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Abstract 

Prostate cancer kills one man every 45 minutes. Androgen receptor splice variants (AR-V) 

appear to play a critical role in the progression of metastatic prostate cancer. AR-Vs are 

truncated AR isoforms that lack the AR ligand binding domain and remain constitutively 

active in the absence of androgen, promoting cancer cell proliferation through aberrant 

activation of AR-mediated cell survival pathways. Consequently, AR-Vs have been proposed 

to contribute to not only treatment resistance against anti-androgen therapies, but also radio-

resistance in patients receiving combination androgen deprivation therapy and radiation by 

bolstering DNA repair mechanisms. AR-Vs such as androgen receptor variant 7 (AR-V7) 

have been associated with worse clinical outcomes, however attempts to specifically inhibit 

or prevent formation of AR-Vs have to date been unsuccessful. Thus, novel therapeutic 

strategies are desperately needed to address the action of AR-Vs that drive lethal forms of 

prostate cancer. Disruption of alternative splicing through modulation of the spliceosome is 

one such potential therapeutic avenue, however our understanding of the inner workings of 

the spliceosome, and how it contributes to prostate cancer remains incomplete, reflected in 

the dearth of therapeutic agents able to target the spliceosome. This review outlines our 

current understanding of the role of the spliceosome in the progression of prostate cancer and 

explores the therapeutic utility of manipulating this cellular network to improve patient care. 
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Introduction 

Prostate cancer is the second most frequently diagnosed cancer amongst men worldwide [1], 

with one man dying of prostate cancer every 45 minutes in the United Kingdom [2]. Since the 

pioneering work of Charles Huggins and Clarence Hodges, who first demonstrated the 

benefits of androgen deprivation therapy (ADT) in patients with metastatic prostate cancer 

[3], our understanding of its pathogenesis has increased significantly, particularly with 

regards to the fundamental importance of the androgen receptor (AR) in all stages of disease 

from tumorigenesis, to progression
 
and ultimately treatment resistance and death [4]. 

 

The androgen receptor and prostate cancer 

The AR is a ligand-activated transcription factor that plays a central role in male sexual 

development. It is a member of the steroid and nuclear hormone receptor super-family and is 

encoded by the AR gene located on chromosome Xq12 [5], the transcriptional activity of 

which is modulated by its interactions with more than 200 different transcriptional co-

regulators [6]. In prostate cancer, in addition to these regulators, genomic aberrations such as 

AR copy number gain, mutations and rearrangements are also thought to play a significant 

role in AR gene expression with AR overexpression in particular being key to the 

development and progression of castration resistant prostate cancer (CRPC) [7]. 

 

The full-length product of AR gene transcription was first reported in 1988 [8] and has a 

molecular weight of 110 kDa. The AR is comprised of four discrete functional domains 

(figure 1) namely, an N-terminal transcriptional domain (NTD) which is highly variable and 

inherently disordered [5], a DNA binding domain (DBD) which consists of a highly 

conserved 66-residue core made up of two zinc-nucleated modules [9], a hinge region and a 

C-terminal ligand binding domain (LBD) [10]. Of note, while the C-terminal and DBD have 

been crystalized, the crystal structure of the N-terminus remains elusive, hindering the 

development of N-terminal targeting agents. 

 

Under normal conditions, the AR is sequestered within the cytoplasm by a complex of heat 

shock protein (HSP) chaperones [11] and their co-chaperones such as BCL-2-associated-

athanogene-1L (BAG-1L). In the presence of androgens, namely dihydrotestosterone (DHT), 

and to a lesser degree, testosterone, the AR undergoes conformational change [10] and 

dimerises with other ligand-bound AR to form homodimers. The nuclear localisation of the 

AR is dependent on the AR bipartite nuclear localisation sequence (NLS), which is highly 

conserved between many nuclear receptors and contains two clusters of basic amino acids 

[12]. The NLS is recognised by the transport adaptor proteins, alpha and beta importin, which 

regulate the shuttling of the AR homodimers into the cell nucleus. In addition, the NLS is 

also recognised and bound by dynein, a motor protein that interacts with cellular 

microtubules to enhance AR nuclear translocation via a cytoskeletal transport network [13]. 

Once in the nucleus, AR binds DNA at specific sites known as androgen-response elements 

(ARE) through its DBD. In this way, the AR can up- or down-regulate the transcription and 

activation of various genes, many of which are involved with regulating crucial cellular 

functions such as growth and proliferation. As a consequence of this ability to regulate cell 

survival, persistent activation of the AR has been shown to be a pivotal driving force in the 

carcinogenesis and progression of prostate cancer. Furthermore, inhibition of AR signalling 

through androgen deprivation remains the standard of care in the treatment of prostate cancer 

to this day [14]. However, while nearly all patients initially respond to ADT, the duration of 

response varies from months to years, and ultimately all patients eventually acquire resistance 

and progress to lethal CRPC [15]. 

 



 4 

CRPC was long thought of as being an androgen independent entity, however more recently 

the continuing importance of the AR in the progression of advanced prostate cancer has been 

better appreciated, culminating in the introduction of abiraterone and enzalutamide into 

routine clinical practise, which have been shown to provide additional survival benefit in 

patients with CRPC [16, 17]. Despite the success of these second-generation AR-targeted 

therapies, treatment resistance continues to be a major challenge, leaving patients with only a 

limited number of meaningful treatment options following disease progression, namely 

taxane chemotherapy, which is not without its limitations such as cytopenia and neurotoxicity 

[18, 19], and targeted therapies that are only efficacious in a subgroup of patients, such as 

PARP inhibitors or carboplatin in homologous repair DNA repair defective prostate cancers 

(as yet unapproved) and PD-1 immune checkpoint targeting for mismatch repair defective 

disease [20]. In addition, with clinical evidence emerging that use of abiraterone at diagnosis 

of castration sensitive prostate cancer (CSPC) provides improved outcome [21, 22], it is 

foreseeable that in the future these agents will be used much earlier in the treatment of 

patients’ cancers and potentially result in resistance to anti-androgens occurring at the time of 

progression from first line therapy rather than as a later event, opening the door to new 

clinical dilemmas. 

