
i
i

“Paper-v2” — 2019/9/30 — 13:44 — page 1 — #1 i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

The application of Hadoop in Structural
Bioinformatics
Jamie Alnasir 1,∗, Hugh P. Shanahan 2

1Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, United Kingdom and
2Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, United Kingdom.

∗To whom correspondence should be addressed.

Associate Editor: Martin Bishop

This is a pre-copyedited, author-produced version of an article accepted for publication in Briefings in Bioinformatics following peer review. The

version of record, The application of Hadoop in structural bioinformatics. Alnasir, Jamie; Shanahan, Hugh. Briefings in Bioinformatics,

20.11.2018, p. 1-10, is available online at: https://academic.oup.com/bib/advance-article-pdf/doi/10.1093/bib/bby106/26649330/bby106.pdf

Abstract

The paper reviews the use of the Hadoop platform in Structural Bioinformatics applications. For Structural
Bioinformatics, Hadoop provides a new framework to analyse large fractions of the Protein Data Bank
that is key for high throughput studies of (for example) protein-ligand docking, clustering of protein-ligand
complexes and structural alignment. Specifically we review in the literature a number of implementations
using Hadoop of high-throughput analyses and their scalability. We find that these deployments for the
most part use known executables called from MapReduce rather than rewriting the algorithms. The
scalability exhibits a variable behaviour in comparison with other batch schedulers, particularly as direct
comparisons on the same platform are generally not available. Direct comparisons of Hadoop with batch
schedulers are absent in the literature but we note there is some evidence that MPI implementations
scale better than Hadoop. A significant barrier to the use of the Hadoop ecosystem is the difficulty of
the interface and configuration of a resource to use Hadoop. This will improve over time as interfaces to
Hadoop e.g. Spark improve, usage of cloud platforms (e.g. Azure and AWS) increases and standardised
approaches such as Workflow Languages (i.e. WDL, CWL, Nextflow) are taken up.
Keywords: Structural Bioinformatics, Hadoop, Cloud Computing.

1 Introduction
The Apache Hadoop project [1] is a software ecosystem i.e. a collection
of interrelated, interacting projects forming a common technological
platform [2] for analysing large data sets.

Hadoop presents three potential advantages for the analysis of large
Biological data sets. In the first instance, it is designed for the analysis of
large semi-structured data sets; secondly it is designed to be fault tolerant
(in essence by ensuring a very large amount of overall redundancy) which
becomes almost inevitable for sufficiently large numbers of processors;
finally the MapReduce formalism for describing the data sets allows for
the easy construction of work flows.

Given the continued importance of computationally analysing protein
structures in fields such as Membrane proteins [3], protein-protein
interactions and their impact in Systems Biology [4, 5] and protein

engineering [6] a platform for easily analysing semi-structured data sets
such as those found in the Protein Data Bank [7] on a large would be an
important step forward.

On the other hand, Hadoop also presents barriers to its adoption within
the community for Bioinformatics and the analysis of structural data. In the
first instance Hadoop runs as a series of Java libraries and hence there is a
learning curve for any Bioinformatician or Structural Biologist who hasn’t
used Java before, though we note that more recent additions to the Hadoop
ecosystem such as Spark [8] have a wider range of languages (e.g. Python,
Scala and R). Correspondingly, unlike data parallel languages such as High
Performance Fortran [9], Hadoop cannot be easily retro-fitted into a stable
code base even if the original code is written in Java though it is possible
to use Hadoop to deploy instances of executables in the same way that
batch schedulers do. Finally, implementing Hadoop (and therefore Spark)
on a local cluster is not trivial and requires a significant level of expertise

© The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1



i
i

“Paper-v2” — 2019/9/30 — 13:44 — page 2 — #2 i
i

i
i

i
i

2 Sample et al.

from the relevant systems administrator. As we note, this latter difficulty
is obviated on cloud platforms such as Azure and AWS [10].

This paper reviews the range of work that has been done on Hadoop in
Bioinformatics and in Structural Bioinformatics in particular. Specifically
this paper will determine how stable these platforms are in comparison
to other approaches such as batch schedulers and MPI (discussed in
sections 1.1.3 and 1.1.4 respectively). The rest of this paper is organised
as follows. In the first instance a brief overview of the Hadoop and Spark
systems as well as a description of batch schedulers and MPI. It then
describes the Hadoop formalism. A brief review of the application of
Hadoop in Bioinformatics is provided followed by an in-depth review of
the application of Hadoop in Structural Bioinformatics. Specifically we
examine the range of cases where Hadoop has been used, the scaling
behaviour of such systems in comparison with other platforms, where
available and its dependence on the internal configuration of the version
of Hadoop used. Finally this paper will draw some conclusions on the
scalability of Hadoop and its application in Structural Bioinformatics.

1.1 Distributed computing architectures

1.1.1 Hadoop and MapReduce
Apache Hadoop is a software framework for distributed processing and
storage which is typically installed on a Linux compute cluster to facilitate
large scale distributed data analysis, though it can be run on a standalone
single computer node usually for the purposes of prototyping. Hadoop
clusters may be built using commodity hardware, for instance off the shelf
equipment such as used in computer farms, and key features are fault-
tolerance and data-locality. In the former case scaling up a cluster to add
more machines and disks increases the probability of a failure occurring
and hence systems must have a built-in redundancy to compensate for it. In
the latter case data-locality provides the ability of the framework to execute
code on the same node or at least the same rack of the cluster as where
the input data resides. This reduces the amount of network traffic during
processing thereby avoiding network bottlenecks [11]. The fault-tolerance
and data-locality of Hadoop are made possible by its distributed file system
(HDFS) [12] and by Hadoop’s resource scheduler YARN (Yet Another
Resource Negotiator) [13] which is responsible for cluster management,
in particular resource allocation and job scheduling.

The distributed data on HDFS is accessed programmatically using the
MapReduce formalism, originally implemented in Java. In this formalism
the distributed data accessed from HDFS is a set of tuples i.e. pairs of keys
and values < ki, vi >, 1 ≤ i ≤ N where N are the total number of data
entries. For example, the entries in the Protein Data Bank (PDB) would be
a set of pairs where ki would be a specific PDB id and vi could be a single
string with the corresponding PDB data in XML format. All operations are
based on these tuples, either creating new tuples (i.e. through a Map step)
or summarising the data stored in the tuples (i.e. through a Reduce step).
Extending the above example, via a Map step, a specific executable (e.g.
a docking program run with a specific small molecule) could be run on
each PDB entry to create a log file for each PDB entry. In the MapReduce
formalism this means creating a new set if tuples < ki, li > where ki is
again the PDB entry and li is a single string with the log file. A Reduce
step could then be applied on this second set of tuples to create a single
tuple which carries some specific set of summary data (e.g. how many
structures had a docking score greater than some threshold in the previous
Map step).

The rise of the use of Hadoop has mirrored the increasing use of cloud
platforms. MapReduce is offered as a Platform as a Service (PaaS) by all
of the major cloud-service providers (Amazon AWS, Google Cloud and
Microsoft Azure) [14].

1.1.2 Apache Spark
Spark is a cluster computing framework that can be used standalone or can
utilise Hadoop’s distributed file system (HDFS) and a resource scheduler
(often Apache YARN), providing an application programming interface
(API) for distributed computation. Spark is designed to overcome some
of the constraints of Apache Hadoop offering significant performance
improvements but keeping the fault-tolerance and scalability features of
Hadoop by utilising HDFS [15].

