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Abstract

The dramatic increase of magnetic resonance imaging (MRI) in daily treatment planning

and response assessment of radiotherapy (RT) requires the development of reliable

auto-segmentation algorithms for organs-at-risk (OARs) and radiation targets. The

current practice of manual segmentation is subjective and time-consuming, particularly

for head and neck cancer (HNC) patients. New methodologies based on machine learning

offer ample opportunities to solve this problem.

This thesis aimed to develop accurate and rapid auto-segmentation algorithms on MR

images of HNC patients, employing established atlas-based algorithms and comparing

the results with deep learning-based methods. The work is divided into design and

implementation of auto-segmentation methods followed by extensive validation studies.

For the latter, I developed a fully automated RT workflow enabling validation on

purely geometric features of the automatically generated contours whose impact on key

dosimetric features of a treatment plan was further analysed.

A common challenge for medical image segmentation is the limited availability of data

due to the associated cost of obtaining expert contours. Moreover, frequent updates of

imaging protocols or scanners may prevent algorithms, developed on existing databases,

from working well on newly-acquired images. I designed domain adaptation methods

which leverage large databases from related application domains to tackle this problem.

While both auto-segmentation strategies achieved clinically acceptable accuracy,

atlas-based methods were slow and are, unlike deep learning-based models, difficult to

share between hospitals due to data-confidentiality issues. Deep learning-based methods

were able to alleviate the computational burden, generating contours within seconds.

Moreover, when healthy tissue was infiltrated with irregular structures, deep learning

was more accurate.

In conclusion, I demonstrated that auto-segmentation was feasible and can change

clinical practice. Moreover, domain adaptation strategies hold promise in mitigating

problems with small datasets in medical imaging and in eliminating the need to acquire

new annotated datasets for each change in imaging protocols.
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Chapter 1

Introduction

1.1 Motivation

All models are wrong, but some are useful.

George E. P. Box

In radiation therapy (RT), tumours are irradiated with ionising radiation. While ionising

radiation can kill tumour cells, it cannot be avoided that the radiation beams also

traverse healthy tissues and deposit dose in these regions. Modern treatment planning

systems can design highly conformal dose distributions, delivering a high radiation dose

to the tumour with a sharp dose fall-off to minimize the irradiation of organs at risk

(OARs). Full utilisation of this sharp dose fall-off requires accurate localisation of the

target and the OARs.

An RT treatment is generally planned using the information on the patient’s anatomy

from an x-ray computed tomography (CT) image, which is typically acquired days

or weeks before the actual treatment. The treatment itself can last several weeks,

exploiting the finding that healthy tissues can recover better from radiation damage

than tumorous tissues. As a first step in the clinical workflow of an RT treatment, a

clinician conventionally outlines all regions of interest (ROIs) on the planning CT. This

process is also called image segmentation. Image segmentation is especially tedious for

the treatment of head and neck cancer (HNC) patients due to the complex anatomy,

including many OARs and irradiation targets associated with HNC. Many of these ROIs

are challenging to outline due to poor soft-tissue contrast provided by the CT images.

Image guidance in RT has seen a dramatic increase in magnetic resonance imaging

(MRI), owing to its superior soft-tissue contrast [130] and the absence of ionising radiation

compared to the conventionally used CT [31, 80, 95]. The information gained from

high soft-tissue contrast magnetic resonance (MR) images can be used to improve the
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contouring of ROIs on the CT for treatment planning [20, 38, 121, 122]. Also, integrated

MRI and treatment delivery systems have become available in the past years [40, 91,

100, 120]. These systems allow MR scanning of the patient in treatment position directly

before or during the treatment delivery. Classically, cone-beam computed tomography

(CBCT) images are acquired. However, due to the poor soft-tissue contrast, only bony

anatomy matches can be performed, leading to rigid shifts of the patient which do not

fully account for changes in the patient’s anatomy throughout the treatment. With the

introduction of daily MRI, a daily adaptation to the current anatomy of the patient has

become possible.

Moreover, in MR-only treatment workflows, MR images replace the conventionally

used pre-treatment CT [76, 107]. In such workflows, treatment planning and dose

calculation are solely based on the MR images. One of the challenges in an MRI-only

workflow is that, contrary to a CT, the required electron density information for the dose

calculated in treatment planning cannot be derived directly from the image intensities.

Therefore, the creation of synthetic CTs is necessary to provide surrogates for electron

densities [36].

To realise adaptive RT, a repeated delineation of all ROIs is necessary.The current

practice of manual segmentation is a time-consuming and error-prone process [151].

Automating the outlining of ROIs would allow to alleviate the enormous workload of

manual segmentation and reduce the inter- and intra-observer variabilities. Moreover,

an adaptive RT workflow is only feasible with automated contouring tools as manual

contouring can take up to hours, which is an unfeasible burden to the daily clinical

workflow.

Automation of medical image segmentation is a challenging problem since the

anatomy of each patient is different, varying in size, position and shape. Moreover, the

image quality varies between successive acquisitions and different patients. To date,

the most commonly used auto-segmentation methods are atlas-based (Fritscher et al.

[43] and references therein), although recent developments in machine learning offer

ample opportunities for further improving automated contouring [12]. Numerous studies

have investigated CT-based automated delineation of critical structures in the head and

neck region [26, 39, 43, 56, 63, 79, 115, 119, 134], yet only very few studies have been

conducted on MR images [149, 154, 162].

A problem commonly encountered in medical image segmentation is the lack of

delineated imaging data. To perform well, most developments of auto-segmentation

methods need a large amount of example imaging data. Many machine learning-

based applications originate from the field of natural images. Natural images denote

photographs of people, landscapes, animals and other objects. There are typically
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millions of natural images available to train algorithms in this field. However, obtaining

annotated medical images is usually associated with a high cost because the collection

of large medical imaging datasets is generally a time-consuming process. It involves

the search for suitable data in large hospital systems with only moderately structured

information, further processing (annotation) of the data by expert physicians and requires

patient consent. Although this problem can be partly mitigated by increasing collection

of large databases over time, for instance by collaborations between hospitals, the amount

of data is still quite small when compared to natural images (typically hundreds of images

compared to millions). Furthermore, MR images are likely to change in appearance

due to changes in image acquisition parameters or updates of MR scanners. Hence,

auto-segmentation approaches developed on an existing image database may not work

well on newly acquired images.

To allow for MRI-guided adaptive RT treatments, it is, therefore, crucial to develop

auto-segmentations methods which only require small amounts of data. This thesis aimed

to design and develop auto-segmentation algorithms which can rapidly and accurately

perform this task on MR images of HNC patients.

1.2 Thesis aim and outline

Chapter 2 provides a brief overview of the theoretical background of this thesis. Starting

with the clinical motivation for the treatment of HNC, I introduce general concepts

in RT with a focus on image-guided adaptive RT and, in particular, MRI-guided RT.

Finally, I provide a general overview of various existing strategies for medical image

segmentation, which was at the heart of this thesis.

Chapter 3 provides an overview of the imaging data used for this thesis and the

employed preprocessing steps.

The central part of this thesis was the design and implementation of auto-segmentation

algorithms, followed by extensive validation studies. Unfortunately, studies on auto-

segmentation methods usually lack suitable evaluation metrics in the context of RT.

For this reason, I developed a fully automated RT workflow, enabling validation on

purely geometric features of the automatically generated contours whose impact on key

dosimetric features of a treatment plan was further analysed. This workflow is described

in chapter 4.

For the design of the segmentation algorithms, I employed atlas-based (chapter 5)

and deep learning-based methods (chapter 6). Atlas-based methods are well-established

and are integrated into some commercial treatment planning systems. However, they

are generally slow and, due to data-confidentiality issues, hard to share between sites as
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they require an image database. Deep learning-based approaches have recently shown

promising results in computer vision problems, such as object detection or classification.

Furthermore, their ability to make fast predictions and the easiness to share trained

models with other users are desirable qualities for RT.

A common challenge for medical image segmentation is the limited availability of

data due to the associated cost of obtaining expert contours. Moreover, frequent imaging

protocol or scanner updates may prevent algorithms, developed on existing databases,

from working well on newly-acquired images. To overcome these limitations, I designed

domain adaptation methods which leverage large databases from related application

domains. Chapter 6.5 describes a machine learning technique named transfer learning,

where the gained knowledge from outlining ROIs on CT images initialised an algorithm

to segment these ROIs on MR images. Chapter 6.6 describes an algorithm named

cross-modality learning, developed for this thesis. It can leverage information learned

from existing databases of one imaging modality (CT images or original MR sequence)

to prevent the need for acquiring and annotating new datasets under the new protocol

(MR images or updated MR sequence).

Chapter 7 summarises the quantitative results of the previous chapters and discusses

the strengths and limitations of each method. It provides a qualitative analysis on the

generalisability of the developed algorithms, employing a fully independent test dataset.

Chapter 8 then summarises the main findings of this thesis, discusses the strengths and

limitations of the presented work and concludes with suggestions for potential future

research.

All methods in this thesis were developed explicitly for MRI-guided RT treatment of

HNC. Nonetheless, many of the introduced concepts apply to other treatment sites or

for MR-only treatment workflows.
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Chapter 2

Theoretical background

This thesis introduces novel concepts for automated image segmentation to facilitate

MRI-guided radiotherapy in head and neck cancer. This chapter provides the relevant

theoretical background. First, the clinical problem, head and neck cancer, is introduced.

I then give an overview of radiotherapy with state-of-the-art hardware and software

developments. I conclude with a review of existing auto-segmentation methods in the

literature, where I briefly introduce their methodologies and discuss their limitations.
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Background 2.1 Head and neck cancer

2.1 Head and neck cancer

HNC is a heterogeneous group of cancers which arises in parts of the head and the neck,

such as the pharynx, larynx and oral cavity [138]. Figure 2.1 indicates the location of

these regions within the head and the neck. HNC is the 7th most common cancer type

in the United Kingdom with an incidence rate of approximately 12,000 cases per year

and a mortality rate of about 4,000 per year [11]. The most common causes are tobacco

and alcohol consumption, as well as infection with the human papillomavirus [138]. The

disease often spreads to the lymph nodes of the neck.

The three main types of treatment of HNC are RT, surgery and chemotherapy. The

optimal combination of the three treatment modalities depends on the specific type

and stage of HNC. Concurrent chemo-RT has become the standard of care for patients

with locally advanced HNC (spread to the lymph nodes). While surgery is an invasive

technique and, depending on the proximity of functional organs to the tumour, may

not be able to to conserve their functionality completely, RT can rely on the ability

of healthy tissues to recover from radiation effects, in particular by using appropriate

fractionation schemes.

Many functional organs, including the salivary glands, the spinal cord, the brain

stem and optical structures, are located in the head and the neck and often close to

Figure 2.1: This figure highlights the heterogeneity of head and neck cancer, with labels of
the various sites where cancer can occur. Figure courtesy: https://cancer.gov
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the primary tumour. Due to this proximity, RT is known to lead to several side effects,

such as a chronic dry mouth (xerostomia), oral mucositis or swallowing dysfunction

(dysphagia) [71, 82, 103, 106]. These side effects can have a significant impact on the

quality of life for these patients and render the treatment of HNC challenging. Advanced

techniques in RT are developed to overcome these challenges.

2.2 Radiotherapy

RT uses ionising radiation to kill cancer cells by damaging their DNA. The energy

given to a certain mass element of tissue, the dose, is measured in Gray (Gy), where

1 Gy = 1 J/kg. There are two ways for the delivery of RT: injection of radioactive sources

into or close to the tumour target (internal RT or brachytherapy) or application of

external sources (external-beam RT, EBRT). In EBRT, the radiation can be delivered in

the form of electron, particle (protons or heavy ions), or high-energy photon (i. e. x-ray)

beams. Like most cancers, HNC is most commonly treated with high-energy photon

beams, which are produced with a linear accelerator (linac). I hence focus on this type

of RT in the remainder of this thesis.

Figure 2.2 illustrates a linac, where I annotated the most essential components:

treatment couch

gantry

multi-leaf
collimator (MLC)

Figure 2.2: An image of a linear accelerator, with the most important components highlighted:
The gantry (red) rotates around the treatment couch (yellow). The multi-leaf collimator is
mounted at the head of the gantry and is used to shape the beams (orange).
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Background 2.2 Radiotherapy

Figure 2.3: Step-and-shoot IMRT with 7 beams of an HNC patient: each of the beams uses a
different MLC shape (indicated as grey squares) and contributes with a different photon fluence
distribution (coloured distribution map) to the total dose distribution. The dose distribution is
indicated as an overlay over the patient’s anatomy, where the red region indicates a high dose,
given to the target volume. Figure courtesy: Frederiksson [42].

during treatment, the patient lies on the treatment couch. The linac is mounted onto a

gantry which can rotate around the patient. At the head of the gantry, a collimator can

shape the treatment beams customised to the patient’s anatomy.

While RT aims to irradiate the tumour, it cannot be avoided that the radiation

beams also hit healthy tissue. It is particularly important to minimise the dose to

essential radiation-sensitive tissues, so-called OARs, which might suffer damage from

irradiation. Significant technical improvements towards achieving this aim have been

accomplished in the delivery of RT in the last decades [8]. The balance between the

probability of tumour control and the risk of normal tissue complications is a measure of

the therapeutic ratio of the treatment. This therapeutic ratio denotes the relationship

between the probability of tumour control and the likelihood of normal tissue damage

and can be maximised in two main ways: by applying conformal dose distributions (see

section 2.2.1) or fractionation schemes (see section 2.2.2).

2.2.1 Delivery techniques

Modern RT techniques, such as intensity-modulated radiation therapy (IMRT) [8, 105],

employ multiple photon beams from various directions to achieve a cumulative irradiation

effect to the tumour volume while minimising damage to healthy tissue. In IMRT, multi-

leaf collimators (MLCs) are used to modulate the beam shapes and intensities to tailor

the dose distribution conformally to the tumour with sharp dose gradients outside the

target region. MLCs use thin bars of metal, called leaves, to block selective parts of

the irradiation beam. Figure 2.2 illustrates an MLC. In static or step-and-shoot IMRT,

the beams are split into a set of segments with differing MLC shapes and delivery is

switched off while the MLC leaves move. Figure 2.3 illustrates the dose distribution
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diagnosis /
treatment
decision

treatment
planning fraction 1 ... fraction n

outlining of re-
gions of interest

treatment plan 0 treatment plan 0 treatment plan 0

Figure 2.4: Conventional workflow in RT. Prior to the treatment, all regions of interest are
outlined and a treatment plan is created. This treatment plan is then used for all remaining
fractions of the treatment.

together with the MLC shapes for a step-and-shoot IMRT with seven beams of an HNC

patient.

In dynamic IMRT or volumetric modulated arc therapy (VMAT), the modulation

is achieved by continuously changing the beam’s shape and intensity while the gantry

rotates around the patient [109]. One or multiple arcs deliver the radiation as opposed

to a fixed number of beams in static IMRT. IMRT can create highly conformal dose

distributions.

2.2.2 Treatment schedule and planning

RT is typically administered on multiple days (fractions), taking advantage of the different

radiobiological characteristics of tumourous and healthy tissue. An HNC RT treatment

course usually consists of 30 to 40 fractions over six weeks. Figure 2.4 illustrates the

conventional workflow of an RT treatment: before irradiation, a CT scan of the patient

is acquired, and trained clinicians outline all ROIs, i. e. target regions and OARs, on the

scan. A treatment plan which optimises the balance between sufficient dose coverage

of the target regions and minimal doses to OARs is then created. This treatment plan

is conventionally used over the whole course of the treatment. The following sections

describe each of these steps in more detail.
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2.2.2.1 Patient geometry

Before the first treatment fraction, the patient is scheduled for a CT scan. This CT scan

provides three-dimensional (3D) information on the patient’s anatomy. In a treatment

planning system (TPS), the anatomy can be visualised and clinicians outline all ROIs:

the gross target volume (GTV), clinical target volume (CTV), planning target volume

(PTV) and OARs.

The GTV encompasses the visible tumour, as well as potentially involved lymph

nodes where the tumour cells might have spread. The CTV is created by including

a more extensive region around the GTV to account for a microscopic spread of the

disease. In HNC there are typically two CTVs: the primary or boost CTV and the

secondary or elective CTV. The primary CTV includes the primary, visible tumour,

possible microscopic spread, as well as possible regional spread of tumour cells into

lymph nodes. The secondary CTV includes regions of the presumed spread of tumour

cells, distant from the primary tumour [67]. Finally, the purpose of the PTV is to ensure

that the prescribed dose is delivered to the CTV with a clinically acceptable probability.

An isotropic margin usually expands the CTV to the PTV, accounting for uncertainties

in beam alignment, patient positioning, organ motion, and organ deformation [67].

Outlining the OARs is crucial to ensure that there is no unnecessary dose delivered

to them. Analogous to the PTVs, margins can be added to account for uncertainties

in patient positioning or day-to-day changes in the patient’s anatomy. The resulting

volume is called the planning risk volume (PRV). The physician then prescribes a dose

to the target volumes and tolerance values for the OARs, guided by previous clinical

experience. As these criteria are in general competing conditions, they are assigned

priorities. In RT for HNC, there are typically two dose levels. The primary or boost

PTV is treated to a higher dose, typically 65Gy, whereas the secondary or elective CTV

is treated at a lower dose, typically 54Gy. Treatment planning aims to optimise beam

settings to meet the pre-defined criteria in the best way possible.

