
	 1	

Spatially constrained tumour growth affects 
the patterns of clonal selection and neutral 
drift in cancer genomic data 
Ketevan Chkhaidze1, Timon Heide1, Benjamin Werner1, Marc J. Williams2, Weini Huang2, 
Giulio Caravagna1, Trevor A. Graham2,§, Andrea Sottoriva1,§ 
 
1Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute 
of Cancer Research, London, UK. 
2Evolution and Cancer Lab, Barts Cancer Institute, Queen Mary University, London, UK. 
 
§email: t.graham@qmul.ac.uk and andrea.sottoriva@icr.ac.uk  

Abstract 
Quantification	of	the	effect	of	spatial	tumour	sampling	on	the	patterns	of	mutations	detected	
in	next-generation	sequencing	data	is	largely	lacking.	Here	we	use	a	spatial	stochastic	cellular	
automaton	model	of	tumour	growth	that	accounts	for	somatic	mutations,	selection,	drift	and	
spatial	constraints,	to	simulate	multi-region	sequencing	data	derived	from	spatial	sampling	of	
a	neoplasm.	We	show	that	the	spatial	structure	of	a	solid	cancer	has	a	major	impact	on	the	
detection	of	clonal	selection	and	genetic	drift	from	both	bulk	and	single-cell	sequencing	data.	
Our	results	indicate	that	spatial	constrains	can	introduce	significant	sampling	biases	when	
performing	multi-region	bulk	sampling	and	that	such	bias	becomes	a	major	confounding	
factor	for	the	measurement	of	the	evolutionary	dynamics	of	human	tumours.	We	also	propose	
a	statistical	inference	framework	that	incorporates	spatial	effects	within	a	growing	tumour	
and	so	represents	a	further	step	forwards	in	the	inference	evolutionary	dynamics	from	
genomic	data.	Our	analysis	shows	that	measuring	cancer	evolution	using	next-generation	
sequencing	while	accounting	for	the	numerous	confounding	factors	remains	challenging.	
However,	mechanistic	model-based	approaches	have	the	potential	to	capture	the	sources	of	
noise	and	better	interpret	the	data.	

Summary 
Sequencing	the	DNA	of	cancer	cells	from	human	tumours	has	become	one	of	the	main	tools	to	
study	cancer	biology.	However,	sequencing	data	are	complex	and	often	difficult	to	interpret.	
In	particular,	the	way	in	which	the	tissue	is	sampled	and	the	data	are	collected	impact	the	
interpretation	of	the	results	significantly.	We	argue	that	understanding	cancer	genomic	data	
requires	mechanistic	mathematical	and	computational	models	that	tell	us	what	we	expect	the	
data	to	look	like,	with	the	aim	of	understanding	the	impact	of	confounding	factors	and	biases	
in	the	data	generation	step.	In	this	study,	we	develop	a	spatial	computational	model	of	tumour	
growth	that	also	simulates	the	data	generation	process,	and	demonstrate	that	biases	in	the	
sampling	step	and	current	technological	limitations	severely	impact	the	interpretation	of	the	
results.	We	then	provide	a	statistical	framework	that	can	be	used	to	start	overcoming	these	
biases	and	more	robustly	measure	aspects	of	the	biology	of	tumours	from	the	data.	
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Introduction 
Cancer	is	an	evolutionary	process	fuelled	by	genomic	instability	and	intra-tumour	
heterogeneity	(ITH)	[1].	ITH	leads	to	therapy	resistance,	arguably	the	biggest	problem	in	
cancer	treatment	today	[2].	Recently,	seminal	studies	have	attempted	to	quantify	ITH	by	
either	looking	at	subclonal	mutations	in	deep	sequencing	data	from	single	bulk	samples	[3,4],	
or	by	taking	multiple	samples	of	the	same	tumour,	the	so-called	multi-region	sequencing	
approach	(reviewed	in	[5]).	Phylogenetic	approaches	are	then	used	to	reconstruct	the	
ancestral	history	of	cancer	cell	lineages	[6].	However,	one	important	difference	between	
phylogenetic	analyses	in	cancer	and	classical	phylogenetic	analyses	of	species	is	that	each	
cancer	sample	is	not	a	single	individual,	but	a	mixture	of	different	cancer	cell	subpopulations	
and	non-cancer	cells	[7].		
	
The	problem	is	usually	tackled	by	performing	subclonal	deconvolution	of	the	samples	to	
separate	the	different	subpopulations	[3,8].	However,	these	approaches	do	not	account	for	the	
spatio-temporal	dynamics	that	generated	the	data.	To	study	the	evolutionary	dynamics	of	
individual	tumours,	mathematical	and	computational	models	of	evolutionary	processes	are	
widely	employed	[9-12].	Many	of	these	models	are	rooted	in	theoretical	population	genetics,	a	
field	that	quantifies	the	evolution	of	alleles	in	populations	and	that	is	central	to	the	modern	
evolutionary	synthesis	[13].	More	recently,	spatial	models	have	also	been	used	[14-23].	
However,	seldom	have	mathematical	and	computational	models	of	cancer	evolution	been	
directly	connected	to	next-generation	sequencing	data	from	human	tumours.	Recent	work	
from	us	and	others	has	shown	that	combining	theoretical	modelling	and	cancer	genomic	data	
allows	for	measurement	of	fundamental	properties	of	the	tumour	evolutionary	process	in	
vivo,	such	as	mutation	rates	and	strength	and	onset	of	subclonal	selection	events	[22,24,25].		
	
Here,	we	study	how	spatial	constrains	of	a	growing	tumour	impact	our	ability	to	infer	cancer	
evolutionary	dynamics.	We	combine	explicit	spatial	evolutionary	modelling	with	synthetic	
generation	of	multi-region	bulk	and	single-cell	data,	thus	providing	a	generative	framework	in	
which	we	know	the	evolutionary	trajectories	of	all	cells	in	a	tumour	and	can	examine	the	
genomic	patterns	that	emerge	from	the	sampling	experiment.	We	show	that	spatial	
constrains,	stochastic	spatial	growth	and	sampling	biases	can	have	unexpected	effects	that	
confound	both	the	interpretation	and	inference	of	the	perceived	evolutionary	dynamics	from	
cancer	sequencing	data.	We	also	present	a	statistical	inference	framework	that	begins	to	
account	for	some	of	these	confounding	factors	and	recover	aspects	of	the	cancer	evolutionary	
dynamics	from	various	types	of	multi-region	sequencing	data	as	well	as	single-cell	data.	

Results 

Simulating spatial tumour growth, sampling and data generation 
Here	we	develop	and	analyse	a	stochastic	spatial	cellular	automaton	model	of	tumour	growth	
that	incorporates	cell	division,	cell	death,	random	mutations	and	clonal	selection	(Material	
and	Methods).	Each	tumour	simulation	starts	with	a	single	‘transformed’	cell	in	the	centre	of	
either	a	2D	or	a	3D	lattice,	and	we	model	the	resulting	expansion	of	this	first	cancer	cell.	All	
events,	such	as	cell	proliferation,	death,	mutation	and	selection	are	modelled	according	to	a	
Gillespie	algorithm	[26].	In	our	model	we	account	for	different	spatial	constraints	that	are	
parameterised	within	our	simulation.	In	order	for	a	cell	to	divide,	a	new	empty	space	for	its	
progeny	is	required	within	the	8	neighbouring	cells	if	we	consider	a	2D	grid	with	Von	
Neumann	neighbourhood.	If	no	empty	space	is	present,	a	cell	can	generate	a	new	space	by	
pushing	neighbouring	cells	outwards	(choosing	a	random	direction	of	the	push).	In	this	
scenario,	the	growth	is	‘homogeneous’	and	all	cells	in	the	neoplasm	can	divide	(Figure	1A,B).	
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Because	all	cells	in	the	tumour	can	divide,	this	scenario	leads	to	an	overall	exponential	
expansion	(Figure	S1A,B).	At	some	point	during	the	simulation	(Figure	1A-D),	within	the	
original	tumour	population	(blue	cells),	we	introduce	a	new	mutant	(a	new	subclone	–	red	
cells)	which	may	or	may	not	have	a	selective	advantage.	In	the	case	of	a	neutral	subclone	(no	
selective	advantage),	the	mutant	cells	proliferate	as	all	the	other	cells	(Figure	1A).	We	note	
that	in	this	case,	colouring	a	new	subclone	in	red	at	a	certain	point	during	neutral	growth	is	
arbitrary,	and	equivalent	to	the	marking	of	a	lineage	by	a	random	neutral	(passenger)	
mutation.	In	the	case	where	the	subclone	has	a	fitness	advantage,	the	mutant	will,	on	average,	
grow	more	rapidly	compared	to	the	parental	background	clone,	thus	increasing	in	relative	
proportion	over	time	(Figure	1B	and	S1B).	

	
Figure	1.	A	spatial	tumour	growth	model	that	simulates	sequencing	data.	In	our	model	we	
introduce	a	mutant	at	a	given	time	t	(blue	=	background	clone;	red	=	mutant	subclone;	shade	is	
proportional	to	the	number	of	generations	the	cell	has	gone	through).	(A)	The	new	mutant	
subclone	can	have	no	fitness	advantage	(mutation	is	a	passenger),	giving	rise	to	a	neutrally	
growing	neoplasm,	or	(B)	have	a	fitness	advantage	s>0	with	respect	to	the	background	
population	(mutation	is	a	driver),	giving	rise	to	differential	selection	in	the	tumour	population.	
In	addition,	cells	accumulate	unique	passenger	mutations	during	each	cell	division.	(C)	In	some	
tumours,	it	is	likely	that	only	cells	close	to	the	tumour	border	are	able	to	proliferate	due	to	the	
abundance	of	resources	and	space.	We	simulate	this	in	our	model	as	boundary	driven	growth,	
which	gives	rise	to	complex	radial	patterns.	(D)	When	boundary	driven	growth	is	combined	with	
selection,	spatial	effect	can	either	amplify	the	growth	of	the	new	subclone,	as	in	this	exemplary	
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case,	or	even	decrease	the	effects	of	selection	if	the	subclone,	by	chance,	gets	imprisoned	behind	
the	growing	front.	(E)	In	our	simulation	we	also	model	the	raising	and	spread	of	point	mutations	
in	the	genome	of	cancer	cells	(all	passengers	and,	when	subclone	is	selective,	one	additional	
driver).	We	can	simulate	the	sampling	of	punch	biopsies	(squares),	needle	biopsies	(thin	stripes)	
and	single	cells.	(F)	By	simulating	the	noise	and	measurement	errors	of	next-generation	
sequencing,	we	can	generate	synthetic	realistic	variant	allele	frequency	distributions	from	the	
spatial	simulations.	(G)	Single-cell	data	can	also	be	simulated,	in	this	case	clearly	showing	the	
presence	of	a	selected	subclone	demonstrated	by	the	clade	of	“red”	cells	with	a	recent	common	
ancestor.	
	
