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Abstract:
Essential Thrombocythemia (ET) patients at high-risk of thrombosis require cytoreductive treatment, typically with hydroxycarbamide. Many
patients are resistant or intolerant to hydroxycarbamide (HC-RES/INT) and are at increased risk of disease progression. MAJIC-ET is a
randomized phase 2 study comparing ruxolitinib (RUX) to best available therapy (BAT) in HC-RES/INT ET, which showed no difference between
the two arms in rates of hematological response or disease progression. The impact of additional non-MPN driver mutations (NDM) on the risk
of disease complications in HC-RES/INT ET patients is unknown. Since the presence of NDM may influence trial outcomes, we expand the
primary MAJIC-ET analysis to serially evaluate NDM in MAJIC-ET patients using a targeted myeloid 32-gene panel. NDM at baseline were
detected in 30% of patients, most frequently affecting TET2 (11%) followed by TP53 (6.4%) and SF3B1 (6.4%). The presence of a NDM
was associated with inferior 4-year transformation-free survival (TFS; 65.4% [95% CI 53.3 – 75%] vs. 82.8% [95% CI 73.2 – 89.1%],
p=0.017). Specifically, TP53 (p=0.01) and splicing factor (SF, SF3B1, ZRSR2, SRSF2; p<0.001), but not TET2 mutations were associated with
reduced TFS which was not mitigated by RUX treatment. Longitudinal analysis identified new mutations in 19.3% of patients; primarily affecting
TET2, TP53 and SF3B1. We report the first comprehensive mutational analysis of HC-RES/INT ET patients and highlight the clinical/prognostic
utility of serial mutation analysis for NDM in HC-RES/INT ET, including the importance of SF and TP53 mutations which identify HC-RES/INT ET
patients at increased risk of disease transformation.
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Essential Thrombocythemia (ET) is a myeloproliferative neoplasm (MPN) defined by 39 

thrombocytosis, increased risk of vascular thrombosis,1,2 hemorrhage3 and progression to 40 

myelofibrosis (MF)4,5 and acute myeloid leukemia (AML).4,5 Patients are risk-stratified to 41 

identify those who might benefit from cytoreduction to reduce the risk of vascular 42 

complications.6 Resistance/intolerance to hydroxycarbamide (HC-RES/INT), a first-line 43 

cytoreductive treatment,  develops in 20% of high-risk patients7 with increased risk of 44 

disease progression and reduced survival.8 New approaches are needed to predict disease 45 

transformation risk in these patients, together with development of therapies that reduce this 46 

risk. 47 

 48 
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Following the discovery of the Janus Kinase 2 (JAK2) mutation (JAK2V617F), present in 49 

~50% of ET,9 the first approved JAK1/JAK2 inhibitor, Ruxolitinib (RUX), is now widely used 50 

for treatment of myelofibrosis10 and polycythemia vera.11 The MAJIC-ET trial explored the 51 

role of RUX in HC-RES/INT ET, randomizing patients 1:1 to RUX or best available therapy 52 

(BAT), demonstrating similar rates of 1-year complete hematological response (CHR).12 53 

Mutational status was not comprehensively reported in this paper. This is important as ET 54 

patients (29-72%)13,14 carry mutations in non-MPN driver genes (NDM). Inferior prognosis is 55 

associated with specific mutations at diagnosis.14 The impact of NDM in HC-RES/INT ET is 56 

unknown, as is the effect of RUX on disease course in molecularly defined subgroups. We 57 

therefore evaluated mutational status of MAJIC-ET patients and correlated this with clinical 58 

outcomes.  59 

 60 

Next generation sequencing (NGS) was performed at baseline (n=110) and serially if a later 61 

sample was available (see Supplemental Methods for NGS and statistical analysis 62 

methodology). Median follow-up was 55 months (95% confidence interval [CI], 49.9–60.4). 63 

JAK2, CALR and MPL mutations were present in 49.1%, 30% & 4.5% of patients, 64 

respectively and 16.4% of patients were “triple-negative” (TN).  Baseline NDM were present 65 

in 30% (n=33) of patients with >1 present in 10% (Figure 1A), most frequently TET2 (n=12), 66 