 

The many faces of the androgen receptor 

While full-length AR (AR-FL) has been well described in the literature [10, 23], more 

recently a variety of alternate versions of AR have been shown to exist. Evidence for this first 

emerged through the work of Dehm and colleagues who identified two truncated AR 

isoforms lacking the C-terminal domain in 22Rv1 prostate cancer cell lines, encoded by 

mRNAs with a novel exon 2b at their 3′ end [24]. In addition, they demonstrated that these 

AR isoforms remained constitutively active, and maintained the proliferation of 22Rv1 cells 

in the absence of androgen [24]. Since this original work, and with the development of more 

advanced sequencing techniques, numerous other truncated forms of AR have been reported 

[23, 25, 26]. 

 

AR protein expression results from the transcription and translation of the AR gene. 

However, due to the discontinuous nature of eukaryotic genes, with regions of non-coding 

DNA (introns) interspersed between stretches of coding DNA (exons), when first transcribed 

the resultant precursor messenger RNA (pre-mRNA) transcript contains both sequences.  

Therefore prior to translation, nascent pre-mRNA transcripts are edited through the process 

of splicing, removing unwanted introns and producing mature messenger RNA (mRNA) that 

can be correctly translated. 

 

Splicing is performed by complex cellular machinery referred to as the spliceosome, the 

importance of which has recently gained increased recognition with the discovery that 

through the alternative inclusion and exclusion of exons and introns, termed alternative 

splicing, a single gene can encode multiple proteins [27], enabling eukaryotic cells to 

transform a genome that contains only 20,000 genes, into a significantly larger and more 

diverse proteome of approximately 95,000 proteins [28].  

 

As such, awareness of the role of the spliceosome in numerous diseases, including cancer is 

growing. However, our understanding of its underlying biological mechanisms remains 

incomplete, making it an important area of Clinical Research. 

 

The Spliceosome 
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The spliceosome is a dynamic cellular machine composed of small nuclear 

ribonucleoproteins (snRNP) and associated protein co-factors. The biosynthesis and assembly 

of the spliceosome is outlined in Box 1. 

 

Importantly, all major steps in spliceosome formation are reversible, suggesting a proof-

reading mechanism in operation during splicing, with in vitro studies having shown that 

partially assembled spliceosomes are able to disassemble and reassemble onto alternative 

splice sites [29], particularly in the early stages of spliceosome assembly, as commitment to 

splicing increases as spliceosome assembly progresses [29]. 

 

Spliceosome regulation 

The core constituents of the spliceosome complex are able to define exon-intron boundaries, 

however, splicing sequences within nascent mRNA precursors often contain too little 

information to unambiguously define splice sites [30]. In addition, human introns often 

contain sequences with a high degree of similarity to authentic splice sites. As such, 

additional cis- and trans-regulatory factors are required to accurately define exon-intron 

junctions and maintain fidelity. cis-regulatory RNA elements are nucleotide sequences within 

pre-mRNA transcripts that can modify the splicing of the same pre-mRNA transcript in 

which they are located. As such, these sequences are referred to as splicing regulatory 

elements (SREs) and contribute to splicing in a context dependent manner, whereby they  can 

serve as either splicing enhancers or silencers depending on their position within the pre-

mRNA transcript [31]. SREs exert their action by recruiting trans-acting splicing factors, 

auxiliary proteins of the spliceosome such as serine/arginine-rich (SR) proteins and 

heterogeneous nuclear ribonuclear proteins (hnRNP). These proteins interact with core 

components of the spliceosome, often the snRNPs U1 and U2, to either activate or suppress 

the splicing reaction by impacting the early steps of spliceosome assembly. In addition, as 

with SREs, trans-acting splicing factors modify splicing in a context dependent manner. For 

example, SR proteins can promote splicing when bound to SREs located within exons, but 

can inhibit splicing when associated with SREs in introns [32]. 

 

Other factors contributing to splicing regulation include tissue-restricted protein splicing 

factors (such as the neuro-oncological ventral antigen (NOVA) [33] and feminizing gene on 

X (FOX) [34]), the rate of transcription elongation [35], tissue hypoxia [36, 37], heat stress 

[38, 39], genotoxic stress [40], chromatin structure and nucleosome positioning [41]. 

Recently this complexity has been furthered with the finding that not only can most splicing 

factors recognise multiple SREs, but each SRE is often bound by multiple different factors, 

suggesting the presence of a complex network of protein–RNA interactions working 

alongside the spliceosome, regulating splicing to not only protect the proteome from error but 

also to provide cellular plasticity [27]. 

 

Alternative splicing 

Splicing typically occurs at constitutive splice sites containing a consensus sequence. Splice 

site selection is reported to crudely depend on the ‘strength’ of a splice site, with sites that are 

more adjusted to the consensus sequence producing strong splice sites that are more 

efficiently recognised by the spliceosome and selected for over weaker sites. However, 

predominantly through trans-acting splicing factors, the spliceosome’s regulatory network 

can modify the strength of these competing sites by silencing stronger splice sites and 

enhancing weaker ones. In this way, the interplay between these competing spliceosomal 

‘homing’ signals within a nascent pre­mRNA can lead to the preferential selection of non-

canonical splice site and result in alternative splicing. 
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High throughput RNA sequencing studies have shown that alternative splicing is a routine 

biological process, with 90-95% of human multi-exon gene transcripts demonstrating 

alternative splicing events, thereby generating protein diversity [42]. Patterns of alternative 

splicing range from alternative 3’ or 5’ splice site recognition, to retained introns and 

mutually exclusive exons, however cassette exon skipping is the most common event in 

humans [43] (figure 2). 

 

Despite the abundance of alternative splicing events, the functional roles of the many spliced 

isoforms remain uncertain, although we have clear evidence that alternative splicing can play 

key roles in regulating the functions of many proteins [44-46]. While many speculate 

alternative splicing is a fundamental factor in biodiversity and evolution [47], it has also been 

implicated in the pathogenesis of a number of diseases including cancer [43, 48, 49]. 

 

The spliceosome in prostate cancer 

The role of the spliceosome in prostate cancer is currently a major area of current Clinical 

Research. While alternatively spliced variants of the AR that remain constitutively active in 

the absence of androgen are the most well described splicing aberrations in prostate cancer, 

the spliceosome has been implicated in the pathogenesis of prostate cancer in a number of 

other ways (figure 3). 