Although Spark supports MapReduce programs, the main constraint
Spark overcomes is Hadoop’s acyclic data flow model by allowing the re-
usability of intermediate data in the form of a data structure that is central
to Spark, the Resilient Distributed Dataset (RDD). The RDD serves as an
abstraction for distributed memory that allows in-memory computations
on large clusters in a fault-tolerant manner, and because an RDD is
partitioned across multiple compute nodes, can be rebuilt if for some reason
a partition is lost [16]. The RDD is an immutable (read-only) data structure
that can encapsulate objects from a number of different programming
languages and typically on Spark this is Python, Java, or Scala and In
contrast Hadoop development, notwithstanding that Hadoop MapReduce
programs can be written in any language supporting the UNIX POSIX
standard I/O streams, is predominantly Java based. This is significant from
a development perspective because Java requires programmers to possess
more specialist object-orientated programming (OOP) knowledge than for
example Python, and Java programs tend to have more dependencies on
runtime libraries.

An RDD is usually created in two ways, by referencing an external
data source, for instance a dataset or file on HDFS, or by parallelising an
existing Spark data structure. Parallelising a data structure, for instance an
array in Spark, allows it to be operated on in a parallel fashion whereby
Spark handles the caching of the RDD in memory across nodes of the
cluster. As a result of this, Spark MapReduce operations gain significant
performance enhancements over their Hadoop counterparts. This can be
achieved because Spark creates an execution plan, in the form of a directed
acyclic graph (DAG), of Spark and MapReduce operations to be performed
on RDDs. The execution plan models dependencies and allows Spark to
optimise execution of a jobs’ components in a way that is not constrained to
linearity of execution like MapReduce on Hadoop. Spark categorises some
functions/procedures in Spark programs as action events, for instance a
reduce step, and others as transformations, for instance a map step. This
allows Spark to process the execution plan DAG using a method known
as lazy evaluation, that is only action events cause data to be loaded into
memory, whereas transformations in the execution plan are only executed
when an action with dependency on that transformation is executed [17].
This method improves on cluster utilisation over Hadoop because it allows
cluster resources to be acquired and released on an ad-hoc basis throughout
a complex job. This avoids the rather less desirable but typical scenario in
Hadoop in which resources (for instance executor processes - which are
finite and dictated by cluster configuration) are reserved at the outset then
released back to the cluster (hence making them available to other jobs)
only when the running job is finished.

Apache Spark supports Python (through the PySpark API) allowing
rapid development with easily installable modules, and offers substantial
performance benefits over Hadoop. It is noteworthy that other popular
languages in the field of bioinformatics, such as R, also have interfaces to
Spark - for example SparkR [18].

1.1.3 Batch schedulers
A batch-scheduler (also referred to as a job-scheduler or workload
management software), is a central software component of a compute
cluster that manages the workload of computational jobs on a cluster and
allocates cluster resources to them [19]. We will refer to the technique as



i
i

“Paper-v2” — 2019/9/30 — 13:44 — page 3 — #3 i
i

i
i

i
i

Structural Bioinformatics and Hadoop 3

batch-scheduling and the central software component as the job-scheduler.
Generally a computational job on a batch-scheduled system is a normal
user program that runs on a single compute node, but can also be a more
specialist distributed program that comprise of components written to run
on multiple nodes which communicate by passing messages, for example
using message passing interface (MPI) (discussed in the following section).
Computational jobs are submitted in a batch to the job scheduler which
adds them to a queue. The job scheduler decides on how to prioritise
competing jobs, what resources to allocate to the jobs. The jobs are then
submitted by the job scheduler to compute nodes of the cluster using a
scheduling algorithm [20].

Batch-scheduled cluster systems couple job flow control with the
ability to reserve (and limit) the allocation of cluster resources such as,
for example, CPU cores, physical RAM, virtual memory and execution
time. However batch-scheduled clusters offer only “course granularity”
control of concurrency at the job-level (unlike MPI systems) and does not
render the same level of fault-tolerance and data-locality through lack of
a distributed file system such as HDFS that Hadoop provides (discussed
above) unless an external distributed file system such as, for example,
GPFS or Lustre is employed. Batch-scheduled cluster systems use the job
scheduler to deploy “whole” executable programs to compute nodes of
the cluster which may or may not run in a parallel fashion - for instance a
single program when submitted will run on only one node, while multiple
submitted jobs may run either on a single node or be distributed across
multiple nodes depending on the load on each compute node and the
scheduling rules set.

1.1.4 MPI
High performance computing (HPC) systems are typically reliant on
a high degree of inter-process communication. The Message Passing
Interface (MPI) is a standard for the development of parallel programming
software and libraries for parallel computing architectures that standardises
syntax [21]. MPI facilitates concurrent programming by specifically
dictating the standard syntax to be used for the messages passed between
communicating processes. MPI supports a wide variety of architectures
such as multiple computers with distributed memory, shared memory
multiple processors and heterogenous combinations of these.

MPI offers an extremely fine granularity of control over the processes
involved in the execution of parallel, concurrent programs running across
networked computers in clusters. Although MPI is extensively used in high
performance computing, it can be used on clusters of standard machines
or workstations. MPI requires the programmer to explicitly handle parallel
functionality at a lower level than for instance Hadoop which automates
parallelism of users programs through the MapReduce formalism. Whilst
MapReduce has parallels to MPI programming, especially in relation to
MPI functions scatter and reduce, it offers automatic parallelism, as well
as data-locality and fault-tolerance (discussed previously) [22].

2 Applications of Hadoop in Bioinformatics
The emergence of platforms that utilise Hadoop infrastructure that we
have discussed, namely Hadoop and Spark, have not been overlooked
by researchers in different areas of bioinformatics. A number of
projects within the Apache Hadoop ecosystem find useful application in
bioinformatics [1]. These include the data-warehousing framework Hive
[23] which has an SQL type query language, the high level data-flow
language Pig [24] which compiles scripts into sequences of MapReduce
steps for execution on Hadoop, the machine-learning and clustering
facilities offered by Mahout [25], and HBase a distributed scalable
database [26]. All of these projects utilise Hadoop’s cluster infrastructure

and distributed file system and therefore gain from the scalability and
fault-tolerance inherent in their design, as discussed earlier.

2.1 MapReduce

In terms of software applications MapReduce has been employed for
a variety of problems in processing biological and sequencing datasets.
Some notable projects in the area of sequence alignment are, Cloudburst
[27] and CloudAligner [28], which are both based on the RMAP alignment
algorithm [29], and CloudBlast [30] which is based on the BLAST
algorithm [31]. It is noteworthy that MapReduce can be especially suited
for, for example the construction of a de Bruijn graph for de novo genome
assembly. For example, Contrail is able to build adjacency lists for all the k-
mers in the genomic sequence reads and then uses distributed aggregation
functions such as reduce to compress simple chains of length N in
O(log(N)) rounds using a randomized parallel list ranking algorithm
[32].

There are also tools implemented in MapReduce for the analysis of
assembled sequencing data, for instance Crossbow [33] is designed for
SNP (Single Nucleotide Polymorphism) detection. It uses the Bowtie [34]
and the SNP caller SOAPsnp [35]. Differential expression (using RNA-
Seq) can be measured using the Myrna software pipeline [36] - pipelines are
data-flows comprising of sequential steps in which bioinformatics software
are applied to the data [37].

Additionally, a number of programming libraries that facilitate the
manipulation and processing of sequencing data file formats such as
SAM Sequence Alignment Map and BAM (Binary Alignment Map) have
arisen such as the Java based libraries Genome Analysis Toolkit (GATK)
[38] developed by the Broad Institute and Hadoop-BAM [39] as well as
the Scala based SparkSeq [40] (discussed below). The GATK provides
functions for data management in the form of data access patterns, namely
the low level implementation is separated from higher level functions,
and also provides functions for analysis calculations. The Broad Institute
have also developed a Workflow Definition Language (WDL) for use in
data analysis pipelines (discussed in the next section). It is a high-level
language that is designed to be human readable and writable. It allows
researchers to describe analysis tasks, daisy-chain tasks into workflows,
and utilise advanced features such as parallelization [41]. WDL was
developed out of the necessity for standardisation amongst a number of
different pipeline solutions, thereby providing a universal standard. In
order to execute analysis pipelines written in WDL, an execution engine
is necessary. Cromwell is such an engine, also designed by the developers
of WDL, to run on many platforms (Locally, HPC or Google - support
for other platforms such as Microsoft Azure and AWS is forthcoming)
and can scale elastically to workflow needs [42]. Furthermore, other
notable workflow languages that aim to facilitate reproducible workflows
are coming to the fore and have started to gain traction, such as CWL
(Common Workflow Language) [43] and Nextflow [44]. CWL, targeted
at Bioinformatics, medical imaging, Chemistry, Physics and Astronomy
is supported by Cromwell, Galaxy and Taverna. Nextflow, which is based
on the Groovy language, allows for abstraction of the underlying platform
by virtue of an execution engine which can run and parallelise workflow
jobs on platforms such as LSF, SLURM and AWS [44].