TP53 (n=7) and SF3B1 (n=7) genes (Figure 1B; Supplemental Table 1). Driver mutation 67 

variant allele frequency (VAF) was higher than NDM VAF in 66.67%, 87.5% and 20% of 68 

JAK2, CALR and MPL-mutated patients respectively (Figure 1C). Patients with NDM tended 69 

to be older with lower hemoglobin levels (Figure 1D, Supplemental Table 2). TP53 mutations 70 

trended towards a higher frequency in TN (17.6%) than in JAK2/CALR/MPL-mutated 71 

patients (4.3%), p=0.073. In the primary analysis, driver mutation status did not correlate 72 

with CHR12. Since platelet count reduction is a key therapeutic goal, we performed a post-73 

hoc analysis defining platelet response as <400 x 109/l at 1-year. RUX-treated JAK2V617F-74 

mutated patients had significantly more platelet responses than JAK2V617F wild-type (WT) 75 

patients, a difference not seen for BAT-treated patients (Figure 1E). RUX discontinuation 76 

more often occurred in non-JAK2V617F-mutated patients (OR 3.9, 95% CI 1.2 – 13.1%, 77 

p=0.027) in whom treatment failure was the most frequent cause (41.7%, n=10/24) followed 78 

by treatment toxiticity (33.3%, n=8/24). In contrast, in JAK2V617F-mutated patients, the 79 

commonest cause for RUX discontinuation was a transformation event (43.8%, n=7/16) 80 

followed by treatment failure (31.3%, n=5/16). NDMs did not influence 81 

hematological/symptom responses (Supplemental Table 3).  82 

 83 

Transformation events occurred in 12.7% (Supplemental Table 3). TP53-mutated patients 84 

had inferior 4-year transformation-free survival (TFS) of 42.9% (95% CI 9.8–73.4%) versus 85 
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79.8% (95% CI 69.7–86.8%) for WT patients, p=0.011 (Figure 2A). Splicing factor (SF) 86 

mutations conferred a poorer 4-year TFS of 40% (95% CI 12.3–67%) versus 81.5% for WT 87 

patients (95% CI 71.4–88.3%; p=0.00039, Figure 2B); predominantly attributable to mutated-88 

SF3B1 (p=0.004). High molecular risk (HMR) mutations in this cohort (defined by SF and 89 

TP53 mutations) conferred a poorer TFS (p<0.0001, Figure 2C) which was not ameliorated 90 

by RUX (Figure 2D). HMR mutations retained their negative impact on multivariable analysis 91 

(Figure 2E). Driver mutation VAF ≥50% and male gender independently conferred a poorer 92 

TFS, findings reported by other groups.15,16 Mutated-TET2 did not correlate with clinical 93 

outcomes, comparable to previous findings.14 94 

 95 

Thrombotic events (19.1%, n=21/110) were not influenced by mutational status overall. This 96 

is in contrast to previous studies reporting a greater thrombotic risk in JAK2V617F-mutated 97 

patients.4 A possible explanation is that this association is not seen in HC-RES/INT patients 98 

who have a longer disease course and have undergone treatment, often with multiple lines 99 

of therapy. Furthermore, the number of events here is small and should therefore be 100 

interpreted with caution. Hemorrhagic events (9.1%, n=10/110) were specifically associated 101 

with SF mutations, p=0.007 (Supplemental Table 3). Grade 3/4 hematological toxicities were 102 

not associated with mutational status. Overall survival at 4-years of 91.5% (95% CI 80.2-103 

96.4%) in BAT and 83% (95% CI 70.4-90.5%) in RUX arms (p=0.22) was not influenced by 104 

mutational status. 105 

 106 

1-year driver mutation molecular responses (MR) were rare (n=3), occurring exclusively in 107 

the RUX arm; a complete MR (CMR) in 2 patients (JAK2V617F-mutated and CALR-108 

mutated) and one CALR-mutated partial MR (PMR). Longitudinal driver mutation analysis 109 

was performed in 54% (n=50/93); median analysis time 48 (24–60) months with no 110 

significant change in VAF at any time point (Supplemental Figure 1A & B). 1-year MR was 111 

lost in 2 patients (Supplemental Figure 1C & D) in association with clonal evolution of NDM 112 

in both cases. Longitudinal NDM analysis was possible in 52% (n=57/110); median analysis 113 

time 40 (6-60) months. New NDM, defined by identification at VAF 5%, were detected in 114 