 

Mutations of spliceosome regulators 

Recurrent somatic mutations in genes encoding splicing factors have been identified in a 

variety of different cancers such as uveal melanoma [50], pancreatic ductal adenocarcinoma 

[51], lung adenocarcinoma [52], breast cancer [53] and prostate cancer [54]. Despite this 

diversity in tumour origin however, most reported spliceosomal mutations occur in one of 

four genes, namely splicing factor 3B subunit 1 (SF3B1), SR protein splicing factor 2 

(SRSF2), U2AF1 and zinc finger RNA-binding motif and serine/arginine-rich 2 (ZRSR2) 

[55]. Of these, mutations of the SF3B1 gene are the most common and have been observed in 

both haematological and solid malignancies [55], including prostate cancer [56]. Its protein 

product, SF3B1, is a core spliceosomal protein that binds upstream of the pre-mRNA branch 

site, and is thought to be required for the recognition of most 3′ splice sites [27]. As such, 

available evidence suggests that SF3B1 mutations are associated with enhanced recognition 

of cryptic 3′ splice sites and favour the formation of alternative spliced protein isoforms [57], 

which are considered an important mechanism of treatment resistance and disease 

progression in CRPC. However, with a reported incidence in the region of 1% in prostate 

cancer [54, 56], the contribution of SF3B1 mutations to treatment resistance may prove to be 

limited. 

 

Alterations in spliceosome regulator activity 

Changes in the activity of splicing factors have been reported to directly impact on 

tumorigenesis and disease progression in prostate cancer. For example, Src-Associated 

substrate in Mitosis of 68 kDa (Sam68) is a nuclear splicing factor involved in regulating the 

splicing of Cyclin D1 (CCND1) [58], which is a central component of cell cycle control. 

However, Sam68 is activated through extracellular signal-regulated kinase (ERK)-mediated 

phosphorylation [59], which is dysregulated in approximately a third of human cancers [60] 

including prostate. As such, Sam68 has been found to be frequently upregulated in prostate 

cancer [45], and consequently has been associated with the increased expression of a 

truncated CCND1b isoform, rather than the canonical CCND1a gene product, which 

promotes the proliferation and survival of prostate cancer cells [45]. 



 7 

 

Splicing factor upregulation has also been linked with prostatic epithelial-mesenchymal 

transition (EMT) and disease progression in CRPC. Following androgen deprivation, 

upregulation of the splicing factor serine/arginine repetitive matrix 4 (SRRM4) has been 

shown to cause the alternative splicing of RE1-silencing (REST) [61], a neuronal master 

regulator which normally prevents the expression of neuronal genes such as synaptophysin 

(SYP) in non-neuronal cells [62]. Consequently, this produces a truncated form of REST that 

lacks its canonical transcriptional repressor domain and gives rise to a more AR-independent, 

neuroendocrine (NE) phenotype, which confers a poorer prognosis [63]. 

 

As well as directly contributing to disease progression, the upregulation of canonical splicing 

factors has also been shown to be pivotal in the pathogenesis of other drivers of prostate 

cancer, such as oncogenes. The proto-oncogene c-MYC is reported to be overexpressed in up 

to 90% of all primary human prostate cancer lesions [64]. MYC hyperactivation amplifies 

pre-mRNA production leading to stress on the spliceosome [65]. As such, these cancers are 

equally dependent on the availability of splicing factors to sustain proliferation and survival 

as they are on MYC [65], demonstrated by the upregulation of a number of splicing factors 

such as SRSF1, hnRNPA1 and hnRNPA2 in MYC overexpressing tumours, and the 

disruption of many vital cell processes which occurs when they are inhibited [65-68]. 

 

Alternative splicing of cellular signal transduction pathways 

The spliceosome and its associated proteins are involved in the routine operation of a wide 

range of cellular processes including DNA repair, transcription and nonsense-mediated RNA 

decay (NMD). For example, through chromatin immunoprecipitation (ChIP) studies, SF3B1 

and U2AF1 have been shown to interact with BRCA1 following DNA damage [69]. 

 

Kruppel-like factor 6 (KLF6) is a key tumour suppressor gene that is often mutated in 

prostate cancer. It encodes a member of the Kruppel-like family of transcription factors 

which binds DNA and regulates growth-related signal transduction pathways, cell 

proliferation, apoptosis, and angiogenesis [70]. While wild-type KLF6 has inhibitory effects 

on cell growth, a common KLF6 germline single nucleotide polymorphism (IVS1−27 

G>A/IVSΔA) results in the production of an alternatively spliced isoform, KLF6 splice 

variant 1 (KLF6 SV1), which enhances cell proliferation, colony formation, and invasion. 

Furthermore, upregulation of KLF6 SV1 in prostate cancer is associated with worse 

prognosis [44, 71]. 

 

As well as effecting important protein signal transducers, the alternative splicing of cell 

surface receptors leading to aberrant activation of key survival pathways is an equally 

important part of the spliceosome’s contribution to prostate cancer progression. For example, 

the fibroblast growth factor-2 receptor (FGFR2) is a tyrosine kinase receptor which when 

activated by the binding of fibroblast growth factor (FGF), is involved in the regulation of 

numerous key cellular processes such as proliferation and differentiation which contribute to 

cell survival [72]. Under normal physiological conditions, the FGFR2 exist in a number of 

isoforms, which tend to be cell type specific with isoform IIIb expressed in epithelial cells 

and isoform IIIc expressed in mesenchymal cells. In prostate cancer however, this 

distribution has been found to change, with isoform IIIc becoming more prevalent [73]. This 

alters the receptors ligand binding specificity to favour the binding of FGF8b [73], the major 

FGF isoform expressed in prostate cancer and which is thought to have an important role in 

disease progression, as evidenced by its association with higher Gleason grade and clinical 

stage [74]. 
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Splicing therefore impacts on prostate carcinogenesis in a multitude of ways, and while the 

breadth of these splicing changes suggests the key to endocrine therapy resistance is likely to 

be multifactorial, currently the most significant role of the spliceosome in the progression of 

prostate cancer is considered to be its involvement in the generation of alternatively spliced 

AR receptor isoforms. 

