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Abstract

The Stacked-Ellipse (SE) algorithm was developed to rapidly segment the

uterus on 3D ultrasound (US) for the purpose of enabling US-guided adap-

tive radiotherapy (RT) for uterine cervix cancer patients. The algorithm

was initialised manually on a single sagittal slice to provide a series of el-

liptical initialisation contours in semi-axial planes along the uterus. The

elliptical initialisation contours were deformed according to US features such

that they conformed to the uterine boundary. The uterus of 15 patients

was scanned with 3DUS using the Clarity R© System (Elekta Ltd) at multiple

days during RT and manually contoured (n = 49 images and corresponding

contours). The median [interquartile range] Dice Similarity Coefficient and

mean-surface-to-surface-distance between the SE-algorithm and manual con-

tours were 0.80 [0.03] and 3.3 [0.2] mm, respectively, which are within the

ranges of reported interobserver contouring variabilities. The SE-algorithm
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could be implemented in adaptive RT to precisely segment the uterus on

3DUS.

Keywords: Segmentation, ultrasound-guided radiotherapy, 3D ultrasound,

uterus, uterine cervix cancer
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Introduction1

The aim of radiotherapy (RT) is to deliver a curative dose to the target2

tissues (known as the clinical target volume, or CTV) whilst minimising3

dose to nearby tissues as much as possible to reduce the likelihood of RT4

related toxicities. This is a challenging task when treating cancer of the5

uterine cervix as the CTV (including the uterus and cervix) undergoes large6

amounts of day-to-day motion and deformation due to bladder filling, rectal7

filling, and tumour regression (Bondar et al., 2012; Chan et al., 2008; Collen8

et al., 2010; Jadon et al., 2014; Van de Bunt et al., 2006). To compensate for9

the positional uncertainty of the uterus-cervix complex (referred to as the10

uterus for the remainder of this text), the CTV is expanded by 0.6 to 4 cm11

to form the planning target volume (PTV) (Lim et al., 2011). The generous12

CTV-to-PTV expansion used in cervical cancer RT improves the likelihood13

of adequate target coverage at the cost of including large volumes of healthy14

tissues such as the bladder, rectum and bowel in the PTV (which receives15

the prescription dose) as shown in Figure 1.16

If the position of the uterus during RT delivery were known, then the RT17

treatment plan could be adapted on a daily basis to conform to the CTV.18

The current gold standard for daily image guidance in RT is cone-beam com-19

puted tomography (CBCT), which provides 3D images of the patient with20

excellent bony anatomy contrast. Although CBCT does provide some soft21

tissue contrast and can be used for soft tissue-based treatment verification22

(i.e. visually assessing whether the uterus is fully contained within the PTV),23

it is difficult and not always possible to visualise and segment the uterus and24

other soft tissues in the pelvis due to scatter and reconstruction artefacts25
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Figure 1: (a) Pretreatment planning CT image of a cervical cancer patient with the CTV

outlined in red, and the PTV outlined in cyan. Note that large portions of healthy tissues

such as the bladder and rectum are included in the PTV. (b) Superimposition of 3D uterine

contours of the cervical cancer patient in (a) derived from ultrasound images taken at four

different time points (T1 - T4) over the course of RT treatment. Note the large amount

of day-to-day motion and deformation of the uterus over the course of RT treatment.

(Heijkoop et al., 2014; Langerak et al., 2014; Maemoto et al., 2016; Wang26

et al., 2016). The excellent soft-tissue contrast of ultrasound (US) makes it a27

promising alternative to CBCT for localising the uterus prior to RT. Indeed,28

with the advent of probe-tracking technology, US has been used to guide29

radiotherapy in a variety of anatomical sites, including the prostate, liver,30

breast, and uterus (Fontanarosa et al., 2015). In previous work, we have31

shown that 3D transabdominal ultrasound (US) using the Clarity R© system32

(Elekta Ltd.) can provide high quality images of the uterus that can be33

manually segmented with high precision by multiple observers (Mason et al.,34

2017). However, there is currently no published software tool that can au-35

tomatically or semi-automatically segment the uterus in 3D on ultrasound36
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with sufficient accuracy and speed to be clinically useful. The commercial37