The provision of pipeline development specifically for the Hadoop
platform is also available. For instance, SparkSeq is a library for building
genomic analysis pipelines using Scala on Apache Spark. Whilst Scala
is supported on the Spark platform it lacks the same user base in
bioinformatics as it enjoys amongst the data analytics and machine learning
communities. Given the vast amounts of sequencing data being produced
[45, 46], the purpose of these tools is to exploit the scalability which
the Hadoop and Spark platforms offer, and this offsets any difficulty in



i
i

“Paper-v2” — 2019/9/30 — 13:44 — page 4 — #4 i
i

i
i

i
i

4 Sample et al.

developing or re-writing such applications. However, the development of
universal standards, such as WDL offers researchers a means of utilising
tools developed for such platforms in a more user-friendly way.

2.2 Spark

A number of applications have been developed specifically for the
Apache Spark platform. Guo et al. have carried out an extensive review of
Bioinformatics applications that use Spark [47]. Nothaft et al. [48] have
developed an example genomics pipeline in Spark on HDFS. They have
demonstrated performance gains on the platform running on Amazon EC2
in comparison to the equivalent pipeline run using existing tools. Their
pipeline comprises alignment of reads, pre-processing of reads for QC,
variant calling and filtration of positive variant calls. ADAM pipeline steps
were evaluated against other well-known tools used for these steps such
as GATK, SAMtools and Sambamba. They achieved superlinear speedup
when increasing from 8x to 16x nodes, and near linear speedup when
scaling from 32x to 128x nodes. This corresponded to a 63% reduction in
execution cost on Amazon EC2.

VariantSpark, developed by [49], is a machine learning analysis
framework for genomic data implemented using Apache Spark. It operates
on large feature vectors and large numbers of samples for genetic
classification and can perform real-time analysis. Currently VariantSpark
utilises k-means clustering, the next version, however, will implement a
random forest algorithm).

The Genome Analysis Toolkit (GATK), used extensively in Variant
discovery, provides some of its tools implemented in Spark - previous
versions provided Java libraries for Hadoop. Whilst the Spark implemented
GATK tools can be run on a single Spark node, performance gains are
made when the Spark platform is a cluster of compute nodes which are
horizontally scaled up.

While there are a variety of different Genomics applications that
use Spark, there are at present very few applications in Structural
Bioinformatics. MTTF [50] is a new compact binary data format for PDB
data and a single Hadoop sequence file of the data set is available for
analysis by Hadoop and Spark. Other papers, such as [51] and [52] point
to future plans to transition to Spark, but at present there are no other
examples of Spark being applied in Structural Bioinfomatics.
3 Applications in Structural Bioinformatics
The Protein Data Bank (PDB) is an archive of data describing the 3D shapes
of proteins, nucleic acids, and molecular-complex assemblies derived from
x-ray crystallographic, Nuclear Magnetic Resonance spectroscopy (NMR)
and electron microscopy techniques [53, 7]. It also serves as a portal for
structural genomics [54].

There are also a number of applications for Structural Bioinformatics
implemented using MapReduce on Hadoop, specifically to carry out
high-throughput analyses of such data sets which will be discussed.
Schematically these are shown in figure 1. Whilst the focus of this section
will be on systems developed for the Hadoop platform, for purposes of
comparison, it will also refer to similar systems implemented on other
platforms. We have provided a table summarising all the applications
discussed below in the Supplementary Information.

3.1 Molecular docking

Molecular docking typically involves simulating the electrostatic
interactions between a ligand (often a potential drug molecule) and a target
protein [58, 59]. It is used to score ligands on their affinity to the target,
usually for the purposes of drug development - a process that is complex,
time-consuming and expensive [60, 61].

Fig. 1. A summary of Structural Bioinformatics applications discussed here. Image (a)
represents docking of a ligand (in yellow) into a protein structure (lilac) where one
computationally determines the optimal spatial configuration of ligand and protein. In
this case the structure is an experimentally determined protein-ligand complex 2XJ1 [55],
the kinase PIM-1 complexed with 3’-Guanylic Acid; in docking the structures for the
protein and ligand are separately determined experimentally and an optimal complex must
be computed. Image (b) represents structural alignment where a set of protein structures are
structurally overlapped with each other to identify deep sequence relationships that may not
be identified using sequence alignment methods. In this case the structure 1SAR (chain A)
[56] a Ribonuclease, is overlapped with a variety of other structures using the Dali server
[57]. Clustering of protein-ligand complexes represents a hybrid of these where different
possible protein-ligand complexes are clustered by their structural similarity.

3.1.1 Docking of protein-ligand complexes on Hadoop
A number of molecular docking applications have been implemented to
exploit the Hadoop platform. For example, [62] at the Oak Ridge National
Laboratory in the US, have utilised AutoDock4 on a private 68 node
Hadoop cluster to perform the docking of 2,637 compounds from the
Directory of Useful Decoys (DUD) database [63], against the Human
estrogen receptor alpha agonist protein (PDB entry 1L2I, [64]). They used
the DUD database because it contains ligands that bind to the target, as well
as chemically similar ligands that do not (decoys). This allowed them to test
the reproducibility of the docking experiments - they found that the results
of running AutoDock on Hadoop were consistent with the experiments of
[63], specifically that the percentage of known binding ligands correlated
with the percentage ranked in the DUD database. In their configuration
they used 10 mappers per node on the 57 nodes of their cluster that were
dedicated to run MapReduce Tasks giving 570 mappers running in parallel.
This resulted in a 450x speed-up of AutoDock in performing the docking
task on Hadoop as compared with utilising AutoDock itself to manage
the parallelisation. Furthermore, they report that 95.59% of CPU time is
used by AutoDock, and, therefore, there is less than a 5% overhead in
running AutoDock in a Hadoop map process, and that, as the tails seen in
the graphs of the CPU load were steep, this indicates that job initialisation
and termination are not resource intensive.

As a comparison, [65] conducted the same experiment using the DUD
database with MPI and a multi-threading parallel scheme at an extremely
large scale (15,408 CPUs). They found that VinaLC scaled very well up
to with an overhead of only 3.94%. 17 million flexible compound docking
calculations were completed on 15,408 CPUs within 24 hours. 70% of the
targets in the DUD data set were recovered using VinaLC.