We	also	model	‘boundary	driven’	growth,	where	only	cells	that	are	sufficiently	close	to	the	
border	of	the	tumour	can	proliferate.	Other	cells	may	remain	‘imprisoned’	in	the	centre	of	the	
tumour	unable	to	proliferate	because	of	the	lack	of	empty	space	around	them.	Boundary-
driven	growth	has	been	observed	experimentally	[27-29]	as	well	as	in	model	systems	[30].	
The	magnitude	of	this	effect	is	controlled	in	our	simulation	with	the	parameter	a,	which	
considers	cell	location	and	defines	the	probability	that	a	cell	will	push	neighbouring	cells	to	
create	empty	spots	depending	on	how	far	is	the	cell	from	the	boundary	(see	Materials	and	
Methods).	Boundary	driven	growth	leads	to	a	polynomial	expansion	(Figure	S1C).	
Importantly,	in	both	the	case	of	neutral	mutants	(Figure	1C)	and	selected	mutants	(Figure	
1D),	the	spatial	distribution	of	mutant	cells	in	this	scenario	is	strongly	affected	by	the	spatial	
constraints.	
	
At	each	division,	a	cell	has	a	certain	probability	to	acquire	additional	somatic	mutations,	
modelled	with	a	Poisson	distribution,	with	mean	u,	in	line	with	many	other	previous	models	
[11,24,25,31,32].	Notably,	u	is	the	average	number	of	new	somatic	mutations	per	division	for	
the	whole	genome	of	a	single	cell.	We	assume	that	both	daughter	cells	can	acquire	mutations,	
that	mutations	are	unique	(infinite	site	model)	and	we	neglect	back	mutations	(infinite	allele	
model).	Finally,	the	large	majority	of	mutations	are	assumed	to	be	passengers	(neutral),	with	
a	few	driver	alterations	allowing	for	subclonal	fitness	advantages	(e.g.	subclonal	populations	
in	Figure	1B	and	D).	This	is	consistent	with	large-scale	genomic	sequencing	studies	indicating	
that	in	any	given	tumour,	the	number	of	driver	events	is	generally	small,	while	the	number	of	
passengers	is	often	orders	of	magnitude	larger	[31,33].	
	
Importantly,	our	spatial	model	of	tumour	growth	allows	for	the	simulation	of	tissue	sampling	
and	genomic	data	generation.	For	instance,	we	can	simulate	the	collection	of	punch	biopsies,	
where	spatially	localised	chunks	of	tumour	are	collected	(Figure	1E).	We	can	also	simulate	
needle	biopsies,	where	a	long	and	thin	piece	of	tissue	is	sampled	(Figure	1E).	We	can	then	
simulate	the	genomic	data	generation	process	starting	from	the	cells	in	the	sample	and	the	
identification	of	somatic	mutations.	For	example,	we	can	simulate	the	sequencing	at	a	given	
coverage	using	Binomial	sampling	of	the	alleles,	the	limits	of	low	frequency	mutation	
detection	(e.g.	minimum	number	of	reads	with	a	variant,	minimum	coverage),	as	well	as	non-
uniformity	of	coverage	leading	to	over-dispersion	of	the	variant	allele	frequency	(VAF)	of	
detected	mutations.	This	allows	generating	realistic	data	from	simulated	tumours,	e.g.	in	the	
case	of	the	simulation	of	a	diploid	tumour	with	one	selected	subclone	in	Figure	1E,	all	needles	
and	punch	biopsies	contained	clonal	mutations,	shown	as	a	cluster	of	variants	around	
VAF=0.5	(Figure	1F),	and	in	the	case	of	punch	biopsy	1	and	needle	biopsy	4,	also	a	subclonal	
cluster	representing	the	growing	subclone.		
	
We	previously	showed,	using	a	non-spatial	stochastic	branching	process	model	of	tumour	
growth,	that	assuming	a	well-mixed	population	and	exponential	growth,	the	expected	VAF	
distribution	of	subclonal	mutations	in	cancer	under	neutral	growth	follows	a	power-law	with	
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a	1/f2	scaling	behaviour,	where	f	is	the	variant	allele	frequency	of	subclonal	mutations	[24].	
This	has	been	previously	demonstrated	to	be	the	scaling	solution	of	the	fully	stochastic	Luria-
Delbruck	model	[34-36].	The	1/f-like	neutral	subclonal	tail	can	be	observed	in	all	samples	of	
Figure	1F.		In	the	presence	of	subclonal	selection,	we	expect	to	observe	an	additional	
subclonal	‘cluster’	of	mutations	all	at	the	same	frequency	[3],	that	are	the	passenger	mutations	
hitchhiking	in	the	expanding	clone	(as	we	previously	described	[37]).	This	is	exemplified	in	
needle	4	and	punch	1	in	Figure	1F.	We	note	that	a	1/f-like	tail	remains	in	the	VAF	frequency	
spectrum	of	all	samples,	as	a	consequence	of	within-clone	neutral	dynamics	that	remain	on-
going	throughout	the	tumour’s	growth	[37].	Furthermore,	our	framework	allows	simulating	
single-cell	data.	For	example,	from	the	simulated	tumour	in	Figure	1B	we	sample	individual	
cells	at	random	and	simulate	single-cell	whole-genome	sequencing	(Figure	1G).	

Spatial effects on bulk sequencing data 
For	each	representative	simulation	of	spatial	constraints	in	Figure	1,	we	modelled	the	
sampling	of	6	punch	biopsies	(small	square	regions),	2	needle	biopsies	(long	and	thin	
regions),	as	well	as	hypothetically	sampling	the	whole	tumour.	From	each	sample,	we	
simulated	the	generation	of	100x	depth	whole-genome	data	(see	Material	and	Methods	for	
details	about	the	sequencing	noise	model).	Figure	2A	shows	the	variant	allele	frequency	(VAF)	
distributions	of	samples	from	the	neutral	homogeneous	growth	case	in	Figure	1A,	with	clonal	
mutations	(truncal)	in	grey,	subclonal	mutations	exclusive	to	the	parental	background	clone	
in	light	blue	and	subclonal	mutations	within	the	mutant	in	pink.	All	samples	show	the	
characteristic	1/f2	distribution	corresponding	to	neutral	evolutionary	dynamics	[24],	as	one	
would	expect	theoretically	[34].	The	Area	Under	the	Curve	(AUC)	test	for	neutrality	we	
previously	proposed	[25]	(p<0.05	means	neutrality	is	rejected)	is	reported	on	top	of	each	VAF	
plot	and	shows	that	even	in	the	presence	of	a	spatial	structure,	homogeneous	(exponential)	
neutral	growth	follows	a	1/f2	distribution	(Figure	2A-i	to	2A-iv).	As	we	have	shown	
previously,	it	is	possible	to	recover	the	mutation	rate	per	cell	doubling	from	the	~1/f2	neutral	
tail,	which	in	this	case	without	cell	death	was	10	mutations	per	division	(~10-9	
mutations/bp/division).	This	was	correctly	recovered	in	all	samples	from	Figure	2A	
(recovered	mutation	rate	reported	in	each	plot	as	u).		
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Figure	2.	Variant	allele	frequency	distributions	of	punch	and	needle	biopsies	from	
representative	scenarios.	(A)	In	the	illustrative	example	of	neutral	homogeneous	growth,	a	
neutral	mutant	was	introduced	at	generation	time	t=4	with	a	selection	coefficient	of	s=0	
(neutral)	and	homogeneous	growth	(a=1).	The	mutation	rate	was	u=10.	Tumour	was	simulated	
until	~100K	cells.	From	the	final	tumour,	we	sampled	6	punch	biopsies	(1-6),	2	needle	biopsies	
(7-8)	and	a	“whole-tumour”	sample,	and	simulated	100×	whole-genome	sequencing	data.	VAF	
distributions	of	each	sample	are	shown	(i-iv).	(B)	In	this	case,	a	differentially	selected	subclone	
with	s=3	was	introduced	at	time	t=8	in	a	homogeneous	growth	scenario	(a=1)	and	u=10.	Final	
population	size	was	~80K	cells.	In	those	samples	where	both	the	background	and	the	mutant	
subclone	were	present	(i	and	iv),	the	VAF	distribution	showed	evidence	of	subclonal	selection,	
with	a	subclonal	cluster	(purple)	generated	by	mutations	in	the	selected	subclone	that	
hitchhiked	to	high	frequency	due	to	selection.	(C)	In	the	case	of	neutral	boundary	driven	growth,	
a	new	(neutral)	mutant	was	introduced	at	t=4	with	s=1	and	boundary	driven	growth	parameter	
a=0.025.	Even	though	the	tumour	grew	neutrally,	the	spatial	effects	of	boundary	driven	growth	
led	to	deviations	from	the	neutral	expected	null	under	homogeneous	growth.	Moreover,	clusters	
in	the	VAF	spectrum	are	detectable	in	iii,	where	sampling	bias	produced	an	over-representation	
of	a	lineage	that	was	not	due	to	selection.	(D)	Boundary	driven	growth	with	selection	(mutant	
introduced	at	t=8	with	s=2	and	a=0.025)	produced	even	more	complex	patterns	of	drift	and	
sampling	bias.	The	data	represents	tumour	simulations	in	2D	space.	Birth	rate	b	is	1	in	all	
simulation.	
	