19.3% (n=11/57) at a similar frequency across treatment arms (Supplemental Table 4) and 115 

no significant correlations were detected with baseline NDM or clinical/survival outcomes. 116 

However, a median follow-up time of 10.7 months (95% CI 9.05–12.4) after later NDM 117 

analysis is not sufficient time for survival analysis. These data highlight the clinical utility of 118 

serial molecular analysis in HC-RES/INT ET. 119 

 120 

In this analysis, we identify NDM at baseline in 30% of patients, a higher frequency than 121 

most previous analyses, which may relate to this high-risk nature of this cohort.13-15,17 TP53 122 
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and SF3B1 mutations were observed each at 6.4%, higher than previously reported in ET 123 

(~2 and 2-5% respectively).13-15,18 This may relate to the fact that this study analyzes a 124 

particular high-risk cohort for which there is limited data published on mutation profiles for 125 

comparison. The frequent detection of TP53 mutations in TN patients was unexpected but 126 

the numbers are too few (n=3) to draw firm conclusions. Disease transformation was 127 

specifically associated with SF (most commonly SF3B1) and TP53 mutations, determining a 128 

HMR for this cohort. Although prevalence of non-SF3B1 SF mutations in this cohort was low, 129 

we included these as HMR as they are established adverse risk mutations in MPNs.15  130 

However, this definition of HMR requires independent validation in larger cohorts before 131 

being applied in clinical practice. TP53 mutations in MPNs have been associated with AML 132 

transformation14,15 but have not been reported to increase myelofibrotic transformation in 133 

ET.14,15 Myelofibrotic transformation has been reported in association with SF mutations in 134 

ET, most often mutated-SF3B1,14,19 but a recent large MPN study, identified SRSF2, ZRSR2 135 

and U2AF1 but not SF3B115 as myelofibrotic transformation predictors in ET. This contrasts 136 

with myelodysplastic syndromes where SF3B1 mutations confer better survival20-22 with 137 

lower risk of disease progression20 suggesting disease context and co-mutations (primarily 138 

JAK2V617F here) are relevant.  139 

 140 

Importantly, disease transformation in HMR patients was not mitigated by RUX which is 141 

noteworthy as there has been interest in the possibility that early intervention with JAK2 142 

inhibition might attenuate disease progression. We observed a novel association between 143 

SF mutations and hemorrhagic events; this finding needs independent corroboration due to 144 

low event rate. We also found that JAK2V617F-mutated status correlated with improved 145 

platelet responses to RUX, and notably, more non-JAK2V617F mutated patients stopped 146 

RUX raising the possibility that JAK2V617F-mutated ET patients might selectively benefit 147 

from RUX.  148 

 149 

In summary, we report for the first time, comprehensive mutational analysis of HC-RES/INT 150 

ET within the context of a prospective randomized clinical trial. We found a particularly high 151 

prevalence of TP53 and splicing factor mutations, which were strongly predictive of 152 

subsequent disease transformation, not mitigated by RUX. This highlights the 153 

clinical/prognostic utility of serial mutation screening in HC RES/INT ET to allow 154 