Another system for protein-ligand binding on Hadoop, developed by
[66] is a scalable docking service called Cloud-PLBS (Cloud Protein
Ligand Binding Service), which utilises the SMAP docking tool [67]. Their
system employs an additional virtualisation system, whereby the Hadoop
slave nodes run on virtualised machines and are instantiated depending on
the input job requirements. In terms of benchmarking performance, they
compared stand-alone, sequential processing of protein-ligand pairs using
SMAP, with parallel execution of SMAP within a Hadoop map function
- specifically 2, 4, 6 and 8 mappers. They observed that in docking 40
protein-ligand pairs, reduction in execution time using Hadoop vs. stand-
alone for 2, 4, 6 and 8 mappers was 33.92%, 56.97%, 70.21%, 77.65%,
respectively.



i
i

“Paper-v2” — 2019/9/30 — 13:44 — page 5 — #5 i
i

i
i

i
i

Structural Bioinformatics and Hadoop 5

They also tested the fault-tolerance of Hadoop in running their
protein-ligand pair docking system by simulating task failures in 50%
of the map steps by removing node(s) from service. They observed
that the docking jobs still completed. As discussed previously, fault-
tolerant distributed computation is a feature of Hadoop based applications,
and this resilience in the execution of tasks is important, because the
likelihood of a node failing increases with the scaling-up of a cluster.
Fault-tolerance is also desirable in web-based services such as Cloud-
PLBS, which serve to automate computational jobs and present the results
to the user, without requiring third-party intervention to rectify failed
jobs. However, it should be noted that no reference to source code for
their system is provided in their paper, and the Cloud-PLBS service at
http://bioinfo.cs.pu.edu.tw/cloud-PLBS/index.html is no longer available.

3.1.2 Clustering of protein-ligand complexes
One of the challenges in the field of molecular docking studies arises
from the requirement to search the conformational space of protein-ligand
complexes generated across docking experiments. This is necessary to
select the most likely conformations of protein-ligand complexes, and,
therefore, the putative ligands (potential drug molecules) which partake
in these interactions. In such experiments large numbers of protein-ligand
complexes are generated, docked, and scored [68], and it is, therefore,
necessary to select a subset of putative ligands based on significant protein-
ligand interactions.

Estrada et al. observe that selecting the native conformation, based
on the assumption that the lowest energetically scored conformation (as
computed by an energy function) represents the native binding of the ligand
and protein, is not reliable, even in larger sets of conformations. This
is often due to non-native ligand-protein complexes generating falsely
low energy scores. They point out that, whilst hierarchical clustering
techniques are a logical way of addressing this problem - as the lowest
scoring, most densely populated clusters overlap with native conformation
- most clustering algorithms are computationally expensive, and scale
poorly with large datasets. They implemented a system using MapReduce
on Hadoop to address this issue. They used two datasets, of size 5
TB (3,872 million ligand conformations) and 1 TB (768 million ligand
conformations), generated from the Docking at Home volunteer grid
computing project (Docking@Home) [69], which utilised CHARMM [70]
.

The examples discussed in the section 3.1.1 did not fully implement
their solutions in MapReduce. This would have involved implementing
(or re-implementing) algorithms using MapReduce, but instead exploited
Hadoop’s map step to encapsulate and execute external applications. The
method discussed in [68] however, is fully implemented in MapReduce.

A map step is used which geometrically reduces the conformational
space. This is stored in an Octree data structure [71], together with a unique
identifier (an Octkey) used for traversal. This is achieved by projecting the
x, y, z components of the conformations onto a 2D plane, and calculating
their gradients (forx, y, and z) which are then encoded into a single point in
the Octree. A reduce step is used to aggregate conformations in the Octree.
Further MapReduce operations are then used to traverse the Octree using
the Octkey identifier.

In order to compare the accuracy of their Hadoop-based Octree method
(for selecting native conformations from the ensemble of complexes)
against other approaches, namely Hierarchical clustering and Minimum
Energy selection, they docked 100,000 protein-ligand complexes each for
HIV, Trypsin, and P38alpha. They obtained 80%, 75% and 25% accuracy
for Hadoop based Octree, Hierarchical Clustering and Minimum Energy
methods, respectively.

They also examined the accuracy of selecting native conformations
from the cross-docking data in the Docking@Home datasets, whereby

each conformation of the ligand in the set of complexes is docked with
each conformation of protein. In doing so, they compared their Octree
method with the Energy Minimum approach, and observed 43.8% and
5.8% accuracy, respectively.

In testing the scalability in processing the 5 TB dataset which, as
discussed contains 3,872 million ligand conformations, they used a
Hadoop cluster where each node possesses 32 cores (4x Octacore AMD
Opteron 2.4 GHz), and up to a maximum of 32 nodes were available. The
range of the scaling used was 1 node of 32 cores (to process 121 million
conformations) to 32 nodes with a total of 1024 cores (to process the full
dataset) and analysed 1, 2, 4, 8, 16, and 32 nodes - in all cases, the number
of ligand conformations processed per core was 3.8 million.

It is not stated in their paper how many map processes were running
per core, but it is assumed that it is 1 map step per core. Whilst they
demonstrated their method was amenable to scaling, they observed an
appreciable decrease in parallel efficiency with the increase in cores,
from 99.1% down to 43.8% for 64 cores (2 nodes) and 1024 (32
nodes), respectively. This appears to be due to the increased overhead
in communications between the processes as the number of processes
increases (communications to computation ratio).

A similar application [72] was developed on the Hadoop platform that
partitions the results of molecular dynamics simulations. The trajectories
of atom positions, velocities and energies as a function of time are
clustered, as large datasets. This method yields important information
about the most probable conformations of proteins in ensembles. Their
system employs the GROMOS algorithm [73], which is not inherently
parallel, by implementing it as a series of map and reduce functions so as to
utilise Hadoop. They tested their parallelised MapReduce implementation
of the GROMOS algorithm on a Hadoop cluster comprising of 1 master
and 3 slave nodes, each comprising two hexa-core Xeon E5645 CPUs 32
GB of RAM and 2 TB of disk space. They observed up to 10 and 7 times
speed-up (over using sequential GROMOS) of the first and second phases,
and final two phases of their algorithm, respectively.

A docking application also relevant to our discussion, although not
implemented in Hadoop, has been developed by [74] using a scientific
workflow management tool, SciCumulus deployed on AWS. Their system
employed molecular docking, using AutoDock4 and Vina, on their
platform to explore both drug discovery and scalability. Their drug
discovery objective was the identification of putative drug ligands that
bind to Cysteine Proteases of Protozoan genomes utilising 10,000 protein-
ligand complexes. This aims to facilitate the development of drugs for the
Neglected Tropical Diseases (NTDs). In investigating the scaling-up of the
computational task, they utilised up to 32 heterogeneous nodes (containing
varied numbers of cores) to include a total of 128 Amazon AWS EC2 cores.
They observed an almost linear relationship between number of nodes and
speed, but this plateaued as they approached the maximum of 32 nodes,
suggesting less benefit in scaling beyond this. They point out that this is
likely due to more complicated load balancing in the set of heterogeneous
nodes. The result of their docking experiments using the Cysteine Protease-
ligand complexes identified 287 and 355 putative ligands for AutoDock4
and Vina, respectively. It is important to note, however, that these potential
drug molecules have, on average, RMSDs greater than2−3Å (Angstroms)
which is the maximum accepted value for a useful result.

3.2 Structural Alignment

The alignment of proteins by structure, as opposed to by sequence, is a
computational technique used to identify homologous polymer structures
within proteins that may be conserved between proteins. The technique
facilitates the study of the structural and evolutionary relationships of
proteins with low sequence similarity [75, 76]. A variety of of algorithms
have been developed to perform structural alignment of proteins, such



i
i

“Paper-v2” — 2019/9/30 — 13:44 — page 6 — #6 i
i

i
i

i
i

6 Sample et al.

as, for example, STRUCTAL (Structural Analysis Algorithm), DALI
(Distant Alignment) [77], CE (Combinatorial Extension) [78], VAST
(Vector Alignment Search Tool) [75], and FATCAT (Flexible structure
Alignment by Chaining Aligned fragment pairs allowing Twists) [79],
SSAP (Sequential Structure Alignment Program) [80], and MUSTANG
(Multiple Sequence Alignment Algorithm) [81]. The technique has been
applied to the study of protein binding sites, and solvent exposed surfaces
(these effect the energetics of protein-ligand conformations) [82, 83, 84].