algorithm available on the Clarity R© system designed to semi-automatically38

segment the uterus only returns a result in about 80% of cases, and among39

these, has variable precision which is dependent on image quality (Mason40

et al., 2017). Several algorithms for segmenting the uterus in 3D on MR and41

CT images do exist (Ghose et al., 2015), though it is unlikely that these al-42

gorithms would perform well in US images as they rely on modality-specific43

imaging characteristics such as tissue contrast, field of view, and imaging44

artefacts.45

To enable ultrasound-guided adaptive RT, a new tool must be developed46

that can quickly and accurately segment the uterus at the time of treatment47

on 3D ultrasound images. Segmentation on medical images is a challenging48

problem, as (1) the shape, contrast, and orientation of the target structure49

with respect to its surroundings vary from person to person, and (2) every50

imaging modality has a unique set of characteristics and/or artefacts that51

can degrade image quality. In the case of ultrasound, imaging artefacts such52

as attenuation (for instance due to bone, or gas in the ultrasound beam line),53

and reverberation can obscure target boundaries, create pseudo boundaries,54

and reduce soft-tissue contrast (Noble and Boukerroui, 2006; Wein et al.,55

2007). Additionally, constructive and destructive wave interference inherent56

in ultrasound imaging gives rise to ‘speckle’ (Burckhardt, 1978), which gives57

ultrasound images their characteristic grainy appearance.58

Parametric shape models can be used to improve the accuracy of segmen-59

tation algorithms in the presence of spurious boundaries and image artefacts.60

In this approach, the target structure is represented as a variation or com-61
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bination of shapes that can be defined using only a few parameters, such62

as circles, ellipses, polygons, etc. For example, Gong et al. (2004) used63

deformable superellipses to segment the prostate on 2D US images with sub-64

millimetre accuracy measured in terms of agreement with manual contours.65

Parametric shape models are a promising solution for segmenting the uteri66

of cervical cancer patients as uterine cross sections are roughly elliptical as67

seen in Figure 2, despite the large anatomical variation between patients.68

RMH-2 RMH-3 

Figure 2: Two patient examples demonstrating the elliptical nature of uterine cross sec-

tions along the length of the uterus. The position of each cross section is indicated by

corresponding colours between the uterine contours in the semi-axial planes and the lines

superimposed over the sagittally orientated image.

The aim of this work was to develop an algorithm which could be used69

to semi-automatically segment the uterus on 3D images obtained using the70

Clarity R© system. A training set of five 3D ultrasound images from five cer-71

vical cancer patients was used to represent the uterus as a series of stacked72

ellipses in a novel segmentation algorithm which we called the “Stacked-73

Ellipse” (SE) algorithm. This algorithm combined conventional boundary74
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detection methods with the prior knowledge that the uterus (1) is darker75

than its surroundings on US images and (2) can be represented as ellipses.76

The SE-algorithm was tested in a validation cohort of forty-four 3D ultra-77

sound images from ten cervical cancer patients by comparing the contours78

generated by the SE-algorithm with corresponding 3D manual contours.79

Materials and Methods80

Data acquisition81

Patient characteristics82

Seventeen patients receiving radiotherapy for cervical cancer were con-83

sidered for this study: six from Herlev Hospital, and eleven from the Royal84

Marsden NHS Foundation Trust (RMH). Ethics approval for these studies85

was obtained from the ‘De Videnskabsetiske Komiteer’ and the ‘NHS Re-86

search Ethics Committee (reference: 15/LO/1438)’, respectively. Written87

informed consent was obtained from all patients. Patient characteristics are88

given in Table 1.89

Ultrasound scanning protocol90

All US data in this study were scan converted 3D B-mode data acquired91

with the Clarity R© system using a hand-held mechanically-swept 3D probe92

(5 MHz center frequency, model m4DC7- 3/40). The Clarity R© system is93

described elsewhere, but briefly, it is a conventional diagnostic scanner that94

utilizes infrared tracking technology to determine the position of the US95

probe (and hence the resulting US images) with respect to the isocentre of96

the treatment room (Lachaine and Falco, 2013). At the RMH, the scanning97
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Table 1: Baseline characteristics of the patient cohorts from Herlev Hospital and the RMH.

Abbreviations: FIGO - Fédération Internationale de Gynécologie Obstétrique (cervical

cancer staging criteria).

Patient Age (years) Weight (kg) Height (m) FIGO stage

Herlev-1 40 67.5 1.69 IIIB

Herlev-2 49 63 1.71 IIB

Herlev-3 65 64 1.69 IIB

Herlev-4 59 78 1.68 IIB

Herlev-5 62 103 1.68 IIB

Herlev-6 38 63 1.68 IIB

RMH-1 36 94.1 1.52 IIB

RMH-2 44 62.6 1.47 IIB

RMH-3 50 83 1.71 IIB

RMH-4 65 55.3 1.55 IIB

RMH-5 25 66 1.76 IIB

RMH-6 56 65.5 1.60 IIB

RMH-7 36 62.1 1.75 IIB

RMH-8 57 89.7 1.70 IIB

RMH-9 41 49.5 1.7 IIA

RMH-10 75 67.6 1.59 IIB

RMH-11 71 50.1 1.65 IVA

Mean 51.1 69.9 1.65 -

Standard deviation 14.1 15.0 0.1 -

protocol was as follows. One hour prior to the scheduled treatment time, each98

patient was asked to follow a drinking protocol (void the bladder, drink 35099
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mL of water in 10 minutes, and then refrain from emptying the bladder until100

after RT delivery). After the patient had been positioned for treatment by the101

radiographers, either a trained clinical oncologist or radiographer acquired a102