 

 

Androgen receptor splice variants 

To date, a number of AR splice variants (AR-V) have been identified and examined in 

metastatic CRPC specimens [25, 75, 76] (figure 1), however of these, AR splice variant 7 

(AR-V7) is the most well studied and has been associated with both an increased risk of 

biochemical relapse [77] and poorer overall survival [75, 78-80]. More recently, AR-V9 has 

been shown to not only be co-expressed with AR-V7, but also shares a common 3' terminal 

cryptic exon [81]. Furthermore, AR-V9 may also lead to the ligand-independent growth of 

prostate cancer cells, with high AR-V9 mRNA expression having been reported to be 

predictive of primary resistance to abiraterone [81], however the clinical significance of this 

remains uncertain. 

 

AR-V7 is a truncated isoform of the canonical AR-FL protein that lacks the AR LBD but 

retains both the AR DBD, which mediates AR dimerization and DNA interactions, and the 

NTD which is responsible for the majority of AR transcriptional activity [82]. Crucially, this 

conformatory change has been shown to maintain AR-V7 in a constitutively active state in 

the absence of an androgen ligand, resulting in persistent tumour cell aberrant AR survival 

signalling [5]. Furthermore, this structural difference may also enable AR-V7 to induce a 

distinct set of transcriptional programs compared to AR-FL. For example, expression of AR-

V7, but not AR-FL, has been positively correlated with the expression of the Ubiquitin 

Conjugating Enzyme E2 C (UBE2C) gene, which encodes a protein required for the 

destruction of mitotic cyclins and cell cycle progression in clinical CRPC specimens [83]. 

However, while this may suggest a shift toward AR-V mediated signalling following anti-

androgen therapy in a subset of CRPC tumours, it should be noted that attempts to 

disentangle the functional role of AR-V7 from that of AR-FL have been challenging and this 

continues to be an area of active investigation, with further evidence being required before 

firm conclusions can be drawn on this possibility. 

 

AR-V7 is the most commonly expressed AR-V [25, 82] and its prevalence increases 

significantly as patients progress to CRPC [26, 84, 85]. This can in part be explained as a 

consequence of treatment with ADT through two mechanisms. Firstly, AR-V7 expression is 

intimately linked with AR gene transcription [77] which is increased approximately 10-fold 

in response to androgen deprivation [82], as such AR-V7 expression is consequently also 

increased. Secondly, as ligand-dependent AR signalling decreases AR-V7 transcription, 

inhibition of AR signalling with ADT results in the loss of this negative feedback and 

upregulates AR-V7 expression [5, 82]. 

 

Ultimately however, the processes determining the expression of AR-V7, as opposed to 

canonical AR-FL, remain unclear, although there is increasing appreciation for the 

importance of the spliceosome in this process. 

 

AR-V7 and the spliceosome 
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The AR-V7 protein product arises from the alternative splicing of AR mRNA at cryptic exon 

3 (CE3) as opposed to the canonical AR-FL 3’ss (figure 1). While AR gene copy number 

gain is considered an important determinant of AR-V7 mRNA levels in CRPC metastases 

[86], this alone does not explain why a proportion of encoded AR mRNA becomes 

alternatively spliced. For example, in LNCap95 cells, which are not reported to possess this 

AR copy gain, AR-V7 RNA is still expressed at levels comparable to VCaP cells where AR 

is amplified [77], whereas the parent cell line LNCaP expresses no AR-V7. Therefore, rather 

than the alternative splicing of AR mRNA occurring because of random splicing error as a 

consequence of increased substrate concentration, this instead points towards the existence of 

a regulatory mechanism responsible for splice site selection. 

 

In preclinical prostate cancer models, Liu and colleagues reported that androgen deprivation 

increases spliceosomal recruitment to the AR gene, facilitating both AR and AR-V7 splicing 

[77]. Furthermore, treatment with the anti-androgen Enzalutamide specifically enhances 

recruitment of a number of splicing factors to the P2 region of the AR mRNA [77] which 

contains the AR-V7 3’ splice site. This group further demonstrated that splicing factors 

U2AF65 and SRSF1 acted as ‘pioneer’ factors, directing the recruitment of the spliceosome 

to the SREs adjacent to the AR-V7 3’ss, and increasing the expression of AR-V7 RNA. 

Interestingly, while knockdown of these splicing factors resulted in a reduction in AR-V7 

RNA levels in both VCAP and LnCap95 cell lines, it did not affect AR-FL levels [77]. 

Coupling this data with the finding that the expression of U2AF65 is increased in CRPC 

compared to primary prostate cancer [87], suggests that U2AF65 in particular may play a key 

role in the progression of CRPC and, more specifically, be important in AR-V7 splicing. 

HnRNP1 has also been proposed as a regulator of AR-V7 splicing, however the evidence for 

this is less conclusive. Work by Nadiminty et al. has shown that overexpression of hnRNPA1 

significantly up-regulates protein levels of AR-V7, while down-regulation both reduces AR-

V7 protein expression and re-sensitises castrate-resistant cell lines to enzalutamide [88]. 

However, hnRNP1 knock-down has also been shown to reduce AR-FL levels [77], 

suggesting that hnRNP1 may serve as a general regulator of AR mRNA splicing rather than 

one specific to AR-V7. 