2.2.2.2 Treatment plan creation

Modern RT employs inverse treatment planning [8]. Each of the pre-defined criteria

is assigned a weight according to their rank in a priority list. A cost function, which

incorporates the weighted conditions on target volumes and OARs, is then iteratively

optimised with the help of a TPS. Calculating dose requires knowledge of the electron

densities on the beam paths. This information is typically obtained from the voxel

intensities of the acquired CT image, given in Hounsfield units (HU), which can be

converted into electron densities.
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Table 2.1: Example of clinical treatment planning goals, prescribing a mean dose of 65 and 54
Gy to the primary and secondary planning target volumes (PTVs), respectively. Depending on
the clinical case, priorities 2a and 2b can change order. The index x in Dx refers to the type of
dose volume parameter (e. g. "x =1cc": minimum dose to 1cc, "x =mean": mean dose.

priority volume of interest clinical goal

1 spinal cord D1cc < 46 Gy
1 spinal cord + 3mm PRV D1cc < 48 Gy
1 brainstem D1cc < 54 Gy
1 brainstem + 3mm PRV D1cc < 56 Gy
2a primary PTV D99% > 90% of 65 Gy
2a primary PTV D95% > 95% of 65 Gy
2a primary PTV D50% = 65 ± 1 Gy
2a secondary PTV D99% > 90% of 54 Gy
2a secondary PTV D95% > 95% of 54 Gy
2a secondary PTV D50% = 54 ± 1 Gy
2b optical nerves D1cc < 54 Gy
2b optical nerves + 1mm PRV D1cc < 55 Gy
2b chiasm D1cc < 55 Gy
2b chiasm + 1mm PRV D1cc < 56 Gy
2b optical lenses Dmean < 6 Gy
3 parotids Dmean < 26 Gy

2.2.2.3 Dose-volume criteria

During creation and evaluation of a treatment plan, the planner ensures that the imposed

criteria can be fulfilled. The criteria are typically expressed in the form of delivering

a minimal, maximal or mean amount of dose to a particular region of the patient’s

anatomy. They are also known as dose-volume constraints, and their fulfilment can be

verified by determining the cumulative dose-volume histograms (DVHs) of individual

ROIs. A DVH relates the radiation dose to the volume of tissue. Standard terminology

for dose-volume constraints is as follows:

• DV , the dose D to a volume V . V is usually expressed as fractional (in percentage)

or absolute volume (in cm3). A typical example is "D95 > 95%Dpres", which

requires the dose to 95% of the PTVs to be larger than 95% of prescribed dose

Dpres. Another example is "D1cc < 46 Gy", which requires the minimum dose to

any 1 cm3 of the spinal cord to be smaller than 46Gy.

• Dmean, the mean dose to the ROI. A typical example for HNC is "Dmean < 26 Gy"

for the parotids.

• VD, the fraction of a volume receiving a dose D or higher. A typical example is

"V95 > 95%Dpres", where more than 95% of the PTVs should receive a dose of at

least 95% of the prescribed dose.

Table 2.1 provides an example of such a priority list of the planning constraints for HNC.
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2.3 Imaging modalities for radiotherapy

With the invention of the CT in 1972 [64], treatment simulations in three dimensions

became possible. CT images provide an excellent contrast between bone and soft tissues

or air. Furthermore, information on the electron densities can be extracted, which are

crucial for treatment planning. Despite these advantages, there are several drawbacks to

this imaging modality, as further discussed in section 2.3.1. Other imaging modalities,

e. g. positron-emission tomography (PET) and MRI, are, therefore, often integrated

into the RT workflow [20, 27, 31, 38, 41, 54, 80, 95, 114, 121, 160]. These can provide

additional information about the patient’s anatomy and help in planning and delivering

even more precise treatments. The following sections introduce the basics for these

imaging techniques.

2.3.1 Computed tomography

CT is based on an x-ray tube and detectors which are rotating around the patient

while continuously acquiring 2D projection images, a dataset denoted as a sinogram. A

3D volume is obtained from the sinogram via tomographic reconstruction. CT images

represent an essential part of modern RT workflows. As described above, a CT scan is

typically acquired before the treatment to outline the target volumes and OARs, and to

determine a dose distribution tailored to these ROIs. CBCT scans are often used for

patient positioning verification or treatment monitoring. For CBCT, a kilo-voltage x-ray

tube is attached to the linac and CBCT images can be acquired just before treatment

delivery [70]. However, due to the quality of the beam collimation and more substantial

scattering effects compared to CT images, the image quality is inferior. Additionally,

especially in the head and neck, artefacts can be large for both imaging modalities due

to dental implants.

In comparison to PET and MRI, the acquisition times of CT and CBCT are very

short. Furthermore, CT images are geometrically accurate and can be acquired at a

high spatial resolution. As mentioned before, they provide information on the electron

densities of the tissues, which are crucial for RT treatment planning. Drawbacks of x-ray

based images are their poor soft-tissue contrast, as well as an additional dose to the

patient.

2.3.2 Positron emission tomography

PET is based on tracers that are marked with radioactive substances. The most commonly

used tracer is Fluoro-Deoxy-Glucose (FDG). PET yields the metabolic activity of tissue
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and is hence valuable in imaging tumours. In current clinical practice, it is used to

help define the target volume and particularly metabolically active regions to boost, or

monitor treatment response [27, 41, 114]. Due to its low spatial resolution, combined

PET-CT scanners are often used. While PET provides functional information on ROIs,

the CT can provide anatomical and precise spatial information.

2.3.3 Magnetic resonance imaging

In contrast to x-ray based imaging techniques, MRI can provide an excellent soft tissue

contrast. MRI exploits the difference in magnetic properties for different tissues to

generate images. Thorough introductions to the physics of MRI have been published,

e. g. by Bernstein et al. [6] and Brown et al. [10].The following paragraphs describe in a

nutshell the basic concepts behind MRI.

A strong magnetic field (typically 1.5 to 3T in clinical MRI scanners), as well as

a sequence of radio-frequency (RF) pulses and magnetic field gradients, are used to

manipulate the spin of the protons of hydrogen atoms in tissues of the human body.

MRI can be understood by elements of a classical and quantum-mechanical picture. For

the basic concepts, it is sufficient to rely on the classical picture.

Any nucleus is composed of protons and neutrons. Each proton and neutron has

an intrinsic angular momentum called spin. If there is an odd number of protons or

neutrons in a nucleus, there is a net spin as not all protons or neutrons can couple

to zero. This net spin leads to a moving, electrically charged particle and, therefore,

creates a magnetic moment. Particularly relevant for MRI are hydrogen atoms as they

are naturally abundant in water and fat tissue in the human body. The hydrogen atom

is composed of a single proton. The spins usually are randomly oriented, precessing

along their axes. Once placed in a static magnetic field B0, they tend to align with the

direction of the magnetic field and precess around that axis at the so-called Larmor

frequency. Due to movements and nuclear interactions, this alignment only happens

partially, leaving most of the spins still oriented randomly. All magnetic moments can

be summarised as a net magnetisation M. Due to a small excess of spins being aligned

parallel to B0 (only 3 in a million protons in a magnetic field with strength 1T), M is

also aligned parallel to B0. Applying an RF pulse to this configuration disturbs this

alignment by transmitting energy to the spin system through a rotating magnetic field

B1 perpendicular to the stationary field. Only when the rotation frequency is very

close to the Larmor frequency, the energy is large enough to tip M out of its parallel

alignment with B0 at an angle proportional to the duration time of the RF pulse and

the field strength B1. This phenomenon is called magnetic resonance.

Once the RF pulse is switched off again, the net magnetisation returns to its
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equilibrium state, the parallel alignment withB0, in a spiral movement. This phenomenon

is governed by two main underlying processes: T1 and T2 relaxation. The T1 relaxation

time is the time after which the parallel component of M restores its maximum value.

The T2 relaxation time is the time by which the transversal component of M is reduced

to 0, as it was the case in the equilibrium state.

The T1 and T2 relaxation times are characteristic of different tissues. MRI exploits

this fact to generate contrast between adjacent anatomical structures. The influence of

T1 and T2 relaxation in the images can be controlled by varying parameters in RF pulse

sequences, such as the echo time TE and the repetition time TR, governed by the Bloch

equations [7]. MRI is a very flexible imaging technique were a multitude of different

sequences can be used to obtain different contrasts in the images.

2.4 Image-guided adaptive radiotherapy

A treatment plan for RT is traditionally solely based on a single CT scan, obtained

before the treatment, and the dose distribution is tailored to the anatomical structures

delineated on this scan. This treatment plan is then used for the whole treatment course,

which consists of multiple treatment days over several weeks.

For each treatment fraction, the patient is placed on the treatment couch in the same

position as during the planning CT scan. This process is usually guided with external

markers placed on the patient during the planning phase. A thermoplastic mask is used

to fit the head of HNC patients to reproduce the position from the planning CT at

each fraction. As the dose distribution is ideally highly conformal to the target volume,

errors in patient positioning can result in a suboptimal coverage of the PTVs, as well as

overdosage of the OARs.

2.4.1 Image guidance in radiotherapy

Image guidance can be used to minimise these positioning errors. Commonly, CBCT

images are acquired before treatment delivery for this purpose [70]. These images can

then be used to compare the patient’s current anatomy to the one on the treatment plan

and adjust the patient’s position such that the radiation can be delivered as planned.

These adjustments are usually performed in a rigid manner, aligning the bony anatomy

and accounting for translations and rotations of the patient.

2.4.2 Anatomical changes

Using the same treatment plan assumes that the anatomy of the patient stays the same

throughout the treatment. However, HNC patients commonly undergo noticeable changes
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CT slice
prior to treatment

corresponding CT slice
3 weeks into radiotherapy

Figure 2.5: This figure shows an example of drastic changes in the anatomy of a patient
during the course of radiotherapy. The image on the left-hand side shows a CT slice before
the treatment, the image on the right-hand side 3 weeks into treatment. The green outline
encompasses the GTVs. Figure courtesy: Barker et al. [3].

in their anatomy throughout the treatment course [3, 87]. These include weight loss,

changes in tumour size and shape, and normal tissue shrinkage or swelling. Figure 2.5

illustrates an example of a patient prior to treatment and three weeks into treatment.

These changes cannot be accounted for with rigid translations or rotations of the patient.

2.4.3 Adaptive radiotherapy

Not accounting for anatomical changes often leads to discrepancies between the planned

dose distribution and the actually delivered doses. In conventional RT, anatomical

changes are taken into account by adding a safety margin to the CTV. The resulting

large target volumes can significantly hinder the success of an RT treatment, as it might

be necessary to either compromise on normal tissue sparing or target coverage. Therefore,

HNC patients, in particular, would benefit from adapting the treatment to the observed

changes in the anatomy [124].

Adaptive radiation therapy (ART) accounts for anatomical changes in an offline

or online process. In theory, ART can be undertaken at three different time-scales:

offline between fractions, online immediately before a fraction, or in real-time during a

treatment fraction. Figure 2.6 illustrates an ART workflow.
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Figure 2.6: This figure illustrates the scenario of an adaptive treatment workflow, where at
each or several fractions, an image of the patient is acquired and the treatment plan is adapted
according to the observed anatomical changes.

2.4.4 MRI-guided radiotherapy

Ideally, in-room or even on-board imaging devices would be used for ART. CBCTs could

be used for this purpose [30, 81, 150, 164]. Recently, in-room image guidance with MRI

has been introduced with combined MRI and treatment delivery systems [40, 91, 100,

120]. As with CBCTs, these systems help to inform treatment adaptation based on the

current anatomy directly before or during the treatment.

As discussed in section 2.3, MRI can provide a much better soft-tissue contrast than

CBCT , has a broad range of flexibility in choosing a specific contrast and does not add

any additional dose to the patient. A direct comparison of an MRI and a CBCT scan of

the same patient can be seen in figure 2.7.

Within the last few years, several varieties of combined MRI and treatment delivery

systems have been installed in multiple centres across the world. Figure 2.8 provides an

example of such a system, the Unity MR-linac by Elekta (Stockholm, Sweden), which

was recently installed and is now in clinical use at our hospital.

With MRI-guidance, one could exploit the superior soft-tissue contrast of MRI

for more accurate localisation of OARs and target volumes and adapting treatments.

These adaptations could be offline or even in real-time, depending on the time-scale of

anatomical changes. Functional imaging could provide information about the metabolism,

diffusivity, perfusion or hypoxia of tumours, which could then be employed for an

indication of response to and prognosis of treatments.
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(a) axial slice of a CBCT (b) corresponding axial slice
of a (T2w) MRI

Figure 2.7: Direct comparison of (a) CBCT and (b) conventional MRI for an HNC patient
on corresponding axial slices. The soft tissue contrast on the MRI is much better than on the
CBCT.

Figure 2.8: MRI-guidance: Example of Elekta’s Unity system at the Royal Marsden Hospital.
Image courtesy: http://www.icr.ac.uk
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2.5 Medical image segmentation

One of the key components of a successful RT treatment, in particular for ART, is the

accurate localisation of all ROIs in the images acquired throughout the treatment. This

process is also called contouring, delineation or segmentation. Manual segmentation

is a time-consuming and error-prone process. As there is no access to the ground

truth, it is subject to inter- and intra-observer variabilities [26, 46]. With daily or

frequent treatment plan adaptations, segmentation poses a considerable burden to

the clinical workflow. Automated segmentation can alleviate the burden of manual

segmentation while providing consistent contours. However, there are challenges for

automated segmentation of medical images due to the presence of noise, low contrast,

inhomogeneity, partial volume effects and image artefacts.

A plethora of algorithms applied to the segmentation of ROIs in medical images can

be found in the literature, including in-depth reviews [117, 131, 132]. The following

paragraphs provide a brief overview of these methods, discuss potential drawbacks and

include examples of published applications.

Auto-segmentation methods can be classified into various, not mutually exclusive,

categories, such as intensity- and texture-based, supervised and unsupervised, pixel- and

region-based, model-based, or based on prior knowledge.

In the early stages, due to a lack of computational power, auto-segmentation algo-

rithms were purely based on image intensity values. These included thresholding and

region growing methods.

Thresholding and region growing methods

Thresholding algorithms divide an image into one or multiple classes by defining one

or multiple intervals of intensity values for each class, separated by threshold values.

The threshold(s) can be set manually or determined automatically, based on intensity

histograms [108]. The thresholding method can either be applied locally or globally. It

is sensitive to noise and intensity inhomogeneities, which commonly occur in medical

images.

Region growing methods start at so-called seed points and expand the region according

to some pre-defined criterion, for instance, the homogeneity with respect to the intensities

present in that region. If a pixel or voxel meets the criterion, it is included in the

region. Similar to thresholding, region growing algorithms are sensitive to noise and

inhomogeneities. Furthermore, a seed point is necessary to initialise the algorithm and

region growing can therefore not be used in a fully automated manner, unless combined

with other algorithms.
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In recent publications, thresholding and region growing techniques were rarely

used alone but in combination with other methods, with its main application in PET

image segmentation [94, 116, 118]. The split-and merge-algorithm is an example of

an automated version of region growing. Objects in medical images are often not

homogeneous with respect to their intensity values, which limits an application of these

algorithms to medical image segmentation.

Watershed algorithm

The watershed algorithm is an edge detection algorithm where the image is represented

as topographic relief. Intuitively, flooding the relief with water, the lines dividing areas

of water from different basins are known as the watersheds. These lines represent the

outlines of the segmented structures. Lim et al. [90] segmented the liver in CT images

using a watershed method.

Deformable models

Deformable models, such as active contours and level-set methods, use closed surfaces as

initialisation of the algorithm. These closed surfaces can contract or expand to conform

to structures within images. Zhuang et al. [170] applied an active contour approach to

the segmentation of tumours on PET images of HNC patients. Tan et al. [142] used a

combination of watershed and active contour algorithms to segment lung nodules on CT

images. Lapeer et al. [84] highlighted the shortcomings of watershed algorithms in the

application to the segmentation of abdominal organs in MR images and combined it

with an active contour algorithm to overcome these shortcomings.

The auto-segmentation algorithms described so far do not include any prior knowledge

but are purely based on the images themselves. The following paragraphs describe

algorithms which include some form of prior knowledge.

Statistical shape and appearance models

Extensions to deformable models that incorporate prior knowledge are the statistical

shape and appearance models (SSMs). These are frequently used in medical image

segmentation. Heimann and Meinzer [58] provide a thorough review of SSM in medical

imaging. These algorithms explore the fact that organs have a similar structure even

among different individuals. Characteristic variations of shape and appearance are

learned from a library of segmented images and build into a model. The segmentation

of a new image can be constrained to an anatomically plausible shape using this model.

SSM algorithms consist of two main elements: first, a shape model is built, where specific
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methods on representing shapes and drawing correspondences between different shapes

need to be employed; second, the model needs to be fitted to new images. For the

latter, the appearance of shapes, in particular at their boundaries, need to be modelled

and a search algorithm is used to find the corresponding shape in the new image. The

statistical shape and appearance model is obtained by analysing the shapes of one or

more structures in previously segmented template images. Landmarks are commonly

used to represent shapes. Correspondences between landmarks in different shapes can be

obtained manually, which is very time-consuming and subjective, or automatically. Most

algorithms perform registration between the involved shapes. Dimensionality reduction

techniques can yield a compact representation of the shape model. This reduction is

usually accomplished by computing the mean shape and the most dominant modes

of variations via Principal Component Analysis (PCA). Fitting the model to a new

image can either be done similar to active contour models, where the deformations

are constrained through the modelled shape variations, or by employing a statistical

appearance model, learned from the training data. A search algorithm is then used to

fit the model to the image. Due to their nature, SSM algorithms are limited to specific

shapes and highly depend on the training data.

Classifier and clustering algorithms

Classifiers, such as the k-nearest neighbour algorithm (KNN), determine the pixel- or

voxel-wise label by estimation from previously segmented images. In KNN, the pixel or

voxel is assigned to the class that is most common amongst the k-nearest neighbours

in feature space. The feature space can be derived from intensity values and is specific

to the application. The challenge is to choose this feature space such that labels can

be distinguished. KNN has, for instance, been applied to the segmentation of brain

tissues [153]. An unsupervised variant of using classifiers are clustering algorithms, such

as the k-means algorithm. It consists of two iterative steps: it first assigns a pixel or

voxel to the closest cluster defined by its distance to the mean of the cluster and then

calculates the mean of the cluster from all its elements. This process is repeated until it

satisfies a pre-set condition, such as the variance within a cluster. This process has some

drawbacks, one of them being the initialisation of the algorithm. If the initial clusters

are poorly chosen, the algorithm might either only slowly converge or might not achieve

an optimal solution.

As neighbouring voxels in an image are classified independently, classifier and

clustering algorithms typically lack contextual information. To mitigate this drawback,

these algorithms are often combined with Markov Random Field (MRF) models. MRF

models describe interactions between neighbouring pixels or voxels. A difficulty associated
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with MRF models is the proper selection of the parameters controlling the strength of

spatial interactions. If the strength is set too high, resulting segmentation can be too

smooth and details can be lost. If the strength is set too low, it can lead to isolated

clusters.

Atlas-based methods

In atlas-based segmentation methods, prior knowledge is used in the form of images and

their associated segmentations, so-called atlases. A new image is segmented by obtaining

optimal transformations between the atlas images and the new image and by using

this transformation to warp the corresponding atlas segmentation to the new image.