3D transabdominal US image of the uterus using as little probe pressure as103

possible. The scanning protocol at Herlev Hospital was similar, but patients104

were not asked to follow a specific bladder filling protocol and a medical105

physicist acquired all US data. Each patient was scanned at multiple time106

points during her treatment, resulting in a dataset of ninety-nine 3D US107

image volumes (twenty-three from the six patients treated at Herlev Hospital,108

and seventy-five from the eleven patients treated at the RMH). All US images109

were resampled onto a Cartesian grid of voxel size 0.58 mm x 0.58 mm x110

0.58 mm automatically using Clarity’s Automatic Fusion and Contouring111

workstation.112

Data selection and partitioning113

Herlev Hospital patients: The highest quality image from each patient114

in this cohort comprised an independent training dataset for parameterising115

the uterus as stacked ellipses. The image set from one patient were of sub-116

stantially poorer quality than the rest. This was therefore removed, so as117

to minimise the propagation of errors arising from contouring uncertainty,118

resulting in a training set comprised of five 3D US images from five different119

patients.120

RMH patients: Images from this patient cohort were used to test the SE-121

algorithm. Of the seventy-five US images available, the first image acquired122

from each patient (eleven total images) and forty randomly selected images123

from the scans performed at later time points were initially evaluated for124
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use in this study. From this dataset of fifty-one US images, a further seven125

images were excluded from further analysis due to US image quality being too126

poor to visualise the uterine boundary and thus manually contour (two from127

Patient RMH-3, one from Patent RMH-8, one from Patient RMH-10, and all128

three images from Patient RMH-11), resulting in a dataset of forty-four US129

images from ten patients.130

Manual contouring131

One experienced observer (SM) manually contoured the uterus on the132

five US images from the training set and the forty-four images from the vali-133

dation set using the Clarity Automated Contouring and Fusion workstation.134

Previous work has demonstrated good agreement between contours drawn135

by observer SM and contours drawn by radiologists and clinical oncologists136

(Mason et al., 2017). In the Herlev cohort, these contours were used as inputs137

to train the algorithm. In the RMH cohort, these contours were used as the138

gold standard for measuring algorithm segmentation accuracy.139

Description of the Stacked-Ellipse algorithm140

The SE-algorithm developed in this work combined a training phase, a141

2D manual initialisation, and conventional segmentation techniques based on142

feature extraction to rapidly segment the uterus on 3DUS images. A single143

manually initialised 2D slice in the sagittal plane was used to create a series144

of 2D elliptical initialisation contours in semi-axial planes (i.e., axial planes145

that may have a tilt in the superior-inferior (sup-inf) direction) along the146

length of the uterus in the sagittal plane (see the grey rectangles in Figure147

3c). While the minor axis of each ellipse was defined directly by the manual148
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initialisation step in the sagittal plane, the major axis of each ellipse was149

estimated using a population-based model derived during the training phase150

of the SE-algorithm. Each 2D elliptical contour was then deformed according151

to image features present in the semi-axial planes of the US images such that152

it conformed to the true uterine boundary, regularised to smooth the contour153

and correct for outliers, and finally projected into 3D.154

Training phase155

The purpose of the training phase was to develop a model that enabled156

the estimation of uterine width along semi-axial elliptical cross-sections given157

the uterine height. The formula for generating an ellipse is given in equation158

1,159

(x− c1)2

a2
+

(y − c2)2

b2
= 1 (1)

where c1 and c2 are the x and y coordinate points of the ellipse centroid,160

a is the major axis radius (corresponding to anatomical left-right), and b is161

the minor axis radius.162

163

3D manual contours were parameterised as a series of stacked ellipses using164

the following three steps:165

1. Determine the orientation of semi-axial slices yielding ellipti-166

cal cross-sections: Uterine slicing planes should be orientated such167

that the corresponding uterine cross sections are approximately ellip-168

tical. This could be achieved if these slicing planes were roughly per-169

pendicular to the curved path from the uterine fundus to the base of170
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Figure 3: Workflow diagram of the training phase for the SE-algorithm. (a) Manual

contour on central sagittal slice in pink, with four points placed to divide the contour

into segments 1 (top uterus), 2 (top cervix), 3 (bottom cervix), and 4 (top uterus). (b)