In	the	case	of	homogeneous	growth	with	subclonal	selection	(Figure	2B),	neutrality	could	be	
rejected	based	in	all	those	samples	containing	a	mix	of	the	background	clone	and	the	new	
subclone	(Figure	2B-i	and	2B-iv,	see	subclonal	cluster	in	purple).	Specifically,	needle	4	and	
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punch	1	showed	the	expected	signature	of	selection,	with	a	subclonal	cluster	a	consequence	of	
the	over-representation	of	passenger	mutations	in	the	expanded	clone	[3,25].	The	1/f2-like	
tail	resulting	from	the	within-clone	accumulation	of	passenger	mutations	remains	in	the	
frequency	spectrum	[25].	Specifically,	in	the	plots	in	Figure	2B	we	report	the	mutations	that	
were	present	in	the	first	subclone	cell	in	purple.	Those	are	mutations	that	increased	in	
frequency	by	hitchhiking	on	the	selected	mutant.	Importantly,	we	note	that	these	mutations	
are	not	exclusive	to	the	subclone	but	are	also	found	in	other	lineages	(e.g.	in	the	‘cousins’	of	
the	selected	subclone).	The	same	dynamics	are	observed	if	it	is	the	death	rate	to	decrease,	
rather	than	the	birth	rate	to	increase	(Figure	S2A,B).	Importantly,	the	cell	death	d	not	only	
increases	the	rate	of	genetic	drift,	as	expected,	but	also	the	level	of	clonal	intermixing	due	to	
the	additional	stochasticity	introduced	by	high	cell	replacement	(Figure	S2C-F,	examples	of	
neutral	cases).	Selection	could	not	be	detected	in	other	spatially-distinct	samples	from	the	
same	tumour	when	they	did	not	contain	differentially	selected	populations,	and	either	
captured	only	the	background	clone	(blue)	or	only	the	selected	mutant	(red)	(Figure	2B-ii	and	
2B-ii).	This	is	correct	as	in	those	samples	ITH	is	neutral.	
	
This	initial	spatial	analysis	produced	similar	results	to	our	previous	well-mixed	non-spatial	
models	[24,25].	We	next	investigated	the	effect	of	boundary	driven	growth.	Here,	only	cells	
close	to	the	borders	grow,	leaving	other	cells	‘imprisoned’	inside	the	tumour	mass	(see	
Material	and	Methods	for	details),	a	pattern	called	gene	surfing	that	causes	radial	patterns	of	
cells	growing	only	at	the	front	of	the	expanding	wave	(Figure	2C).	This	has	been	previously	
documented	both	theoretically	and	experimentally	in	bacteria	[38],	in	mathematical	models	of	
tumour	growth	[16,17,39],	as	well	as	in	cancer	model	systems,	where	the	neutral	expansion	of	
the	cancer	cell	population	under	boundary	driven	growth	led	to	lineages	growing	just	because	
they	were	‘lucky’	to	be	in	the	right	place	at	the	right	time	[29].	This	has	implications	for	the	
impact	of	the	immune	system	during	the	evolution	of	a	tumour,	which	exert	a	negative	
selection	pressure	on	the	cancer	cell	population	through	neoantigen	recognition	and	removal	
[40],	especially	because	neoantigen	recognition	is	clone	size	dependent	[41].	Importantly,	
boundary	driven	growth	leads	to	non-exponential	population	dynamics	[27,28]	that	also	
impact	the	distribution	of	mutations	between	the	centre	and	the	periphery	of	a	solid	
neoplasm,	as	shown	in	a	case	of	liver	cancer	sampled	at	high	resolution	[42].	The	
accumulation	of	subclonal	mutations	in	a	neutrally	expanding	tumour	under	boundary	driven	
growth	is	expected	to	follow	a	1/f2	scaling	form	within	most	of	the	detectable	frequency	range	
(f>5%),	although	at	low	frequency	deviations	are	expected	[43].	This	is	largely	driven	by	the	
increasing	difference	in	mutational	burden	between	the	centre	and	the	border	of	the	tumour,	
which	could	lead	to	rejection	of	the	standard	neutral	expectation	under	exponential	growth,	
as	seen	when	the	whole	tumour	is	sampled	with	respect	to	when	only	a	localised	bulk/needle	
biopsy	is	collected	(Figure	2C).	
	
Because	the	population	is	no	longer	homogeneously	distributed	however,	this	can	lead	to	
significant	spatial	bias,	causing	over-	or	under-representation	of	mutations	in	the	VAF	
distributions	solely	due	to	spatial	effects	and	not	because	of	selection.	This	causes	deviations	
from	the	neutral	expectation	of	the	mutant	allele	distributions	that	risk	being	wrongly	
interpreted	as	the	consequence	of	on-going	subclonal	selection,	as	in	Figure	2C.	In	this	
scenario,	we	know	that	subclonal	clusters	(e.g.	punch	6	in	Figure	2C-iii)	are	not	differentially	
selected	subclones,	but	the	over-representation	of	alleles	is	solely	induced	by	the	spatial	
structure.	Furthermore,	even	when	we	observe	distributions	that	appear	to	follow	the	neutral	
expectation	(AUC	p>0.05),	boundary	driven	growth	results	in	much	higher	mutational	loads	
than	would	be	expected	in	the	well	mixed	case.	Here	our	inferred	mutation	rates	are	up	to	10	
times	higher	than	the	ground	truth.	This	can	be	observed	more	explicitly	in	Figure	S3,	where	
we	sample	each	representative	tumour	from	the	centre	towards	the	periphery	by	taking	
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samples	along	concentric	circles	(Figure	S3A)	and	compare	the	mutational	loads	of	the	
samples	(Figure	S3B).	This	was	indeed	observed	in	a	case	of	neutrally	growing	liver	cancer	
[42]	and	a	similar	phenomenon	is	also	observed	in	species	evolution	[44].	
	
If	we	combine	boundary	driven	growth	and	subclonal	selection	the	situation	is	further	
complicated:	selective	effects	are	now	modulated	by	spatial	constraints.	In	some	cases,	the	
selected	mutant	emerges	and	remains	directly	at	the	front	of	tumour	growth.	In	this	scenario	
the	outgrowth	caused	by	its	selective	advantage	is	amplified	further	just	because	it	occurred	
at	the	growing	front	(Figure	2D).	In	other	cases,	the	selected	mutant	may,	by	chance,	remain	
‘imprisoned’	within	the	tumour	(assuming	the	mechanism	of	selective	advantage	is	unable	to	
overcome	this	spatial	entrapment)	and	stops	proliferating	despite	its	selective	advantage	(e.g.	
Figure	S4).	In	both	these	cases,	further	sampling	biases	occur.	In	the	case	of	punch	5	for	
example	(Figure	2D-iii),	where	the	new	subclone	is	fixed	(clone	fraction=100%),	there	is	an	
overrepresentation	of	a	cluster	of	mutations	that	is	only	due	to	spatial	drift	and	not	selection.	
These	dynamics	are	recapitulated	in	larger	cohorts	of	simulated	tumours	with	the	same	
parameters	(Figure	S5).	The	distributions	of	p-values	for	the	AUC	measurements	for	all	
simulations	for	different	modes	of	growth	are	illustrated	in	Figure	S6A.	This	figure	shows	that	
neutrality	is	accepted	in	the	majority	of	homogeneous	cases	without	selection,	and	it	is	
rejected	in	the	majority	of	homogeneous	cases	with	selection.	In	the	case	of	boundary	driven	
growth	things	are	more	complicated.	In	Figure	S6B	we	show	the	AUC	tests	for	neutrality	
applied	to	whole-tumour	samples	versus	punch/needle	biopsies.	In	the	case	of	neutral	
boundary	driven	growth,	neutrality	is	accepted	in	the	majority	of	cases	when	we	use	localised	
punch/needle	biopsies,	but	rejected	when	the	whole-tumour	sample	is	examined.	This	is	due	
to	the	deviation	from	strict	neutrality	caused	by	boundary	driven	growth,	that	can	be	detected	
only	when	a	large	region	of	the	tumour	is	sampled	(and	hence	differences	between	centre	and	
periphery	of	the	tumour	are	captured).	In	the	case	of	selective	boundary	driven	growth,	we	
observe	similar	dynamics	but	with	the	ability	of	rejecting	neutrality	if	differential	selection	of	
the	growing	subclone	is	captured	within	the	punch/needle	sample.	We	note	that	under	
selective	boundary	driven	growth,	the	subclone	often	remains	imprisoned,	leading	to	neutral-
like	dynamics.	Similar	dynamics	to	Figure	2B	are	observed	when	positive	selection	is	
modelled	as	the	probability	of	growing	in	the	absence	of	space	(increased	pushing	probability	
parameter	a)	rather	than	the	increased	birth	rate.	This	leads	to	dynamics	dominated	by	the	
homogeneous	growth	of	the	subclone	rather	than	boundary	growth	of	the	background	clone	
(Figure	S7).	Moreover,	removal	of	the	majority	of	cells	(99%)	by	treatment	leads	to	
enhancement	of	outgrowth	of	selected	clones	due	to	competitive	release	(Figure	S8	and	S9).	
	
We	then	looked	at	the	pairwise	VAF	distributions	between	samples.	The	amount	of	subclonal	
mutations	scattered	through	the	frequency	spectrum	(Figure	3)	and	the	number	of	subclonal	
clusters	due	to	sampling	bias	and	spatial	drift	was	significant	(e.g.	Figure	3D).	As	per	ground	
truth,	only	the	dark	purple	mutations	should	show	a	subclonal	clustering	pattern	(e.g.	Figure	
3B,	punch	1).	We	found	that	scattered	variants	were	mostly	due	to	the	effect	of	neutral	
lineages	spreading	in	space,	and	then	subsampled	in	different	ways	in	each	tumour	region.	In	
the	case	of	boundary	driven	growth,	sampling	bias	produces	evident	clusters	that	do	not	
correspond	to	differently	selected	subclones	in	the	tumour.	This	makes	the	reconstruction	of	
the	true	clonal	phylogeny	and	its	evolutionary	interpretation	problematic.		
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Figure	3.	Sample	vs	sample	scatterplots	of	mutations.	For	each	of	the	representative	cases:	
(A)	neutral	homogeneous,	(B)	selective	homogeneous,	(C)	neutral	boundary	driven,	(D)	selective	
boundary	driven,	we	report	the	scatterplots	of	somatic	mutations	in	selected	samples.	Clearly,	
the	presence	of	passenger	subclonal	mutations	in	the	neutral	tail	of	growing	clones	that	spread	
in	space	as	the	tumour	grows	produces	scattered	variants	(e.g.	A).	Even	more	striking	is	the	
formation	of	subclonal	clusters	of	mutations	particularly	in	the	presence	of	boundary	driven	
growth	(e.g.	C,	D)	where	some	lineages	are	over-represented	not	because	of	differential	selection,	
but	because	of	sampling	bias	and	spatial	drift.	

Spatial effects on single-cell sequencing 
Most	of	the	confounding	factors	we	have	described	so	far	result	from	the	limitations	of	bulk	
sequencing,	where	the	genomes	of	many	cells	are	convolved	within	samples.	Single-cell	
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sequencing	does	not	suffer	from	this	particular	limitation	and	promises	high-resolution	
cancer	evolutionary	analysis	devoid	of	the	drawbacks	of	bulk	sequencing	[45].	
	