Atlas-based algorithms consist of two major steps: first, all atlas images are registered

to the new image and second, an atlas selection or fusion method is applied. A variety

of image registration methods has been reported in the literature for this purpose [110,

129, 144], as well as atlas selection or fusion approaches [2, 24, 68, 83, 125, 161]. To

date, atlas-based segmentation methods are the most commonly used auto-segmentation

approaches in RT [132]. Chapter 5 describes atlas-based auto-segmentation algorithms

in more detail.

Deep learning

Recently, deep learning-based methods have demonstrated great potential in computer

vision tasks [12, 127]. Deep learning is a sub-discipline of machine learning, where data

representations are learned from problem-specific example cases. More specifically, deep

learning uses neural network architectures to learn a specific task from a dataset by

representing the data through a hierarchy of non-linear functions. Complex representa-

tions of the data are learned by decomposing them into many simple concepts, such as

edges and corners. Neural networks have been inspired by the structure of the human

brain. Nowadays, the most commonly used deep learning architectures are convolutional

neural networks (CNNs) with an increasing number of applications in the field of medical

image segmentation. An in-depth introduction to the basic building blocks and relevant

concepts of CNNs is given in chapter 6.
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Chapter 3

Image acquisition and preparation

This chapter provides details on the acquisition and preparation of all imaging data,

which built the basis of the development and design of all auto-segmentation methods

of this PhD thesis. Processing of imaging data is an essential component of any deep

learning-based method. This chapter mainly serves the purpose to ease the readability, as

most of the images and the preprocessing steps were the same for all subsequent chapters

and will, this way, not need to be repeated.
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3.1 Database: images and annotations

A library of 27 patients, all with a tumour at the base of the tongue and treated with

RT at the MD Anderson Cancer Center (Houston, Texas, USA), was available for this

thesis. All patients had a baseline CT scan, as well as baseline T1-weighted (T1w) and

T2-weighted (T2w) MR scans, typically a few weeks before the RT treatment. One

clinician at the Royal Marsden Hospital (RMH, London, United Kingdom) manually

delineated the left and parotid glands, the spinal cord and the mandible in all 27 T1w

and T2w images. There were not enough axial slices in the MR images to cover the

required anatomy for treatment planning in the superior-inferior direction. The focus

of this thesis was therefore on the four mentioned OARs. Optical structures and the

brainstem were outside the covered imaging field of view.

For the dosimetric evaluation in chapter 4, dose was calculated with the information

on the electron densities of tissues from the CT images. To create a valid treatment plan,

two clinicians at the RMH manually outlined the primary (including involved lymph

nodes) and secondary (including more distant lymph nodes) CTVs, the optical nerves

and lenses, the chiasm and the brainstem on the CT images.

All ROIs were manually delineated using the TPS Raystation (Raysearch, Stockholm,

Sweden). The parotid glands, the spinal cord and the mandible were warped from the

MR images to the CT images by employing the deformable image registration framework

ADMIRE (research version 1.1, Elekta AB, Stockholm, Sweden). Figure 3.1 illustrates

axial, sagittal and coronal slices of all imaging modalities for one example patient,

together with the manually segmented ROIs. The last column guides the reader to the

respective chapters in which these images were employed. Table 3.1 lists the relevant

image acquisition parameters for each imaging modality.

202 CT images from the publicly available database of the Cancer Imaging Archive

[53], as well as the MICCAI HNC segmentation challenge [123], together with the manual

Table 3.1: Imaging parameters of the main database (T1w and T2w MR, as well as CT images)
for the design of all auto-segmentation algorithms of this thesis.

parameter T2w MR T1w MR CT

FOV [#pixels] 512x512 512x512 512x512
#slices 30 30 [165, 235]
voxel size [mm3] 0.5x0.5x4 0.5x0.5x4 0.98x0.98x2.5
TE [ms] [96.72, 107.30] [6.54, 7.85] n.a.
TR [ms] [3198, 4000] [601, 800] n.a.
flip angle [°] 90 90 n.a.
sequence type 2D T2w spin echo 2D T1w spin echo n.a.
field strength/tube voltage 3T 3T 120 keV
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T2w MR images

T1w MR images

CT images

main database:
27 HNC patients, treated at the MD Anderson
Cancer Center, Houston, Texas

main images
(chapters 5

and 6)

12|27 for
general

evaluation
(chapter 4),

multi-
modality

deep learning
(chapter 6.4)

dosimetric
evaluation
(chapter 4)

Figure 3.1: Guide to imaging data employed in this thesis: Each column represents axial,
coronal and sagittal slices of the T2w and T1w MR images, as well as the CT images. The
coloured regions represent the manually segmented ROIs of the primary PTV (blue) and the
secondary PTV (turquoise) on the CT, as well as the left (orange) and right (yellow) parotids,
the mandible (green) and the spinal cord (red) on the MR images. The last column provides
references to the chapters in which they were used.
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transfer learn-
ing (section 6.5)

synthetic MR generation
for cross-modality

learning (section 6.6)

Figure 3.2: This figure illustrates an axial, sagittal and coronal slice of one patient from
the database of 202 CT images (Cancer Imaging Archive [53], as well as the MICCAI HNC
segmentation challenge [123]), together with the manual segmentation of the parotid glands
(orange). These CT images served as additional data for the development of the domain
adaptation methods in chapters 6.5 and 6.6.

segmentation of the parotid glands, served as additional data for the development of the

domain adaptation methods in chapters 6.5 and 6.6.

3.2 Data processing for deep learning methods

3.2.1 Resolution and field of view

A bottleneck for deep learning-based methods is the graphical processing unit (GPU)

memory. To handle this problem, I downsampled each axial MR slice by a factor of 2x2.

To match the resolution of the MR images with the CT images for the transfer learning

method (chapter 6.5) and cross-modality learning (chapter 6.6), I further resampled all

CT images from the public database to an axial plane resolution of 1x1 mm2. Compared

to the MR images, the field of view of the CT images was larger in both, axial and

sagittal planes. I, thus, cropped the CT images to a window of 256x256 voxels in the

axial plane. This window was determined by finding the external outline of the head

using Otsu thresholding [108] and a binary closing method [35] to fill potential holes.
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3.2.2 Intensity scaling

As image intensities can vary between MR images, I standardised the contrast with an

intensity histogram-based thresholding technique. With the histogram h(i) of intensity

values i, the minimum intensity imin and maximum intensity imax, the histogram is

normalised as:

h′(i) =
Nvoxels −

∑i
j=imin

h(j)

Nvoxels
=

∑imax
j=i h(j)∑imax
j=imin

h(j)
, (3.1)

with the cumulative distribution function cdf[h(i), h(imin)] =
∑i

j=imin
h(j). All intensi-

ties i with h′(i) < 10−4 were set to the maximum intensity and 100 bins were used in

the histogram. To standardise voxel intensities and increase the visibility of the parotids,

I rescaled the CT images to the recommended soft-tissue window (level 40, window 350

HU) [62]. Additionally, I mapped image intensities for both CT and MR images to a

range of intensities between 0 and 255. This mapping is a standard procedure in deep

learning (see also chapter 6.2.3).
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Chapter 4

Validation of auto-segmentation

methods in radiotherapy

The evaluation of auto-segmentation methods suffers from a lack of ground truth. Com-

monly, it is assumed that the manual segmentation by one or more experts approximates

this ground truth. Geometric features are employed to compare the auto-segmented regions

of interest to corresponding manually segmented ones and determine the algorithm’s

performance. This chapter introduces the fully automated validation workflow, designed

to evaluate any auto-segmentation method in the context of RT.
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4.1 Introduction

Before routinely using auto-segmentation methods in a clinical RT workflow, it is

necessary to ensure that they achieve adequate accuracy for RT planning. It is, therefore,

crucial to evaluate any auto-segmentation method and understand where errors might

occur before implementing them into the clinical workflow. However, the evaluation of

auto-segmentation methods is known to suffer from the lack of access to the ground truth.

The ground truth would require surgery and is hence challenging to obtain. Commonly,

one or more experts manually segment the images to define a gold standard. Despite

being subjective, it is assumed that this gold standard approximates the ground truth

well. Evaluation of auto-segmentation algorithms is then performed relative to that gold

standard. If the auto-segmentation agrees well, one can ensure that treatment planning

is at least as good as what a clinician could achieve. The inter- and intra-observer

variability can provide an upper bound on the achievable accuracy.

Frequently, the performance of auto-segmentation algorithms is evaluated in terms of

purely geometric criteria. However, in RT, the delineated ROIs are used to guide the op-

timisation process, which balances good dose coverage of the tumour with minimising the

dose to OARs. Therefore, it is crucial to address the dosimetric impact of segmentation

inaccuracies in the process of generating treatment plans. A few groups have addressed

this need and looked at dosimetric differences on CT images [4, 25, 37, 101, 146, 152]

with various methods. Nonetheless, to my knowledge, no single geometric measure has

been observed to be suitable for the prediction of the dosimetric implications so far.

For this purpose, I developed a method to analyse the impact of geometric differences

on dosimetric features of the planned dose distribution. I integrated this into a fully

automated workflow to evaluate any auto-segmentation method within the context of

RT. A dosimetric evaluation is time-consuming and cannot be done routinely at this

stage. I, therefore, additionally investigated to what extent geometric measures are

sufficient surrogates for the dosimetric impact.

This chapter describes the developed workflow in detail, which is mainly derived

from the publication Kieselmann et al. [72]. It uses the example of atlas-based auto-

segmentation algorithms for demonstration purposes and to find an answer to the

question, whether purely geometric features can be used as surrogates for key dosimetric

features.
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4.2 Materials and methods

4.2.1 Data acquisition and preparation

12 T1w images, together with corresponding CT images, as introduced in figure 3.1 on

page 39, served as imaging database for this study. I restricted this study to 12 out of

the 27 patients, as at the time of this study only these had all necessary ROIs manually

delineated and treatment planning was time-consuming. Unlike the MR images, the

CT images provided information on the electron densities of tissues, as well as on the

required anatomy for treatment planning. Another strategy to obtain electron densities

would be to generate a synthetic CT from the MR image and calculate treatment plans

optimising on these images. However, as of the time of this study, there was no approach

available that could accurately predict CT from MR images and furthermore, the issue

with the restricted coverage would not have been solved. I address strategies to generate

synthetic CTs in chapter 6.6.

4.2.2 Fully automated evaluation workflow

To implement any auto-segmentation algorithm in a clinical RT workflow, one needs to

perform a thorough validation. To facilitate this process, I established a fully automated

workflow consisting of

(1) automated segmentation (see section 4.2.3 and more generally in chapters 5 and 6)

(2) automated treatment planning for any set of ROIs using a template approach (see

section 4.2.4)

(3) automated geometric and dosimetric evaluation of auto-generated ROIs where

manually drawn contours serve as the gold standard reference (see section 4.2.5)

(4) benchmarking the automated segmentation algorithm against the inter-observer

variability (see section 4.2.6)

(5) a one-time correlation analysis between geometric and dosimetric evaluation mea-

sures to determine whether these are coherent (see section 4.2.7)

While the dosimetric impact of segmentation inaccuracies on treatment planning

is an important quantity, thorough dosimetric evaluation is time-consuming and the

geometric evaluation would be the preferred method as a surrogate estimation. To

determine whether there was a sufficient correlation between geometric and dosimetric

evaluation measures I, therefore, performed a correlation analysis in this study (step 5).
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MRI to segment

auto-segmented ROIs
(chapters 5 and 6)

gold stan-
dard ROIs

planning CT

mapped auto-
segmented ROIs

mapped gold
standard ROIs

Geometric
evaluation

(section 4.2.5.1)

Dosimetric
evaluation

(section 4.2.5.2)

Correlation?
(section 4.2.7)image registration
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planning

(section 4.2.4)

check for clini-
cal acceptability

copy dose
distribution

inter-observer
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(see Figure 4.2)

compare

compare
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Figure 4.1: This figure illustrates the fully automated validation workflow to evaluate any auto-
segmentation algorithm in the context of RT. The highlighted part in orange is the correlation
analysis to determine whether a geometric evaluation suffices as a surrogate for key dosimetric
features of a treatment plan. The top row illustrates an MR image, together with its gold
standard and auto-segmented ROIs. To perform a dosimetric analysis, I registered the MR to
its corresponding CT image via deformable image registration and used the resulting deformable
vector field to warp the segmented ROIs from the MR to the CT. The central part of this figure
shows the building blocks of the evaluation: the geometric and dosimetric evaluation, as well as
the comparison to the inter-observer variability.
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ROIs segmented by
observer m

ROIs segmented by
observer k
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mapped ROIs
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Figure 4.2: This figure illustrates how the inter-observer variability was determined for this
study. For each observer pair (k,m) I determined the geometric and dosimetric differences in
the same way as I did before with the gold standard and auto-segmented ROIs. The variability
was then determined as the average of these pairwise differences.

We published this workflow, shown in detail in figure 4.1, using the example of

atlas-based segmentation approaches [72]. It can easily be adapted to evaluate any

auto-segmentation approach within the scope of RT.

Instead of manually creating treatment plans, I established an automated treatment

planning process. Such an approach removes additional observer variation from the

planning process and hence increasing treatment plan comparability. The inter-observer

variability, determined with the workflow in figure 4.2, provided a benchmark for the

segmentation algorithm. The following sections describe each of the steps of this workflow

in detail.

4.2.3 Automated segmentation method (step 1)

For this study, atlas-based auto-segmentation methods were selected. These are described

in detail in chapter 5. Three different fusion methods were employed:

(1) method A: best atlas

(2) method B: weighted majority voting (maWMV)
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Fluence and
sequence op-
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Overlap
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Figure 4.3: This figure illustrates the workflow to automatically generate a treatment plan for
any set of auto-generated contours on the MR images. For each set of auto-segmented ROIs, a
treatment plan is automatically generated, with an adaptation of the parotid constrant (see
light turqouise box at the bottom). After ensuring clinical acceptability, the dose distribution is
superimposed to the manually segmented "ground truth" ROIs.

(3) method C: STEPS (Similarity and Truth Estimation for Propagated. Segmenta-

tions; maSTEPS)

Method A employs a single atlas, the best in terms of similarity to the target image, to

segment the target image. Methods B and C combine multiple atlases to predict the

segmentation of the target image.

To evaluate the geometric and dosimetric accuracy of the auto-segmentation methods,

I devised a planning study based on a leave-one-out cross-validation strategy: I applied the

three auto-segmentation methods for each patient of the library described in section 4.2.1.

The MR image of the respective patient was excluded from the library and used as the

target, with the atlas library comprising the remaining MR images.

4.2.4 Automated treatment planning strategy (step 2)

To eliminate the uncertainties in the optimised plans which are introduced by the

subjective and personal view of the treatment planner, I implemented an automated plan
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generation approach making use of the research scripting interface of the TPS Monaco

(research version 5.19.03, Elekta AB, Stockholm, Sweden [23]). Figure 4.3 illustrates the

workflow of the automated plan generation. I generated treatment plans for a 9-beam

step and shoot IMRT treatment on the Unity MR-Linac (Elekta AB, Stockholm, Sweden)

prescribing mean doses of 65Gy to the primary PTV and 54Gy to the secondary PTV

in 30 fractions, following the INSIGHT study protocol [158]. Details on the clinical goals

are listed in table 2.1 on page 26.

Treatment plans were created for all auto-segmentation methods and the dose

distributions superimposed on the gold standard ROIs. The treatment plans were

generated on the CT images, which is why I warped the automatically and manually

segmented OARs from the MR to the corresponding CT scans as described in chapter 3.

I expanded the CTVs with a margin of 3mm to obtain the PTVs . The brainstem and

the spinal cord were expanded with a margin of 3mm, the optical nerves and chiasm

with a margin of 1mm for the planning risk volumes (PRVs).

To calculate the dose, I used the GPU-based Monte Carlo dose engine (research version

of GPUMCD, Elekta AB, Stockholm, Sweden [61]). As I was simulating treatments

on the MR-Linac, I chose the MR-Linac beam model for a magnetic field of 1.5T. I

normalised each dose distribution such that 95% of the primary PTV was covered by

95% of the prescribed dose.

I defined a template cost function which incorporated optimisation objectives on the

target volumes and OARs . For the sample of patients used for this study, there was a

considerable overlap of the parotids with the target volumes. Therefore, the sparing of

the parotids was challenging to achieve, and I chose to loosen the optimisation objective,

as well as the clinical goal for the parotids. With the original condition being

Dmean < 26 [Gy], (4.1)

I determined the objective as a function of the overlap volume (OV) with the primary

PTV :

Dmean(OV[%]) < 24 [Gy] + 0.6 [Gy] ·OV[%]. (4.2)

This heuristic strategy has proven to be useful in clinical practice [65]. It represents

the clinical guidelines at our hospital, where target coverage and the sparing of the

brainstem, the spinal cord, as well as optical structures, are prioritised over a reduction

of dose to the parotids.

The dose distribution, obtained through fluence and sequence optimisations in

Monaco (research version 5.19.03, Elekta AB, Stockholm, Sweden), was then checked
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dmax(M → A) = supa∈Ainfm∈Md(m, a)

dmax(A→M) = supm∈M infa∈Ad(a,m)

volumetric measures

distance-based
measures

DSC = 2 · |A∩M ||A|+|M |

CI = |A∩M |
|A∪M |

HD = max(dmax(M → A),
dmax(A → M))

HD95 = avg(K95(d(M → A),
K95(d(A → M))

MSD = avg(avg(d(M → A),
avg(d(A → M))

Figure 4.4: Geometric measures: This figure illustrates volumetric and distance-based measures
with the example of two shapes A and M. The top part provides formula on the Dice similarity
coefficient (DSC) and the Jaccard conformity index (CI), the bottom part the Hausdorff distance
(HD), 95th percentile HD (HD95), as well as the mean surface distance (MSD). For reasons of
simplicity, the illustration is given in 2D.

for clinical acceptability. I implemented an automated plan check algorithm to analyse

whether all imposed clinical goals were fulfilled, using the research interface in Monaco

(research version 5.19.03, Elekta AB, Stockholm, Sweden). At this stage, to test the

performance of the automated plan algorithm, I additionally asked a clinician to visually

inspect the dose distributions to ensure that the plans were clinically acceptable.

4.2.5 Geometric and dosimetric evaluation (step 3)

4.2.5.1 Geometric metrics

Commonly, geometric measures are used to quantify the agreement between two seg-

mented ROIs [132, 141]. These can be generalised into two categories: volumetric

and distance-related measures. Figure 4.4 illustrates some examples of these measures.