Anchor points shown in cyan. Red and yellow lines indicate anchor point pairs that define

orientation of semi-axial slicing planes, as shown in 3D in (c). Note that (c) has fewer

slicing planes than would actually be used for display purposes. (d) Example of best-fit

ellipse to manual contour interpolated onto a 2D semi-axial slice (e) Relationship between

major and minor elliptical axes for all cross-sections and all patients described by a linear

fit.

the cervix (see dotted white line on Figure 3c). This curved path could171

take any form, depending on where the fundus was with respect to the172

cervix. Observer SM (1) selected the sagittal slice that approximately173
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bisected the uterus into left and right halves, and (2) placed four land-174

mark points on the uterine contour to split the contour into four seg-175

ments: top uterus, top cervix, bottom cervix, and bottom uterus (see176

Figure 3a) to manually initialize the orientation of the slicing planes.177

By automatically placing the same number of evenly spaced anchor178

points on the top and bottom halves of each segment, planes orientated179

orthogonally or near-orthogonally to both the sagittal image plane and180

the fundus-to-cervix path were defined by the lines connecting each181

top-bottom anchor point pair as shown in Figure 3b.182

2. Determine the best-fit ellipse: The 3D manual contour was in-183

terpolated onto the semi-axial slicing planes generated in the previous184

step (see magenta points in Figure 3d). The “numerically stable direct185

least squares fitting of ellipses” method described by Hal and Flusser186

(1998) was used to find the ellipse that best fit the interpolated manual187

contour (see blue ellipse in Figure 3d), which enabled the extraction of188

the corresponding lengths of the major and minor axes (axes a and b189

respectively).190

3. Linear Regression: The axes lengths derived from every cross section191

j from every patient i in the training set comprised a data point in the192

model. A linear least squares fit was used to describe the relationship193

between the elliptical axes. The resulting equation of the form a =194

mb + K was used to estimate the length of axis a given axis b of an195

elliptical uterine cross section in the segmentation phase of the SE-196

algorithm (see Figure 3e).197
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Segmentation phase198

After training, the SE-algorithm was able to segment the uterus on an199

independent dataset in the following four steps: (1) manual initialization, (2)200

contour deformation, (3) boundary regularisation, and (4) projection of 2D201

contours into 3D. Each of these steps is described below, and steps 2 - 5 are202

depicted in Figure 4.203

204

a. Feature Extraction

r

b. Contour Deformation

Initialization Nearest peak 

Intensity profile of radial sample

c. Boundary Regularizationd. Projection of 2D ellipses into 3D

Figure 4: Steps 2 - 5 of the SE-algorithm workflow. (a) Initialisation ellipse (red points:

sub-sampled for visual clarity) superimposed on the directional edge map. Cyan lines

correspond to uterine boundary search regions. (b) Contour deformation via peak finding

(c) Boundary regularisation via ellipse fitting, and (d) projection of 2D ellipses into 3D.

1. Manual Initialization: An observer selected the sagittal slice of the 3D205

US volume that roughly bisected the uterus into left and right halves, con-206

toured the uterus on that slice, and placed four anatomical landmark points207
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on the contour to separate the uterus into top uterus, bottom uterus, top208

cervix, and bottom cervix sections. As in the training phase, evenly spaced209

anchor points (see cyan asterisks in Figure 3b) on corresponding top and210

bottom contour segments were used to define (1) the orientation of the semi-211

axial image planes that would provide elliptical uterine cross-sections, (2)212

the minor axis b of each elliptical cross section, and (3) the centroid of each213

ellipse (c1, c2). An initial guess of parameter a was generated using the linear214

relationship between a and b determined in the training phase. First-guess215

elliptical contours were then generated using all of these parameters for every216

semi-axial plane defined by the anchor points.217

218

2. Contour Deformation: 2D semi-axial US images were generated by219

linearly interpolating the original 3D US image into the semi-axial planes220

defined by the anchor points generated during the Manual Initialization step221

(see Figure 5d). The corresponding first-guess elliptical contours were de-222

formed according to boundary information extracted from each 2D semi-axial223

image. The position of the initialization contours and prior knowledge that224

the uterus is hypoechoic on ultrasound relative to surrounding tissues was225

used to generate a directional edge map, which lessened the magnitude of, or226

removed boundaries arising from, negative gradients or boundaries far from227

the initialization contour. Equation 2 (Le et al., 2015) was used to generate228

a directional edge map f(x, y) from each 2D semi-axial image229

f(x, y) =

 |∇V1 · J(x, y)|2 ×R(x, y) if ∇V1 · J(x, y) > 0

0 if ∇V1 · J(x, y) ≤ 0,
(2)
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230

