic substrates, fatty acids, glutamine and/or pyruvate is inhibited 

using etomoxir (4 μM), BPTES (3 μM) and UK5099 (2 μM), respectively. To measure 

dependency on FAO, OCR is measured at baseline, following injection of etomoxir 

(Treatment 1) and following injection of BPTES and UK5099 (Treatment 2). To 

measure dependency on glutamine oxidation, OCR is measured at baseline, 

following injection of BPTES and following injection of etomoxir and UK5099. 
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Dependency was calculated with the following formula. Dependency (%) = [(baseline 

OCR - Target 1 inhibitor OCR)/(Baseline OCR - All 3 inhibitor OCR)] x 100. 

 

 Palmitate-BSA FAO assay. Culture media was replaced with 175 μL of pH 7.4 

±0.1 Krebs-Henseleit Buffer (111 mM NaCl, 4.7 mM KCl, 1.25 mM CaCl2, 2 mM 

MgSO4, 1.2 mM NaH2PO4) supplemented with 2.5 mM glucose, 0.5 mM carnitine and 

5 mM HEPES, and the plate was incubated at 37°C for 1 hour in a non-CO2 

incubator. 30 μL of 1 mM palmitate-BSA substrate (Agilent) was loaded directly into 

port A of a Seahorse loading sensor cartridge. OCR was measured at baseline and 

following palmitate-BSA addition on an XFe96 Analyzer. Levels of FAO are 

calculated as follows: Change in OCR (OCR) = (OCR following palmitate-BSA 

addition - OCR at baseline).  

 

Cell based assays 

 Colony formation assay. 0.2-5x104 cells were seeded per well in a 6-well 

plate. 7-10 days post seeding, plates were stained with crystal violet, dried and 

scanned at 1200 dpi using the GelCount colony counter system. Images were 

analysed using Fiji.  

 Cell viability assay. 1x102 cells in 100 µL medium were seeded per well in a 

96-well plate and incubated at 37°C. Immediately after seeding, and every 24 hours 

afterwards, cells viability was analysed by CellTiter-Glo (Promega). Fold change was 

calculated relative to the plate read at seeding (time 0). For 3D viability assays, 5x103 

cells were seeded into ultra-low adherence U-bottomed 96-well plates (Corning). On 

day 6 tumour spheroids were lysed in CellTiter-Glo for 30 minutes and viability 

analysed using a Victor X5 plate reader. Where indicated, etomoxir (200 μM) or 

vehicle (DMSO) was added 24 hours after seeding. 

 2D cell growth. 1x103 cells were seeded per well in a 96-well plate and 

subject to live cell imaging (IncuCyte S3 - Essen Bioscience) every 12 hours for 4.5 
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days. Phase contrast images were collected, a confluence mask applied to the 

segmented images and analysed using IncuCyte integrated confluence algorithm).  

 Anoikis assay. 5×104 cells per well were seeded into low-adherence 6-well 

plates (Costar) in DMEM containing 2% FBS. At 24 hours post-seeding, cells were 

stained with Annexin V-APC/PI Apoptosis Detection Kit (eBioscience) and analysed 

using a BD Biosciences LSRII flow cytometer with FACSDIVA and FlowJo software. 

Cell viability was measured as a proportion of healthy (Annexin-negative, PI-

negative) cells. 

 Glucose uptake assay. 1-5x104 cells were seeded in 100 µL culture medium 

containing 10% FBS into a 96-well plate and incubated for 24 hours at 37°C. Cells 

were washed twice with PBS before the Glucose Uptake-Glo assay (Promega) was 

performed according to the manufacturer’s protocol. 

 Fatty acid uptake assay. 1-3x104 cells were seeded in 100 µL culture medium 

containing 10% FBS into a 96-well plate and incubated for 24 hours at 37°C. Cells 

were washed and serum deprived for 1 hour before 100 μL Free Fatty Acid solution 

(Abcam). After incubating the cells for 1 hour at 37°C the fluorescence signal was 

measured using a fluorescence microplate reader at Ex/Em = 485/515 nm. 

 Lipid synthesis assay. Cells were incubated for 4 hours in medium containing 

10 µCi mL-1 [1-14C] acetic acid, lysed in 0.5% Triton X-100 and lipids extracted by 

successive addition of 2 mL methanol, 2 mL chloroform, and 1 mL H2O. Phases were 

separated by centrifugation at 1000g for 15 minutes. The organic (lower) phase was 

recovered and dried overnight. Lipids were dissolved in Ultima Gold LSC Cocktail 

and counted on a scintillation counter. 