Denote A as the set of auto-segmented points and M as the set of manually segmented

points. The most popular volumetric measure reported in the literature is the Dice

similarity coefficient (DSC) [29], defined as

DSC = 2 · |A ∩M |
|A|+ |M |

, (4.3)

the number of points common to both sets A and M, normalised to the average number

of points in A and M. That means for 3D volumes, the DSC is given as the volume of

the overlapping region divided by the sum of both volumes.
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A similar measure is the Jaccard conformity index (CI), defined as

CI =
|A ∩M |
|A ∪M |

, (4.4)

the number of points common to both sets A and M, normalised to the union of points

in A and M. DSC and CI both range from 0 to 1, where 1 indicates perfect overlap. As

most studies in the literature report on the DSC, I chose this as the volumetric measure

for comparison purposes.

Volumetric measures are useful in detecting mismatches in size and position of the

ROI. However, they do not account for the shape of the structure. It is, therefore,

essential to also quantify distance-related measures. The most commonly employed

distance-related measures are the Hausdorff distance (HD) and the mean surface distance

(MSD). The HD is defined as the supremum (sup), i. e. the least upper bound, of the

distances d(a,m) between each point a of one segmented ROI A to its infimum (inf),

i. e. the greatest lower bound or the closest point, in the segmented ROI M.

HD = max(dmax(A→M), dmax(M → A)) (4.5)

where dmax(A→M) = supa∈Ainfm∈Md(a,m).

In other words, it is the largest of all distances from one point in A to the closest point

in B and vice versa. The HD is sensitive to outliers because it uses the most mismatched

points as a criterion. The 95 percentile (K95) of the HD, on the other hand, refers to

the distance which is larger or equal to 95% of all distances between the two segmented

ROIs:

HD95 = avg(K95(d(M → A),K95(d(A→M)). (4.6)

The MSD is a measure of the average distances between surfaces and is defined as:

MSD = avg(avg(d(M → A), avg(d(A→M)) (4.7)

The smaller the distance measures, the better is the agreement. For this study, I

calculated the DSC, the MSD, the 95th percentile of the Hausdorff distance (HD95)

and the HD between the automatically and manually segmented ROIs to determine the

geometric accuracy.

4.2.5.2 Dosimetric metrics

To adequately address the dosimetric impact of segmentation inaccuracies on the process

of generating treatment plans, I used the following steps, which best mimic the use of
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such segmented ROIs in a clinical workflow:

(1) Calculate dose distributions, which are optimised for the automatically contoured

ROIs. This procedure would be followed clinically if the treatment was based on

the automatically proposed contours.

(2) Map the dose distributions from (1) to the respective gold standard ROIs.

(3) Calculate the dose differences between the dose to the automatically contoured

and the gold standard ROIs. These differences represent the errors between what

one expects to deliver to the ROIs (auto-contours) and what would be delivered

(gold standard contours).

Since plan evaluation is based on dose-volume metrics, as introduced in chapter 2,

I determined differences in these dose-volume metrics for the auto-segmented ROIs

(Dx,auto) and manually segmented ROIs (Dx,man). To determine the relative impact,

each of these differences was normalised to the respective clinical goal Dx,goal:

∆Dx,norm =
Dx,auto(Gy)−Dx,manual(Gy)

Dx,goal(Gy)
. (4.8)

The index x denotes the type of dose-volume parameter, e. g. "x = 1cc" represents the

minimum dose to 1cc of the volume and "x =mean" refers to the mean dose. Negative

∆Dx,norm mean that a larger dose would be delivered to the gold standard than what

was planned for the auto-segmented ROIs.

Voet et al. [152] and Beasley et al. [4] used a similar approach to investigate the

dosimetric differences and correlations between dosimetric and geometric measures on CT

images of HNC patients. To eliminate subjectivity in treatment planning, I established

an automated treatment planning strategy, further described in section 4.2.4.

I followed an adaptive approach for the parotids, as described in section 4.2.4,

choosing the adaptive dose-volume constraint as defined in equation (4.8). I normalised

the difference to the non-adapted clinical goal of 26Gy. The spinal cord and the mandible

were evaluated in terms of the minimum dose to 1 cm3 with clinical goals of 46 and

67.25Gy, respectively.

4.2.6 Inter-observer variability (step 4)

4.2.6.1 Overview of measures for inter-observer variability

Even though there are well-defined guidelines for contouring of HNC ROIs [52, 140],

there is still a substantial inter- and intra-observer variability [46, 101, 156]. The

inter-observer variability can provide an estimate of the upper bound on the necessary
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auto-segmentation accuracy. To estimate the inter-observer variability, several observers

are usually asked to (repeatedly) delineate the same ROIs on the same images, according

to the same guidelines. The variability between the observers can then be determined

according to predefined measures.

One algorithm to estimate the inter-observer variability between a set of observers is

STAPLE [155]. It uses an Expectation-Maximization algorithm to iteratively estimate

a reference standard out of the observers’ segmentation, as well as the performance

parameters (based on sensitivity and specificity) that quantify agreement of an individual

observer with the estimated reference standard.

Another standard measure of the inter-observer variation is the conformity index,

defined in equation (4.4) on page 50 for two observers. It can be defined analogously

for multiple observers. A problem with this measure is that it strongly depends on

the number of observers and can only decrease when more observers are added. While

non-overlapping regions always increase or stay the same, overlapping regions can never

increase with more observers, thus only allowing for a decrease of the measure. For

this reason, Kouwenhoven et al. [77] introduced a generalised CI, defined as the ratio

between the sum of all pairs of overlapping volumes and the sum of all pairs of unions

of volumes.

A measure of inter-observer agreement, especially in classification problems, is Cohen’s

kappa or Fleiss’ kappa (a generalisation of Cohen’s kappa for more than two observers

and categories). Cohen’s kappa is defined as the observed agreement, normalised to the

agreement occurring by chance. A further measure of inter-observer variability is the

coefficient of variation, defined as the ratio between the standard deviation (SD) and

the mean of all segmentation volumes.

For local observer agreement, one can calculate distances to a common surface map

between observers and quantify the variation by, for instance, the standard deviation of

the observers’ distances [137].

4.2.6.2 Inter-observer variability in this study

To determine the inter-observer variability for the data used in this study, I asked two

additional observers to outline the four OARs on the T1w MR images. Each of the

observers followed the contouring guidelines defined in Sun et al. [140]. I estimated

the inter-observer variability geometrically and dosimetrically. Since the inter-observer

variability in this work served the purpose to determine a benchmark for the auto-

segmentation algorithms, I employed the same pairwise measures, which I also used to

evaluate the accuracy of the auto-segmentation algorithms.
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Geometric inter-observer variability

To determine the geometric inter-observer variability between two observers, I first

calculated the DSC, HD, HD95 and MSD (see section 4.2.5.1) between the respective

observers’ contours for each patient and defined the pairwise inter-observer variability

as the average and SD of all patients. The overall inter-observer variability was then

calculated as the average of the three pairwise inter-observer variabilities, with the

overall SD being the root mean square (RMS) of the sum of the three individual SDs.

Dosimetric inter-observer variability

To determine the dosimetric inter-observer variability, I superimposed the dose distri-

bution, which was optimised on the auto-segmented ROIs, on each of the three sets of

manually segmented ROIs. I calculated the pairwise differences between the dose to

each manually segmented and auto-segmented ROI according to equation (4.8) on page

51 for each patient and ROI. I approximated the dosimetric variability by the SD of

these three dose difference values. From this dosimetric variability per patient and ROI,

I estimated the overall variability for each ROI by calculating the mean and SD over all

patients.

4.2.7 Geometric measures: suitable predictors for dosimetric
accuracy? (step 5)

To determine whether geometric measures, such as the DSC and HD95, can reliably

predict the dosimetric impact on planned dose-volume parameters, I investigated the

correlation between the geometric and dosimetric quantities by calculating Spearman’s

correlation coefficients [136]. I calculated the correlation coefficients individually for the

three different auto-segmentation approaches as these were determined for the same set

of patients and could therefore not be treated as independent. Additionally, I performed

a qualitative analysis by visual inspection of individual patient images to understand the

dependency of the correlation on the shape and the size of the OAR, the dose metric,

as well as the relative position to the target volume (i. e. location within large dose

gradients).

4.2.8 Statistical evaluation

Tests for statistically significant differences were performed using Student’s paired t-test

[139] at a significance level of p=0.05/3 with a Bonferroni correction to account for

multiple comparisons. As a condition of the paired t-test is the normal distribution of the

data, I tested the results for normality by visual inspection of Q-Q-plots. All analyses
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were performed using automated scripts I developed in Python. As for dosimetric

differences the variance (standard deviation) is the most important quantity, I applied a

Levene’s test [89] to determine significance for the dosimetric evaluation.

4.3 Results

4.3.1 Geometric and dosimetric evaluation

Figure 4.5 shows boxplots of the DSC, MSD, HD95 and HD, as well as the dosimetric

differences ∆Dnorm for all ROIs and the three atlas fusion methods. Negative ∆Dx,norm

mean that a larger dose would be delivered to the gold standard than what was planned

for the auto-segmented ROIs. The stars indicate statistical significance, as defined in

section 4.2.8. Tables 4.1 and 4.2 list the mean and standard deviations for all applied

evaluation measures. The inter-observer variability was included as a reference value.

While there were statistically significant improvements when using one of the multi-

atlas approaches B or C for all ROIs, no method was superior in terms of dosimetric

differences. Dose differences took both positive and negative values but were close to

a zero mean for all ROIs and segmentation approaches. Differences as large as 23%

Table 4.1: Geometric evaluation for all ROIs and auto-segmentation approaches: mean values
for DSC, MSD, HD and HD95. All mean values have been calculated by averaging over all 12
patients. For a reference, I also include the inter-observer variability, derived from the manual
contours of three different observers.

ROI method DSC HD [mm] HD95 [mm] MSD [mm]

right A 0.74±0.04 15.07±5.03 6.84±1.95 2.24±0.75
parotid B 0.80±0.03 16.51±6.96 5.65±1.41 1.61±0.43

C 0.81±0.02 13.33±5.20 5.20±0.97 1.56±0.38
IOV 0.84±0.04 10.76±4.35 4.97±1.66 1.40±0.45

left A 0.77±0.04 13.89±5.36 5.84±1.64 1.84±0.54
parotid B 0.82±0.03 15.00±4.62 5.17±1.62 1.47±0.41

C 0.83±0.03 12.13±3.91 4.63±1.21 1.35±0.40
IOV 0.83±0.04 10.94±3.75 5.27±1.76 1.59±0.63

spinal A 0.71±0.08 12.72±3.91 7.68±3.56 2.26±1.10
cord B 0.80±0.05 10.12±4.83 4.26±1.36 1.24±0.45

C 0.80±0.05 10.35±3.75 4.39±1.33 1.21±0.44
IOV 0.79±0.07 7.12±5.15 4.64±3.06 1.55±0.81

mandible A 0.64±0.09 16.65±3.60 6.96±1.84 2.14±0.60
B 0.80±0.04 13.33±4.06 4.31±1.05 1.10±0.28
C 0.80±0.04 10.88±2.07 4.44±1.09 1.35±0.30
IOV 0.85±0.04 8.94±3.16 3.85±1.56 0.92±0.45
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Figure 4.5: Boxplots of, from top to bottom, the DSC, MSD, HD95, HD and dosimetric
difference ∆Dnorm for all OAR (x-axis) and automated segmentation approaches (A in blue, B
in red and C in green). The boxes indicate the interquartile range (IQR), the whiskers extend
to the minimum and maximum values. Outliers are defined as data points beyond 1.5 IQRs
from the IQR, denoted with a plus sign. Stars indicate statistical significance (p<0.05/3).
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Table 4.2: Normalised dosimetric differences ∆Dnorm (see equation (4.8)), as well as dosimetric
variability (see section 4.2.6). Negative ∆Dx,norm mean that a larger dose would be delivered to
the gold standard than what was planned for the auto-segmented ROIs. For a reference, the
inter-observer variability (IOV) is included, where the values in column 4 need to be compared
to the standard deviation of the dosimetric differences in column 3 (both in bold print).

ROI method ∆Dnorm [%] IOV [%]

right parotid A 0.06±12.93
B -0.84±10.82 5.56±4.78
C 0.02±10.26

left parotid A -0.65±11.39
B 0.83±6.51 6.00±3.93
C 0.68±6.28

spinal cord A 0.95±10.68
B -2.77±6.64 4.76±4.58
C -2.17±7.41

mandible A -0.66±1.64
B -1.02±0.85 0.46±0.26
C -0.84±1.18

of the clinical goal in either direction were observed for the parotids. Dose differences

to the mandible were below 4% of the clinical goal. The SDs of all mean dosimetric

differences were within the range of the dosimetric variability (dosimetric inter-observer

variability ± 1SD). However, the individual dosimetric difference in the parotids and the

spinal cord was outside the range of the dosimetric variability for 50% of the patients.

In the mandible, this was the case in 75%. Despite these substantial dose differences,

all treatment planning objectives were still met for the manually segmented ROIs.

4.3.2 Geometric measures as predictors for dosimetric accuracy

Figure 4.6 depicts the absolute values of the dosimetric differences as a function of the

three geometric measures (DSC, HD, HD95) for all ROIs and segmentation approaches.

For a qualitative overall picture, I illustrate all approaches in the same subfigures. The

correlation coefficients for each approach are included in each subfigure. Correlations

between geometric and dosimetric measures were small with R2 < 0.5 and did not have

the expected sign in all cases, e. g. a negative correlation existed between the HD and

|∆D| for the left parotid, segmented using approach C.

Figure 4.7 highlights the pitfalls of performing a geometric-only evaluation. It illus-

trates three example pairs of cases with similar geometric accuracy yet large deviations

between the dosimetric differences. The first two columns show a sagittal or axial

image plane for two different patients. The coloured lines represent the isodose curves,
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Figure 4.6: Scatter plots illustrating dose differences between manually and auto-segmented
ROIs normalised to the clinical goal as a function of the respective geometric measures (from
left to right: DSC, HD95 and MSD), separated according to the ROIs used in this study (from
top to bottom: right parotid, left parotid, spinal cord and mandible). The different colours and
symbols illustrate the three auto-segmentation methods of this study. The numbers in each
subplot are the respective correlation coefficients R together with the p-values, calculated using
Spearman’s approach.
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Figure 4.7: This figures illustrates three example cases where the geometric differences (DSC,
HD, HD95 and MSD) were similar between the patients in columns 1 and 2 but the dosimetric
impact differed. The first two rows illustrate examples for the spinal cord, the last row for the
left parotid.
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whereas the coloured areas show the manually and automatically segmented ROIs. The

individual geometric and dosimetric differences between manually and automatically

segmented ROIs are provided in the table in the third column. The first two rows

illustrate examples for the spinal cord, where steep dose gradients have a tremendous

influence due to the nature of the clinical goal (maximum dose). The last row shows

an example for the parotid, where the relative position to the high dose region mainly

impacts the dosimetric outcome. With the qualitative per-patient analysis, I found that

more substantial dosimetric differences started to appear with the OAR being closer to

the target volume. I additionally clustered the data as a function of the distance to the

target volume and did not find any significant correlation.

4.4 Discussion

I developed a novel method to assess the dosimetric impact of segmentation errors

automatically. Furthermore, I investigated the correlation between geometric and

dosimetric differences. Dosimetric studies are essential in RT because segmentation

errors can lead to an underdosage of target volumes, as well as an overdosage of OARs.

4.4.1 Geometric and dosimetric evaluation

A detailed geometric evaluation of atlas-based segmentation methods can be found in

chapter 5. Several groups have studied the quantification of the impact of inaccurate

localisations of ROIs on the planned dose distribution when using auto-generated contours

in treatment planning. These can be summarised into three approaches.

The first approach is to use existing dose distributions on ground truth ROIs and

superimpose these on the auto-segmented ROIs. The effect of contouring variations

on dose parameters can then be determined by comparing dose differences to paired

ground truth and auto-segmented ROIs. This method was applied by Eldesoky et al.

[37] for the segmentation of breast tissues and by Conson et al. [25] for the segmentation

of brain structures. A limitation of applying this method to the plan creation is that

instead of generating new treatment plans for the automatically segmented ROIs, the

original plans are used, thus ignoring the fact that different contours generate a different

optimisation problem.

The second approach individually optimises the dose distributions for both, auto-

segmented and ground truth ROIs, using the same beam parameters and planning

constraints. Tsuji et al. [146] applied this approach for pairs of pre- and mid-treatment

CTs of the head and neck region. A limitation of this method is that instead of

comparing the direct dosimetric impact of contouring inaccuracies, two separately
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generated treatment plans are compared. This means that rather than comparing the

dosimetric impact, the feasibility of generating good quality treatment plans is compared.

The third approach is to create treatment plans for the auto-segmented sets of ROIs

and superimpose the dose distributions to the ground truth ROIs. Nelms et al. [101]

applied this approach to investigate the effects of inter-observer variabilities in manual

OAR segmentations from 32 observers. A drawback of their study is that they only

use the CT image of one patient for their evaluation. Voet et al. [152] applied the

third approach to investigate whether geometric measures can predict the amount of

underdosage in the PTV. Auto-segmented HNC ROIs edited by clinicians served as the

ground truth. They included the neck levels and the parotids in their analysis. Beasley

et al. [4] compared dosimetric differences and the geometric accuracy of auto-generated

contours for the parotids and the larynx of 10 HNC patients, using the manually drawn

contours of 5 observers as ground truth.

To properly account for the impact of segmentation inaccuracies on the planned dose

distribution, the third approach has the smallest number of weaknesses. It solves the

optimisation problem directly for the auto-segmented ROIs and, therefore, emulates

the clinical reality in the case of an application to treatment plan generation. For this

reason I chose this approach.

Both multi-atlas approaches outperformed the best-atlas approach in terms of the

geometric accuracy (DSC, HD95 and MSD). This finding is in line with other published

studies [26, 56, 143]. The HD was not a reliable measure for the geometric accuracy

of the data used in this study. As this measure provides the maximum distance to

the ground truth segmentations, it is susceptible to outliers and is hence not a good

representative of the overall geometric accuracy.

In terms of the dosimetric accuracy, none of the three auto-segmentation approaches

chosen in this work was superior to any other for any of the investigated OARs .

Average absolute dose differences were below 3% of the clinical goal for all OARs and

segmentation approaches. However, dose differences for individual patients were widely

spread with a standard deviation of up to 11% of the mean. These broad ranges of

dosimetric differences for individual patients are in line with published values. Beasley

et al. [4] reported on an average difference in the mean dose to the parotids between

auto-generated and ground truth ROIs, relative to the latter, of -4.8±3.4% with a

range from -18% to 43%. They also compared mean doses for the larynx and found a

difference of -8.4±2.3%, ranging from -20% to 3%. The inter-observer variability between

5 observers determined the uncertainty.