To	examine	the	effect	of	single	cell	sequencing,	we	simulated	whole-genome	sequencing	of	10	
single	cells	taken	at	random	from	the	tumour	and	reconstructed	their	phylogenetic	
relationship	(Figure	4A-i).	For	the	neutral	cases	(Figure	4A	and	C),	the	patterns	are	consistent	
with	a	typical	'balanced'	neutral	tree,	wherein	all	lineages	contribute	roughly	equally	to	the	
final	cell	populations.	In	a	balanced	tree,	the	average	distance	between	the	trunk	and	each	leaf	
of	the	tree	is	similar	in	each	lineage.	In	cases	with	selection	(Figure	4B-i	and	4D-i),	the	
selected	subclonal	lineages	are	over-represented	on	the	tree	(as	reflected	in	VAF	
distributions),	as	the	red	lineage	is	introduced	at	time	t=8	and	would	have	been	much	smaller	
if	it	was	not	selected	for.	Here	the	average	distance	between	trunk	and	any	leaf	is	different	in	
the	background	vs	the	new	clone.	The	pattern	is	even	clearer	if	we	sample	400	single	cells	and	
performed	WGS	(Figure	4B-ii	and	D-ii).	We	note	that	if	we	use	randomly	sampled	single	cell	
sequencing	and	plot	the	site	frequency	spectrum	(frequency	distribution	of	mutations	within	
the	population	of	sampled	cells)	we	recapitulate	the	VAF	distribution,	including	subclonal	
clusters	and	1/f2	tails	(Figure	S10).	This	is	because	the	site-frequency	spectra	derived	from	
single-cell	sequencing	data	corresponds	to	a	VAF	distribution.		

	
Figure	4.	Single-cell	sequencing	data	from	spatial	tumour	simulations.	(A)	From	each	
representative	scenario	we	sampled	10	single-cells	at	random	(i)	as	well	as	400	single-cells	at	
random	(ii)	and	performed	synthetic	whole-genome	sequencing.	In	both	homogeneous	(A)	and	
boundary	driven	growth	(C),	single-cell	sequencing	significantly	reduces	the	sampling	bias	that	
we	found	in	bulk	samples	and	the	only	overrepresented	lineages	were	due	to	selection	(B,	D).	
However,	due	to	the	currently	high	error	rate	of	single-cell	sequencing,	several	studies	rely	on	

Neutral Selective

Neutral +
boundary driven growth

Selective +
boundary driven growth

10 single
cells WGS

400 single
cells WGS

400 single cells 
genotyped using 

needle 8

A B

C D

i ii iii



	 11	

single-cell	genotyping	using	mutations	found	in	bulks.	We	simulated	this	by	genotyping	on	400	
single-cells	the	mutations	found	at	VAF>5%	in	needle	biopsy	8	of	each	tumour	(iii).	The	resulting	
trees	are	hard	to	interpret	in	terms	of	the	clonal	phylogeny	due	to	the	bias	in	the	selection	of	
variants	to	be	genotyped.	
	
However,	as	whole-genome	mutational	profiling	of	single	cells	is	still	difficult	due	to	allele	
dropout	[46],	often	single-cell	genotyping	has	to	be	performed	instead	[47].	In	this	approach,	a	
bulk	sample	is	sequenced	and	all	mutations	in	that	bulk	sample	are	then	tested	in	single	cells	
for	presence/absence	of	the	mutation.	Integrating	bulk	sequencing	with	single-cell	
information	is	extremely	powerful	[48],	but	requires	careful	interpretation	of	the	results.	In	
Figure	4A-iii	we	show	that	this	approach,	although	informative,	can	lead	to	very	distorted	
phylogenetic	trees	where	branch	lengths	are	heavily	biased	by	the	initial	choice	of	mutations	
to	be	assayed,	and	consequently	the	signature	of	selection	vs	neutrality	is	not	readily	
identifiable	from	these	data	alone.	
	
Moreover,	significant	sampling	bias	is	still	apparent	for	single-cell	sequencing	when	
individual	cells	are	not	sampled	uniformly	at	random	from	the	whole	tumour,	but	instead	
isolated	in	‘clumps’	from	different	bulk	samples.	In	Figure	5	we	have	simulated	the	collection	
of	4	single	cells	from	each	of	the	6	punch	biopsies	in	Figure	2	(these	are	the	same	simulations	
used	to	generate	Figure	4).	The	trees	are	quite	different	from	those	sampled	in	Figure	4	and	
moreover,	it	is	interesting	to	see	how	the	underlying	patterns	of	growth	are	reflected	in	the	
mixing	of	cells	from	different	bulks.	For	instance,	homogeneous	growth	leads	to	very	high	
intermixing	of	cells	in	different	bulks,	whereas	boundary	driven	growth	tends	to	spatially	
segregate	bulks.	We	have	quantified	the	level	of	intermixing	for	different	modes	of	growth	in	
all	our	simulation	cohort,	highlighting	this	pattern	(Figure	S11).	We	have	observed	these	
patterns	real	data	from	carcinomas	vs	adenomas,	where	carcinomas	were	characterised	by	
clonal	intermixing,	but	adenomas	were	not	[49].	Similar	patterns	of	intermixing	have	also	
been	found	more	recently	using	single-cell	seeded	organoid	sequencing	[50].	
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Figure	5.	Biases	of	single-cell	sequencing	when	cells	are	taken	from	spatially	separated	
bulk	samples.	Whereas	taking	N	random	cells	from	a	tumour	highly	reduces	sampling	bias,	this	
is	often	not	how	single-cell	from	neoplasms	are	sampled.	Often	first	small	chunks	of	the	tumour	
are	dissected	and	then	single-cells	are	isolated	from	those.	(A)	neutral	homogeneous,	(B)	
selective	homogeneous,	(C)	neutral	boundary	driven,	(D)	selective	boundary	driven.	For	each	of	
our	representative	examples,	we	simulated	this	type	of	sampling	and	show	how	this	impacts	
severely	on	the	phylogenetic	tree	and	patterns	of	clonal	intermixing.	In	particular,	single-cell	
sampling	from	bulks	alters	the	detected	phylogenetic	relationship	of	the	cells	because,	since	
groups	of	cells	come	from	spatially	segregated	regions,	those	appear	more	closely	related	than	
expected	by	chance.	This	is	an	important	source	of	sampling	bias	that	needs	to	be	considered	
when	analysing	single-cell	phylogenies.	Cells	coming	from	the	‘red’	mutant	subclone	are	
highlighted	in	the	red	shaded	box.	

Resolving spatial effects with inference 
The	spatial	effects	of	drift	and	sampling	bias	one	can	observe	are	remarkable	and	represent	a	
major	challenge	for	the	correct	subclonal	reconstruction	of	tumours	growing	in	three-
dimensional	space.	Due	to	the	inherent	complexity,	analytical	solutions	to	this	problem	that	
take	space	into	the	account	remain	challenging,	although	some	attempts	to	tackle	this	difficult	
question	are	being	undertaken	[51].	Understanding	the	complex	impact	of	spatially	growing	
cell	populations	on	the	actual	genomic	data	requires	an	approach	based	on	computational	
simulations.	
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Here	we	devise	a	statistical	inference	framework,	similar	in	spirit	to	what	we	previously	
proposed	for	well	mixed	populations	[25],	that	aims	at	recovering	the	evolutionary	
parameters	of	each	individual	tumour	from	the	type	of	data	we	have	discussed	so	far	(see	
Material	and	Methods	for	details).	We	constructed	a	test-set	of	34	synthetic	tumours	
simulated	with	different	parameters	(see	Table	S1)	and	assessed	the	error	in	recovering	the	
parameters	used	to	generate	these	tumours	after	statistical	inference	with	an	Approximate	
Bayesian	Computation	–	Sampling	Monte	Carlo	(ABC-SMC)	approach	[25,52-54].	The	details	of	
the	inference	algorithm	are	detailed	in	Material	and	Methods.	We	used	approximately	one	
million	simulation	instances	to	perform	parameter	inference	using	priors	in	Table	S2.	We	
were	particularly	interested	in	comparing	the	accuracy	provided	by	the	different	spatial	
sampling	methods	in	recovery	evolutionary	dynamics.	We	studied	three	different	sets	of	
tumours.	In	the	first	set,	we	investigated	parameter	recovery	in	tumours	with	homogeneous	
(exponential)	growth,	with	and	without	selection	but	with	no	cell	death.	In	the	second	set,	we	
added	stochastic	cell	death	as	an	additional	factor.	In	the	third	set,	we	studied	cases	of	
boundary	driven	growth	where	we	also	examined	our	ability	to	recover	the	extent	of	the	
boundary	driven	parameter	a.	In	all	three	sets,	we	studied	the	differences	in	the	ability	to	
recover	parameter	if	we	used	a	single	bulk	sample	of	the	whole	tumour	multi-region	punch	
biopsies,	multi-region	needle	biopsies	or	single-cell	sequencing.	Following	the	inference	of	the	
parameters,	we	calculate	the	percentage	error	for	each	parameter	as	a	difference	between	the	
true	parameter	value	and	inferred	parameter	value	(mode	of	a	parameter	posterior	
distribution)	scaled	by	the	true	parameter	value.	Then	we	plot	the	distributions	of	the	
percentage	errors	for	each	parameter	per	growth	model	and	sampling	strategy	in	Figure	6.	
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Figure	6.	Statistical	inference	framework	to	recover	evolutionary	parameters.	We	
combined	our	model	with	a	statistical	inference	framework	(Approximate	Bayesian	
Computation	–	Sequential	Monte	Carlo)	in	order	to	infer	the	evolutionary	parameters	of	
selection	and	growth	from	the	data.	We	tested	this	framework	on	34	synthetic	(target)	tumours	
for	which	we	generated	genomic	data.	Our	of	these	34	target	cases,	13	were	characterised	by	
homogeneous	growth	with	no	cell	death	(A,	Set	1),	11	were	homogeneous	but	with	cell	death	(B,	
Set	2),	and	10	where	characterised	by	boundary	driven	growth	(C,	Set	3),	see	all	parameters	in	
Table	S1.	We	tested	the	ability	to	recovery	parameters	of	4	different	sampling	schemes:	punch	
samples,	needle	biopsies,	single	cell	phylogenetic	trees	and	whole-tumour	sampling	(see	
Materials	and	Methods	for	details).	We	report	the	percentage	error	of	the	inference	(true	
parameter	value	–	inferred	value	based	on	the	mode	of	the	posterior	probability)	for	each	
parameter	and	scenario.	See	prior	parameter	ranges	in	Table	S2.	(D)	For	the	homogeneous	
stochastic	cell	death	scenario	(Set	2),	we	also	report	the	error	in	recovering	the	death	rate	
parameter	d.	(E)	For	the	boundary	driven	growth	scenario	we	report	the	error	in	recovering	
boundary	driven	growth	parameter	a	(Set	3).	
	