 Lipid droplet analysis. 7.5x103 cells were seeded on coverslips in medium 

DMEM plus 10% FBS. 24 hour post seeding cells were serum-starved for 1 hour, 

stained for 10 min with BODIPY 493/503 dye (D3922, Molecular Probes) and DAPI 

(Molecular Probes), and imaged on a Leica SP2 confocal microscope. Images were 
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analysed using basic algorithms in the Columbus analysis software package 

(PerkinElmer) with lipid droplets quantified using the spot finder application.  

 For lipid peroxidation analysis cells cultured for 48 hours in DMEM or LG 

DMEM plus 10% FBS, stained for 30 min with 1 µg mL-1 BODIPY 581/591 C11 

(D3861, Molecular Probes) and DAPI and imaged on a Leica SP2 confocal 

microscope. Images were analysed using basic algorithms in the CellProfiler 

software package (cellprofiler.org) to quantify oxidised (green) and non-oxidised (red) 

BODIPY probe.  

 Antibodies, and the dilutions used, are detailed in Supplementary Table 4. 

 

Analysis of human datasets  

 Series matrix files for TCGA 522 primary breast cancer samples and a 

neoadjuvant chemotherapy–treated invasive breast cancer clinical cohort (Hatzis, 

accession code GSE25066)24 were downloaded from [https://tcga-

data.nci.nih.gov/docs/publications/brca_2012/] and the Gene Expression Omnibus 

(GEO) site, respectively. Intrinsic molecular subtypes and clinical receptor status of 

ER, PGR, and HER2 were retrieved from the supplemental tables of the 

corresponding publications. In the Tukey boxplots, box indicates the ends of the 1st 

and 3rd quartiles, bar indicates median, whiskers indicated 1.5 IQR (interquartile 

range), and dots indicate outliers. Clinical relevance of variable AKR1B10 expression 

was assessed using publicly available data from Gyorffy et al.22. Unless otherwise 

stated, for Kaplan-Meier analysis the highest quartile of gene expression was used to 

dichotomise the breast cancers. For association of AKRB10 expression and FAO 

pathway activity, a mouse FAO gene set was obtained from 

[http://www.informatics.jax.org/go/term/GO:0019395]. Human orthologues of the 88 

(FAO88) genes were identified using [http://www.informatics.jax.org/homology.shtml]. 

In Hatzis dataset, Affymetrix Human Genome U133A Array annotation file (GEO 

accession code GPL96) was used to map the symbol to the corresponding Affymetrix 

https://tcga-data.nci.nih.gov/docs/publications/brca_2012/
https://tcga-data.nci.nih.gov/docs/publications/brca_2012/
http://www.informatics.jax.org/go/term/GO:0019395
http://www.informatics.jax.org/homology.shtml
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Probe_Set_ID. When multiple Probe_Set_IDs mapped to the same symbol, the 

Probe_Set_ID with the highest variance across samples was selected to represent 

the gene. Genes were discarded from further analysis if they were not mapped to 

either the annotation file or the expression data. FAO88 score was calculated as a 

mean of the normalised Log2-expression of the matched individual genes within the 

FAO88. Pearson correlation was used to assess associations between AKR1B10 

expression and this FAO88 score of the samples in each subset. AKR1B10 

expression in human cell lines was assessed in the dataset of Neve and colleagues 

(ArrayExpress with accession number E-TABM-157). 

 

Statistical analysis 

Statistics were performed using GraphPad Prism 7. Unless stated otherwise, all 

numerical data is expressed as the mean ± standard deviation (SD) for in vitro 

assays and ± standard error of mean (SEM) for in vivo tests. Comparisons between 2 

groups were made using the two-tailed, unpaired Student’s t-test. For experiments 

with two control groups (e.g. shNTC and shCTRL groups) and two experimental 

groups (e.g. shAkr1b8-4 and shAkr1b8-7 groups) comparisons between an individual 

control and an individual experimental group were made using one-way analysis of 

variance (ANOVA) followed by the two-stage step-up method of Benjamini, Krieger 

and Yekutieli. Comparisons between multiple groups with independent variables 

were made using two-way ANOVA with Bonferroni post-testing, with a confidence 

interval of 95% for individual comparisons. To determine false discovery rates (FDR) 

in breast cancer datasets, the Pearson correlation P values were adjusted using the 

Benjamini-Hochberg method for multiple comparisons in each independent breast 

cancer clinical cohort. Statistical significance was defined as: *, P<0.05; **, P<0.01; 

***, P<0.001; ns, not significant.  
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Figure Legends 

 