In contrast to these findings, there were no significant dose differences in the studies

by Voet et al. [152] and Tsuji et al. [146]. Voet et al. [152] reported a small, statistically
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non-significant dose difference for the parotids (-0.8±1.1Gy, i. e. <3%). For the target

volume (CTV), they found that the mean reduction in dose to 99% of the volume (D99)

was considerable with 14.2Gy (range of 1 to 54Gy). Tsuji et al. [146] did not find any

significant dose differences to the manually and automatically segmented OARs. However,

instead of superimposing one treatment plan on both sets of ROIs for comparison, they

generated individual treatment plans for each set of ROIs, therefore impairing a direct

comparison.

4.4.2 Geometric measures as predictors for dosimetric accuracy

To understand whether the geometric measures used in this study (DSC, HD, HD95

and MSD) can be a reliable surrogate for dosimetric differences and treatment planning

accuracy, I investigated the correlation between the geometric and dosimetric accuracy.

If geometric measures were good predictors for the impact of segmentation inaccuracies

on the dose distribution, one would expect large negative correlation coefficients R for

the DSC and large positive R for the MSD, HD and HD95.

Voet et al. [152] showed that both DSC and mean contour distances did not have

a large predictive value with respect to their influence on dose coverage of the target

volume. They reported that an underdosage of 11Gy might appear even for a decent

geometric accuracy with DSC=0.8 and MSD<1mm. Eldesoky et al. [37] investigated

the relationship between geometric and dosimetric accuracy for four target volumes in

breast cancer RT. They found a small significant correlation for only one of those target

volumes between the DSC and dose-volume metrics.

In contrast to the studies mentioned above, I was focusing on OARs instead of target

volumes. The results presented in Figure 4.6, illustrating the relation between geometric

and dosimetric measures, did not imply a strong correlation between geometric and

dosimetric measures. This finding was also reflected in the small correlation coefficients.

All patients in this study had a tumour at the base of the tongue. For this reason, the

relative positions of OARs and target volumes were similar. Despite this similarity, the

relation between dose deposition and between the location of target volumes remained to

be very complex. The inspection of individual patient images revealed that the impact of

geometric inaccuracies on dosimetric outcome was influenced considerably by the shape

of the structure, the type of clinical goal (maximum or mean dose) and the location of

geometric differences (i. e. whether these lie within regions of high dose gradients or are

far from those). Examples of high dose gradients influencing the correlation between

geometric and dosimetric measures are shown in the first two example cases in figure 4.7.

These findings suggest that for the data used in this study, the investigated geometric

measures are not reliable surrogates for the dosimetric outcome. The correlation values
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for the DSC are in line with results reported by Beasley et al. [4]. Additionally, they found

a substantial correlation (R=0.83) between the centroid distance and the differences in

the mean dose to the parotids. However, evaluating this for the data in this study, There

was not such a strong correlation. Furthermore, correlations with the distance-related

measures were smaller compared to Beasley et al. [4].

While the SD of dosimetric differences for the full patient cohort was within the

range of the dosimetric inter-observer variability, I found that for individual patients,

the dosimetric difference was outside this variability despite a decent geometric accuracy.

This finding highlights the need to investigate the dosimetric impact of contouring

inaccuracies carefully. In this study, I developed an approach on how to accomplish this

and when using an auto-segmentation approach in the clinic, it is crucial to ensure an

adequate dosimetric accuracy.

4.4.3 Limitations and future work

One limitation of this study was the relatively small number of available training data.

However, even with this small dataset, it could be shown that a decent geometric accuracy

does not guarantee small dosimetric errors. Therefore, when using auto-segmentation

algorithms in the clinic, a thorough dosimetric evaluation is crucial.

Furthermore, due to the small imaging coverage of the patients’ anatomies in the

superior-inferior direction, I could only include four OARs in the analysis. However,

even though treatment planning of HNC requires the segmentation of more OARs such

as the optical structures and the brainstem, the OARs in this analysis covered a variety

of shapes and locations relative to the target.

Dose calculations in this study were performed simulating a 9-beam step and shoot

IMRT treatment on an MR-linac in a magnetic field. While other radiation delivery

techniques may lead to slightly different dosimetric results, the dosimetric evaluation

method is independent of the treatment type and can be easily applied to more patient

data. The template approach established in this study worked well for all included

patients. One would anticipate some necessary changes to the template for very different

anatomies compared to the patient data in this study.

The capability to estimate the dosimetric effect from the geometric evaluation directly

would remove the need to optimise treatment plans for each set of auto-segmented ROIs.

On the other hand, using geometric measures that do not reliably predict the impact

on the dose distribution limits their applicability in a clinical validation for RT. Future

work would investigate new measures than can more reliably predict the dosimetric effect

of segmentation inaccuracies. These could, for instance, incorporate the distance to

the target volumes, or, more generally, to high dose-gradient regions. Yang et al. [163],
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for example, use the overlap volume histogram to quantify the distance between the

rectum and prostate PTV to predict possible dose distributions. Furthermore, the first

applications of machine learning approaches in RT seem promising and could be applied

to this problem by, for example, modelling geometric uncertainties using neural networks

and determining the effect on dose distributions. These approaches were outside the

scope of this thesis.

4.5 Conclusion

To my knowledge, this was the first study to investigate the use of contours derived

from atlas-based segmentation on HNC MR images in the context of treatment plan

generation for RT with a complete analysis of the geometric and dosimetric accuracy.

The inter-observer variability, determined for the imaging data used in this study, served

as a benchmark on the achievable accuracy.

Since there appeared to be only a slight correlation between geometric (DSC, MSD

and HD95) and dosimetric measures, the geometric measures alone were not sufficient to

predict the dosimetric impact of segmentation inaccuracies on RT treatment plans. When

performing exploratory research on auto-segmentation methods, geometric measures

can provide an estimate of the performance in terms of accuracy to compare it to other

auto-segmentation approaches. However, for a safe clinical implementation, it is crucial

also to investigate the dosimetric impact of segmentation inaccuracies.
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Chapter 5

Automated segmentation with

atlas-based methods

Atlas-based segmentation methods are the most commonly used auto-segmentation ap-

proaches in radiotherapy. This chapter investigates different atlas-based segmentation

methods of organs at risk in the head and neck region. I benchmark the developed ap-

proaches by comparing them to a commercially available atlas-based solution and the

inter-observer variability.

This chapter is an extension of the following publication:

J P Kieselmann et al, Geometric and dosimetric evaluations of atlas-based segmen-

tation methods of MR images in the head and neck region, Physics in Medicine and

Biology (2018) 63 145007.
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5.1 Introduction

To date, atlas-based methods are the most commonly used auto-segmentation approaches

in RT [43]. The labelled anatomy of an image is used as a source of positional, topological

and shape information about the ROIs in the form of an atlas. An atlas is an image

together with its corresponding labels. The contours from a library of atlases are warped

to the previously unseen image using image registration methods. One then needs

to select an atlas or merge multiple atlases to obtain the final labels for the unseen

image. Provided enough data is available, atlases can capture anatomical variations that

naturally exist between patients.

Atlas-based segmentation methods in the literature differ by the type of image

registration and atlas fusion or selection they apply. The auto-segmentation result can

be derived by a single chosen atlas or by a combination of multiple atlases. Atlas-

based segmentation has been implemented into many treatment planning systems, such

as RayStation (Raysearch, Stockholm, Sweden) and Monaco (Elekta AB, Stockholm,

Sweden).

This chapter describes a study on the performance of atlas-based segmentation in

terms of its geometrical accuracy and computation time, applied to the segmentation of

the parotids, the spinal cord and the mandible on MR images of 27 HNC patients. I

chose the NiftyReg [98, 99], and NiftySeg [14, 147] software tools for this study, which

were both developed at the University College London (UCL). I was kindly provided with

the source code and extended the tools, automated parts of the segmentation process

and developed a fully automated validation workflow (see chapter 4). Although I have

shown in chapter 4 that calculating the dosimetric effect of auto-segmentation is a more

accurate assessment of its quality than purely geometric measures, there was not enough

time to do this within the scope of this thesis and it is therefore left for future work.

5.2 Materials and Methods

5.2.1 Data acquisition and preparation

The atlas database comprised 27 T2w pre-treatment MR images, introduced in figure 3.1

on page 39. The inter-observer variability was obtained from [72] (see the previous

chapter).
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5.2.2 Image registration: Basic concepts

Image registration is an essential component of atlas-based segmentation methods. This

section thus introduces the basic concepts in the field of image registration, as well as an

overview of commonly used algorithms. Extensive surveys on medical image registration

can, for example, be found in [59, 93, 135].

Image registration is the process of finding a geometrical transformation T that

spatially aligns points x in one image to points x′ in another image:

x
T−−−→ x′. (5.1)

Typically, one image is defined as the fixed image IF , whereas the other image, the

moving image IM , is transformed to match the fixed image as closely as possible.

There are two main types of image registration: feature- or shape-based [9] and

intensity-based methods [74, 129, 144]. Feature-based methods register images by

identifying and matching features or objects that describe distinctive landmarks, edges

or shapes. These features are often difficult to obtain. Intensity-based methods, on

the other hand, are primarily based on a correlation between the intensity values of

the pixels or voxels of two images. In this study, I discuss and apply only parametric

intensity-based image registration methods.

Intensity-based image registration is typically formulated as an optimisation problem,

aiming to minimise a cost function C(T , IF , IM ) that measures the similarity between

the two images. In an iterative process ,optimal transformation parameters Θ̂ are sought

to maximise the similarity:

Θ̂ = arg min
Θ

C(TΘ, IF , IM ). (5.2)

Figure 5.1 illustrates the basic concepts of image registration for two example patients

(two-dimensional (2D) illustration for ease of display). Intensity-based image registration

is characterised by three main elements:

(1) the transformation type

(2) the cost function

(3) the optimisation method

which are described in the following sections.
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moving image IM fixed image IF

image similarity
(similarity mea-
sure: NCC, MI))

cost function

optimiser

geometric trans-
formation

rigid

translations
and rotations

affine

translations,
rotations, shear-
ing and scaling

deformable

local trans-
formations

resampling

optimised transformation optimised transformation

deformable vector field

optimised transformation

Figure 5.1: Image registration approaches: This figure illustrates the basics of image registration
with the example of two MR images of two patients. The three main transformation types
(rigid, affine and deformable) are illustrated in the bottom part of the figure. For illustration
purposes, the images are displayed in 2 dimensions, whereas the transformations were performed
in 3 dimensions.
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5.2.2.1 Transformation type

The transformation type can be either rigid (global translations and rotations), affine

(rigid and shearing or scaling operations) or deformable (local transformations). Medical

image registration typically combines multiple registration methods. In the following,

without loss of generalisation, I use the example of 3D images.

Rigid transformation

A rigid transformation of 3D images has 6 degrees of freedom: 3 rotational and 3

translational ones. In homogeneous coordinates1, the transformation can be parametrised

by the transformation matrix T = T ◦R with translation matrix T and rotation matrix

R defined as follows:

T =

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


where ti ∈ R,

Rx =

1 0 0 0
0 cx sx 0
0 −sx cx 0
0 0 0 1

, Ry =

 cy 0 sy 0
0 1 0 0
−sy 0 cy 0

0 0 0 1

, Rz =

 cz sz 0 0
−sz cz 0 0

0 0 1 0
0 0 0 1

 (5.3)

where ci = cos(ϑi) and si = sin(ϑi)

ti, ci, ϑi ∈ R, i ∈ {x, y, z}.

Affine transformation

In addition to translations T and rotations R, an affine transformation can consist of

scaling S and shearing Q operations:

S =

ax 0 0 0
0 ay 0 0
0 0 az 0
0 0 0 1



Q =

 1 axy axz 0
ayx 1 ayz 0
azx azy 1 0
0 0 0 1

. (5.4)

It has 6 additional degrees of freedom ai, where ai ∈ R. The rigid transformation is a

special case of an affine transformation.
1Homogeneous coordinates replace a 3D vector (x, y, z)T with the 4D vector (x, y, z, 1)T .

68



Atlas-based segmentation 5.2 Materials and Methods

Deformable transformation

A deformable transformation acts locally, whereas affine transformations act globally.

Deformable image registration is usually described by a deformation vector field, where

for each voxel in the image, a deformation vector is calculated, also named free-form

deformation approach [129]. The degrees of freedom can be as large as three times the

number of voxels in the image. As it is too computationally expensive to calculate defor-

mation vectors at each voxel, a common approach is to overlay a grid of so-called control

position points (CPPs) pa,b,c, with (a, b, c) ∈ ({1, · · · , nx}, {1, · · · , ny}, {1, · · · , nz}), that
are more sparsely spaced than the voxel positions. Cubic B-splines can then be used to

interpolate the deformable transformation T (~x) at each position ~x from the CPPs [129].

To limit the deformations to physically plausible transformations, penalty terms can

be incorporated into the cost function to apply regularisation. Examples of these are

described in the following paragraphs.

5.2.2.2 Cost function: Similarity measures and penalty terms

To find the optimal correspondence between two images, several similarity measures can

be applied. The two most popular ones in medical image registration are the (normalised)

cross-correlation (NCC) for mono-modal images and the mutual information (MI) for

multi-modal images. The NCC is similar to the convolution operation and is defined as

follows:

NCC =
1

N

∑
i∈N

(IF (i)− IF )(IM ◦ T (i)− IM )

σIF σIM
(5.5)

with

N : number of voxels

IF (i), IM (i) ∈ R, intensity at voxel i in fixed and moving image

IF , IM : mean intensities

σIF , σIM : standard deviation of mean intensities

It multiplies the mean-subtracted intensities at each voxel of two images and averages

them over all voxels, leading to large values when the mean-subtracted images are similar

and to values close to zero for two random, non-similar images. It works well if the

intensities in images IF and IM can be linearly related, i. e. for images with a similar
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contrast. The MI is defined as

MI =
∑
i∈N

∑
j∈N

pFM (IF (i), IM ◦ T (j)) log
pFM (IF (i), IM ◦ T (j))

pF (IF (i))pM (IM ◦ T (j)
(5.6)

with

pFM : joint probably distribution

pF , pM : individual probability distributions.

The MI assumes no functional relationship between the images. It is maximised when

there is a consistent relationship between voxels in one image and corresponding voxels

in the other image. Mathematically, if the two images are completely independent, then

pFM (IF (i), IM ◦ T (j)) = pF (IF (i)) · pM (IM ◦ T (j)) (5.7)

and MI=0. However, if the two images are fully dependent on each other (i. e. perfectly

aligned), then

pFM (IF (i), IM ◦ T (j)) = pF (IF (i)) = pM (IM ◦ T (j)). (5.8)

The MI is well suited for applications to multi-modal images, where no linear relationship

between voxels exists.

The cost function to be optimised consists of the similarity measure SM and the

penalty terms Pi:

C = (1− α) · SM(IF , IM ◦ T ) + α
∑
i

wi · Pi(T ), (5.9)

where α balances the influence of the similarity measure against the penalty terms and

wi are the individual weights for the penalty terms.

As image registration is generally an ill-posed problem, penalty terms are used for

regularisation purposes. These terms allow for the inclusion of prior knowledge of the

physical properties of the underlying deformations. Typical examples for penalty terms

in deformable image registration are the following:

• the bending energy, which is the sum of the second order derivatives of the

transformation field M, to ensure smoothness [129]

Csmooth =
1

N

∑
(x,y,z)∈R3

[(
∂2T (~x)

∂x2

)
2 +

(
∂2T (~x)

∂y2

)
2 +

(
∂2T (~x)

∂z2

)
2+
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2

(
∂2T (~x)

∂x∂y

)
2 + 2

(
∂2T (~x)

∂x∂z

)
2 + 2

(
∂2T (~x)

∂y∂z

)
2

]
. (5.10)

By penalising large second derivatives, i. e. high curvature, this means for example

that high compressions close to nearby high expansions are penalised.

• A Jacobian based term to ensure that no folding occurs

Cfolding = log(|J(T (~x))|)

with the Jacobian matrix J

J (T (~x) =



∂T (~x)x
∂x

∂T (~x)y
∂x

∂T (~x)z
∂x

∂T (~x)x
∂y

∂T (~x)y
∂y

∂T (~x)z
∂y

∂T (~x)x
∂z

∂T (~x)y
∂z

∂T (~x)z
∂z


. (5.11)

Folding means a cross-over between lines in the deformation grid, that means the

penalty prevents foldings of structures onto themselves. A Jacobian determinant

larger than zero ensures that the deformation vector field is invertible. Jacobian

determinants larger than 1 mean a volume increase after registration and vice

versa.

5.2.2.3 Optimisation methods

The optimisation problem in equation (5.2) on page 66 can be formulated as an iterative

process. With the current parameters Θi, step size αi (c. f. the learning rate in chapter 6)

and an update or search direction ui, the parameters in iteration (i+ 1) are determined

as follows:

Θi+1 = Θi + αi · ui. (5.12)

This process is repeated until a predefined convergence point.

The optimisation parameters αi and ui depend on the optimisation type. There is a

range of optimisation strategies applied in medical image registration, the most prominent

ones being gradient descent, conjugate gradient descent and Quasi-Newton methods

[135]. The following paragraphs briefly introduce the basic concepts in optimisation.

Step size αi

The optimisation parameter αi is often set to a constant or a decaying function. The

constant needs to be adapted to the underlying problem and is not always straightforward
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Figure 5.2: This figure illustrates the iterative optimisation process of minimising the cost
function C as a function of the parameters Θ. For simplicity, I chose a convex, one-dimensional
function. The right arrows depict the step taking from one iteration to the next. The left and
the central graph illustrate the effect of too small (left) and too large (centre) step sizes on the
optimisation process. Using too small step sizes can lead to long execution times as the optimiser
only slowly converges to the optimum. Too large step sizes can lead to large fluctuations in the
cost function and overshooting over the optimum. An example of a decaying step size over the
number of iterations is illustrated in the right graph, where a larger step size is used in earlier
iterations and smaller step sizes in later iterations when the optimum is approached.

to determine. If αi = α is too large then the optimiser might jump over minima and

convergence may not be achieved. If α is set too small, convergence may be very slow

and the optimiser may be stuck in local minima. A decaying function for αi can be

justified by the fact that it may be beneficial to reach close to an optimal solution at

the beginning with larger steps, while slowly reaching the optimum towards the end

with small steps. Figure 5.2 illustrates the effect of too small, too large and decaying

step sizes on the optimisation process. For simplicity, I chose a convex, one-dimensional

example for the cost function C(Θ) using a gradient descent method to obtain the search

direction ui. In practice, the cost function is typically highly non-convex.