Not	surprisingly,	the	scenario	with	exponential	homogeneous	growth	without	cell	death	was	
the	one	where	the	evolutionary	parameters	were	the	easiest	to	recover	because	spatial	
constrains	were	limited	and	the	number	of	unknown	parameters	lowest	(Figure	6A-C,	“Set	
1”).	In	particular,	the	percentage-error	in	recovering	the	mutation	rate	u	was	particularly	low,	
especially	using	single-cell	sequencing	(Figure	6A,	“Set	1”).	The	mean	percent	error	of	the	
parameters	t	(Gillespie	time	when	a	new	mutant	is	introduced)	and	s	(selective	coefficient	of	
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the	new	mutant),	in	the	case	of	homogeneous	growth	were	also	within	20%	and	overall	
agrees	with	our	previous	observations	in	well-mixed	populations	[25].	The	presence	of	
stochastic	cell	death,	even	within	a	homogeneously	growing	tumour,	introduced	significant	
spatial	and	sampling	biases	(spatial	drift)	that	led	to	a	higher	error	in	the	recovery	of	the	
parameters	(Figure	6A-C,	“Set	2”).	Furthermore,	some	of	the	evolutionary	parameters	became	
unidentifiable	(mutation	and	death	rate).	In	this	scenario,	the	best	sampling	strategies	to	
recovery	the	death	parameter	d	were	single-cell	sequencing	or	whole-tumour	sequencing,	
reflecting	the	need	to	collect	large	population	of	cells	for	the	correct	estimation	of	this	
parameter	(Figure	6D).	Boundary	driven	growth	also	introduced	significant	biases	that	led	to	
higher	percent-error	values	in	the	recovered	parameters	(Figure	6A-C,	“Set	3”).	Here,	single-
cell	sequencing	was	best	in	recovering	the	boundary	driven	growth	parameter	a	(Figure	6E).	
See	Figure	S12	for	summary	statistics	from	the	simulations	in	Figure	6.	The	full	posterior	
distributions	of	each	parameter	in	each	context	is	reported	in	Figure	S13.	Parameter	
dependency	in	the	inference	of	t	and	s	combinations	is	reported	in	Figure	S14.	We	performed	
the	same	inference	approach	but	with	3-dimensionally	growing	tumours	using	a	test	set	of	a	
single	simulated	‘target’	tumour	and	inferred	the	parameters	using	approximately	10	million	
simulated	cancers	and	found	similar	results	(Figure	S15).	We	do	recognise	that	for	complex	
scenarios	that	are	heavily	affected	by	spatial	constrains,	such	as	boundary	driven	growth,	
inferred	parameter	values	still	suffer	from	high	uncertainty	in	our	ABC	framework.	This	
suggests	the	need	for	further	model	development	and	generation	of	higher	resolution	data	for	
high	confidence	estimation	of	evolutionary	parameters	in	cancer.		

Discussion 
It	is	now	widely	accepted	that	tumour	growth	is	governed	by	evolutionary	principles.	Thus,	
recovering	the	evolutionary	histories	of	tumours	is	essential	to	the	understanding	patient-
specific	tumour	growth	and	treatment	response.	However,	these	analyses	are	inevitably	
based	on	limited	information	due	to	sampling	biases,	noise	of	known	and	unknown	nature,	
lack	of	time	resolved	data	amongst	many	others.	Despite	these	limitations,	many	approaches	
based	on	single	sampling,	multi-region	bulk	profiling,	or	single	cell	sequencing	have	been	
developed.	Information	from	such	data	is	often	derived	using	purely	statistical	bioinformatics	
methods	such	as	clustering	analyses,	without	consideration	of	the	confounding	underlying	
influence	of	the	cellular	mechanics	of	tumour	growth.	Here	we	explicitly	investigated	spatial	
effects	on	the	evolutionary	interpretation	of	typical	multi-region	sequencing	data	of	tumours.	
We	found	that	the	effects	of	sampling	bias	and	spatial	distributions	of	spatially	intermixed	cell	
populations	critically	depend	on	the	mode	of	tumour	growth	as	well	as	the	details	of	the	
underlying	sampling	and	data	generation	procedure.	Most	surprisingly,	we	could	observe	
clusters	of	over-represented	alleles	in	the	VAF	distribution	of	some	tumour	samples	that	were	
indistinguishable	from	positively	selected	subclonal	populations,	despite	emerging	solely	due	
to	the	spatial	distribution	of	cells.	Such	clusters	vary	depending	on	how	one	samples	a	
tumour,	and	would	therefore	cause	a	major	challenge	for	the	evolutionary	interpretation	of	
cancer	genomic	data	based	on	subclonal	reconstruction.		
	
We	furthermore	presented	a	Bayesian	inference	framework	to	recover	evolutionary	
parameters	from	our	spatial	distributions.	Evolutionary	parameters	such	as	strength	of	
selection	or	mutation	rates	may	be	important	surrogate	measurements	of	evolvability,	and	
hence	linked	to	progression	and	treatment	resistance,	as	it	has	been	demonstrated	for	the	
rates	of	chromosomal	instability	[55,56].	Again,	we	observe	that	our	ability	to	precisely	
recover	certain	evolutionary	parameters	depend	on	the	scenarios	of	tumour	growth	and	
spatial	sampling	strategies.	However,	we	do	believe	that	although	complex,	the	situation	is	far	
from	hopeless.	More	involved	statistical	frameworks	based	on	first	principles	of	tumour	
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growth	can	help	resolving	some	of	the	evolutionary	parameters	on	an	individualised	patient	
basis.	Importantly,	careful	spatial	sampling	and	single-cell	sequencing	can	mitigate	some	of	
the	confounding	issues.	We	do	acknowledge	that	our	model	has	some	important	limitations,	
such	as	the	infinite	allele	assumption	(which	could	be	violated	by	copy	number	loss	[46]).	We	
also	recognise	that	we	tested	our	inference	framework	only	using	our	own	generative	model,	
and	that	despite	the	generative	model	matching	the	assumptions	intrinsic	to	the	inference	the	
posterior	parameter	estimates	still	suffered	from	high	uncertainty	in	some	cases,	reflecting	
the	complexity	of	the	problem.		Also,	for	computational	feasibility	we	mostly	focus	on	2D	
spatial	analyses	and	of	a	relatively	limited	number	of	cells	with	respect	to	the	billions	of	cells	
present	in	a	human	tumour.	We	also	acknowledge	that	we	do	not	offer	a	closed	mathematical	
formulation	for	the	distribution	of	alleles	under	spatial	effects,	which	would	be	very	useful	but	
remains	a	very	difficult	problem	that	can	only	be	tackled	partially	(e.g.	[43]).	Additionally,	
more	realistic	models	of	tumour	growth	dynamics	that	account	for	force	fields	between	cells	
[57]	have	been	developed	that	could	improve	on	the	study	of	spatial	patterns	of	growth	
[23,58].	For	computational	feasibility,	especially	in	regards	to	the	necessity	of	performing	
statistical	inference	on	the	data	and	generate	thousands	of	simulations,	we	restricted	our	
analysis	to	the	stochastic	cellular	automaton	model	we	propose	here.	Nevertheless,	our	
approach	highlights	the	importance	of	spatial	modelling	of	real	data	and	the	impact	of	
confounding	factor	in	our	estimate	and	understanding	of	tumour	evolution.		
	
Importantly,	future	versions	of	the	model	could	help	guiding	optimal	sample	collection	that	
would	minimise	the	spatial	biases	in	the	data.	Due	to	the	current	technical	limitations	of	these	
types	of	approaches,	we	are	still	far	from	direct	application	in	the	clinic.	Additional	effort	
should	also	be	directed	towards	the	use	of	measurements	from	other	clinical	data,	such	as	
imaging,	where	estimations	of	necrosis	for	example,	can	help	parameterise	computational	
models.	However,	we	argue	it	remains	extremely	important	to	understand	the	confounding	
factors	and	spatial	biases	we	expect	to	find	in	samples	from	which	often	we	need	to	base	
clinical	decisions	on.	Mathematical	modelling	of	cancer	evolution	is	a	growing	field	with	a	fast	
expanding	repertoire	of	models	and	approaches	[11,59],	however	attention	to	clinical	and	
biological	relevance	of	modelling	approaches	is	necessary	to	ensure	these	efforts	are	not	dead	
ends.		

Materials and Methods 

Details of the model 
We	developed	a	computational	stochastic	model	of	spatial	tumour	growth	that	allows	
simulating	different	strategies	of	multi-region	tissue	sampling	followed	by	synthetic	
generation	of	high-throughput	sequencing	data.		We	consider	tumour	cells	as	asexually	
reproducing	individuals	that	die	and	divide	with	certain	pre-defined	probabilities.	If	b	is	the	
birth	rate	for	each	cell	and	d	the	death	rate,	then	the	growth	of	the	population	over	time	t	is:		
	

																																							𝑁(𝑡) = 𝑒(()*)+																																																			[1]	
	
where	N(t)	is	a	population	size	at	time	t,	and	b-d	is	the	net	growth	rate.	At	first,	we	assume	
that	birth	and	death	rates	are	constant	over	time,	whereas	the	overall	growth	rate	can	vary	
over	time	due	to	the	randomness	of	each	birth	or	death	event,	as	well	as	due	to	spatial	
constrains	that	can	limit	or	promote	cell	division	over	time.	We	model	spatial	constraints	with	
the	boundary	proliferation	parameter	a,	which	models	the	distance	from	the	border	of	the	
tumour	within	which	cells	are	allowed	to	proliferate	even	in	the	absence	of	space	(by	pushing	
neighbouring	cells	outwards).	When	a~1	all	cells	can	proliferate	(homogeneous	growth),	and	



	 17	

their	growth	is	equivalent	to	an	exponential	expansion.	When	a~0,	cells	can	only	proliferate	if	
they	have	an	empty	space	in	their	neighbourhood,	resulting	in	only	a	small	layer	of	cells	at	the	
tumour	border	being	able	to	divide.	In	this	case	the	growth	curve	can	significantly	deviate	
from	equation	[1].	
	