Structural alignment algorithms are usually computationally complex,
[85] present a method which runs at best in approximately Polynomial
time, but they also point out that approximations are often used. There
is also a need to apply such techniques at scale. For example, Hadoop
has been employed by [84] who implemented structural alignment for
binding site prediction. Using test sets of 200 and 48 ligand-protein
complexes, they were able to achieve 93% and 98% accuracy, respectively,
and were able to improve the efficiency of the experiment by exploiting
parallelisation. A service for structurally aligning pairs of proteins has also
been implemented for the Hadoop platform by the developers of Cloud-
PLBS [86] (discussed in the previous section 3.1). It utilises the same
distributed architecture as Cloud-PLBS, that is, individual Hadoop nodes
running within their own VM, and each VM running a map and reduce
process. As with Cloud-PBS, a web-interface is used to enable the user to
provide input of two PDB files by their PDB-ID. To perform the structural
alignment they state their system uses the DALI and VAST algorithms.
Whilst the authors do detail the basis of RMSD (Root Mean Square
Deviation) in structural alignment algorithms, and discuss refinement
methods in their paper, they claim to implement these algorithms in
MapReduce. As previously noted with Cloud-PLBS, there is no source
code available, and the corresponding web service is unavailable. It is
highly likely that, given the complexity of these algorithms and that
there are already implementations available, the same method used in
Cloud-PLBS - execution of an external program within a map step - is
employed.

A similar bioinformatics SaaS (Software-as-a-Service) for structural
alignment of proteins, has been developed for the Microsoft Azure
platform - Cloud4Psi developed by [87]. Their service utilises three newer
algorithms that are implemented in the BioJava project, and which are
derived from CE (jCE), and FATCAT (jFATCAT-rigid and jFATCAT-
flexible) [88]. They tested their system on a subset of 1,000 PDB structures
for both scalability and reproducibility. For scalability, two different
scaling methods were compared: horizontal-scaling (i.e. by adding more
nodes to the system) and vertical-scaling (i.e. by using nodes with more
CPU cores). They found that, whilst both scaling methods increased the
n-fold speed-up for each of the three algorithms, both suffered a decrease
in the performance gains - for horizontal scaling, this was found to be the
result of increased disk I/O due to multiple nodes utilising a shared VHD
(Virtual Hard-Disk), and for vertical scaling this was due to an increase
in processes on the same node (due to higher specification of each node),
resulting in increased CPU utilisation. As the horizontal scaling method
suffered less from this effect, it was the method chosen. For reproducibility
of results, they found that each of the three algorithms produced the same
results independent of cluster configuration and scaling used.

3.3 Other Structural Bioinformatics applications using
Hadoop

Large-scale processing of molecular data is desirable in both applications.
Such techniques facilitate the in-silico study of vast arrays of molecular
compounds and macromolecular structures that are available from large
molecular databases, which are also increasing in size and diversity
[89, 90, 91, 92, 53, 7]. A number of scalable Structural Bioinformatics
methods have been provided by the bioinformatics Group at UCL

(University College London) as web-based services through their Protein
Analysis Workbench [93]. These are accessible via SOAP (Simple Object
Access Protocol), and XML-RPC (Extensible Markup Language-Remote
Procedure Call) protocols. Importantly, the most commonly used methods
have also been deployed as Java packages specifically for the Hadoop
platform. This includes PSIPRED for protein structure prediction [94],
GenTHREADER for protein fold recognition method using genomic
sequences [95] and Disopred [96] for predicting protein disorder. However,
other Workbench tools such as BioSerf, MEMSAT, DomPred, MetSite and
FFPred appear not to have been deployed as Java packages for Hadoop
and the Hadoop package is not available in their most up to date github
repository https://github.com/psipred suggesting that it is not
being updated.

4 Conclusions
This purpose of this review is to give an insight into the impact that
Hadoop and the MapReduce formalism has in Structural Bioinformatics.
This is a apposite moment to consider this as there have been a number
of different applications of Hadoop in the field and Hadoop (and the
wide variety of different applications that have been built on it) has
become more stable and accessible. Spark is very likely to supplant
Hadoop. Researchers working in Structural Bioinformatics have not yet
begun to apply Spark to their own research and the same challenges
(determining the trade off between entirely rewriting a legacy application
to make use of the paradigm or using the formalism to launch the legacy
application, understanding the algebraic formalism based on key-value
pairs, benchmarking with traditional approaches such as batch schedulers
and optimising configuration) apply there as well.

As noted previously the adoption of Hadoop is not a trivial step,
particularly for a Structural Bioinformatics lab that already has extensive
experience in using traditional batch schedulers running on a local cluster.
Rewriting stable code to make them use the MapReduce formalism at the
lowest level would require substantial effort though using MapReduce to
call executables requires much less effort and can still make use of the
fault-tolerance and data locality features of Hadoop.

Questions have been raised about whether the focus on scalability
is masking other significant overheads for such systems and a metric has
been developed to examine this [97]. The impact of this for Bioinformatics
applications has not been explored in the literature and is an interesting
and open question in this area.

This article has focussed on

• determining the breadth of cases where Hadoop has been used,
• how well it scales and
• how dependent the installation of Hadoop is on its configuration (which

is indicative of the difficulty one would have in installing Hadoop).

In the first instance we see a range of traditional high-throughput
applications in Structural Bioinformatics (e.g. docking and structural
alignment) where Hadoop has been employed.

With respect to scaling, the publications reviewed here indicate that
some adjustment of parameters have been made, but these largely focused
on how the applications scale with the number of nodes. They show that
performance is linear though the gains in performance tend to reduce as
the systems are scaled up. In molecular docking, [68] observed a fall in
parallel efficiency of 55.3% (99.1% - 43.8%) when scaling from 2 nodes to
32 nodes. In structural alignment, [84] observed that performance degraded
slightly after 8 mappers was increased to 30. Furthermore, this trend has
also been observed on the MS Azure platform we have discussed for
comparison - in scaling Cloud4Psi, also a structural alignment application
[87], observed that horizontal scaling resulted in performance degradation



i
i

“Paper-v2” — 2019/9/30 — 13:44 — page 7 — #7 i
i

i
i

i
i

as a result of an increase in nodes sharing a virtual disk, and that vertical
scaling resulted in performance degradation as a result of increased CPU
utilisation (due to more processes running per node).

The platform, and method of distribution, also dictate performance
and scalability. In observing two identical docking operations on the DUD
database, one using a 1,088 core Hadoop cluster [62], and the other using
15,408 cores with a mixed parallel MPI implementation of AutoDock [65],
the Hadoop cluster took 69 hours, and the MPI implementation completed
within 24 hours. Whilst this is certainly a result of the number of cores, the
MPI system scaled better, with only very slight degradation in performance
after 6,000 CPU cores. Although this comparison involved the same
docking operation and dataset using different platforms, currently, there
are no comparisons of performance between Hadoop and batch-schedulers
on the same cluster apparatus in the literature.

The comparison of vertical and horizontal scaling in Cloud4Psi
indicates significant change in performance, so configuration is important.
As noted with the Cloud4Psi example, there can be a significant variation
depending on configuration. Performance gains across applications,
therefore, are dependent on configuration.

As Hadoop platforms stabilise, the significant advantage of its
employment is of using a platform where the computation is expressed
explicitly in terms of an algebra. This makes building workflows easier by
allowing the developer to concentrate on the calculation, rather than the
process such as WDL [41]. Nonetheless, there is a significant gap in take
up as such systems remain difficult to deploy.

The Hadoop ecosystem is rapidly evolving and such gaps will reduce
over time. Spark will improve the situation further. On the other hand,
it will also require regular release upgrades. These can be potentially be
difficult to deploy, and often add new components to the ecosystem which
increase the potential to introduce bugs that may affect different areas of
the system.