Gradient descent

In the gradient descent method [75], ui is the gradient of the cost function C with respect

to its parameters Θ, evaluated using the current parameters Θi:

ui =
∂C

∂Θ

∣∣∣∣Θi . (5.13)

Gradient descent is usually combined with a constant or decaying step size α.

Quasi-Newton

As gradient descent methods can take long times to converge to an optimum, other

methods can be used to speed up this process. For example, information on second-order

derivatives of the cost function can be used (defined through the Hessian matrix, a
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matrix of all second order derivatives with respect to its parameters). As this can be

computationally expensive, the Quasi-Newton approach uses an approximation of the

inverse Hessian matrix, Li [75]. The parameters Θi are updated as follows:

Θi+1 = Θi + αi · Li ·
∂C

∂Θ

∣∣∣∣Θi . (5.14)

Conjugate gradient descent

The conjugate gradient does not require the calculation of second order derivatives but

instead uses the previous search direction as an additional term to update in the next

iteration:

ui+1 =
∂C

∂Θ

∣∣∣∣Θi + ui. (5.15)

This method has been shown to converge faster than the gradient descent method [75].

Multi-resolution approach

Due to image registration being an ill-posed problem with many possible solutions, a

standard approach in optimisation is to use a multi-resolution approach [88]. For this

purpose, the registration is split into several steps, starting with a coarse CPP grid to

model coarse deformations and subsequently refining the deformation field, registering

smaller structures, by using finer CPP grids. Multi-resolution can speed up convergence,

reduce the number of examined transformations and avoid local minima. This is also

called a hierarchical or pyramidal approach.

Block-matching approach

Commonly in rigid and affine registration approaches, one assumes a global relationship

between the intensities in the fixed and the moving image, defines similarity as described

above and finds the optimal transformation parameters according to equation (5.12). A

problem with this approach is that a global optimisation is in general not straightforward

due to numerous local minima of the cost function, as well as imaging artefacts that

remove a global relationship between image intensities. To overcome these problems,

several groups used a block-matching based approach [99, 111]. After dividing both

images into equally sized blocks, this block-matching algorithm consists of two steps:

(1) finding correspondences between blocks of the two images to register

(2) extracting parameters from these correspondences for global transformation (rigid:

rotation and translations; affine: rotation, translation, scaling and shearing).
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For step (1) each block ai is compared to blocks bm in a pre-defined neighbourhood and

the most similar block bi in terms of some pre-defined similarity measure is chosen as

the corresponding block. In step (2), the optimal global transformation parameters Θ̂

can be estimated by a least square fit of the residuals ri = ai − T (bi):

Θ̂ = arg min
Θ

N∑
i

||ri||2, (5.16)

with N being the total number of blocks. However, as this is sensitive to outliers, Modat

et al. [99] propose to use a least-trimmed-square method instead:

Θ̂ = arg min
Θ

k∑
i

||ri:N ||2 = arg min
Θ

p·N∑
i

||ri:N ||2 (5.17)

where ri:N are the residuals, sorted according to magnitude and k = p ·N with p denoting

the fraction of total blocks to be used.

Initialisation for deformable registration approaches:

Due to the ill-posed nature, in particular of deformable registration, it often needs a

good initial position to converge to an optimum. For this purpose, a common approach

is to initialise deformable registrations with a global registration (rigid or affine) and

refine the transformation by a subsequent deformable registration [93].

5.2.3 Image registration software

5.2.3.1 Image registration in NiftyReg

I performed the registration using UCL’s software tool NiftyReg. The choice of parameters

in the following was justified by a combination of previous work in this area and

an exploratory approach for the data used in this study. Table 5.1 lists the chosen

parameters.

5.2.3.2 Image registration in RayStation

Since RayStation is a commercial TPS, I did not have access to the source code. There

is no option to adapt parameters in RayStation as it provides a general-purpose solution.

The registration is initialised with a rigid registration. The deformable registration

is based on a hybrid solution between shape- and intensity-based registration called

ANACONDA (ANAtomically CONstrained Deformation Algorithm). The algorithm

is described in detail in Weistrand and Svensson [157]. The cost function incorporates
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Table 5.1: Image registration parameters used for NiftyReg in this study.

affine deformable comments

step 1 2

algorithm block-matching free-form
deformation

# resolution levels 2 3

resolution [mm3] registration with
original resolution
did not improve
accuracy

(1) 2x2x4 4x4x4
(2) 1x1x4 2x2x4
(3) - 1x1x4

CPP/block size changed default to
real-world instead of
voxel coordinates
due to anisotropy

(1) 4x4x4 voxels 10x10x10mm3

(2) 4x4x4 voxels 5x5x5mm3

(3) 4x4x4 voxels 2.5x2.5x2.5mm3

similarity measures NCC NCC most suitable metric
in previous work for
registering images of
the same modality
[13]

penalty terms - bending energy
(weight 0.005)

- Jacobean
determinant
(weight 0.0001)

optimiser conjugate gradient
descent

conjugate gradient
descent

other parameters p = 80% (eq.(5.17)) α = 0.0051
(eq.(5.9))

p as recommended in
the original paper
[98]

the NCC as similarity measure and a penalty function to ensure smoothness and avoid

folding. Furthermore, it incorporates a constraint based on the shape of pre-defined

controlling ROIs.

5.2.4 Automated segmentation

The automated segmentation is based on the software tool NiftySeg. To benchmark the

auto-segmentation algorithms, I also looked at atlas-based segmentation implemented in

the commercially available TPS RayStation.

In theory, an atlas-based approach only requires one reference image. However, due

to substantial anatomical variations between individual patients, it has proven to be

beneficial to use multiple reference images in the creation of the atlas database [56, 143].
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In the following, I define an atlas as an MR image, paired with segmented ROIs. I call

the previously unseen MR image the target image. Atlas-based segmentation consists of

two major steps:

(1) image registration of all library images to the target image

(2) atlas selection or fusion of individual segmentation results from each atlas to a

joint segmentation of the target image.

Image registration algorithms were discussed in the previous sections. The following

section provides an overview of atlas selection and fusion methods.

5.2.4.1 Atlas selection and fusion

After the registration of all library images to the target image, one can use different

approaches to merge the information obtained from each library image into one seg-

mentation result. I used NiftySeg and developed automated scripts to compare three

atlas selection and fusion approaches to obtain the final segmentation result. In all

three approaches, I determined the similarity between two images by calculating the

NCC coefficient. Figure 5.3 illustrates the roadmap to atlas-based segmentation and,

in particular, shows the three different approaches used in this work, namely the best

atlas approach (approach A), a weighted majority voting approach (approach B) and an

approach called STEPS (approach C).

Approach A: best atlas

In the best atlas approach (approach A), the library image that was most similar to

the target image was selected. The auto-segmented ROIs were obtained by warping

the ROIs from the library image to the target image, using the DVF from the image

registration.

Approach B: weighted majority voting

In this approach, the labels of the registered library images were combined into a single

label with a weighted majority voting on a voxel-by-voxel basis. The weights were

derived locally from the similarity between library and target image [13]. In this context,

locally was defined as the application of a Gaussian kernel with a standard deviation

(SD) of 2.5 voxels around each voxel. I call this the multi-atlas weighted majority voting

(maWMV) approach.
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Approach C: STEPS

Approach C was the multi-atlas Similarity and Truth Estimation for Propagated Seg-

mentations (maSTEPS) [15], which is closely related to the well-established STAPLE

method [155]. STEPS mainly consists of seven steps:

(1) All library images are registered to the target image.

(2) For each voxel, the n library images which locally are most similar to the target

image are chosen, where local is defined as in approach B.

(3) An initial ground truth estimation of the ROIs is determined using a majority

voting approach.

(4) The sensitivity and specificity with respect to the initial segmentation in (3) are

determined for the chosen atlases.

(5) The ground truth estimation of the ROIs is updated with a maximum likeli-

hood estimation using the sensitivity and specificity of the individual atlases as

parameters.

(6) In the ground truth estimation, an MRF is used to enforce locally connected

regions. If the strength of the MRF is too large, small details can be lost, if it is

too small, isolated segmented regions can occur.

(7) If a pre-set fraction of atlases agrees on a label, this voxel is declared as solved

and removed from the ground truth estimation.

(8) Steps (4) to (7) are repeated until convergence.

I chose n=15 for step (2), a fraction of 95% for step (7) and set the strength of the MRF

to 1, following the parameters recommended in [15].

Atlas-based segmentation in RayStation:

RayStation includes the option to create a library of images and perform an atlas-based

segmentation on unsegmented images. After registering all atlas images to the target

image, the N best atlases are used in an atlas fusion method to segment the target

image. The user can set N. The details on the exact approach to atlas fusion are unclear,

RayStation only states in their user manual that the fusion is done in an iterative process,

initialised with a weighted majority voting. I selected N as the total number of atlases

available.
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5.2.5 Computation time

I determined computation times for programme execution on an Intel® Xeon® CPU

E5-1660v3 (3GHz) processor by averaging the time over multiple runs. A programme

execution included the image extraction time, image registrations between the target

image and individual atlases from the library, as well as the atlas selection or fusion to

obtain the final segmented ROIs for the target image.

5.2.6 Evaluation

To estimate and compare the performance of auto-segmentation algorithms, I followed a

9-fold cross-validation strategy. For each fold, I removed three distinct images from the

library to be used as test images. The remaining 24 images compromised the library of

atlases.

5.2.6.1 Geometrical evaluation

As the first indication of agreement, I calculated the volume of each auto-segmented

ROI, averaged over all patients and compared to the volume of the manually segmented

gold standard ROIs. Furthermore, I calculated four well-established geometric measures

between the auto-segmented and the gold standard ROIs: the DSC [29] for volumetric

differences, as well as the standard HD and the HD95 and the MSD [115] for distance

related differences. Details on geometric measures as well as the evaluation of auto-

segmentation methods can be found in chapter 4. I benchmarked the approaches by

comparing it to the inter-observer variability, as well as the commercial algorithm in

RayStation.

5.2.6.2 Statistical evaluation

The statistical analysis was performed using Student’s t-test, as described in the previous

chapter 4.
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unseen image (target)

image registration

database of MR images
with corresponding seg-

mented ROIs (atlas database)

atlas selec-
tion/fusion

deformable
vector fields

auto-segmented ROIs

calculate similarity
(registered atlas
to target image)

assign weights ac-
cording to similarity

weighted ma-
jority voting

select atlas with
highest similarity

ranking according
to similarity

selection of
best n atlases

initial ground
truth estimate

performance
estimation

weighted votingupdated ground
truth estimation

approach Aapproach Bapproach C

Figure 5.3: This figure shows a flowchart of the atlas-based segmentation approaches used
in this work. The top part shows the general concept of auto-segmentation with the image
registration of the unseen image to all atlas images, and, using the deformable vector fields
from this process, the prediction of the segmented ROIs through atlas fusion or selection. The
bottom part details the three atlas selection and fusion approaches used in this work.
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5.3 Results

5.3.1 Computation time

The bottleneck of atlas-based segmentation concerning computation time is the image

registration. One image registration took 5 minutes on average. As multiple image

registrations were performed sequentially, this led to a total computation time of under 2

hours (23 registrations at 5 minutes each). The time attributed to selecting the best atlas

in approach A did not add any significant time. The atlas fusion for approaches B and

C added less than a minute in total. In RayStation, the full process took approximately

2 minutes.

5.3.2 Geometric evaluation

Figure 5.4 provides four typical examples from four different patients for a qualitative

comparison of all three auto-segmentation approaches, as well as the commercial approach

in RayStation, to the gold standard. The three multi-atlas approaches (rows 2, 3 and

4) clearly outperformed the best-atlas approach (first row) in all shown cases. Visually,

RayStation leads to a comparable performance as the two multi-atlas approaches.

As the first indication of agreement, I calculated the volume of the automatically and

manually segmented ROIs, averaged over all patients. Table 5.2 lists the mean volume,

as well as the SD for all ROIs and segmentation approaches.

Table 5.2: Automatically segmented mean volumes with standard deviations for all approaches
and ROIs with comparisons to manually segmented (gold standard) volumes.

ROI manually segmented approach auto-segmented
volume [cm3] volume [cm3]

right parotid 42.42±14.66 A (best atlas) 41.92±12.21
B (maWMV) 39.92±9.29
C (maSTEPS) 49.92±10.50
D (RayStation) 41.91±7.41

left parotid 42.24±13.46 A (best atlas) 42.36±11.50
B (maWMV) 40.21±9.23
C (maSTEPS) 50.36±10.85
D (RayStation) 43.39±7.78

spinal cord 6.21±1.54 A (best atlas) 6.62±1.46
B (maWMV) 6.00±1.22
C (maSTEPS) 10.33±1.83
D (RayStation) 5.50±0.98

mandible 55.93±12.62 A (best atlas) 49.35±11.11
B (maWMV) 50.80±11.98
C (maSTEPS) 60.12±11.75
D (RayStation) 55.95±9.08
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Table 5.3: Geometric evaluation for all ROIs and auto-segmentation approaches: mean values
for DSC, HD and MSD. All mean values have been calculated by averaging over all 27 patients.
For a reference, I also include the inter-observer variability (IOV), derived from the manual
contours of three different experts, and compare to the approach in the commercial system
Raystation (RS).

ROI method DSC HD [mm] MSD [mm]

right A 0.79±0.04 28.17±15.38 2.54±1.13
parotid B 0.85±0.04 17.83±9.95 1.65±1.08

C 0.83±0.05 16.48±8.88 2.03±1.03
RS 0.81±0.06 17.33±10.72 2.28±1.31
IOV 0.84±0.04 10.76±4.35 1.40±0.45

left A 0.80±0.04 18.05±4.86 2.01±0.56
parotid B 0.85±0.03 14.98±6.88 1.39±0.54

C 0.84±0.04 13.96±5.38 1.69±0.58
RS 0.83±0.04 14.39±6.11 1.89±0.65
IOV 0.83±0.04 10.94±3.75 1.59±0.63

spinal A 0.73±0.10 15.74±10.54 2.50±2.31
cord B 0.83±0.06 11.98±11.41 1.65±1.57

C 0.73±0.12 15.03±11.92 2.33±2.01
RS 0.74±0.10 14.76±10.56 2.02±1.49
IOV 0.79±0.07 7.12±5.15 1.55±0.81

mandible A 0.74±0.08 16.72±8.02 1.49±0.63
B 0.84±0.04 12.16±5.68 0.83±0.24
C 0.84±0.04 10.66±4.72 0.95±0.29
RS 0.81±0.06 12.06±4.00 1.14±0.44
IOV 0.85±0.04 8.94±3.16 0.92±0.45

The intervals of mean values ± 1 SD of manually and auto-segmented volumes

overlapped for all ROIs and auto-segmentation methods, besides for the spinal cord with

approach C (maSTEPS), where the auto-segmentation approach tended to over-segment

in comparison to the manual approach. There was also a trend for the other ROIs

towards larger segmented volumes for this approach.

Figure 5.5 illustrates boxplots of the DSC, HD and MSD for all ROIs and auto-

segmentation methods The stars indicate statistical significance. Table 5.3 lists the

mean and standard deviations for all applied geometric measures. The inter-observer

variability was included as a reference value.

The mean DSC for approach A ranged from 0.73 to 0.80. I found statistically

significant improvements when using the multi-atlas approaches B and C with a mean

DSC larger than 0.83 for all ROIs, except for the spinal cord when using approach C.

Differences between the mean DSC values ranged from 0.06 for the parotids to 0.10 for

the mandible and the spinal cord. The approach in RayStation led to a mean DSC of
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0.74 to 0.83. This finding was comparable to the multi-atlas approaches, where approach

B outperformed RayStation by a small difference in terms of the DSC of 0.03 to 0.09.

The superior performance of the multi-atlas approaches also held for the mean MSD

with 1.49 to 2.54mm (approach A) compared to 0.83 to 2.03mm (approaches B and C).

With a mean MSD of 1.14 to 2.28mm for the approach in RayStation, the performance

of the multi-atlas approaches was again similar, with approach B slightly outperforming

RayStation with a small difference in the mean MSD of 0.31 to 0.63mm. Additionally,

this was also the case for the mean HD with 15.75 to 28.17mm (approach A) compared

to 11.98 to 17.83mm (approaches B and C), however, in this case, the differences were

not as substantial as for the other measures. The same as for the DSC was also true

for distance-related measures: the performance of approach C for the spinal was not

significantly better than the other two approaches.

I found a trend towards smaller SDs for all quantitative measures and ROIs when

applying multi-atlas approaches. When using the multi-atlas approaches (B and C),

the mean values of all geometric measures for all ROIs were within one SD of the

inter-observer variability. The best-atlas approach (A) had lower accuracy than the

inter-observer variability in case of the right parotid and the mandible.
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Figure 5.4: This figure shows in each column a typical example comparing the manually
segmented ROIs (light blue) to approach A (dark blue, first row), approach B (red, second row),
approach C (green, third row) and to the approach in Raystation, approach D (yellow, fourth
row), respectively. Each example originates from a different patient image.
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Figure 5.5: Boxplots of the DSC, HD and MSD for all OAR (x-axis) and automated segmen-
tation approaches (A in blue, B in red and C in green). The boxes indicate the interquartile
range (IQR), the whiskers extend to the minimum and maximum values. Outliers are defined as
data points beyond 1.5 IQRs from the IQR, denoted with a plus sign. Stars indicate statistical
significance (p<0.05/3).
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5.4 Discussion

I investigated the application of different atlas-based methods to the segmentation of

OARs and benchmarked them with a commercial atlas-based approach as well as the

inter-observer variability.

5.4.1 Geometric evaluation

I compared three approaches, approach A (bestAtlas), approach B (maWMV) and

approach C (maSTEPS). Both multi-atlas approaches B and C outperformed approach

A in terms of the geometric accuracy (DSC, HD95 and MSD). This finding is in line with

other published studies [26, 56, 143]. Comparing the two multi-atlas approaches B and C,

there was no clear benefit of using one or the other, although approach B seems to have

higher accuracy in most cases. As these two approaches only differ in the atlas fusion

method, one can conclude that for the data utilised in this study, the performance of

atlas-based approaches is mainly influenced by the quality of the image registration and

choosing a local instead of a global approach (atlas fusion in the multi-atlas approaches

versus global atlas selection in approach A).