In	addition	to	cell	division,	we	also	model	mutation	and	selection,	where	the	latter	can	change	
birth	and/or	death	rates.	We	model	somatic	mutations	acquired	by	each	cell	after	division	as	a	
Poisson	random	variable	–	Pois(𝑢),	where	u	is	the	mean	mutation	rate.	Thus,	after	each	cell	
division,	a	random	set	of	new	unique	mutations	occur	in	each	cell	of	the	two	cells	resulting	
from	the	division.	The	majority	of	these	mutations	are	passenger	mutations	and	hence	do	not	
affect	a	cell’s	phenotype.	However,	they	enable	us	to	trace	cell	lineages	uniquely	in	the	final	
tumour.	In	addition,	we	also	allow	for	driver	mutation	‘events’	that	can	lead	to	positive	
selection	of	a	subpopulation	of	cancer	cells:	a	driver	event	conveys	a	fitness	advantage	to	that	
particular	cell	and	its	offspring,	thus	allowing	the	lineage	to	increase	in	frequency.	Since	we	
ask	what	is	the	distribution	of	mutations	across	space,	rather	than	the	expected	waiting	time	
of	driver	events	as	previously	analysed	[60],	we	introduce	a	driver	mutation	at	a	fixed	time	in	
our	simulations,	also	to	make	simulations	comparable	and	computationally	efficient.	
	
To	simulate	tumour	growth	in	space	with	these	four	stochastic	events	–	birth,	death,	mutation	
and	selection	–	we	have	used	a	modification	of	the	Gillespie	algorithm	[26].			
	
Specifically,	the	simulation	framework	works	as	follows:	
	
• Initialization:	start	with	a	2D/3D	grid	with	Von	Neumann	neighbourhood.	Place	the	first	

tumour	cell	in	the	centre	of	the	grid.	Set	time	t=0.	
	

Until	a	cell	reaches	a	predefined	grid	boundary,	repeat	the	following	steps	
	

1. Compute	the	reaction	propensities	according	to	the	Gillespie	algorithm.	Each	reaction	
event	of	birth	(or	death)	has	a	functional	form	𝑓(𝑥) = 𝑘𝑥;	where	𝑥	is	the	number	of	cells	of	
type	“x”	(wild-type	or	mutant),	and	𝑘	is	either	the	birth	or	death	rate.	The	time	of	each	
event	is	obtained	by	sampling	an	exponential	random	variable	with	mean	given	by	its	
propensity.	The	next	event	chosen	is	the	one	completing	first	(i.e.,	with	the	smallest	clock	
value,	as	in	the	so-called	next	reaction	method	[26]).	Given	the	event,	we	increment	the	
time	by	its	clock.	Note	that	these	time	steps	do	not	correspond	to	population	doubling	
times	i.e.	generations;	doubling	times	can	be	retrieved	scaling	time	by	a	factor	log(2).	

	
2. If	the	next	event	is	a	cell	division,	we	use	a	heuristic	method	to	place	the	2	daughter	cells	

on	the	grid.	We	first	replace	the	parent	cell	with	the	first	daughter,	and	search	for	a	
suitable	position	to	place	the	second	daughter	cell.	We	use	a	Von	Neumann	neighbourhood	
and	check	if	any	of	the	8	(in	2D	grid)	neighbouring	spots	of	the	parent	cell	is	empty;	if	one	
or	more	are,	we	locate	the	second	cell	in	one	of	those	spots	at	random.	Otherwise,	with	a	
probability	determined	by	a	parameter	𝑎,	we	push	all	cells	along	a	randomly	chosen	
direction	until	we	hit	the	grid	boundary,	and	place	the	second	daughter	at	the	nearest	
emptied	spot.	With	the	parameter	𝑎	we	can	model	boundary	driven	growth,	as	it	
represents	the	fraction	of	the	radius	of	the	growing	tumour	where	cells	are	allowed	to	
proliferate;	that	is,		𝑎 = 0.2	creates	a	tumour	periphery	of	width	equal	to	20%	of	the	whole	
tumour	width	in	which	cells	are	allowed	to	proliferate	even	without	empty	space	by	
pushing	neighbouring	cells	outwards	(when	𝑎 = 1,	periphery	width	is	100%,	every	cell	
can	always	push	and	divide,	and	the	tumour	grows	exponentially).	When	a	cell	divides,	we	
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generate	passenger	mutations	by	drawing	a	number	from	Pois(𝑢).	These	mutations	will	be	
assigned	to	both	daughter	cells.	

	
3. If	the	next	event	is	cell	death,	we	simply	free	the	position	allocated	to	the	cell.	

	
4. At	the	end	of	this	step,	we	check	if	the	clock	is	greater	than	the	time	of	the	next	scheduled	

driver	event	tdriver;	if	it	is,	we	convert	a	single	wild	type	(WT)	cell	into	a	new	mutant	and	
increase	its	birth	rate,	or	decrease	its	death	rate.	This	will	result	in	mutant	cells	having	a	
proliferative	advantage.	To	quantify	the	effect,	we	define	the	fitness	s	as:	1 + 𝑠	 =
	(𝑏𝑖𝑟𝑡ℎ_𝑚𝑢𝑡𝑎𝑛𝑡	– 	𝑑𝑒𝑎𝑡ℎ_𝑚𝑢𝑡𝑎𝑛𝑡)/(𝑏𝑖𝑟𝑡ℎ_𝑤𝑡	– 	𝑑𝑒𝑎𝑡ℎ_𝑤𝑡).	

	
Details	of	the	data	generation	and	error	modelling.	At	the	end	of	the	simulation,	we	can	
collect	bulk	or	single-cells	and	simulate	sequencing	data	generation.	Bulk	Samples	are	
spatially	separated	tumour	chunks	‘cut	out’	from	the	tumour.	We	model	two	different	shapes:		
	

1. Squares,	which	are	referred	to	in	the	paper	as	‘punch	biopsies’		
2. Long	thin	rectangles	that	resemble	a	‘needle	biopsy’		

	
A	bulk	sample	is	a	set	of	adjacent	cells	from	the	final	tumour	population.	Each	cell	has	its	
unique	ID,	a	position	on	a	grid	and	its	list	of	somatic	mutations.	From	the	sampled	cells	(in	a	
bulk)	joined	list	of	mutations	we	can	construct	the	Variant	Allele	Frequency	(VAF)	
distribution	as	in	a	real	sequencing	experiment.		
	
To	construct	a	VAF	distribution	from	a	simulated	bulk	tumour	sample,	we	mimic	realistic	next	
generation	sequencing	steps,	specifically	sequencing	coverage	and	limits	of	detectability	of	
low	frequency	mutations.	We	proceed	as	follows:	
	

1. We	generate	(dispersed)	coverage	values	for	the	input	mutations	by	sampling	a	
coverage	from	a	Poisson	distribution	𝐷~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 = 𝑍)	with	mean	𝜆	equal	to	a	
desired	sequencing	depth.	

2. Once	we	have	sampled	a	depth	value	𝑘	for	a	mutation,	we	sample	its	frequency	
(number	of	reads	with	the	variant	allele)	with	a	Binomial	trial.	We	use	
𝑓~Binomial(𝑛, 𝑘)	where	𝑛	is	the	proportion	of	cells	carrying	this	mutation	in	the	
sample.	

	
This	procedure	guarantees	that	the	generated	read	counts	reflect	the	proportions	of	
mutations	in	the	simulated	tumour.	To	model	limits	of	detection	of	a	mutation,	after	
resampling	a	mutation,	we	discard	it	if	the	corresponding	number	of	reads	containing	the	
variant	allele	is	less	than	5	(using	the	fixed	coverage	100,	which	accounts	for	a	~0.05	
minimum	VAF).		
	
We	also	performed	single	cell	sequencing	taking	either	random	single	cells	across	the	whole	
tumour	population,	or	from	spatially	structured	biopsies	(mimicking	bulk	tissue	collection	
followed	by	single-cell	isolation).	We	used	the	obtained	single	cells	to	construct	maximum	
parsimony	phylogenetic	trees.	In	addition	to	single	cell	sequencing,	we	also	model	genotyping	
cells	with	a	given	list	of	mutations,	corresponding	to	targeted	sequencing	of	mutations	found	
using	e.g.	exome	or	whole-genome	sequencing.	To	implement	this,	we	take	one	of	the	bulk	
samples	as	reference	genotype	and	check	for	the	presence	of	each	individual	mutation	in	a	
random	set	of	200	cells.	Similarly,	we	use	the	obtained	genotyped	single	cells	to	infer	
phylogenetic	trees	and	check	how	much	the	genotyped	trees	differ	from	the	single	cell	trees.		
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Details of the ABC framework 
Due	to	the	complexity	captured	by	our	spatial	model	of	tumour	growth,	we	do	not	have	
explicit	formulas	for	the	stationary	probabilities	of	the	stochastic	process,	and	hence	cannot	
derive	a	likelihood	function.	Thus,	we	have	to	use	likelihood-free	methods	to	perform	
statistical	inference	on	the	parameters	and	compute	the	posterior	distribution	of	the	
parameters	𝜽.	
	
Here	we	use	Approximate	Bayesian	Computation	(ABC)	[53,61]	to	infer	the	parameters	of	our	
model.	ABC	is	based	on	the	idea	of	scanning	a	large	grid	of	plausible	values	for	𝜽,	and	
simulating	the	model	many	times	with	such	parameters.	Outputs	of	the	model	are	stored	and	
compared	using	a	predefined	set	of	summary	statistics	that	are	initially	evaluated	on	real	
data.	We	can	then	rank	sets	of	parameters	that	lead	to	the	generation	of	synthetic	data	that	
are	close	to	the	observed	data.	We	can	estimate	a	posterior	distribution	𝑝(𝜽|𝑫)	for	the	model	
parameters	𝜽,	using	the	available	data	𝑫	and	the	prior	for	𝜽.	This	method	is	computationally	
intensive,	and	requires	running	several	hundred	(ideally	thousands	or	millions)	simulations.	
In	our	case	we	have	generated	~74	million	simulations	that	we	use	to	perform	the	inference	
step.	
		
There	are	different	approaches	to	implement	ABC,	the	simplest	is	rejection-sampling.	More	
advanced	implementations	such	as	ABC	with	Markov	Chain	Monte	Carlo	(MCMC)	can	result	in	
significant	increases	in	efficiency.	In	our	paper	we	implemented	a	simple	rejection-sampling	
algorithm	first,	and	then	added	Monte	Carlo	simulation	techniques	to	speed	up	convergence.	
The	simple	ABC	rejection-sampling	algorithm	consists	of	the	following	steps:	
	
1. Sample	parameter	vector	𝜽	from	a	prior	distribution	𝑝(𝜽).	
2. Run	the	model	with	the	given	parameter	set	and	generate	the	synthetic	dataset	
3. Evaluate	the	distance	between	the	simulated	dataset	and	the	target	data	
4. If	the	distance	is	less	than	a	desired	threshold,	accept	the	parameters.	
5. Return	to	step	1	and	repeat	until	𝑁	parameter	values	are	accepted.	
	