231

where V1 is the original image I(x, y) convolved with a 2D Gaussian232

smoothing kernel, J(x, y) is the phase of the signed distance map generated233

using the initialization contour, and R(x, y) is a weighting matrix penalizing234

boundaries far from the initialization contour (see equation 3).235

Each pixel of the signed distance map was the minimum Euclidean dis-236

tance between every pixel in the image I(x, y) and the nearest point on the237

elliptical initialization contour. As shown in Figure 5a, points outside of the238

initialization contour were assigned a positive distance, and points inside of239

the initialization contours were assigned a negative distance. J(x, y) was240

used to provide a model for the expected intensity gradient of I(x, y) un-241

der the assumption that the uterus was darker than its surroundings. The242

dot product of the phase component of the gradient of the original image243

(smoothed by a gaussian kernel - see Figure 5e) and J(x, y) provided a con-244

venient way for quantifying the extent to which the true contrast gradient245

follows the model. Contrast gradients that have the same direction as J(x, y)246

were maximized, while contrast gradients that have the opposite direction to247

J(x, y) were minimized, as shown in the agreement map in Figure 5b. In248

equation 2, the agreement map corresponds to the term ∇V1 · J(x, y). The249

agreement map was used as a thresholding tool to determine which bound-250

aries to include in the directional edge map. Anything greater than zero (i.e.251

where the contrast gradient has a phase component along the direction of252

J(x, y) ) was included, whereas anything less than or equal to zero was set253

to zero in the directional edge map.254
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After eliminating spurious boundaries based on gradient, a provisional255

directional edge map was obtained by squaring the gradient of the agreement256

map. This provisional directional edge map was modified by a weighting257

matrix R(x, y) as shown in equation 3:258

R(x, y) =

(
1−

(
d(x, y)

max(d(x, y))

)
k
)
× exp

(
−
(

d(x, y)

max(d(x, y))

)
k
)
, (3)

where d(x, y) is the map of distance between every pixel in the image and the259

nearest point in the provisional contour (i.e. the absolute value of the signed260

distance map) and k is a tuneable parameter that determines how heavily a261

boundary is penalised for being located far from the provisional contour. As262

shown in Figure 5c, the smaller the value of k, the more heavily boundaries263

far from the initialisation contour were penalised, as the descending velocity264

of R(x, y) was increased. An example of a directional edge map is shown in265

Figure 5g. The peak brightness of the boundary sections on the directional266

edge map (Figure 5g) correspond to the steepest contrast gradient along the267

uterine boundary on the original image (Figure 5d).268

To determine where the uterine boundary was on the directional edge269

maps, the SE-algorithm searched for peaks in image intensity on the direc-270

tional edge map that were nearest to the initialisation points. Specifically,271

a 1D intensity profile was extracted from radial samples of length r on the272

directional edge map, and the initialisation contour was moved along that273

radius to the position of the nearest peak (see Figure 4). These peak-shifted274

points formed a provisional 2D uterine contour for each semi-axial cross sec-275

tion.276

277
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Figure 5: Schematic illustrating how prior knowledge of uterine contrast and shape was

combined with image features to generate a directional edge map. In (a), a signed distance

map was calculated from the initialisation contour shown in red. J(x, y) was defined as

the phase φ of the signed distance map. The agreement map in (b) was the result of taking

the dot product of the gradient of V1 from (e) and J(x, y): anything ≤ 0 was set to zero in

the directional edge map. Values on the agreement map that were > 0 were then weighted

according to R(x, y) to penalise boundaries far from the initialisation contour, as shown

in (c). R(x, y) had a tunable parameter k which determined its descending velocity. Note

how the final directional edge map in (g) had an enhanced uterine boundary compared

with conventional edge maps as shown in (f).

3. Boundary Regularisation: Though the majority of the points com-278

prising the provisional contour were positioned on the true uterine boundary279

(defined as the position of the steepest contrast gradient along the edge of280

the uterus on the original image), some either moved to spurious boundaries281

that remained in the directional edge map or stayed in place if no boundary282

was present, making the uterine boundary appear jagged. Again relying on283

18



the assumption that the uterus had elliptical cross sections, the SE-algorithm284

fitted an ellipse to each provisional contour to smooth the uterine boundary285

and to mitigate the influence of outliers, as shown in Figures 5c and 6. As an286

ellipse must be fitted to every 2D semi-axial cross section, the non-iterative287

‘numerically stable direct least squares fitting of ellipses’ algorithm (Hal and288

Flusser, 1998) was implemented to minimise the computation time required.289

These ellipses formed the final contours for each 2D semi-axial cross section290

of the uterus.291

292

Figure 6: Example semi-axial images from one patient demonstrating how fitting an ellipse

(magenta) to the provisional contour obtained by finding peaks in the directional edge map

(green) reduces the influence of outliers and smooths the contour.