 

Importantly, and in keeping with the concept of a proof-reading process within the 

spliceosomal network, AR-V7 splicing appears to be a dynamic and plastic process. For 

example, the re-introduction of androgen to androgen-deprived cell lines has been shown to 

repress levels of AR-V7 RNA, with this occurring within 24 hours in VCaP cells. Similarly, 

in primary cultures from enzalutamide-resistant VCaP xenograft models, both AR and AR-

V7 RNA levels significantly decreased when DHT was added [77]. As an interesting aside, it 

may be the rapidity of this plasticity that contributes to the encouraging efficacy 

demonstrated by bipolar androgen therapy (BAT) in a recent phase 2 clinical trial. Teply et al 

observed that 52% of patients with metastatic CRPC that had previously progressed on 

enzalutamide achieved a 50% reduction in PSA following further treatment with 

enzalutamide after having received BAT, where patients receive intermittent doses of high-

dose testosterone whilst remaining on ADT [89]. While this may suggest that re-sensitisation 

of treatment resistant prostate cancer to enzalutamide is potentially possible through 

manipulation of AR-FL and AR-V expression levels by modulating an individual’s exposure 

to testosterone, definitive conclusions regarding this possibility are difficult to elucidate from 

this cohort given that patient AR-V7 status in this study was determined through analysis of 

circulating tumour cells (CTC) rather than tissue-based assessment. As such, because over 

half of the patients included were found to be CTC negative, a large proportion of this cohort 

could not be assessed for AR-V7 status, and so a number of AR-V7 positive patients could 
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have been omitted from analyses. Furthermore, pre-clinical evidence in support of this 

possibility remains inconclusive [90]. 

 

Alternative splicing and treatment resistance 

Over recent years, appreciation for the role of alternative splicing in the development of 

treatment resistance against anti-cancer therapies has greatly increased. For example, 

alternative splicing of Survivin, a member of the inhibitor of apoptosis protein (IAP) family 

has been reported to confer resistance to taxanes in pre-clinical models of ovarian cancer 

[91], while the alternative splicing of B-lymphocyte antigen CD19 may promote resistance to 

immunotherapy with adoptive T cells expressing chimeric antigen receptors (CAR-T) against 

CD19 in pre-clinical models of B-cell acute lymphoblastic leukaemia [92]. 

 

Similarly, even though the development of genome sequencing has heralded the arrival of 

various new targeted anti-cancer therapies, evidence is emerging that these therapeutic agents 

are equally vulnerable to the development of resistance as a consequence of alternative 

splicing. For example, a subset of BRAF mutant melanomas have been reported to acquire 

resistance to vemurafenib through the expression of a variant BRAF isoform, BRAF(V600E), 

which lacks exons 4-8, a region that encompasses the RAS-binding domain [93]. 

Furthermore, and perhaps more pertinently with regards to prostate cancer, alternative 

splicing has been suggested to promote resistance to PARP inhibition [94]. 

 

The PARP inhibitor olaparib utilises the concept of synthetic lethality to exert a therapeutic 

effect in DNA-repair defective cancers by inhibiting Poly (ADP-ribose) polymerase (PARP), 

a protein that is important for repairing DNA single-strand breaks. Inhibiting the repair of 

single strand breaks in this way results in the generation of double strand breaks during cell 

division, which in tumour cells possessing an inherent inability to repair double strand breaks 

due to loss or mutation of DNA-repair proteins such as BRCA1 and 2, results in tumour cell 

death. As such, olaparib has recently been shown to improve overall survival in patients with 

DNA-repair deficient metastatic Prostate cancer with a response rate of 88% in biomarker 

positive patients [20], marking a significant step forward in the management of this patient 

group. PARP inhibition has also demonstrated efficacy in other cancers such as breast [95] 

and ovarian [96], however of note, evidence is emerging from these cancer types to suggest 

alternative splicing may contribute to treatment resistance to olaparib. Wang et al. report that 

a proportion of patients whom possesses PARP-sensitising BRCA1 germline mutations either 

do not respond to, or eventually develop resistance to, PARP inhibition as a result of 

frameshift mutations to exon 11, leading to NMD of full-length BRCA1 and the increased 

expression of an alternatively spliced BRCA1 isoform, BRCA1-Δ11q. In this way, the 

authors suggest that BRCA1 deficient cancer cells utilise mRNA splicing mechanisms to 

remove deleterious germline BRCA1 mutations by producing alternatively spliced protein 

isoforms that retain residual activity and contribute to therapeutic resistance [94]. While it 

should be noted that BRCA2 mutations are much commoner in prostate cancer than BRCA1 

mutations, whether similar patterns and mechanisms of resistance will emerge in prostate 

cancer will be born out through clinical trials of novel targeted therapies such as these. These 

examples do however serve to highlight the clinical implications of alternative splicing and 

add weight to the rationale of harnessing the spliceosome as a novel therapeutic target. 

 

Overall, however, notwithstanding this growing body of literature, currently with regards to 

CRPC, AR-Vs represent the most well-established, and clinically important, mechanism 

through which alternative splicing is thought to contribute to treatment resistance. 
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AR splice variants and treatment resistance 

AR-Vs have been proposed as a biologically credible mechanism of treatment resistance 

through the restoration of AR signalling. Preclinical studies have shown that inhibition of 

AR-V7 can re-sensitise enzalutamide-resistant prostate cancer cell lines to anti-androgen 

treatment [97-99]. Furthermore, AR-Vs have also been implicated in treatment failure in 

patients receiving combined ADT and radiotherapy, with AR-V aberrant signalling bolstering 

the DNA damage response and increasing the clonogenic survival of prostate cancer cells 

after irradiation [100]. 

 

However, the evidence to support AR-Vs role in resistance remains inconclusive. Despite the 

advantageous characteristics conferred by their structural properties, which allow AR-Vs to 

remain constitutively active in the absence of androgen, in practise only a minority of AR-Vs 

have demonstrated this ability in AR transactivation reporter assays [4], raising questions 

regarding the clinical significance of the majority of AR-Vs. A proposed explanation for this 

observation is that most AR-Vs are truncated after exon 3 and lack a complete NLS, therefore 

are expected to be predominantly sequestered within the cytoplasm [101]. AR-V7 is however 

the exception to this rule, and despite having an incomplete NLS, has been shown to have a 

significant nuclear residence time [5]. 

 

AR-Vs have therefore been counter-proposed as being a consequence of the physiological 

response to androgen deprivation. In support of this is the rapidity of their increase following 

ADT. In xenograft models, protein levels of both AR-FL and AR-V7 have been shown to 

increase in just two days following castration and reach peak levels at two weeks, with AR-

V7 mRNA being only a fraction of total AR-FL levels [101]. In addition, the re-introduction 

of androgen in these models returns these levels to baseline in only eight days [101]. Thus, if 

AR-Vs were to cause treatment resistance, one would expect this to occur much sooner than 

seen clinically [16, 17]. In support of this argument, while a number of clinical studies 

corroborate reports that AR-V7 expression confers a worse prognosis and contributes to 

treatment resistance, some groups have failed to validate this relationship. For example, in a 

study by Watson et al. overexpression of AR-V7 in LNCaP cell lines, which do not innately 

express AR-V7, did not confer resistance to enzalutamide both in vitro and in vivo [101]. 