To address this, organisations such as Cloudera and Hortonworks
[98, 99] provide supported Hadoop-stack releases, and cloud-service
providers such as Amazon offer managed-services, for example Elastic
Map Reduce (EMR) [100]. Implementing systems on the Hadoop
platform, as discussed, also requires specialist programming knowledge
of MapReduce, and if the relevant Hadoop cluster is maintained in-house,
specialist skills in maintaining an Hadoop cluster are also required. For
this reason, managed services are often utilised by enterprise companies
because such systems have been deployed and tested by technical experts
and therefore mitigates risks, and dispenses the need to employ or train
in-house skilled personnel to maintain a Hadoop cluster.

In summary we see a complex pattern of results suggesting that while
Hadoop is promising as a platform for Structural Bioinformatics, the
benefits are uneven. The use of Spark should produce better and more
consistent performance and we look forward to future work in this regard.

Key Points

• There exist a number of implementations using Hadoop of high-
throughput analyses, e.g. ligand-protein docking and structural
alignment.

• In general these deployments are based on using standard executables
which are called from the MapReduce formalism rather than rewrites
of the software.

• Scalability is complex and configuration-dependent though there is
some evidence that MPI implementations scale better than Hadoop.

• The ease to which Hadoop can be used for Structural Bioinformatics
will improve through further innovations such as Spark, easy to deploy
instances of cloud platforms and the Workflow Languages such as
WDL, CWL, and Nextflow.

Author Description:
Dr. Jamie Alnasir completed his PhD from University of London.
His research interests are Next Generation sequencing, Distributed
Computing, High Performance Computing, Computational Biology, and
Bioinformatics. He currently works in Scientific Computing at the Institute
of Cancer Research, London.
Dr. Hugh P. Shanahan is a Reader at the department of Computer Science,
Royal Holloway, University of London. His research interests are Next
Generation Sequencing, Metagenomics and High Throughput Computing.

Acknowledgements
The research in this article was made possible from support from the
Department of Computer Science, Royal Holloway, University of London.

References
[1]Taylor, R. C. (2010) An overview of the Hadoop/MapReduce/HBase

framework and its current applications in bioinformatics. BMC
bioinformatics, 11(Suppl 12), S1.

[2]Messerschmitt, D. G., Szyperski, C., et al. (2005) Software
ecosystem: understanding an indispensable technology and industry.
MIT Press Books, 1.

[3]Nugent, T. and Jones, D. T. (September, 2012) Membrane protein
structural bioinformatics. Journal of Structural Biology, 179(3), 327–
337.

[4]Petrey, D. and Honig, B. (2014) Structural Bioinformatics of the
Interactome. Annual Review of Biophysics, 43(1), 193–210.

[5]Sudha, G., Nussinov, R., and Srinivasan, N. a. (November, 2014)
An overview of recent advances in structural bioinformatics of
protein?protein interactions and a guide to their principles. Progress
in Biophysics and Molecular Biology, 116(2), 141–150.

[6]Choong, Y. S., Tye, G. J., and Lim, T. S. (October, 2013) Minireview:
Applied Structural Bioinformatics in Pro teomics. The Protein
Journal, 32(7), 505–511.

[7]Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N.,
Weissig, H., Shindyalov, I. N., and Bourne, P. E. (jan, 2000) The
Protein Data Bank.. Nucleic acids research, 28(1), 235–42.

[8]Shanahan, J. G. and Dai, L. (2015) Large Scale Distributed Data
Science Using Apache Spark. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining New York, NY, USA: ACM KDD ’15 pp. 2323–2324.

[9]Wagener, J. L. (August, 1996) High performance fortran. Computer
Standards & Interfaces, 18(4), 371–377.

[10]Shanahan, H. P., Owen, A. M., and Harrison, A. P. (July, 2014)
Bioinformatics on the Cloud Computing Platform Azure. PLOS
ONE, 9(7), e102642.

[11]Guo, Z., Fox, G., and Zhou, M. (2012) Investigation of data
locality in mapreduce. In Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing
(ccgrid 2012) IEEE Computer Society pp. 419–426.

[12]Apache Software Foundation HDFS architecture documentation.
http://hadoop.apache.org/docs/current/

hadoop-project-dist/hadoop-hdfs/HdfsDesign.

html (2016) [Online; accessed 10-Jan-2017].
[13]Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar,

M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S., et al. (2013)
Apache hadoop yarn: Yet another resource negotiator. In Proceedings
of the 4th annual Symposium on Cloud Computing ACM p. 5.

[14]Gunarathne, T., Wu, T.-L., Qiu, J., and Fox, G. (2010) MapReduce in
the Clouds for Science. In Cloud Computing Technology and Science

7



i
i

“Paper-v2” — 2019/9/30 — 13:44 — page 8 — #8 i
i

i
i

i
i

(CloudCom), 2010 IEEE Second International Conference on IEEE
pp. 565–572.

[15]Shanahan, J. G. and Dai, L. (2015) Large scale distributed data
science using apache spark. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
ACM pp. 2323–2324.

[16]Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,
McCauley, M., Franklin, M. J., Shenker, S., and Stoica, I. (2012)
Resilient distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation
USENIX Association pp. 2–2.

[17]Apache Software Foundation Spark 2.6 documentation.
http://spark.apache.org/docs/latest/

programming-guide.html (2014) [Online; accessed
26-Jan-2017].

[18]Apache Software Foundation SparkR documentation. https://
spark.apache.org/docs/latest/sparkr.html (2015)
[Online; accessed 21-October-2017].

[19]Kaplan, J. and Nelson, M. (January, 1993) A Comparison of
Queueing, Cluster and Distributed Computing Systems. NASA
Technical Memorandum: 109025,.

[20]Chun, B. N. and Culler, D. E. (2002) User-centric performance
analysis of market-based cluster batch schedulers. In Cluster
Computing and the Grid, 2002. 2nd IEEE/ACM International
Symposium on IEEE pp. 30–30.

[21]Message Passing Interface Forum MPI: a message passing interface
standard. (1993).

[22]Jin, H. and Sun, X.-H. (2013) Performance comparison under failures
of MPI and MapReduce: An analytical approach. Future Generation
Computer Systems, 29(7), 1808–1815.

[23]Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony,
S., Liu, H., Wyckoff, P., and Murthy, R. (2009) Hive: a warehousing
solution over a map-reduce framework. Proceedings of the VLDB
Endowment, 2(2), 1626–1629.

[24]Olston, C., Reed, B., Srivastava, U., Kumar, R., and Tomkins, A.
(2008) Pig latin: a not-so-foreign language for data processing. In
Proceedings of the 2008 ACM SIGMOD international conference on
Management of data ACM pp. 1099–1110.

[25]Lyubimov, D. and Palumbo, A. (2016) Apache Mahout: Beyond
MapReduce, CreateSpace Independent Publishing Platform, .

[26]George, L. (2011) HBase: The Definitive Guide: Random Access to
Your Planet-Size Data, " O’Reilly Media, Inc.", .

[27]Schatz, M. C. (2009) CloudBurst: highly sensitive read mapping with
MapReduce. Bioinformatics, 25(11), 1363–1369.

[28]Nguyen, T., Shi, W., and Ruden, D. (2011) CloudAligner: A fast and
full-featured MapReduce based tool for sequence mapping. BMC
research notes, 4(1), 171.

[29]Smith, A. D., Xuan, Z., and Zhang, M. Q. (2008) Using quality
scores and longer reads improves accuracy of Solexa read mapping.
BMC bioinformatics, 9(1), 128.

[30]Matsunaga, A., Tsugawa, M., and Fortes, J. (2008) Cloudblast:
Combining mapreduce and virtualization on distributed resources for
bioinformatics applications. In eScience, 2008. eScience’08. IEEE
Fourth International Conference on IEEE pp. 222–229.

[31]Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman,
D. J. (1990) Basic local alignment search tool. Journal of molecular
biology, 215(3), 403–410.

[32]Schatz, M. C., Sommer, D., Kelley, D., and Pop, M. (2010) De Novo
assembly of large genomes using cloud computing. In Proceedings
of the Cold Spring Harbor Biology of Genomes Conference.