4. Projection of 2D contours into 3D: The final step of the SE-algorithm293

was to transform all of the 2D uterine contours derived in image space back294

into their real space positions along the semi-axial planes defined during295

the manual initialization step. Each point contributing to an ellipse gen-296

erated during the boundary regularisation step became a surface point in297

the 3D uterine contour, as shown in Figure 7a. The final uterine segmenta-298

tion was formed from a single conforming 3D boundary around the surface299

points, which was generated via triangulation using the ‘boundary’ function300
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in Matlab R© (Matlab 2017a; The Mathworks, Natick, MA), as shown in Fig-301

ure 7b. Similarly to a conventional convex hull operation (Chazelle, 1993),302

this function enveloped a set of surface points, but included an additional303

parameter called the ‘shrink factor’ which pulled the 3D boundary towards304

the interior of the hull. This was important for ensuring a distinct boundary305

between the uterine head and the cervical body, particularly in cases where306

the uterine fundus was close to the cervix.307

308

a.

Ellipses transformed into 3D real space

b.

3D contour generated using triangulation

Figure 7: (a) Demonstration of the 3D orientation of each individual elliptical contour

generated on semi-axial US slices. (b) Visualization of final 3D contour achieved using

triangulation to envelope all of the 3D surface points.

Evaluation of algorithm performance309

Three observers used the SE-algorithm to semi-automatically segment310

the uterus on each of the forty-four patient images included in the indepen-311

dent validation cohort. The Dice similarity coefficient (DSC)(Dice, 1945)312

and mean absolute surface-to-surface distance (MSSD) (Yan et al., 2010)313
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were measured between each algorithm-derived contour and the gold stan-314

dard manual contour. For 3D volumetric contours A and B, the DSC was315

calculated as (2|A∩B|)/(|A|+ |B|), with 1 representing perfect overlap and316

0 representing no overlap, and the MSSD was defined as the mean absolute317

distance between every point on the surface of A (n points total) and the318

nearest neighbouring point on the surface of B, as shown in equation 4. The319

median and interquartile range (IQR) DSC and MSSD from all three ob-320

servers are reported (1) for each patient individually and (2) over the study321

population as a whole.322

MSSD =
1

n

n∑
i=1

||Ai −Bi|| (4)

To assess whether it would be possible to implement the SE-algorithm323

on a clinically-relevant time scale, the time required to complete the man-324

ual initialisation for each of the forty-four US images was recorded for one325

observer (SM). The median and IQR time was reported. Additionally, the326

computation time for the automatic segmentation steps was also recorded.327

Results328

Training phase329

The relationship between the major and minor axes (axes a and b, re-330

spectively) from the ellipses providing the best fit to manually contoured331

semi-axial uterine cross sections is shown (i) for each of the five patients in332

the training cohort individually and (ii) for the entire population in Figure333

8. The linear fit used to estimate axis a (the right-left extent of the uterus)334
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from b was: a = 1.01∗ b+11.3. The coefficient of determination (R2) for this335

linear fit was 0.60.336

Figure 8: Relationship between ellipse axes for each patient individually (dotted lines) and

globally (black line). Note: the patient-specific data was not used in the SE-algorithm - it

is just shown to demonstrate the inter-patient variability in uterine shape. The equation

for the global linear fit was a = 1.01b+ 11.3. (right) The same data is shown, but without

the patient-specific information for visual clarity.

Segmentation phase337

The SE-algorithm was implemented for all patients in the test cohort338

using the parameters shown in Table 2. The parameters were selected based339

on previous experience in using the multi-scale generalised gradient vector340
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flow algorithm developed by Le et al. (2015) to segment the uterus of healthy341

volunteers on data acquired in a previous study (Mason et al., 2018).342

Table 2: Values of user-tuneable parameters in the SE-algorithm used for all segmenta-

tions.

Parameter Selected Value

σ (standard deviation of Gaussian smoothing kernel in Equation 2) 4

k (edge preservation parameter in Equation 3) 1

r (length of radial search region used for peak detection) 29

The agreement between the SE-algorithm from all three observers and the343

manual gold standard contours for the validation cohort is shown in Table 3.344

Figure 9 shows these results graphically for each observer and each patient.345

The overall median [IQR] DSC and MSSD were 0.80 [0.03] and 3.3 [0.2] mm,346

respectively.347

The median [IQR] time required for observer SM to perform the manual348

initialization was 40 [16] seconds. The computation times for the remaining349

steps of the SE-algorithm when implemented in MATLAB R© (Matlab 2017a;350

The Mathworks, Natick, MA) on a computer with a 2.8 GHz Intel Core351

processor and 16 GB of RAM are shown in Table 4.352

Discussion353

Previous work has demonstrated that the median [IQR] DSC and MSSD354

between manual contours drawn by different observers is 0.78 [0.11] and 3.20355

[1.8] mm, respectively (Mason et al., 2017). These serve as benchmark values356
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Table 3: Agreement between SE-algorithm contours initialized by three observers and

gold-standard 3D manual contour of the uterus.