Furthermore, retrospective analyses of patient records by Bernemann et al. identified six out 

of 21 AR-V7 positive patients who experienced a beneficial response to treatment with 

abiraterone or enzalutamide, suggesting a subgroup of AR-V7 positive patients may obtain 

benefit from novel anti-androgen therapy despite detection of AR-V7 splice variants in their 

circulating tumour cells [102]. Similarly, a prospective study by To el al. found no significant 

difference in PSA response nor median PSA progression free survival between AR-V7 and 

AR-V9 positive and negative patients treated with novel anti-androgen therapy, concluding 

that AR-V expression did not predict outcome in metastatic CRPC patients receiving 

abiraterone or enzalutamide [103].  

 

However, it is important to recognise that nearly all studies reported to-date rely on the 

identification of AR-V7 status from CTCs. Therefore, both positive and negative associations 

of AR-V7 expression with clinical outcomes in CRPC have to be interpreted with careful 

consideration of the validity of AR-V7 assays utilised, with multiple lines of evidence clearly 

indicating limitations to these binary assays [75, 79-82, 102, 103]. Firstly, the ability of each 

assay to only determine AR-V7 status (whether mRNA or protein) in patients with CTCs 

needs to be considered; CTC positive AR-V7 negative patients are not the same as CTC 

negative patients in which AR-V7 status cannot be determined, though CTC negative patients 

were recently shown to have the best prognosis after treatment with abiraterone and 
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enzalumaide [104]. Secondly, although assays measuring AR-V7 protein expression 

overcome concerns with regard AR-V7 mRNA stability, they remain susceptible to antibody 

off-target liabilities with the Abcam/Epitomics antibody previously described in the EPIC 

AR-V7 assay having this major limitation [105]. Moreover, consideration needs to be given to 

the possibility that in any one patient there may be large numbers of AR-V7 negative cells 

despite AR-V7 positivity which may mean that these patients will still benefit from 

abiraterone or enzalutamide. Finally, these molecular association studies will need to be 

supported by further understanding of AR-V7 biology and the development of novel 

therapies that abrogate AR-V7 signalling, and induce robust responses in patients with 

CRPC. Only then will the biological and clinical significance of AR-V7 be truly confirmed; 

this remains a priority of for the field and an unmet urgent clinical need. 

 

Utilising the spliceosome to overcome treatment resistance 

There are a number of strategies currently under investigation to therapeutically utilise the 

spliceosome as summarised in table 1. 

 

Targeting the core spliceosome complex 

Through large-scale drug screens, a number of bacterial fermentation products have been 

identified which demonstrate potent anticancer activity through modulation of the core 

spliceosome complex, and can be broadly categorised into three drug classes, namely 

pladienolides, herboxidienes and spliceostatins (table 1). While these compounds are 

structurally distinct, they share a common mechanism of action whereby they all bind SF3B1 

[106]. Under normal conditions, SF3B1 interacts with U2AF65 to recruit U2 to the intron 

3’ss. However, by binding to SF3B1, these compounds interfere with these early stages of 

spliceosome assembly and destabilise the interaction between U2 and its pre-mRNA target, 

modifying splice site selection [107].  This perturbation of U2 also causes an accumulation 

on unspliced pre-mRNA in the cell nucleus, of which a small proportion has been shown to 

‘leak out’ into the cytoplasm and undergo translation, generating aberrant proteins products 

which themselves can be cytotoxic [108, 109]. In addition, a number of these compounds 

have also been shown to decrease levels of vascular endothelial growth factor (VEGF), 

inhibiting tumour angiogenesis in vivo [110]. 

 

However, while the clinical utility of these agents has been well demonstrated in pre-clinical 

studies, for example the dose-dependent growth inhibition seen in prostate cancer xenografts 

following treatment with pladienolide B [111], early phase clinical trial results have been 

more mixed. Two phase 1, open-label, single-arm, dose-escalation studies have assessed the 

pladienolide E7107 in patients with locally advanced or metastatic solid tumours, which 

although showed that E7107 was generally well tolerated and produced both dose-dependent 

and reversible inhibition of pre-mRNA processing in target genes in vivo[112], both were 

suspended as a result of unexpected incidences of bilateral optic neuritis [112, 113]. 

 

H3B-8800, a small molecule modulator of SF3B1 [114] has also entered a phase 1 clinical 

trial (NCT02841540) to determine the maximum tolerated dose and recommended Phase 2 

dose in patients with Myelodysplastic Syndromes (MDS), Acute Myeloid Leukaemia (AML), 

or Chronic Myelomonocytic Leukaemia (CMML) where recurrent heterozygous mutations of 

SF3B1 are though to play a pathological role. If found to be efficacious in subsequent phase 2 

and 3 trials, H3B-8800 could provide proof of principle that targeting the spliceosome is a 

genuine treatment strategy, and opens the door to a variety of new therapeutic avenues. 

However, the toxicity and tolerability of these agents will equally prove to be important 

factors as to whether or not these agents make their way into routine clinical use. 
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Targeting spliceosomal regulatory proteins 

Rather than target the core spliceosome, an alternative approach to modulating splicing is to 

target its protein regulators. For example, a variety of compounds have been identified that 

can inhibit SR protein phosphorylation, which has been shown in lab models to inhibit 

splicing [115]. TG-003, a benzothiazole, is one such agent and functions as an inhibitor of 

CLK1, CLK2 and CLK4, members of the CDC2-like (or LAMMER) family of dual 

specificity protein kinases. These kinases are typically involved in the phosphorylation of SR 

proteins in the cell nucleus [116], inhibition of which results in the inhibition of splicing and 

dissociation of spliceosomal nuclear speckles [116]. 