The HD was not a reliable measure for the geometric accuracy of the data used

in this study. As this measure provides the maximum distance between ROIs, it is

susceptible to outliers and is hence not a good representative of the overall geometric

accuracy (see chapter 4).

The multi-atlas approaches had similar performance compared to the commercial

approach in RayStation. Approach B outperformed RayStation with a small difference

in all geometric measures.

Table 5.4 lists mean reported geometric measures to compare my results with

published auto-segmentation studies. The majority of the reported studies used CT

scans. There were only three studies on auto-segmentation of H&N MR images [149,

154, 162]. Except for approach C for the spinal cord, the mean DSC was larger than 0.83

and the mean MSD smaller than 2mm for the multi-atlas approaches. The developed

approaches were, therefore, comparable to the reported values in table 5.4. Furthermore,

all geometric measures were within one SD of the inter-observer variability that has

been determined for the data in this study. Published results for the HD are sparse and

have significant variations. This study here is the only one reporting on the HD for the

mandible. For the parotids, my results are comparable to Daisne and Blumhofer [26]

and Fritscher et al. [43]. For the spinal cord, I found a lower HD than Hoang Duc et al.

[63]. The segmentation accuracy in terms of the DSC of the mandible was slightly worse

in my approach compared to reported studies [56, 79, 119]. This may be attributed to
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Table 5.4: This table lists geometric measures (mean DSC, mean HD and mean MSD) reported
for the ROIs of this work. The mean values for the parotids are averaged between the left and
right parotid.

ROI DSC HD[mm] MSD[mm] mod. #pat. study

paro- 0.80 23.11 2.28 MR 27 this study (A)
tids 0.85 16.41 1.52 MR 27 this study (B)

0.84 15.22 1.86 MR 27 this study (C)
0.82 15.86 2.09 MR 27 this study (RS)
0.79 - 4.97 MR 14 Wardman et al. [154]
0.77 - - CT 10 Beasley et al. [4]
0.65 45 - CT 100 Hoang Duc et al. [63]
0.84 13 - CT 18 Fritscher et al. [43]
0.91 3.46 0.31 MR 15 Yang et al. [162]
0.72 15 2.5 CT 20 Daisne et al. (2013)
0.79 - - CT 5 La Macchia et al. [79]
0.79 - 2.5 CT 10 Teguh et al. [143]
0.83 5.8 - CT 25 Qazi et al. [119]
0.86 4.95 - CT 25 Pekar et al. [115]
0.68 - - CT 13 Sims et al. [134]
0.85 - - CT 10 Han et al. [56]

spinal 0.73 15.74 2.50 MR 27 this study (A)
cord 0.83 11.98 1.65 MR 27 this study (B)

0.73 15.03 2.33 MR 27 this study (C)
0.74 14.76 2.02 MR 27 this study (RS)
0.37 - 17.5 MR 14 Wardman et al. [154]
0.75 40 - CT 100 Hoang Duc et al. [63]
0.81 - - CT 5 La Macchia et al. [79]
0.78 - 2.3 CT 10 Teguh et al. [143]
0.75 - - CT 10 Han et al. [56]

mandible 0.74 16.72 1.49 MR 27 this study (A)
0.84 12.16 0.83 MR 27 this study (B)
0.84 10.66 0.95 MR 27 this study (C)
0.81 12.06 1.14 MR 27 this study (RS)
0.86 - - CT 5 La Macchia et al. [79]
0.93 - 2.64 CT 25 Qazi et al. [119]
0.78 - - CT 13 Sims et al. [134]
0.9 - - CT 10 Han et al. [56]

the fact that the published studies were conducted using CT images. As the mandible is

a bony structure, it is more clearly visualised on CT images.

The results published by Yang et al. [162] demonstrate a superior performance of

their algorithm. They used an atlas-based approach, refined by a machine learning

post-processing step. However, in contrast to my study, they applied their approach

to the auto-segmentation of post-RT MRIs using pre-RT MRIs from the same patient.

86



Atlas-based segmentation 5.4 Discussion

This resulted in a smaller expected variance between atlas and target images.

The performance of approach C for the spinal cord was worse than for the other

multi-atlas approaches. In a closer analysis, I found that it tends to segment the spinal

cord on more slices than given in the manually segmented ROIs. The brainstem is a

continuation of the spinal cord towards the top of the head. With including information

on the location of the brainstem in the segmentation process, I expect to solve this

over-segmentation problem.

From this study, one can conclude that both multi-atlas approaches and RayStation

can segment the investigated ROIs accurately enough. The approach in RayStation was

faster than our current implementation of the multi-atlas methods.

5.4.2 Limitations and future work

Although I have shown in chapter 4 that calculating the dosimetric effect of auto-

segmentation is a more accurate assessment of its quality than purely geometric measures,

there was not enough time to do this within the scope of this thesis and it is therefore

left for future work.

One limitation of this study was the relatively small number of available training data.

Considering the substantial appearance variations between different patients’ anatomies,

a larger database would be necessary to account for these variations. However, a

larger database would not invalidate the conclusions on the accuracy of the atlas-based

segmentation. Instead, one would expect a higher geometrical accuracy, as more variation

in the library will also more likely include images similar to the target image.

Furthermore, due to the small imaging coverage of the patients’ anatomies in the

superior-inferior direction, I could only include four OARs in the analysis. Treatment

planning of HNC requires the segmentation of more organs at risk such as the optical

structures and the brainstem. However, other ROIs can easily be included in this

algorithm without any adjustments.

In this work, I looked at the segmentation of OARs which are similar in terms of

shape and location for different patients. Segmentation of target volumes, however, is

challenging with atlas-based segmentation due to substantial variations in shape, size

and location. Due to these reasons, atlas-based segmentation is likely to fail for the

segmentation of target volumes and hence, other methods, such as described in chapter 6

need to be employed.

It is a known problem that the evaluation of auto-segmentation suffers from the

lack of ground truth. While I determined the inter-observer variability to provide an

estimate of the upper bound on the desired auto-segmentation accuracy, I compared

to the contours of one expert. This was the expert whose contours were used to create
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the atlas for the auto-segmentation. Previous publications suggested combining the

contours of several experts into one joint contour, for example, by using an approach

called Simultaneous Truth and Performance Level Estimation (STAPLE) [155]. With

STAPLE one could obtain a gold standard that might be closer to the unknown ground

truth by considering the agreement between different experts on the absence or presence

of the ROI at a particular location within the image. In future work, one could consider

using the STAPLE of several observers as the gold standard ROIs, both, as input for

the atlas-based segmentation, as well as a reference for comparison purposes.

A limitation of the atlas-based segmentation approach is the computation time.

With computation times of several minutes, this approach scales with the number of

atlases used in the database and would not be suitable for an online workflow. However,

the use of a multi-atlas approach for the offline segmentation of pre-treatment images

would already represent a significant time-gain compared to manual segmentations

which can take up to several hours. In an adaptive RT workflow, one could then use

previous, already segmented, images of the same patient in a single-atlas approach, which

would necessitate the registration of only one image to the target image and reduce

time significantly to a few minutes. I furthermore expect that one could significantly

reduce the registration time by changes in the algorithm itself, e. g. by parallelising

image registrations for different library images and cutting down the time for the affine

registration.

5.5 Conclusion

This study showed that multi-atlas approaches could achieve a geometric accuracy

in the range of the inter-expert variability for the imaging data used. I additionally

benchmarked the accuracy with a commercial atlas-based approach in the treatment

planning system RayStation and achieved a comparable, if not better, accuracy. For

example, the segmentation of the parotid glands achieved an average DSC of 0.85±0.05
for the multi-atlas approach of this study compared to 0.82±0.07 using the approach in

RayStation. All multi-atlas approaches outperformed the simple best-atlas approach.

This study showed that atlas-based auto-segmentation approaches could achieve

clinically acceptable results. While the computation time is currently too large for an

application in an online workflow, it can be used for an offline treatment planning while

reducing the time burden to the clinician significantly.
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Chapter 6

Deep learning-based algorithms

The work presented in this chapter aimed to investigate the feasibility of, as well as to

design and develop deep learning-based methods for the segmentation of head and neck

MR images. The nature of this work was exploratory, where I applied established ap-

proaches which have been shown to work well in other applications and made adjustments

accordingly. I furthermore explored the potential of deep learning approaches to handle

small annotated datasets, which is a very commonly encountered problem in medical

imaging and in particular radiotherapy. For this purpose, I designed dedicated methods,

able to overcome these limitations.
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6.1 Introduction

Deep learning is a group of machine learning approaches that learn to abstract data

hierarchically, composing multiple non-linear operations. The underlying aim is to learn

a function which maps input data to outputs by presenting many example cases to the

algorithm. For instance, one might want to develop an algorithm that can recognise the

type of animal shown in an image (see figure 6.1). For this purpose, one could train an

algorithm, represented by the black box in this figure, that can recognise that the image

shows a cat.

In traditional machine learning approaches, such as support vector machines or

random forests, features that are used to guide this process need to be hand-crafted and

require extensive expert knowledge. For instance, in the cat classification example in

figure 6.1, the black box would be fully designed to detect hand-crafted features which

one associates with a cat, such as a fur, the eyes, the nose or the ears. In deep learning,

these features are learned directly from the data. By feeding many images into the

"black box" and telling it whether it was an image of a cat, the algorithm learns to

detect cats in new images. This process can be compared to how a child would learn

to recognise a cat: its parents would teach the child how a cat looks like by "labelling"

many examples of cats in real life or images. In medical imaging, a radiologist has seen

many MR images and learned how a specific ROI looked like before being able to detect

these regions of interest in new images.

In this work, I focused on CNNs, which are learning complex functions through

convolutional operations, designed to detect specific patterns or features in the input

data. CNNs have shown great success in solving computer vision tasks, such as object

detection and segmentation. Applications of CNNs to the segmentation of ROIs on MR

images are still in their infancy. Litjens et al. [92] provide a detailed review of recent

input image

algorithm

cat

output

Figure 6.1: An example of a classification problem: a cat image is fed into the algorithm,
whereas the aim of the algorithm is to predict that a cat can be seen in the image.
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publications in the field of medical image analysis.

Despite first developments of CNNs already in the 1980s [44] and first applications

in the early 1990s by [86], they only became popular recently. The main breakthrough

was in 2012 when Krizhevsky et al. [78] won the popular ImageNet challenge [28] by a

large margin. This breakthrough can mainly be attributed to the lack of high quality

annotated training data previously and the only recent universal availability of hardware

improvements in terms of GPUs and computational power.

Deep learning is a rapidly growing field with many new publications each day. The

field has seen a wide range of applications, from outperforming humans at computer

games to automatically driving cars and medical image processing. Therefore, I focus

on introducing the main concepts in deep learning and mention only publications that

are closely related to my work. I refer the interested reader to Goodfellow et al. [50],

providing an in-depth introduction to the concepts behind deep learning, and Litjens

et al. [92], giving a broad overview of recent publications of applications in the field of

medical imaging.

Although deep learning has shown promising results for many tasks, the interpretabil-

ity, i. e. identifying how a model makes a prediction, is still challenging. Deep learning

is often described as a black box: data goes in (in our example, the cat image) and a

decision comes out. However, the processes happening between the input and output

are difficult to grasp and often very complex. This "black box"-phenomenon renders

research in this field still empirical.

The aim of the presented work in this chapter was to develop and investigate deep

learning-based methods applied to the segmentation of the parotid glands in HNC MR

images. Section 6.2 introduces the basic building blocks and concepts behind CNNs,

which are essential to understand the following sections. This introduction is mainly

derived from Goodfellow et al. [50] and Litjens et al. [92]. I then present results on

auto-segmentation with CNNs, applied to the exemplary case of the parotid glands, in

section 6.4. Afterwards, I address the problem of a lack of annotated training data by

implementing two approaches: transfer learning (see section 6.5), as well as synthetic

data generation (see section 6.6). Most of this work has been submitted as abstracts to

peer-reviewed conferences and was accepted as oral presentations (see appendix A.2).

Although I have shown in chapter 4 that calculating the dosimetric effect of auto-

segmentation is a more accurate assessment of its quality than purely geometric measures,

there was not enough time to do this within the scope of this thesis and all presented

segmentation methods are therefore only evaluated in terms of their geometric accuracy.
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6.2 A short guide to convolutional neural networks

The following sections 6.2.1 to 6.2.4 provide an overview of the basic concepts in deep

learning, necessary to understand sections 6.4, 6.5 and 6.6. I first introduce the basic

building blocks of CNNs in 6.2.1. Section 6.2.2 describes how CNNs are trained and

how they can be used to infer predictions on unseen data.

An often encountered problem of the application of CNNs is overfitting. Overfitting

describes the situation where an algorithm is able to describe the training data well

but fails to infer good predictions on unseen data. This is particularly true when only

using small training datasets. Section 6.2.3 describes concepts on how to mitigate this

problem and introduces methods of regularisation. Finally, section 6.2.4 discusses a

challenging property of CNNs, the presence of many external parameters, also known as

hyperparameters, which need to be adjusted according to the specific application.

6.2.1 The basic building blocks of convolutional neural networks

A CNN is composed of multiple layers of non-linear operations. In contrast to traditional

machine learning approaches, features are not hand-crafted but learned by the algorithm

itself. Artificial neural networks are roughly modelled according to our understanding of

the human brain. In the top row of figure 6.2, the basic elements of an artificial neural

network are illustrated. A neural network is composed of multiple neurons, also knowns

as nodes, which are arranged in layers. A neuron is the basic unit of a neural network.

Like a neuron in the brain, it comprises a number of weighted inputs (dendrites), a

processing unit (cell nucleus) and an output (axon), which is the weighted sum of the

inputs and a bias unit. The connection of neurons are illustrated on the right of figure 6.2.

Conventionally, each input node is connected to each node in the consecutive layer.

These types of networks are also known as fully connected layers. The first layer is called

the input layer, whereas the last layer is called the output layer. In image classification

or segmentation problems, the input layer is a function of the voxel intensities. The

output layer is either an integer or a vector of integers for classification problems, a label

map for segmentation problems, or a number for regression problems. Any layer (one

or multiple) in between the input and the output layer is known as a hidden layer as,

unlike the input and output layers, these layers do not have a direct connection with the

outside world. Each hidden node is determined as a function of the weighted sum of all

nodes of the previous layer and a constant bias node (illustration on the top right of

figure 6.2. These linear terms are then passed on to a non-linear function σ. With input
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nodes xi, bias bi and weight matrix W, a node in the hidden layer is determined as

ai = σ

∑
j∈N

wijxj + bi

. (6.1)

The function σ is the so-called activation function. See more details in section 6.2.1.2 on

page 96. Weights and biases are usually randomly initialised and learned throughout

the training process by iteratively updating them (see section 6.2.2 on page 98).

The basic building blocks of CNNs are convolutional layers. Instead of connecting

each node in one layer to each node in the consecutive layer, connections are only local

(so-called sparse connectivity). The weights are composed of convolutional kernels that

are shared for the full layer. This property is different from fully connected layers, where

each element of the weight matrix is only used once in the network and llustrated in the

bottom part of figure 6.2. Objects that share similar properties but occur at different

locations in an image can, therefore, be detected by the same convolutional kernel, which

is shared in the layer. Furthermore, in this way, the number of parameters that need to

be learned is reduced considerably.

I introduce the terminology commonly used in applications of deep learning in the

following sections, guided with an example of the classification of a cat image.

Architectures of CNNs consist of three primary mathematical operations: convolu-

tional, (non-linear) activation and pooling. I briefly discuss each operation.

6.2.1.1 Convolutional operation

The purpose of a convolutional operation is to extract features from the input images.

In each convolutional layer, a series of so-called filters or feature detectors are defined

and convolved with the images. The resulting object is called a feature map. Figure 6.3

illustrates an example of the first convolutional layer for the classification of cat images.

Intuitively, a convolutional filter is a filter that leads to large values in the feature

map (input image convolved with filter) when a particular type of structure is present

in the image, such as an edge or corner. In the example of the classification of the cat

image in figure 6.3, earlier layers would detect edges and lines in the images through

multiple convolutional filters, proceeding to higher-order features such as the fur, eyes,

ear and nose in later layers and finally efficiently describing a cat. These convolutional

filters are learnt by the network, unlike in traditional machine learning approaches where

they are hand-crafted.

The following parameters define each convolutional operation:

• (spatial) filter size F: This is the size of the convolutional filters or kernels.
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Figure 6.2: Artificial neural networks: This figure illustrates the composition of a fully
connected neural network (top), compared to a convolutional neural network (bottom). On the
right, an illustration of how a hidden node is determined from the previous nodes is provided.

Commonly, squared or cubic filters with side lengths of 3 or 5 pixels or voxels in

each dimension, are used. In the example, the first layer uses a filter size of 3x3.

The depth of the filters is always equal to the number of channels of the previous

layer (e. g. 3 for coloured images), and a sum is performed over the depth elements.

The filter depth in hidden layers is equal to the number of applied filters in the

previous layer.

• number of filters: For each convolutional layer, not only one but multiple filters

are used to extract different features. The cat classification example applied 64

filters in the first convolutional layer.

94



Deep learning 6.2 Short guide to CNNs
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Figure 6.3: Convolutional operation for the example of the classification of a coloured cat
image. After decomposing the coloured image into its three colour channels, 64 filters are applied
to each of the colour channels. One example of such a filter is illustrated in the central part of
this figure. The feature map for each filter is derived from the sum over the channels, resulting
in 64 feature maps for this particular example.

• stride: The stride is the number of pixels/voxels that a filter moves at a time.

The example used a stride of 1.

• zero-padding: Due to the nature of convolutions, rudely applying the convolution

would reduce the size of the output in each operation by the "filter size minus 1".

To avoid this reduction, the input image can be padded with zeros around the

border, such that the filter is also applied to the bordering elements of the input

image. Commonly, a zero-padding equal to the "filter size minus 1" is applied.

The presented example employed a zero-padding of 2 to counter the size reduction

due to the convolutions.
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Figure 6.4: Activation functions commonly used in CNNs: the rectified linear function (solid
blue), the sigmoid function (dashed red) and the hyperbolic tangent function (dotted green).

6.2.1.2 Activation

A network of subsequent linear operations could mathematically be simplified by a

single linear layer and would not be able to learn anything non-linear. To introduce

non-linearity, a so-called activation function is applied. Commonly used activation

functions are the rectified linear function,

σrel(x) = max(0, x), (6.2)

the sigmoid function,

σsig(x) =
1

1 + e−x
(6.3)

and the hyperbolic tangent function,

σtanh(x) = tanh(x) =
ex − e−x

ex + e−x
. (6.4)

Figure 6.4 illustrates the activation functions. The rectified linear function has shown to

be most effective in recent works [50].