In	this	study	we	use	uniform	priors	for	all	parameters:	u~Uniform(0, 100), s,d,a~Uniform(0, 1), 
tdriver~Uniform(0, 15). One	of	the	most	important	factors	that	affect	the	ABC	outcome	is	the	
number	of	simulations	that	one	can	afford	to	run,	and	the	summary	statistics	were	chosen	to	
evaluate	the	distance	between	a	target	and	a	simulated	dataset.	Summary	statistics	can	be	any	
quantitative	measurement	that	captures	the	information	from	the	multidimensional	data	
without	losing	too	much	information.	As	for	our	distance	metric,	we	use	Euclidean	and	
Wasserstein	distances	between	summary	statistics	for	different	parameters	as	discussed	
below.		
	
Wasserstein	metric	estimates	the	distance	between	probability	distributions	by	treating	each	
distribution	as	a	unit	amount	of	dirt	piled	up	on	a	given	metric	space	and	calculates	the	
minimum	cost	required	to	convert	one	pile	into	another.	If	x	and	y	are	two	vectors	we	want	to	
evaluate	the	distance	of,	first	we	calculate	their	empirical	distribution	functions	𝐹(𝑡) =
∑ 𝑤[

(\)𝕝{𝑥[	 ≤ 𝑡}a
[bc 	and	𝐺(𝑡) = ∑ 𝑤[

(e)𝕝{𝑦[	 ≤ 𝑡}g
[bc 	(for	weights	𝑤[\ 	and	𝑤[

e	we	took	1/𝑚	and	
1/𝑛	respectively),	the	Wasserstein	distance	is	defined	by	evaluating	the	following:		
	

𝑊i(𝐹, 𝐺) =	= (j |𝐹)c(𝑢) − 𝐺)c(𝑢)|i
c

l
)c/i	
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where	we	took	p=1	for	our	analysis.	We	used	the	R	package	transport	(https://CRAN.R-
project.org/package=transport)	to	implement	the	distance	calculation.	
	
We	used	different	summary	statistics	for	each	sampling	scheme.	For	punch,	needle	biopsy	and	
the	whole	tumour	sampling	–	we	used	the	VAF	distribution	to	compute	our	summary	
statistics.	For	the	whole	tumour	VAFs,	our	ABC	procedure	was	similar	to	the	one	in	ref	[25].	
For	the	bulk	samples,	since	our	model	implements	multi-region	sampling,	we	first	evaluate	
the	multivariate	VAF	distribution	(which	is	a	joint	probability	distribution	of	all	sampled	bulk	
VAFs)	and	then	calculated	the	Euclidean	distance	between	the	obtained	empirical	probability	
distribution	vectors:	
	

𝐷mnop[*qrg(𝐹s[a_*r+r(𝑉𝐴𝐹(npvc,… , 𝑉𝐴𝐹(npvx), 𝐹+ryzq+_*r+r(𝑉𝐴𝐹(npvc,… , 𝑉𝐴𝐹(npvx), )	
	
With	single	cell	samples,	we	constructed	phylogenetic	trees	per	tumour	and	used	different	
tree-based	summary	statistics	to	evaluate	the	distance.	Since	the	inferred	phylogenetic	tree	
branch	length	is	proportional	to	the	number	of	unique	mutations	belonging	to	a	node,	we	
decided	to	compare	the	vectors	of	all	branch	lengths	(between	a	simulated	and	target	tumour	
trees)	by	computing	the	Wasserstein	distance.	For	the	subclone	introduction	time	tdriver,	death	
rate	𝑑	and	the	boundary	driven	growth	parameter	𝑎,	we	chose	to	compare	the	vectors	of	
branching	times	for	each	node	of	the	phylogenetic	trees.		
	
Due	to	computational	costs,	we	are	limited	to	run	the	ABC	framework	with	a	small	tumour	
size	(~100k	cells)	or	simulate	smaller	datasets	per	inference,	both	of	which	can	significantly	
affect	the	outcome.	To	therefore	speed	up	our	ABC	framework	we	implemented	a	Sequential	
Monte	Carlo	(SMC)	algorithm	to	increase	the	acceptance	rate	of	the	simple	ABC	rejection	
algorithm.	Our	ABC	SMC	algorithm	uses	sequential	importance	sampling	by	running	several	
rounds	of	resampling	around	the	accepted	parameters	(correlating	the	rounds),	and	gradually	
decreasing	the	acceptance	threshold	while	converging	to	the	posterior	distribution.	This	
approach	significantly	increases	the	acceptance	rate	of	the	simulated	datasets	[62].		
	
Our	implementation	of	the	ABC	SMC	algorithm	is	as	follows:	
	
1. Initialise	the	indicator	to	rounds	𝑟	and	the	acceptance	threshold	𝜀	
2. If	𝑟 = 1	

2.1. Run	the	simple	ABC	rejection	algorithm	(described	above).	
2.2. Order	the	simulated	parameters	set	according	to	their	corresponding	distance	values.	
2.3. Keep	the	top	Q	per	cent	of	the	parameters.	

3. Else	
3.1. Sample	next	particle	𝜃 = (𝑢, 𝑡, 𝑠, 𝑑, 𝑎)	from	the	accepted	set	of	parameters	from	round	

𝑟 − 1	with	weights	𝑊y)c.	
3.2. Perturb	each	sampled	parameter	𝑝[ 	using	uniform	perturbation	kernel	

		𝐾 = 𝑈𝑛𝑖𝑓(𝑝[ − 𝜎, 𝑝[ + 𝜎),			where	𝜎 =
c
�
(max(𝑝[y)c) − min	(𝑝[y�c)).	

3.3. If	𝜋(𝜃) > 0	,	keep	𝜃	
Else	go	to	step	3.2.	

3.4. Simulate	data	from	the	model	using	the	sampled	particle	𝜃.	
3.5. Calculate	distance	D	between	the	target	and	the	simulated	data.	
3.6. If	𝐷 < 𝜀	,	keep	𝜃	

Else	go	to	step	3.1.	
4. Calculate	the	weights	for	all	accepted	particles	1 ≤ 𝑗 ≤ 𝑁:	

4.1. If	𝑟 = 1,	set	𝑊(�,y) = 1	
4.2. Else			
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𝑊(�,y) =
𝜋�𝜃(�,y)�

∑ 𝑊(p,y)c)𝐾�𝜃(p,y)�𝜃(p,y)c)�x
pbc

	

	
5. Update	the	threshold	𝜀	to	the	top	Q-th	percentile	of	the	accepted	particles.	
6. Repeat	until	𝜀	is	less	than	a	desired	convergence	threshold.		
	
Our	ABC-SMC	framework	tries	to	recover	all	the	parameters	(referred	to	as	a	particle	in	the	
algorithm	above)	at	the	same	time.	We	notice	that	once	one	of	the	parameters	converges,	the	
acceptance	rate	decreases	significantly.	We	then	decided	to	fix	the	converged	parameter	at	
the	inferred	value	(mode	of	its	posterior)	and	rerun	the	inference	varying	the	rest	of	the	
parameters	until	other	parameters	converge,	and	repeat	the	procedure.	We	found	that	this	
significantly	improved	the	convergence	speed.	For	the	2D	inference	in	Figure	6	we	started	
with	N=100	simulated	particles,	performed	r=10	rounds	with	quantile	Q=0.5,	leading	to	
~200k	simulations	for	each	parameter	and	~1M	simulations	in	total.	For	the	3D	inference	in	
Figure	S15	we	started	with	N=1000	simulated	particles,	performed	r=10	rounds	with	quantile	
Q=0.5,	leading	to	~2M	simulations	for	each	parameter	and	~10M	simulations	in	total.		
	

Input data format 
	
The	package	implements	three	sampling	strategies	for	the	inference:	
	
1.	Bulk	samples	(punch	or	needle	biopsies)	-	ABCSMCwithBulkSamples()	
	
2.	Single	cell	sample	phylogenetic	trees	-	ABCSMCwithTreeSampleBL()	and	
ABCSMCwithTreeSampleBT()	(using	Branch	Lengths	or	Branching	Times	as	summary	
statistics)	
	
3.	Whole	tumour	bulk	sample	-	ABCSMCwithWholeTumour()	
	
Depending	on	the	strategy,	a	user	would	need	to	provide	real	or	synthetic	target	data	in	the	
form	of	tumour	bulk	sample	VAFs	(list	of	R	data.frames	where	each	row	should	correspond	to	
a	unique	mutation	with	the	following	columns:	clone	(Clone	type	label	set	to	0),	alt	(Number	
of	reads	with	the	variant),	depth	(Sequencing	depth),	id	(Unique	mutation	ID)),	an	array	of	
whole	tumour	sample	VAFs	or	single	cell	sampling	phylogenetic	trees.	Alternatively,	a	user	
can	provide	a	set	of	parameters	(please	refer	to	the	package	documentation	for	the	details	of	
each	input	parameter	format)	to	simulate	a	synthetic	target	tumour	to	then	recover	these	
input	parameters.			
	
The	functions	output	sequence	of	files	containing	sets	of	inferred	parameters	corresponding	
to	each	SMC	round	(that	can	then	be	used	to	construct	the	posterior	distributions	for	each	
parameter).	

Phylogenetic tree reconstruction 
For	Figure	4	and	parameter	inference	framework	with	single	cell	sequenced	trees	we	used	
maximum	parsimony	phylogenetic	algorithm	implemented	in	paup	[63].	For	the	genotyped	
phylogenetic	trees	in	Figure	4,	we	manually	constructed	input	genotype	files	for	paup	by	
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recording	presence/absence	of	a	given	mutation	from	the	sampled	200	cells	with	respect	to	
the	reference	mutations	list	(in	our	case	mutations	list	taken	from	a	bulk	sample).	

Neutrality test 
To	test	for	the	presence	of	selection	and	the	mutation	rate	inference,	we	fit	1/f	distribution	to	
the	empirical	cumulative	distributions	of	sampled	VAFs	using	the	R	package	developed	in	ref	
[25].	
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Figure Legends 
	
Figure	S1.	Growth	curves.	Tumour	cell	population	growth	curves	for	each	of	the	
representative	cases:	(A)	neutral	homogeneous,	(B)	selective	homogeneous,	(C)	neutral	
boundary	driven,	(D)	selective	boundary	driven.	Wild	type	(WT)	and	mutant	growth	curves	
are	plotted	separately	in	addition	to	the	whole	population	growth	curves.	Without	the	spatial	
constraints	of	our	model,	the	growth	curves	are	exponential	as	expected.	(A,	B)	With	the	
boundary	driven	growth	the	growth	becomes	polynomial.	We	can	also	see	for	the	tumours	
with	selection	(B,	D)	how	the	mutant	subpopulation	outcompetes	wild	type	cell	population.		