 

More recently, bromodomain and extra-terminal (BET) inhibition, a promising therapeutic 

approach currently undergoing clinical evaluation in CRPC (NCT03150056, NCT02711956), 

has also been shown to effect alternative splicing by modulating spliceosomal regulators 

[117]. In a study by Asangani et al. the BET inhibitor JQ1 was found to decrease the 

expression of AR-V7 in pre-clinical models of CRPC by down-regulating the activity of 

splicing factors SRSF1 and U2AF65, and in doing so re-sensitised resistant prostate cancer 

cells to AR targeted therapy [118]. However, as with therapeutic agents targeting the core 

spliceosomal complex, the long-term success of BET inhibition as a clinically useful 

therapeutic modality will hinge on the toxicity profile BET inhibitors demonstrate in ongoing 

clinical trials. 

Other small molecule inhibitors of the spliceosome 

A number of other small molecules have also been identified as being capable of modulating 

the spliceosome, some of which have been reported to have efficacy in cancer. However, 

these studies have generally been limited by their use of cell-free and non-mammalian 

models [119], as such, currently the therapeutic application of these agents is considered 

limited. Despite this, some interesting results have been seen with a number of these agents. 

For example, NB-506, a glycosylated indolocarbazole derivative that inhibits the capacity of 

topoisomerase I to phosphorylate SRFS1, has been shown in vitro to disrupts early 

spliceosome assembly and produces a cytotoxic effect in murine P388 leukaemia cells [120]. 

In addition, anti-tumour activity has also been shown pre-clinically with the biflavonoid 

natural plant product isoginkgetin, at least in part through its ability to interfere with the 

recruitment of the snRNP U4/U5/U6 and inhibiting splicing by precluding the transition from 

spliceosomal complex A to B [121]. 

 

Targeting the spliceosome in oncogene-driven cancers 

As described previously, MYC overexpression places considerable oncogenic stress on the 

spliceosome resulting in cells becoming equally dependent on the spliceosome for survival, 

as they are on MYC. This has led to the hypothesis that in these tumours, inhibition of the 

spliceosome may produce an anticancer effect. In support of this view recently it has been 

reported that in xenograft models of MYC dependent breast cancer, spliceosome 

dysregulation through the inhibition of SF3B1 with sudemycin D increases survival and 

limits metastases [65]. Ultimately however, while intriguing, whether this is a principle will 

be applicable to other similarly important genomic aberrations, or if the clinical utility of this 

approach will be limited to MYC dependent cancers in a subset of tumour types remains to be 

seen. 

 

Targeting alternatively spliced variants 
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When devising therapeutic strategies to target pathological alternatively spliced variants, in 

addition to considering those generated through the action of the spliceosome as discussed 

previously, it is equally important to take into account protein variants resulting from 

alternative means such as genomic fusions or rearrangements which have been described in 

many cancers to impact key proteins including AR and PD-L1 [86]. As such, while targeting 

the spliceosome remains a key consideration in this process, given the multiple routes 

through which alternatively spliced variants can arise, the concept of directly targeting these 

protein variants, rather than their mechanism of origin seems logical. 

 

Efforts to target alternatively spliced proteins remain attractive but doing so directly with 

small molecule inhibitors has to date proved challenging, often due to the inherent nature of 

these alternatively spliced variants. For example, as truncated alternatively spliced AR 

variants lack the AR LBD, alternative target sites are required to facilitate their inhibition. 

However, the disordered nature of the AR NTD, renders a consistent target site difficult to 

ascertain and has hindered drug development along this avenue, requiring the development of 

novel therapeutic strategies. One such approach that has been proposed is the use of 

monoclonal antibodies such as GP369, which specifically blocks the IIIb splice variant of 

FGFR2 [122]. GP369 showed efficacy in inhibiting tumour growth in pre-clinical studies of 

human cancer cell lines and tumour xenografts driven by activated FGFR2 signalling [123], 

however while a phase I trial in patients with advanced stage solid tumours known to express 

FGFR2 was opened (NCT02368951), the trial was terminated early. Despite this setback, the 

ability to target alternatively spliced protein isoforms using monoclonal antibodies may yet 

help circumvent the difficulties associated with directly inhibiting splice variants which have 

hampering drug discovery efforts in this regard to date. 

 

Oligonucleotide therapy 

Oligonucleotide-based therapies utilise engineered oligonucleotides designed to hybridize 

with RNA sequences known to be responsible for specific splicing events, to prevent their 

alternate splicing and the production of pathological erroneous protein products. The 

potential of these therapeutics has so far been best realised in neurodegenerative conditions 

where late-stage clinical trials are underway in Duchenne muscular dystrophy [124] and 

spinal muscular atrophy [125]. However, while the question remains as to whether 

oligonucleotide therapy is a viable treatment approach in cancer, particularly where these 

splicing events are more diverse, evidence in support of this approach stems from work by 

Smith et al. who have developed a novel RNA splice-switching oligonucleotide designed to 

induce skipping of exon 11 of the BRCA1 gene, which is key to the function of BRCA1 in 

DNA damage repair [126]. In doing so the authors report to have successfully rendered wild-

type BRCA1 expressing cell lines more susceptible to PARP inhibitor treatment [126]. 

However, while this provides a fascinating potential therapeutic strategy for targeting 

BRCA1-functional cancers, the challenge in this setting would be to maintain BRCA1 

functionality in non-cancer cells to minimise potentially widespread toxicity. 

 

 

Conclusion 

Splicing events represent a plausible mechanism of treatment resistance and disease 

progression in CRPC and have been proposed as a potential therapeutic target. Drug 

discovery efforts to date have however been challenging and utilising the spliceosome as a 

therapeutic tool seems attractive. However, as yet no spliceosome inhibitors have made an 

impact in prostate cancer clinical practise, largely due to the complexity of the spliceosome, 

and a lack of understanding of its biology. 
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Further research is therefore required to discover the mechanisms underpinning the splicing 

abnormalities thought to contribute to the progression of CRPC, as well as the consequences 

of inhibiting these factors, before the true utility of these therapies can be realised. 
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Fig. 1 |AR splice variants. A schematic diagram depicting the full- length androgen receptor (AR- FL) alongside a 
selection of its truncated protein isoforms, the androgen receptor (AR) splice variants (AR- Vs) AR- V7 , AR- V9, 
and ARv567es. These proteins share identical amino- terminal domains (NTDs) and DNA- binding domains 
(DBDs) but have unique carboxy- terminal extensions. AR- V7 and AR- V9 have a common 3′-terminal cryptic 
exon (CE), while ARv567es has a complete hinge region and nuclear localization signal, similar to that of the full- 
length protein, but lacks a ligand- binding domain (LBD). 