Fig. 1 | Akr1b8 as a metastasis enhancer in vivo. a, shRNA abundance was 

assessed in the shRNA plasmid library, shRNA transduced preinoculation cells and 4 

tumour-bearing lungs samples (Samples A - D). b, Median Z-scores for shRNA 

representation in the tumour-bearing lung samples compared to 4T1-Luc 

preinoculation cells, identifying 109 significantly enriched (Z-score >2) and 81 

significantly depleted (Z-score <-2) shRNAs. c, Shortlist of 23 putative metastasis 

enhancers identified in the screen. d, 1x105 4T1-Luc transduced with two 

independent shRNA lentiviruses targeting Akr1b8 (shAkr1b8-4, shAkr1b8-7), a non-

targeting shRNA (shNTC) or a control shRNA (shCTRL) were injected intravenously 

into BALB/c mice (n=6 per group). Lung tumour burden was assessed at the end of 

the experiment (day 12) by ex vivo IVIS imaging (average radiance ±SEM; dashed 

line indicates mean radiance of aged-matched non-tumour bearing mice), ex vivo 

lung weight ±SEM, and quantifying % tumour area per lung section ±SEM. 

Representative lung sections, arrowheads indicating tumour nodules. Scale bar, 1 

mm. e, 1x104 4T1-Luc cells were injected orthotopically into BALB/c mice (n=11-12 

mice per group). Animals were sacrificed on day 33. Final, tumour volume, ns for all 

groups except shNTC vs. shAkr1b8-7 (P=0.005), two-way ANOVA with Tukey’s 

multiple comparison test. Tumour weight ±SEM at necropsy. Number of lung 

metastases per mouse ±SEM. Representative lung images are shown in 

Supplementary Fig. 2. f, From the experiment shown in panel e, quantification of 

mean tumour cell colonies derived from circulating tumour cells in 300 µL arterial 

blood per mouse ±SEM, ns for all groups. g, 4T1-Luc anoikis assay, n=3, mean ±SD. 

h, Left panels, shNTC- and shAkr1b8-4 4T1-Luc cells were labelled with CellTracker 

red or green dyes, respectively, inoculated intravenously into BALB/c mice. 1 and 16 

hours after inoculation, lungs were extracted and imaged. Data shown are mean 

tumour cell coverage per field of view, n=4 mice per group per time point ±SEM. 
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Scale bar, 100 μm. Right panels, equivalent results were obtained in a dye swap 

experiment. ns, not significant; *, P<0.05; **, P<0.01; ***, P<0.001; one-way ANOVA 

followed by two-stage step-up method of Benjamini, Krieger and Yekutieli (d-f), 

unpaired t-test (g-h). 

 

Fig. 2 | AKR1B10 is associated with increased risk of distant metastatic 

relapse. a, Tukey boxplots of AKR1B10 expression (Log2 median-centred values) in 

the TCGA breast cancer dataset based on intrinsic subtype (one-way ANOVA with 

Tukey's multiple comparison test) or receptor status (t-test with Welch’s correction). 

Numbers of samples in each category are indicated; *, P<0.05; ***, P<0.001. b, 

AKR1B10 western blot in human breast cancer cell lines (upper panel). Lower panel, 

AKR1B10 expression in shNTC (AKR1B10High) or shAKR1B10 (AKR1B10Low) 

HCC1395 cells and in MDA-MB-231 cells and MDA-MB-453 cells transduced with 

vector-alone (AKR1B10Low) or ectopically expressing AKR1B10 (AKR1B10High). 

Molecular size markers are in kDa. Source blots are provided as Source Data File 1. 

c, Colony formation assay comparing AKR1B10High and AKR1B10Low cells, n=3 per 

sample ±SD. d, 5 × 104 MDA-MB-231 cells expressing vector alone (Vec) or with 

ectopic expression of AKR1B10 were cultured in 6-well low-adherence plates in 2% 

FBS for 24 h before annexin V and PI staining. Data shown as percent of non-

apoptotic (annexin V-, PI-) cells remaining. n=3, mean ±SD. e, 1x106 MDA-MB-231 

cells were injected intravenously in BALB/c Nude mice. Mice were sacrificed at 1 or 8 

hours (n=3 per group per time point) and lung sections stained for human lamin A/C. 