Patient
DSC

median [IQR]

MSSD (mm)

median [IQR]

1 0.80 [0.06] 3.3 [0.8]

2 0.83 [0.01] 2.9 [0.8]

3 0.83 [0.08] 2.7 [1.0]

4 0.80 [0.05] 3.3 [1.0]

5 0.82 [0.04] 2.2 [1.0]

6 0.76 [0.08] 3.8 [1.9]

7 0.77 [0.07] 4.0 [0.9]

8 0.81 [0.05] 2.8 [0.8]

9 0.77 [0.05] 3.2 [0.9]

10 0.72 [0.08] 3.7 [1.6]

Cohort Average 0.80 [0.03] 3.3 [0.2]

for assessing whether or not algorithm-derived segmentations can accurately357

determine the position and shape of the uterus. As the agreement between358

the SE-algorithm segmentations and manual segmentations (median [IQR]359

DSC and MSSD of 0.80 [0.03] and 3.3 [0.2] mm, respectively) was within360

the range of interobserver manual contour agreement, the SE-algorithm was361

considered to have acceptable accuracy for segmenting the uterus prior to362

RT delivery. Unlike Elekta’s ‘Assisted Gyne Segmentation’ algorithm (Mason363

et al., 2017), there were no cases of complete failures (i.e., complete geometric364

miss of the true uterine boundary or failure of the algorithm to generate a 3D365
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Figure 9: DSC and MSSD between each observer’s use of the SE-algorithm and the cor-

responding manual contour. Patients P1 - P10 are represented in different colours, and

are separated by vertical lines. Columns represent US images from different time points.

The three points in each column correspond to the result from each observer. The me-

dian and IQR for each patient are superimposed over the plots as solid and dashed lines,

respectively.

contour) when segmenting the uterus with the SE-algorithm. Furthermore,366

the SE-algorithm maintained a high segmentation accuracy when US image367

quality was poor and even when the US field of view did not completely cover368

the uterus, as shown in Figure 10.369

The length of the major axis of elliptical uterine cross sections increased370

with increasing minor axis length. Although the least squares linear fit de-371

scribing this relationship was slightly different between patients in the train-372

ing cohort as shown in Figure 8a, the overall trend was similar enough to373

provide a good first approximation of the major axis given the minor axis.374

This was confirmed in the segmentation phase, where the linear relationship375
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Table 4: Example computation times required for each step of the SE-algorithm per 2D

slice, and for a representative uterine volume. All steps were implemented in MATLAB R©

(Matlab 2017a; The Mathworks, Natick, MA) on a computer with a 2.8 GHz Intel Core

processor and 16 GB of RAM.

Example computation times (sec)

per slice
per volume

(38 slice example)

Interpolation of 3D US image onto

2D semi-axial plane
3.4 129.2

Generation of directional edge map 0.01 0.38

Ellipse initialization <0.01 0.29

Contour deformation

(peak finding & boundary regularisation)
0.1 3.8

2D to 3D transformation - 9

Total - 142.7

derived from a training cohort of only five patients was successfully applied to376

a completely different cohort of patients, where the final segmentation result377

achieved the desired accuracy. To compare the overall trend between major378

and minor axes between the training and validation cohorts, the manual 3D379

contours for the first US image available for patients in the validation cohort380

were parameterised as ellipses in the same way as they were in the training381

cohort, such that the elliptical axes lengths could be extracted. In the test382

cohort, the relationship between axes a and b was a = 1.3b + 11.1, which is383
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Figure 10: Example segmentations using the SE-algorithm (magenta, 3 observers) com-

pared with the corresponding gold standard manual segmentation (yellow). Each row

contains example 2D cross sections from the final 3D segmentation in various orienta-

tions for high, medium, and low US image qualities. The DSC and MSSD (mm) for each

segmentation are displayed on the sagittal slice.

similar to the trend calculated for the training cohort (a = 1.01b+ 11.3).384

In current clinical practice, cone-beam computed tomography (CBCT)385

is commonly used to verify whether the uterus is inside or outside of the386

PTV. This process usually takes a few minutes, with poor quality images387

requiring more time for analysis. The average time required for the manual388

initialisation step for the SE-algorithm was under a minute, indicating that389

this algorithm could be implemented in a clinically-acceptable time scale390

(using current practice in CBCT image analysis as a benchmark for what is391
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considered “clinically-acceptable”).392