[33]Langmead, B., Schatz, M. C., Lin, J., Pop, M., and Salzberg, S. L.
(2009) Searching for SNPs with cloud computing. Genome biology,
10(11), R134.

[34]Trapnell, C., Pachter, L., and Salzberg, S. L. (2009) TopHat:
discovering splice junctions with RNA-Seq. Bioinformatics, 25(9),
1105–1111.

[35]Li, R., Li, Y., Fang, X., Yang, H., Wang, J., Kristiansen, K., and
Wang, J. (2009) SNP detection for massively parallel whole-genome
resequencing. Genome research, 19(6), 1124–1132.

[36]Langmead, B., Hansen, K. D., and Leek, J. T. (2010) Cloud-
scale RNA-sequencing differential expression analysis with Myrna.
Genome biology, 11(8), R83.

[37]Leipzig, J. (2016) A review of bioinformatic pipeline frameworks.
Briefings in bioinformatics, p. bbw020.

[38]McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis,
K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly,
M., et al. (2010) The Genome Analysis Toolkit: a MapReduce
framework for analyzing next-generation DNA sequencing data.
Genome research, 20(9), 1297–1303.

[39]Niemenmaa, M., Kallio, A., Schumacher, A., Klemelä, P.,
Korpelainen, E., and Heljanko, K. (2012) Hadoop-BAM: directly
manipulating next generation sequencing data in the cloud.
Bioinformatics, 28(6), 876–877.

[40]Wiewiórka, M. S., Messina, A., Pacholewska, A., Maffioletti,
S., Gawrysiak, P., and Okoniewski, M. J. (2014) SparkSeq: fast,
scalable, cloud-ready tool for the interactive genomic data analysis
with nucleotide precision. Bioinformatics, p. btu343.

[41]Broad Institute WDL (Workflow Definition Language)
specification and documentation. https://software.

broadinstitute.org/wdl/documentation/spec

(2016) [Online; accessed 21-Nov-2017].
[42]Broad Institute Cromwell, execution engine for WDL -

Documentation via Forum. https://gatkforums.

broadinstitute.org/gatk/discussion/7349/

the-art-of-the-pipeline-introducing-cromwell-wdl

(2016) [Online; accessed 21-Nov-2017].
[43]Amstutz, P., Andeer, R., Chapman, B., Chilton, J., Crusoe, M. R.,

Valls Guimera, R., Carrasco Hernandez, G., Ivkovic, S., Kartashov,
A., Kern, J., et al. (2016) Common Workflow Language, Draft 3.

[44]Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo,
E., and Notredame, C. (2017) Nextflow enables reproducible
computational workflows. Nature biotechnology, 35(4), 316.

[45]Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C.,
Efron, M. J., Iyer, R., Schatz, M. C., Sinha, S., and Robinson, G. E.
(07, 2015) Big Data: Astronomical or Genomical?. PLoS Biol, 13(7),
1–11.

[46]Ward, R. M., Schmieder, R., Highnam, G., and Mittelman, D.
(2013) Big Data challenges and opportunities in high-throughput
sequencing. Systems Biomedicine, 1(1), 29–34.

[47]Guo, R., Zhao, Y., Zou, Q., Fang, X., and Peng, S. (August, 2018)
Bioinformatics applications on Apache Spark. GigaScience, 7(8).

[48]Nothaft, F. A., Massie, M., Danford, Timothy an d Zhang, Z.,
Laserson, U., Yeksigian, C., Kottalam, J., Ahuja, A., Hammerbacher,
J., Linderman, M., Franklin, M. J., Joseph, A. D., and Patterson, D. A.
(2015) Rethinking Data-Intensive Science Using Scalable Ana lytics
Systems. In Proceedings of the 2015 ACM SIGMOD International
Con ference on Management of Data New York, NY, USA: ACM
SIGMOD ’15 pp. 631–646.

[49]O?Brien, A. R., Saunders, N. F. W., Guo, Y., Buske, F. A., Scott, R. J.,
and Bauer, D. C. (December, 2015) VariantSpark: population scale
clustering of genotype information. BMC Genomics, 16(1), 1052.

8



i
i

“Paper-v2” — 2019/9/30 — 13:44 — page 9 — #9 i
i

i
i

i
i

[50]Bradley, A. R., Rose, A. S., Pavelka, A., Valasatava, Y., Duarte,
J. M., Prli?, A., and Rose, P. W. (June, 2017) MMTF?An efficient
file format for the transmission, visualization, and analysis of
macromolecular structures. PLOS Computational Biology, 13(6),
e1005575.

[51]Umbrin, H. and Latif, S. (March, 2018) A survey on Protein
Protein Interactions (PPI) methods, databases, challenges and
future directions. In 2018 International Conference on Computing,
Mathematics and Engineering Technologies (iCoMET) pp. 1–6.

[52]Mrozek, D., Suwała, M., and Małysiak-Mrozek, B. (July, 2018)
High-throughput and scalable protein function identification with
Hadoop and Map-only pattern of the MapReduce processing model.
Knowledge and Information Systems,.

[53]Abola, E. E., Sussman, J. L., Prilusky, J., and Manning, N. O.
(jan, 1997) Protein Data Bank archives of three-dimensional
macromolecular structures.. Methods in enzymology, 277, 556–71.

[54]Kouranov, A., Xie, L., de la Cruz, J., Chen, L., Westbrook, J., Bourne,
P. E., and Berman, H. M. (2006) The RCSB PDB information portal
for structural genomics. Nucleic acids research, 34(suppl 1), D302–
D305.

[55]Schulz, M. N., Fanghänel, J., Schäfer, M., Badock, V., Briem, H.,
Boemer, U., Nguyen, D., Husemann, M., and Hillig, R. C. (March,
2011) A crystallographic fragment screen identifies cinnamic acid
d erivatives as starting points for potent Pim-1 inhibitors. Acta
Crystallographica Section D: Biological Crystallography, 67(3),
156–166.

[56]Sevcik, J., Dodson, E. J., and Dodson, G. G. (April, 1991)
Determination and restrained least-squares refinement of the
structures of ribonuclease Sa and its complex with 3’-guanylic acid at
1.8 Å resolution. Acta Crystallographica Section B, 47(2), 240–253.

[57]Holm, L. and Rosenström, P. (July, 2010) Dali server: conservation
mapping in 3D. Nucleic Acids Research, 38(suppl_2), W545–W549.

[58]Morris, G. M. and Lim-Wilby, M. (2008) Molecular docking.
Molecular modeling of proteins, pp. 365–382.

[59]Meng, X.-Y., Zhang, H.-X., Mezei, M., and Cui, M. (2011)
Molecular docking: a powerful approach for structure-based drug
discovery. Current computer-aided drug design, 7(2), 146–157.

[60]Moses, H., Dorsey, E. R., Matheson, D. H., and Thier, S. O. (2005)
Financial anatomy of biomedical research. Jama, 294(11), 1333–
1342.

[61]Rawlins, M. D. (2004) Cutting the cost of drug development?. Nature
reviews Drug discovery, 3(4), 360–364.

[62]Ellingson, S. R. and Baudry, J. (2011) High-throughput virtual
molecular docking: Hadoop implementation of AutoDock4 on a
private cloud. In Proceedings of the second international workshop
on Emerging computational methods for the life sciences ACM pp.
33–38.

[63]Huang, N., Shoichet, B. K., and Irwin, J. J. (2006) Benchmarking
sets for molecular docking. Journal of medicinal chemistry, 49(23),
6789–6801.

[64]Shiau, A. K., Katzenellenbogen, B. S., Barstad, D., Agard, D. A.,
Greene, G. L., Radek, J. T., Katzenellenbogen, J. A., Nettles,
K. W., and Meyers, M. J. (2002) Structural characterization of a
subtype-selective ligand reveals a novel mode of estrogen receptor
antagonism. Nature Structural and Molecular Biology, 9(5), 359.