Data shown is cell number per cm2 ±SEM. Representative images, scale bar, 0.5 

mm. ns, not significant; unpaired t-test (c-e). f, Kaplan-Meier analysis of distant 

metastasis-free survival (DMFS) of all (n=1746), ER+ (n=664), ER- (218) or HER2+ 

(n=126) patients in the Gyorffy et al.,22 dataset. Hazard ratios (HR) and log-rank 

Mantel-Cox P-values are shown. 
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Fig. 3 | AKR1B10High cells have decreased glycolysis and increased tolerance 

of low glucose conditions. In all experiments AKR1B10Low and AKR1B10High cells 

are shown in pale and dark blue, respectively. a, Glycolytic function assessed using 

the Seahorse XF Glycolysis Stress test. Glycolysis was determined following glucose 

(10 mM) injection and glycolytic capacity was determined after oligomycin (2 µM) 

injection. Glycolytic reserve was measured as the difference between the glycolytic 

capacity and glycolysis. Left panel, representative extracellular acidification rate 

(ECAR) profile for HCC1395 AKR1B10Low and AKR1B10High cells. Right panel, 

quantification of glycolytic function (shNTC, n=6; shAKR1B10 n=5) ±SD. b, Glucose 

Uptake-Glo assay (see Methods). n=4 per sample ±SD. c, 1x103 MDA-MB-231 or 

5x103 MDA-MB-453 cells seeded into 96-well plate in DMEM or low glucose (LG) (1 

g L-1) DMEM and live imaged over 4.5 days (IncuCyte S3). n=10 per condition 

normalised to day 0 ±SD; ***, P<0.001 two-way ANOVA with Bonferroni post-testing. 

d, 5x103 cells seeded into U-bottomed plates in LG DMEM (n=10). Tumour spheroid 

viability analysed using CellTiter-Glo on day 6 ±SD. Equivalent results were obtained 

in two independent experiments. e, 2x103 MDA-MB-231 cells were seeded into a 6-

well plate (n=3 wells per condition) and cultured in the presence of 4.5, 2.5 or 1 g L-1 

D-glucose. Data represents cell area from 3 independent experiments ±SD. ns, not 

significant; *, P<0.05; **, P<0.01; ***, P<0.001, unpaired t-test (a,b,d,e). 

 

Fig. 4 | Fatty acid oxidation in AKR1B10High cells and breast tumours. a, 

Dependency of cells on glutamine (left panel) and fatty acid (right panel) oxidation 

monitored using the Mito Fuel Flex test (see Methods). HCC1395 and MDA-MB-231, 

n=8 ±SD; MDA-MB-453, n=3-4 ±SD. b, Change in OCR (OCR) following palmitate-

BSA addition calculated as (OCR at the time of palmitate-BSA injection - final basal 

OCR). n=3 ±SD. c, Pearson correlation of AKR1B10 expression and FAO88 score in 

triple negative (TN), ER- and HER2-enriched, ER+ and all breast cancers in the 

TCGA and Hatzis et al.24 datasets. To determine false discovery rates (FDR), the 
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Pearson correlation P values were adjusted using the Benjamini-Hochberg method 

for multiple comparisons in each independent breast cancer clinical cohort. ns, not 

significant; *, P<0.05; **, P<0.01; ***, P<0.001, unpaired t-test (a-b). 

 

Fig. 5 | AKR1B10 limits lipid peroxidation. a, 14C-acetate incorporated into lipids. 

Data from 3 independent experiments relative to AKR1B10Low cells. b, Fatty acid 

uptake. n=5 ±SD. c, HCC1395 and d, MDA-MB-231 cells labelled with BODIPY 

493/503. Data shows lipid droplet content per cell analysed in 3-5 fields of view ±SD. 

Scale bar, 25 μm. e, HCC1395 and f, MDA-MB-231 cells cultured in DMEM or LG 

DMEM and stained with BODIPY 581/591 C11. Quantification of oxidised (green) 

BODIPY probe as a ratio of total probe (green plus red) per cell in 4-5 fields of view 

per sample ±SD. Representative images; scale bar, 50 μm. ns, not significant; *, 

P<0.05; ***, P<0.001, unpaired t-test (a-d). ns, not significant; ***, P<0.001, two-way 

ANOVA with Bonferroni post-testing (e-f). 

 

 

Fig. 6 | Etomoxir treatment blocks AKR1B10-mediated metastasis. a, 5x103 cells 

seeded into ultra-low adherence U-bottomed plates. 24 h post seeding 200 µM 

etomoxir or vehicle was added and tumour spheroid viability assessed day 6. n=8 

±SD. Equivalent results were obtained in two independent experiments. b, BALB/c 

Nude mice injected intravenously with 1x106 cells and treated with vehicle or 

etomoxir (n=5-7 per group). Lung tumour burden was assessed at the end of the 

experiment (day 55) by ex vivo IVIS imaging (dashed line indicates average radiance 

of aged-matched non-tumour bearing mice), lung weight and the mean % tumour 

area from 3 sections cut through the lungs 150 µm apart ±SEM. Representative ex 

vivo IVIS images and lung sections are shown. Scale bar, 1 mm. ns, not significant; *, 

P<0.05; **, P<0.01; ***, P<0.001; two-way ANOVA with Bonferroni post-testing (a-b). 

 