identification of patients at risk of disease transformation.  155 

 156 

 157 

 158 

 159 
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 271 
 272 
 273 
 274 
 275 
 276 
 277 
Figure Legends 278 
 279 
Figure 1. Baseline mutational analysis and correlation with clinical characteristics and 280 
treatment response. (A) Pie chart showing number of NDM per patient. (B) Balloon plot 281 
showing association of driver mutations with NDM with size and colour of bubble 282 
corresponding to frequency of association; NDM were more often associated with 283 
JAK2V617F mutations. (C) Column and dot plot showing variant allele frequencies (VAF) of 284 
each NDM (column) with corresponding driver mutation (blue dot). Red star indicating TN 285 
patient; driver mutation VAF was higher in 66.67%, 87.5% and 20% of JAK2, CALR and 286 
MPL-mutated patients suggesting driver mutation acquisition first in these, although with the 287 
caveat that order of mutation acquisition can only be definitively assigned using single-cell 288 
methodologies.23 (D) Dot and box plots of median age at trial entry in patients with NDM 289 
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compared to patients without NDM; 71 versus 64 years, p=0.0001 (upper plot) and 290 
hemoglobin (Hb) level (mean Hb 115g/l) lower in patients with NDM compared to patients 291 
without NDM (mean Hb 125g/l), p=0.01 (lower plot).  Dots represent each individual patient 292 
and each horizontal line and box represent the median for age/mean for Hb and interquartile 293 
ranges respectively using Mann-Whitney U test to compare median ages (non-normal 294 
distribution) and Student’s t-test to compare Hb means (normal distribution). (E) Post hoc 295 
analysis of 1-year platelet count responses; significantly more patients on RUX who were 296 
JAK2-mutated achieved plt <400 than non-JAK2-mutated patients (upper bar chart). This 297 
difference was not seen within the BAT arm (lower bar chart). BAT=best available therapy; 298 
JAK2=JAK2V617F; NDM=non-MPN driver mutation; Plt <400=platelet count of <400 x 109/l; 299 

Plt 400=platelet count of 400 x 109/l; RUX=ruxolitinib; TN=Triple negative. 300 
 301 
Figure 2. Kaplan-Meier curves of transformation-free survival (TFS) stratified by 302 
mutational statuses with survival estimates, reported at 4-years. (A) TP53 mutations 303 
were associated with inferior 4-year TFS; TP53-mutated (42.9% [95% CI 9.8–73.4%]) versus 304 
TP53-wild type (WT) patients (79.8% [95% CI 69.7–86.8%]), p=0.011. (B) SF mutations 305 
conferred a poorer 4-year TFS; SF-mutated (40% [95% CI 12.3–67%]) versus SF-WT 306 
(81.5% [95% CI 71.4–88.3%]), p=0.00039. (C) Comparing patients with HMR with LMR at 4-307 
years; HMR 41.2% (95% CI 23.3-72.7%) versus LMR 84.6% (95% CI 76.9–93.1%), 308 
p<0.0001. (D) Stratifying patients with high risk molecular (HMR) mutations in this study by 309 
treatment arm demonstrates no amelioration of negative impact of HMR mutation with RUX 310 
treatment; patients with HMR on RUX had TFS at 4-years of 36.4% (95% CI 26.2–46.6%) 311 
and on BAT 50% (29.1–67.7%) (p=0.505 between these arms) as compared to those 312 
without these mutations (i.e. low molecular risk, LMR) with TFS at 4-years of 84.7% (95% CI 313 
71.6–92%) on RUX and of 90.6% (95% CI 78.5–96%) on BAT (p=0.101 between these 314 
arms). The log-rank test was used to compare survival estimates between groups. (E) 315 
Forest plot showing multivariable cox model of TFS. Covariates significant on univariate 316 
analysis were included; TP53 mutations, SF mutations, treatment arm, JAK2V617F mutation 317 
status, disease duration at trial entry (TE), age and gender. HMR mutations independently 318 
retained negative impact on TFS with a hazard ratio (HR) of 4.21, p=0.006. Treatment arm, 319 
JAK2V617F status, disease duration at TE and age were not significant but notably male 320 
gender was associated with a poorer TFS, HR 4.5, p=0.006. Driver mutation allele ≥50% 321 
was independently associated with a poorer TFS, HR 4.11, p=0.016. Age and disease 322 
duration at TE were categorized as continuous variables. CI=confidence interval; 323 
HR=hazard ratio; HMR=high molecular risk risk (SF and TP53 mutations); LMR=low 324 
molecular risk (without SF or TP53 mutations); JAK2=JAK2V617F; NDM=non-MPN 325 
(myeloproliferative neoplasm) driver mutation; SF=splicing factor mutation (SF3B1, ZRSR2, 326 
SRSF2); WT=wild type. 327 
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