All subsequent steps used in the SE-algorithm were not computationally393

expensive (and therefore not time consuming), except for the step where the394

3D US image was interpolated onto a series of arbitrarily orientated semi-395

axial planes. Without any optimisation, the computation time of this step396

ranged from 30 seconds to 3 minutes in MATLAB, depending the number397

of semi-axial slices comprising the uterus. Although code optimisation and398

translation into a compiled language such as C could significantly reduce399

the algorithm run-time, the time required to segment the uterus using the400

SE-algorithm in its current form is on the order of a few minutes, which is401

considered clinically acceptable.402

One limitation of this study is the small sample size; although these re-403

sults indicate that the SE-algorithm can accurately segment the uterus given404

a training cohort of five patients and a completely independent validation405

cohort of ten patients from an entirely different hospital, a larger dataset406

would be required to confirm the algorithm’s performance. In particular,407

there were no patients included in the analysis that had a FIGO cervical408

cancer stage greater than IIIB (range IIA - IIIB, median IIB, see Table 1 for409

baseline patient characteristics). As Stage IV cervical cancers often manifest410

themselves as bulky tumours that have heterogenous soft tissue contrast, the411

assumptions of uterine shape and contrast made by the SE-algorithm may412

not be valid in this population. However, as the incidence of Stage IV cer-413

vical cancers in the UK is relatively low (8% of cases as reported by Cancer414

Research UK (2017)), only a small proportion of the population is likely to415

be unsuitable for the SE-algorithm in its current form.416
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Although the SE-algorithm is accurate to the level of interobserver con-417

tour agreement, one aspect of the algorithm that could potentially be im-418

proved is the trade-off between prior knowledge of uterine shape and feature419

extraction. The assumption that uterine cross sections are elliptical in shape420

was strictly imposed. Although this successfully constrained the segmen-421

tations in cases where the true uterine boundary is obscured or otherwise422

unclear, it came at the cost of preventing the contour from conforming to423

boundaries that deviated from this elliptical shape, as shown in Figure 10 by424

the discrepancies between the manual (yellow) and algorithm-derived (ma-425

genta) contours. Future work could investigate the use of: 3D boundary426

regularisation methods, more complicated shape priors (such as the superel-427

lipses described by Gong et al. (2004)), or an additional weighting parameter428

to modify the contour flexibility based on US image quality. Alternatively, it429

may be possible to segment the uterus on 2D semi-axial slices generated dur-430

ing the manual initialization step of the SE-algorithm using machine learning431

approaches such as support vector machines (Yang et al., 2011) or neural432

networks (Egmont-Petersen et al., 2002; Carneiro et al., 2012; Ronneberger433

et al., 2015), whereby each pixel in an image is classified as either ‘uterus’ or434

‘background’. This is appealing because assumptions about target shape and435

contrast do not necessarily have to be explicitly taken into account; rather,436

a database of images and corresponding gold standard segmentations would437

be used to establish the model parameters (i.e. support vectors in a support438

vector machine or weights in a neural network) that best classify pixels into439

foreground or background. However, a major drawback of these approaches440

is the large amount of training data needed to generate a database represen-441
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tative of the entire target population, which prohibited the investigation of442

these methods in this study.443

Finally, the images analysed in this study were generated by the Clarity444

Autoscan, which employs a simple (i.e., non-compounding) 3D sector-scan445

format that is not necessarily optimised for imaging the uterus for purposes446

of image guided radiotherapy. Future work should test whether performance447

of uterine boundary segmentation methods such as the SE-algorithm can be448

further improved by improvements in uterine image quality using techniques449

such as 3D extended aperture compounding (Mason et al., 2018).450

Conclusions451

The agreement between contours derived from the SE-algorithm and man-452

ual contours was equal to interobserver manual contour agreement of the453

uterus. Though it is unclear whether the SE-algorithm could be adapted to454

segment the uterus in cervical cancer patients with bulky disease, these re-455

sults indicate that it is accurate when used in patients with FIGO stage IIIB456

or lower. Furthermore, the SE-algorithm segmented the uterus in a clinically457

relevant time scale, and used a small training set to provide the prior knowl-458

edge needed for uterine shape used during the initialization phase. Though459

confirmation of the algorithm performance is needed in a larger patient co-460

hort, the results from this work indicate that the SE-algorithm could be im-461

plemented in an adaptive radiotherapy workflow to quickly and accurately462

segment the uterus on 3D US images.463
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