[65]Zhang, X., Wong, S. E., and Lightstone, F. C. (2013) Message passing
interface and multithreading hybrid for parallel molecular docking of
large databases on petascale high performance computing machines.
Journal of computational chemistry, 34(11), 915–927.

[66]Hung, C.-L. and Hua, G.-J. (2013) Cloud computing for protein-
ligand binding site comparison. BioMed research international,
2013.

[67]Xie, L. and Bourne, P. E. (2007) A robust and efficient algorithm
for the shape description of protein structures and its application in
predicting ligand binding sites. BMC bioinformatics, 8(4), S9.

[68]Estrada, T., Zhang, B., Cicotti, P., Armen, R. S., and Taufer, M.
(2012) A scalable and accurate method for classifying protein–ligand
binding geometries using a MapReduce approach. Computers in
biology and medicine, 42(7), 758–771.

[69]Estrada, T., Armen, R., and Taufer, M. (2010) Automatic selection
of near-native protein-ligand conformations using a hierarchical
clustering and volunteer computing. In Proceedings of the First ACM
International Conference on Bioinformatics and Computational
Biology ACM pp. 204–213.

[70]Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J.,
Swaminathan, S. a., and Karplus, M. (1983) CHARMM: a
program for macromolecular energy, minimization, and dynamics
calculations. Journal of computational chemistry, 4(2), 187–217.

[71]Samet, H. (1988) An overview of quadtrees, octrees, and related
hierarchical data structures. NATO ASI Series, 40, 51–68.

[72]Paschina, G., Roverelli, L., D’Ł™Agostino, D., Chiappori, F., and
Merelli, I. (2015) Clustering Protein Structures with Hadoop. In
International Meeting on Computational Intelligence Methods for
Bioinformatics and Biostatistics Springer pp. 141–153.

[73]Scott, W. R., Hünenberger, P. H., Tironi, I. G., Mark, A. E., Billeter,
S. R., Fennen, J., Torda, A. E., Huber, T., Krüger, P., and van
Gunsteren, W. F. (1999) The GROMOS biomolecular simulation
program package. The Journal of Physical Chemistry A, 103(19),
3596–3607.

[74]Ocaña, K., Benza, S., de Oliveira, D., Dias, J., and
Mattoso, M. (2014) Exploring large scale receptor-ligand pairs
in molecular docking workflows in HPC clouds. In Parallel &
Distributed Processing Symposium Workshops (IPDPSW), 2014
IEEE International IEEE pp. 536–545.

[75]Gibrat, J.-F., Madej, T., and Bryant, S. H. (1996) Surprising
similarities in structure comparison. Current opinion in structural
biology, 6(3), 377–385.

[76]Orengo, C. A., Michie, A., Jones, S., Jones, D. T., Swindells, M., and
Thornton, J. M. (1997) CATH–a hierarchic classification of protein
domain structures. Structure, 5(8), 1093–1109.

[77]Holm, L. and Sander, C. (1998) Touring protein fold space with
Dali/FSSP. Nucleic acids research, 26(1), 316–319.

[78]Shindyalov, I. N. and Bourne, P. E. (1998) Protein structure alignment
by incremental combinatorial extension (CE) of the optimal path..
Protein engineering, 11(9), 739–747.

[79]Ye, Y. and Godzik, A. (2003) Flexible structure alignment by
chaining aligned fragment pairs allowing twists. Bioinformatics,
19(suppl_2), ii246–ii255.

[80]Orengo, C. A. and Taylor, W. R. (1996) [36] SSAP: sequential
structure alignment program for protein structure comparison.
Methods in enzymology, 266, 617–635.

[81]Konagurthu, A. S., Whisstock, J. C., Stuckey, P. J., and Lesk,
A. M. (2006) MUSTANG: a multiple structural alignment algorithm.
Proteins: Structure, Function, and Bioinformatics, 64(3), 559–574.

[82]Ma, B., Elkayam, T., Wolfson, H., and Nussinov, R. (2003) Protein–
protein interactions: structurally conserved residues distinguish
between binding sites and exposed protein surfaces. Proceedings
of the National Academy of Sciences, 100(10), 5772–5777.

[83]Konc, J. and Janežič, D. (2010) ProBiS algorithm for detection
of structurally similar protein binding sites by local structural
alignment. Bioinformatics, 26(9), 1160–1168.

[84]Liu, G., Liu, M., Chen, D., Chen, L., Zhu, J., Zhou, B., and Gao,
J. (2016) Predicting Protein Ligand Binding Sites with Structure
Alignment Method on Hadoop. Current Proteomics, 13(2), 113–121.

9



i
i

“Paper-v2” — 2019/9/30 — 13:44 — page 10 — #10 i
i

i
i

i
i

[85]Kolodny, R. and Linial, N. (2004) Approximate protein structural
alignment in polynomial time. Proceedings of the National Academy
of Sciences of the United States of America, 101(33), 12201–12206.

[86]Hung, C.-L. and Lin, Y.-L. (2013) Implementation of a parallel
protein structure alignment service on cloud. International journal
of genomics, 2013.

[87]Mrozek, D., Małysiak-Mrozek, B., and Kłapciński, A. (2014)
Cloud4Psi: cloud computing for 3D protein structure similarity
searching. Bioinformatics, 30(19), 2822–2825.

[88]Prlić, A., Yates, A., Bliven, S. E., Rose, P. W., Jacobsen, J., Troshin,
P. V., Chapman, M., Gao, J., Koh, C. H., Foisy, S., et al. (2012)
BioJava: an open-source framework for bioinformatics in 2012.
Bioinformatics, 28(20), 2693–2695.

[89]Degtyarenko, K., De Matos, P., Ennis, M., Hastings, J., Zbinden,
M., McNaught, A., Alcántara, R., Darsow, M., Guedj, M., and
Ashburner, M. (2007) ChEBI: a database and ontology for chemical
entities of biological interest. Nucleic acids research, 36(suppl_1),
D344–D350.

[90]Pence, H. E. and Williams, A. ChemSpider: an online chemical
information resource. (2010).

[91]Allen, F. H. (2002) The Cambridge Structural Database: a quarter of a
million crystal structures and rising. Acta Crystallographica Section
B: Structural Science, 58(3), 380–388.

[92]Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., and
Bryant, S. H. (2009) PubChem: a public information system for

analyzing bioactivities of small molecules. Nucleic acids research,
37(suppl_2), W623–W633.

[93]Buchan, D. W., Minneci, F., Nugent, T. C., Bryson, K., and Jones,
D. T. (2013) Scalable web services for the PSIPRED Protein Analysis
Workbench. Nucleic acids research, 41(W1), W349–W357.

[94]McGuffin, L. J., Bryson, K., and Jones, D. T. (2000) The PSIPRED
protein structure prediction server. Bioinformatics, 16(4), 404–405.

[95]Jones, D. T. (1999) GenTHREADER: an efficient and reliable
protein fold recognition method for genomic sequences. Journal of
molecular biology, 287(4), 797–815.

[96]Ward, J. J., McGuffin, L. J., Bryson, K., Buxton, B. F., and Jones,
D. T. (2004) The DISOPRED server for the prediction of protein
disorder. Bioinformatics, 20(13), 2138–2139.

[97]Mcsherry, F., Isard, M., and Murray, D. G. (2015) Scalability! but at
what cost. In In 15th Workshop on Hot Topics in Operating Systems
(HotOS XV), Kartause Ittingen USENIX Association.

[98]Cloudera About Cloudera. https://www.cloudera.com/

more/about.html (2016) [Online; accessed 01-February-2018].
[99]Hortonworks About Hortonworks. https://hortonworks.

com/about-us/ (2016) [Online; accessed 01-February-2018].
[100]Amazon Amazon EMR (Elastic MapReduce). https://aws.

amazon.com/emr/ (2016) [Online; accessed 14-April-2017].

10