Figure	S2.	Examples	where	selection	is	modelled	by	varying	death	rates	instead	of	birth	
rates,	and	neutral	growth	under	high	cell	death.	Two	examples	where	fitness	advantage	is	
modelled	by	decreasing	cell	death	the	mutant	subpopulations	and	increasing	for	the	wild	
type.	(A)	The	death	rate	of	the	mutant	subpopulation	is	0.2	while	for	the	WT	is	0.8.	(B)	The	
death	rate	of	the	mutant	subpopulation	is	0.3	while	for	the	WT	is	0.9.	(C-F)	Examples	of	
neutral	growth	with	high	cell	death,	which	increases	the	level	of	genetic	drift	(especially	
noticeable	in	(F))	as	well	as	the	level	of	spatial	intermixing	due	to	stochasticity	of	cell	
replacement.	Birth	rate	b	was	1	in	all	simulations.	

Figure	S3.	Mutational	load	comparison	for	different	growth	cases.	(A)	We	sample	each	
representative	example	tumours	(T1	–	neutral	homogenous,	T2	–	selective	homogenous,	T3	–	
neutral	boundary	driven,	T4	–	selective	boundary	driven)	from	the	tumour	centre	(bulk	
sample	C1)	towards	the	periphery	following	the	concentric	circles	in	four	directions:	W	–	
west,	E	–	east,	N	–	north,	S	–	south.	The	bulk	indexes	(2W,	3W,	4W)	are	proportional	to	the	
distance	from	the	centre	to	the	periphery.	(B)	We	observe	how	the	number	of	mutations	per	
bulk	sample	increases	proportionally	to	the	distance	from	the	tumour	centre	in	the	case	of	
boundary	driven	growth.	Also,	the	total	number	of	mutations	is	much	higher	for	the	
constrained	boundary	driven	growth	than	for	the	homogenous	tumour	due	to	increased	cell	
turnover	in	the	former	case.		
	
Figure	S4.	Example	of	imprisonment.	Example	of	selective	boundary	driven	growth	when	
the	driver	mutant	subpopulation	gets	trapped	within	the	wild	type	population	despite	being	
fitter	than	the	WT	clone.	
	
Figure	S5.	The	effect	of	stochasticity	and	sampling	bias	on	the	shapes	of	VAF	
distributions	for	the	four	representative	scenarios.	For	each	of	the	representative	cases:	
(A)	neutral	homogeneous,	(B)	selective	homogeneous,	(C)	neutral	boundary	driven,	(D)	
selective	boundary	driven,	we	simulated	100	different	runs	of	each	case	keeping	the	
underlying	parameters	constant	and	varying	only	the	random	seed	of	the	simulation.	For	each	
simulated	tumour,	we	constructed	needle	and	punch	biopsy	sample	VAF	distributions	along	
with	the	whole	tumour	VAFs.	Overall	there	is	a	less	variation	among	the	distributions	for	
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neutral	(A,C)	versus	selective	(B,D)	cases.	In	addition,	punch	biopsy	VAFs	scatter	more	than	
needle	biopsy	samples	in	comparison	to	the	whole	tumour	VAF	distributions.	(E)	We	
separated	the	VAF	distributions	for	the	selective	boundary	driven	between	cases	where	the	
new	clone	escaped	and	grew	to	fixation,	versus	escaped	by	not	yet	fixed	(signature	of	ongoing	
subclonal	selection),	versus	imprisoned	(leading	to	neutral	dynamics)	

Figure	S6.	Distribution	of	AUC	based	neutrality	test	p-values.	(A)	We	simulate	100	
different	tumours	for	each	4	representative	growth	models	and	fit	1/f	test	to	their	
corresponding	whole	tumour	sample	VAFs.	Reported	are	the	distributions	of	p-values	
obtained	from	each	test	using	the	AUC	statistics.	(B)	For	the	cases	of	boundary-driven	growth	
modes	we	compared	tests	of	neutrality	using	the	whole-tumour	sample	versus	punch/needle	
biopsies.	

Figure	S7.	Example	of	selection	when	mutant	subpopulation	has	higher	push	power	
instead	than	higher	birth	rate.	Example	of	a	selective	exponential	growth	when	the	mutant	
subpopulation	has	higher	‘push	power’	than	the	wild	type	population.		

Figure	S8.	Killing	99%	of	the	cell	population	and	re-growing	tumours.	For	each	of	the	
representative	cases:	(A)	neutral	homogeneous,	(B)	selective	homogeneous,	(C)	neutral	
boundary	driven,	(D)	selective	boundary	driven,	we	simulated	procedures	of	removing	large	
cell	population	(here	99%)	by	the	end	of	tumour	growth	and	wait	for	it	to	regrow	to	its	
original	size.	

Figure	S9.	Growth	curves	through	cell	killing.	Tumour	cell	population	growth	curves	for	
each	of	the	representative	cases:	(A)	neutral	homogeneous,	(B)	selective	homogeneous,	(C)	
neutral	boundary	driven,	(D)	selective	boundary	driven,	where	by	the	end	of	tumour	growth	
we	remove	99%	of	the	cell	population	and	wait	for	the	tumour	to	regrow	to	its	original	size.	

Figure	S10.	Allele	frequency	distributions	derived	from	single	cell	sequencing.	We	
construct	the	allele	frequency	distributions	from	sequencing	the	randomly	sampled	400	
single	cells	(same	as	in	Figure	4)	from	the	four	representative	tumour	examples:	T1	–	neutral	
homogenous,	T2	–	selective	homogenous,	T3	–	neutral	boundary	driven,	T4	–	selective	
boundary	driven.		

Figure	S11.	Distribution	of	Moran’s	test	effect	size.	We	simulate	100	different	tumours	for	
each	4	representative	growth	models	and	test	intermixing	of	subpopulations	within	each	
simulation	lattice	using	Moran’s	entropy-based	test.	Each	individual	test	output	significant	p-
values	indicating	to	high	spatial	correlation	between	tumour	cell	types	(mutant	vs	WT)	and	
their	location	on	tumour	lattice.	Although	the	test	effect	size	(the	observed	values	of	the	
Moran’s	test	statistic)	differ	as	we	can	see	from	their	distributions	per	model	scenario.	The	
median	values	of	each	observed	statistics	are	reported	at	the	bottom	of	each	violin	plot.	

Figure	S12.	Comparing	the	site	frequency	spectrum	and	phylogenetic	tree	balance	
index	statistics	for	each	representative	scenario	and	sampling	strategy.	(A)	
Distributions	of	different	summary	statistics	from	single	cell	sampling	(100x)	phylogenetic	
trees	for	the	four	representative	cases.	The	balance	index-based	statistics	(sackin,	colless	with	
their	different	normalisation	approaches	–	Yule,	PDA)	seem	to	have	similar	shapes	among	all	
four	tumour	cases,	while	tip	and	node	Cophenetic	distance-based	statistics	show	different	
trends	for	neutral	versus	selective	examples	with	not	observable	variation	between	
homogenous	and	boundary	driven	tumours.	Branch	length-based	statistics	give	similar	
results	as	cophenetic	distances.	Only	one	statistic,	maximum	node	depth,	tend	to	have	longer	
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flat	tails	for	boundary	driven	tumours	compared	to	homogenous	tumour	simulations.	(B)	For	
each	of	four	tumour	examples,	we	compare	the	total	number	of	passenger	mutations	and	final	
population	sizes	along	with	the	time	the	simulations	finish	and	the	final	frequency	of	the	new	
sub-population	(introduced	after	a	driver	event).		
		
Figure	S13.	Posterior	distributions	of	model	parameters	from	each	synthetic	tumour.	
The	violin	plots	of	the	posterior	distributions	for	each	model	parameter	per	synthetic	tumour	
inferred	by	our	ABC-SMC	framework.	The	three	sets	of	tumours	corresponding	to	the	three	
tumour	growth	scenarios	are	plotted	separately:	exponential	(A),	death	(B)	and	boundary	
driven	(C).	The	number	on	the	violin	plots	is	the	target	value	of	each	parameter.	
	
Figure	S14.	The	effect	of	stochasticity	on	the	dependence	of	t	and	s	parameter	
combinations	on	the	VAF	distribution.	To	explore	the	interdependence	of	the	parameter	
pair	t	and	s,	for	their	different	values	we	simulate	tumour	growth	while	fixing	all	the	other	
parameters	(2D	grid	size=400,	u=10,	d=0,	a=1).	We	summarised	the	obtained	tumours	by	
calculating	either	the	Euclidean	norm	of	the	obtained	whole	tumour	VAFs	(C,	D)	or	the	
calculating	Euclidean	distance	between	the	cumulative	VAF	distributions	of	the	simulated	and	
a	chosen	target	tumour	(in	this	case	target	tumour	parameters	are	t=7,	s=3)	(A,	B).	To	reduce	
the	effect	of	stochasticity	we	fix	the	random	seed	in	(B)	and	(D)	and	they	indeed	showed	less	
scattered	patterns	of	(A)	and	(C)	plots	respectively.		

Figure	S15.	Posterior	distributions	for	a	3D	model.	ABC	SMC	inference	for	a	selective	
homogenous	growth	simulation	in	3D	space.	Real	‘target’	values	are	reported	as	dashed	lines.	
We	run	this	ABC	framework	similarly	to	2D	simulations,	where	we	recover	each	parameter	at	
a	time;	first	varying	all	parameters,	once	one	is	converged,	fixing	it	at	its	inferred	value	and	
rerunning	the	simulation	varying	the	parameters	left	to	infer.	Here	we	first	recovered	
mutation	rate,	then	time	and	selective	advantage	(together),	and	finally	death	rate	and	
aggression	(together	as	well).	Similar	to	2D	models,	our	ABC	framework	with	whole	tumour	
sampling	performs	the	best	compared	to	other	sampling	strategies.	

Table Legends 
	
Table	S1.	Parameters	of	the	set	of	synthetic	tumours	used	to	test	the	ABC	inference	
framework.	

Table	S2.	Prior	parameter	ranges	used	for	the	synthetic	ABC	inference	testing.	 