 

 

 

 

 

 

 
 
Fig. 2 |Summary of constitutive and alternative splicing events.a| Graphic depiction of constitutive splicing where 
introns are removed and sequential exons are ligated to produce mature mRNA. b,c| Alternative splicing, in which 
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changes in 5' and 3' splice site selection can result in the generation of alternatively spliced protein variants such 
as androgen receptor (AR) splice variant 7 (AR- V7), which possesses a 3'-terminal cryptic exon. d| Exon 
skipping, in which a cassette exon is spliced out of the nascent mRNA transcript altogether, along with its 
adjacent introns. e| Intron retention; an intron that does not form part of the canonical mRNA transcript is not 
removed and remains within the mature mRNA. f| Splicing, in which complex events that give rise to mutually 
exclusive alternative splicing events, in which only one of a set of two or more exons in a gene is included in the 
final transcript can also occur. Orange exons indicate those that are part of the canonical mRNA sequence; blue 
or purple exons indicate alternative sequences that might or might not be included in the mature mRNA. Black 
lines indicate introns, green lines indicate constitutive splicing patterns, and red lines indicate alternative splicing 
events. 

 

 

 

 
 
Fig. 3 |Mechanisms through which the spliceosome contributes to tumorigenesis and disease progression in 
prostate cancer.a| Alternative splicing of cell- surface receptors such as the FGFR have been reported to cause 
aberrant activation of key survival pathways in the absence of circulating androgens. b| Constitutively active 
splice variants of intracellular transcription factors such as the androgen receptor (AR; red ovals) have been 
linked with disease progression in patients with castration- resistant prostate cancer and are correlated with 
inferior overall survival outcomes. c| Gain- of-function mutations in cis- regulatory elements have been proposed 
to increase AR transcription in the absence of circulating androgens. d| Alternative splicing of key cellular 
regulatory proteins (orange triangles) such as G1–S- specific cyclin D1 (CCND1), a central component of cell 
cycle control, can promote the proliferation and survival of prostate cancer cells. e| Upregulation, as well as 
alternative splicing, of nuclear splicing factors (green circles) such as Kruppel-like factor 6 (KLF6) is able to 
increase cellular proliferation, colony formation, and invasion, as well as epithelial–mesenchymal transition, which 
contributes to AR-independent treatment resistance. 
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Targeting the core spliceosome complex 

 

Targeting spliceosomal regulatory proteins 

 

Other small molecule inhibitors 

 

Agent 

 

Pladienolides 

A–G [127, 

128] 

 

 

E7107 [111] 

 

Herboxidiene 

(GEX1A) [129] 

 

 

FR901463, 

FR901464 and 

FR901465 

[130] 

 

Meayamycin B 

[131] 

 

Spliceostatin 

A [108] 

 

H3B-8800 

[114] 

 

TG003 [116] 

 

SRPIN340 [132] 

 

Cpd-1, Cpd-2 and Cpd-3 

[133] 

 

GSK525762 

[134] 

 

ZEN003694  

[135] 

 

OTX105/MK-

8628 [118] 

 

 

Isoginkgetin [121] 

 

 

 

 

 

NB‑506 [120] 

 

 

Actions 

 

Bind to and inhibit SF3B1 to destabilise 

recruitment of snRNP U2 

 

Decrease levels of VEGF 

 

Cell cycle arrest in G1 and G2/M 

 

Disrupts spliceosome assembly 

 

Generate truncated form of cell cycle inhibitor p27 

which is still functional but more robust 

 

Reduce number of nuclear speckles 

 

Reduced tumour angiogenesis 

 

Small molecule 

modulator of 

SF3B1 

 

Preferential 

lethality toward 

spliceosome-

mutant cancer 

cells due to 

retention of 

short, GC-rich 

introns 

 

Currently in 

Phase I clinical 

trial 

(NCT02841540) 

 

 

Competitive 

antagonist of 

CLK binding of 

ATP 

 

Inhibition of 

CLK enzymatic 

phosphorylation 

and activation 

of splicing 

factors e.g. SR 

proteins 

 

Dissociation of 

nuclear 

speckles 

 

Competitive 

antagonist of 

SRPK1 and 

SRPK2 binding 

of ATP 

 

Nicotinamide 

inhibitor 

 

Inhibits SRPK 

phosphorylation 

and activation of 

splicing factors 

e.g. SR proteins 

 

Modulates 

splicing of 

VEGF 

 

Inhibition of both CLKs 

and SRPKs, components 

of the splicing 

machinery that are 

crucial for exon 

selection 

 

CLK1, CLK2, SRPK1 

and SRPK2 

 

Reduced 

phosphorylation of SR 

proteins 

 

Causes enlargement of 

nuclear speckles 

 

Causes widespread 

splicing alterations 

 

 

Inhibitors of 

bromodomain 

and extra-

terminal (BET) 

proteins BRD2, 

BRD3, BRD4 

and BRDT 

 

Downregulate 

expression of 

splicing factors 

 

Decrease 

alternative 

splicing events in 

pre-clinical 

models 

 

Currently 

ongoing clinical 

evaluation 

(NCT03150056, 

NCT02711956) 

 

Biflavonoid natural 

plant product that 

interferes with the 

recruitment of the 

snRNP U4/U5/U6 

 

 

Prevents transition 

from spliceosomal 

complex A to B 

 

 

 

 

 

Inhibits the SRFS1 

phosphorylation by 

topoisomerase I 

 

In vitro disrupts early 

spliceosome 

assembly and 

produces a cytotoxic 

effect 

Table 1: Small molecules reported to have effect on splicing. snRNP = small nuclear ribonuclearprotein, CLK = CDC2-like kinase; SRPK = serine and 
arginine protein kinase; SRPIN340 = N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl; VEGF = vascular endothelial growth factor. 
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