The task of the last layer is to turn any values produced in the cascade of the neural

network into values that can be interpreted by humans. In a classification problem,

this could the either "yes" or "no", a class label, or the probability of belonging to

a particular class. A sigmoid function yields a value between 0 and 1 which can be
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Figure 6.5: Cascade of layers leading to the prediction layer for the example of a classification
of a cat image. A softmax activation function (see equation (6.5)) is applied to obtain the
probability of the image belonging to a particular class (dog, cat, bird,...).

interpreted as a probability. For multiple classes, one can use the softmax activation

function:

σsoftmax,i,k =
e−xi∑k
j=1 e

−xj
(6.5)

with i being the class of interest, xi the feature vector from the previous layer for class i

and k the total number of classes.

In the cat classification example, the last layer would yield the probability of this

image belonging to a particular class, e. g. a cat, dog or bird as shown in figure 6.5.

6.2.1.3 Pooling

The purpose of pooling is to keep the essential information of each feature map while

discarding information, which is not relevant. Pooling uses some function to summarise

subregions. There are different types of pooling operations, for example, max-pooling or

average-pooling. A pooling kernel is slid over the image, where in each region, summary

statistics replace the individual pixels or voxels, that is, for max-pooling the maximum

value and for average-pooling the average value. The pooling kernel moves by one stride

size at a time. Figure 6.6 illustrates a max-pooling operation for the classification of a

cat image.

6.2.1.4 Receptive field

A receptive field is the size of a region that affects a particular feature. It is an important

quantity to determine how much of the surrounding voxels are taken into account in the

decision chain. For simplicity, I assume square sizes for the input, the convolutional and

the pooling filters in the following. With a kernel of size F and stride s, the receptive
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Figure 6.6: Pooling operation for the example of a classification of a cat image.

(square) field size rm of each layer m can be calculated as follows:

rm = rm−1 + (F − 1) · jm−1 (6.6)

with

jm = s · jm−1

r0 = 1

j0 = 1.

The variable jm can be interpreted as a jump between neighbouring features in terms

of input space coordinates. For the example of the classification of a cat image, the

receptive field after the first convolution has size rconv = 2 and after the pooling operation

rpool = 4. That means that any voxel in the 64 feature maps has "seen" 2x2 voxels of

the original image, whereas after the first pooling operation, any voxel in the pooled

feature maps has "seen" 4x4 voxels of the original image.

6.2.2 Training and prediction phases of neural networks

Neural networks need to be trained before predictions on new data can be inferred.

Training means to determine the best set of weights to maximise some performance

parameters of a neural network. After the training phase ends, the trained model, i. e.

the network with its fixed weights and biases, can be applied to unseen data to make

predictions. Figure 6.7 illustrates the primary two phases in CNNs with the example of

image segmentation.

Learning which weights optimise the desired performance measure is infeasible with a

brute-force approach as there are too many parameters in neural networks. The AlexNet,

the CNN introduced by Krizhevsky et al. [78] in 2012, which won the ImageNet challenge

by a large margin, has 60 million of these parameters, for example. Therefore, one needs
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Figure 6.7: This figure illustrates the two main phases for developing CNN-based approaches:
First, one needs to train the network to learn an optimal set of the weights by using many
example images (top part of figure). This is an iterative process. After training, the weights are
fixed and the testing images are fed into the network to generate an output (here: labels).

to find a more elegant solution to this problem. In supervised learning, one defines a

so-called cost or loss function L that quantifies the error between the desired output and

the network’s output. The aim is to minimise this error throughout the training process.

6.2.2.1 Data splitting

A general approach for the design and validation of a deep learning model is to split the

input data into training, validation and testing. The training data is used to learn the
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optimal weights of the network, which minimise the loss function. As this could lead

to overfitting to this particular set of data (read more in section 6.2.3), one generally

uses an independent validation set to test the performance of the model on unseen

data. If the model performance does not meet the desired accuracy, one can change the

model, i. e. adjust the hyperparameters, train the network again and test it again on the

validation data. This process is iterated until the model performance meets the desired

accuracy. However, this process can still lead to overfitting as the validation data was

used to find an optimal solution. For this purpose, one can use a further dataset, the

test dataset, which has neither been used in the training, nor the validation phase. The

developed model is fixed and the only purpose of the test dataset is to check the model

performance.

A problem with this approach is that, if the available dataset is small, the split into

training and testing is highly biased and furthermore, the training dataset becomes

even smaller as not all the data is used to find the best model. K-fold cross-validation

mitigates this dilemma by splitting the dataset into k equally sized groups. In each fold,

one group is used as the validation data and the remaining k-1 groups are used to train

the model. This process is repeated k times and performance is induced by averaging

over all folds.

6.2.2.2 Loss functions

A suitable loss function is highly dependent on the method and data at hand. In general,

these can be classified into regression and classification loss functions. With Θ being the

network’s parameters (weights and biases), N the number of training examples, x(i) the

input values and y(i) the ground truth of the ith training example, the prediction of the

ith training example is defined as:

ŷ(i) : = σ(Θ, x(i)). (6.7)

Typical examples of loss functions in regression problems are the mean square error

(MSE):

LMSE =

N∑
i=1

(
y(i) − ŷ(i)

)
2

N
(6.8)

and the L1 loss:

LL1 =
N∑
i=1

∣∣∣y(i) − ŷ(i)
∣∣∣. (6.9)
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I restrict myself to binary classification problems for simplicity. All loss functions can

be easily extended to multi-class problems. Typical classification losses are the binary

cross-entropy:

LBCE = − 1

N

N∑
i=1

(
y(i) · log

(
ŷ(i)
)

+
(

1− y(i)
)
· log

(
1− ŷ(i)

))
(6.10)

or (for segmentation problems) the Dice loss:

LDice =

N∑
i=1

(
1−

2 ·
∑Nvox

k=1 (y
(i)
k · ŷ

(i)
k )∑Nvox

k=1 y
(i)
k ·

∑Nvox
k=1 ŷ

(i)
k

)
(6.11)

with the number of voxels Nvox. The Dice loss function has been introduced by Milletari

et al. [96] to account for highly unbalanced problems where the foreground in the image

(region of interest) only contributes to a small percentage of the full image. Other studies

use a weighted cross-entropy to account for this issue:

LwBCE = − 1

N

N∑
i=1

wfg

(
y(i) · log

(
ŷ(i)
)

+ wbg

(
1− y(i)

)
· log

(
1− ŷ(i)

))
, (6.12)

with wfg being the weight for foreground voxels, and wbg the weight for background

voxels. In general, loss functions need to be differentiable with respect to the weights

and biases in the optimisation process.

6.2.2.3 Optimisation algorithms

Most optimisation algorithms are based on calculating gradients of the loss function

with respect to the network’s parameters. A standard approach is the gradient descent

algorithm. With Θ =
(
(wl)l∈[1,Nw], (bk)k∈[1,Nb]

)
being the network’s parameters and

L(Θ) the loss function, one would like to solve the following problem:

arg min
Θ

L(Θ). (6.13)

As this is not solvable in an analytical way, one gradually decreases the loss function.

This is done by iteratively calculating the current slope of the loss function and moving

in the direction that decreases its value. The slope of the loss function is obtained

through its gradient with respect to its parameters:

∇ΘL =

(
∂L
∂w1

,
∂L
∂w2

, · · · , ∂L
∂wNw

,
∂L
∂b1

,
∂L
∂b2

, · · · , ∂L
∂bNb

)
. (6.14)
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The parameters are then updated as follows:

Θ 7→ Θ− α · ∇ΘL (6.15)

where α is the so-called learning rate, the amount by which the loss function is updated

in each iteration. This algorithm is referred to as gradient descent and a standard

approach in many optimisation problems. In practice, it is infeasible to follow this

simple approach. For each training example, one would need to calculate equation (6.15),

which can be computationally expensive. For this reason, one usually uses a variant

of this approach. Instead of computing the gradient over the entire training set, one

can calculate the gradient only for one training example, or a small number of training

examples. The number of training examples shown before updating weights is known as

the batch size. Following this approach is a stochastic approximation of the gradient

over the full training dataset and, therefore, the approach is called stochastic gradient

descent.

This iterative process of calculating gradients and updating the parameters is repeated

before a pre-defined stopping criterion is met. The deep learning term for one iteration

over the whole training dataset is an epoch.

Backpropagation

As the loss function is not a direct function of the network parameters, one cannot

directly calculate derivatives with respect to the network parameters. Instead, the

derivatives have to be calculated via chain rules. This process is called backpropagation,

as one calculates the error to a specific weight by starting from the output with the

error in the loss function and then subsequently "propagates" this error through each

layer of the network until one reaches the weight in question. This is done for every

weight in the network.

Advanced optimisation algorithms

The optimisation procedure above requires to carefully choose a learning rate α that

describes the step size made to update the parameters. This can be a challenge. As

illustrated for image registration problem earlier in figure 5.2 on page 72, if the learning

rate is chosen too small, it can take very long to reach a minimum and there is a high

risk to be stuck in suboptimal local minima. However, if the learning rate is too large,

convergence might not be achieved and one might get large fluctuations in the loss

function (overshooting over the minima). Furthermore, different parameters in the

network might require different individual learning rates. In the algorithms described
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above, the parameters are all updated at the same rate.

Several approaches address these problems. In the following paragraphs, I introduce

basic concepts and describe a popular algorithm called Adam [73] in detail, as this is

the approach I used in this work. More background information can be found in Ruder

[128].

Momentum Close to local minima, the surface of a loss function is generally much

steeper in some dimensions compared to others. One can visualise this by imagining

a long ravine, where the minimum is along the long axis of the ravine. This leads

to fluctuations in the loss function, up and down the edges of the ravine, and a slow

progression towards the minimum along the ravine. To prevent this, one can define an

additional term in the parameter update to help the optimiser move in the relevant

direction. This additional term is proportional to the past parameter update. With the

update ut at step t, the parameters are updated as follows:

Θt = Θt−1 − ut (6.16)

with

ut = γ · ut−1 + α∇ΘL(Θ) (6.17)

γ : momentum term, usually γ ≈ 0.9

This moves the parameter updates in the same direction as in a previous step and

decreases updates in another direction. Therefore, fluctuations in the loss function can

be reduced.

Adam: Adaptive moment estimation algorithm Adam was suggested by

Kingma and Ba [73] to address two main issues: biasing the update of the parameters in

the direction of the current gradient and individualising the size of the updates according

to individual parameters. The algorithm updates the network’s parameters by the first

and second moments of the gradient (i. e. the mean and the standard deviation): Let mt

be the first moment of the gradient at time t, vt the second moment and β1 an β2 the

decay rates for the moments, respectively,

mt =
β1 ·mt−1 + (1− β1) · ∇ΘL(Θ)

1− βt1
(6.18)

vt =
β2 · vt−1 + (1− β2) · (∇ΘL(Θ))2

1− βt2
. (6.19)
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The parameters are then updated as follows:

Θt = Θt−1 − ut

with

ut = α · mt

vt + ε
. (6.20)

The term ε prevents from dividing by zero when vt = 0. The moments are initialised

with zero: m0 = 0 = v0. The authors recommend the settings β1 = 0.9, β2 = 0.999 and

ε = 10−8 and a global learning rate α = 0.001. The first moment ensures moving with

the momentum, the second moment scales parameter updates.

There are various other algorithms, such as Adagrad [33], Adadelta [167] or RMSProp

[60]. The Adam algorithm has generally shown to be fairly robust and to perform well

for many applications.

6.2.2.4 Initialisation

Before training a neural network, the weights and biases have to be initialised. It is

crucial not to initialise the weights to the same value, as otherwise the gradients are

identical. Hence, it is important to initialise them to random values to circumvent this

problem. Another possibility of initialisation the weights is through pre-training: in

this case, the network has been trained using data from a different application. Instead

of random initialisation, these weights are then used to train the network for a new

application. This is a widespread technique called transfer learning [18]. I address this

in more details in section 6.5.

6.2.2.5 Summary: Basic training steps

In summary, training a neural network is composed of the following steps:

(1) initialise the network’s parameters (weights and biases)

(2) feedforward the network with training data in packages of a pre-defined batch size

to predict output

(3) calculate the error using a pre-defined loss function between the desired and the

predicted output

(4) backpropagate the error through the network for each network parameter
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Figure 6.8: This figure depicts the loss function as a function of the number of training epochs.
When developing CNN-based models, the training data (used to adjust weights) are generally
well represented by the data but may fail for unseen data (validation data). After a certain
number of epochs, the validation curve increases, while the training curve still decreases. A
method to mitigate overfitting is early stopping, as indicated in blue.

(5) update each network parameter with a step size defined by the learning rate using

an optimisation algorithm, e. g. stochastic gradient descent

(6) repeat steps (2) to (5) for a pre-defined number of iterations (epochs) or until a

stopping criterion is met

6.2.3 Generalisability and regularisation

Training neural networks can easily lead to overfitting to the training set, especially if the

training set is small or does not reflect the variance in the population data adequately.

Figure 6.8 illustrates the training and validation loss as a function of the number of

training epochs. After a certain number of epochs, the model still performs well for the

training data but deteriorates for the validation data. Regularisation can help reduce

overfitting and make the trained model generalise better. There are several techniques

for this, some of which I introduce in the following sections.

6.2.3.1 Input and batch normalisation

The input to a CNN is typically standardised to a common scale to help with a stable

training process. In the training, the inputs are multiplied with weights and biases are
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added. As typically all weights are updated with the same step size (learning rate) in

the backpropagation process, input standardisation helps the updates to the weights to

be of similar sizes.

As the training progresses, this normalisation may be lost, owing to different mag-

nitudes of features. This can slow down the training progress. Introducing batch

normalisation avoids this and furthermore leads to a regularisation, as features are

brought to a common range. Batch normalisation usually calculates the mean and

variance of features for each training batch and brings the features to a common mean

and variance.

6.2.3.2 Dropout

Another strategy to reduce overfitting is the so-called dropout method. Dropout randomly

drops nodes and their connections from the network with a pre-defined probability. In

each training iteration (epoch), different nodes may be dropped. This prevents nodes from

co-adapting too much: The value of the loss function decreases in each iteration. The

update of an individual node depends on the update of its connected nodes. Therefore,

nodes may change in a way to fix the mistakes of other, connected nodes. This would

lead to overfitting to the training dataset as this would not generalise well to unseen

data. By dropping nodes, this can be avoided as nodes cannot "rely" on the presence of

other nodes, and consequently, co-adaptation might be prevented.

6.2.3.3 Early Stopping

As the training loss can always be reduced but does not necessarily improve the per-

formance of the prediction on unseen data, one needs to choose the number of epochs

to train a network carefully. To avoid overfitting one can stop the training once the

performance on the validation data deteriorates. This is known as early stopping. The

point at which the training is stopped ideally is indicated in blue in figure 6.8. However,

in reality, the validation loss is generally not a smooth function and it is not straight-

forward to set a stopping criterion for when to stop the training. The validation error

might well decrease again after it has increased for a certain number of epochs. The

choice of a stopping criterion aims to balance training time versus generalisation error.

6.2.3.4 Data augmentation

A larger and representative training dataset helps the CNN model to generalise well to

unseen data. However, it is not always possible to obtain more training data. To address

this problem, there are several ways to increase the training data size by augmenting
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the data. Typical examples of data augmentations are to rotate, translate, mirror,

scale or deform the image, or scale the intensities values. Choosing the augmentation

approach is not a straightforward problem as data augmentation needs to cover realistic

transformations of the original training data and also cover the variability seen in the

full population data. I address this problem and introduce a novel approach to data

augmentation using generative adversarial networks in section 6.6.

6.2.4 Hyperparameters

Hyperparameters are parameters that need to be set before training and predicting

with a deep learning algorithm. The hyperparameters determine the architecture of the

network (e. g. number of layers, type of layers and size of filter) and the learning process

(e. g. optimiser, learning rate and stopping criteria). The number of hyperparameters

is generally large and depends on the application. For this reason, it is challenging to

fine-tune them carefully in order to obtain the best performance in terms of accuracy

and training time.

Most commonly, a manual or grid search is performed to explore the space of

hyperparameters, while another suggestion was to perform a random search [5].

6.2.5 Network architectures

All CNN architectures follow similar general design principles of a sequence of convo-

lutional layers and decreasing the spatial dimensions while increasing the number of

feature maps. Many innovative ways of constructing layers allow for efficient learning.

In this section, I introduce some key networks and key building blocks, commonly used

and relevant for this work.

The pioneering network by LeCun et al. [86], the LeNet, was composed of two

convolutional layers, intervened by average-pooling operations, and followed by a fully

connected layer, as illustrated in figure 6.9. The LeNet was developed to recognise

handwritten digits.

CNNs did not show many promising results until the breakthrough of Krizhevsky

et al. [78] in 2012 with their AlexNet, as illustrated in figure 6.10. AlexNet comprises

eight layers, with the first five being convolutional layers, intervened by max-pooling

layers, and finally three fully-connected layers.

After the introduction of AlexNet, new network architectures have mostly increased

in depth, i. e. by adding more layers. However, deeper networks are hard to train

due to the problem of vanishing or exploding gradients as gradients may increase or

decrease exponentially when backpropagated (see section 6.2.2.3) through the network
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Figure 6.9: LeNet architecture: The LeNet is composed of two convolutional layers, intervened
by average-pooling operations, and finished with a fully connected layer. The network was
develop to recognise handwritten digits, here an example of recognising the letter "A". Figure
courtesy: LeCun et al. [86].

Figure 6.10: AlexNet architecture: The AlexNet consists of eight layers - 5 convolutional
layers, intervened by max-pooling layers, and three fully connected layers. Figure courtesy:
Krizhevsky et al. [78].

[48]. Furthermore, the degradation of the network’s performance has been demonstrated

for deeper networks. Degradation describes the observation that the training error

deteriorates beyond a certain depth. While degradation was a counter-intuitive finding,

as one would expect a performance not worse than the shallower counterpart, approaches

to solving this problem have been suggested and led to the introduction of residual

networks [57].

Residual networks utilize short-cuts or skip connections, as illustrated in figure 6.11.

Instead of learning the function F(x), the output from a previous layer is added to

the output of a deeper layer. In the extreme case of vanishing gradients or redundant

functions, an identity mapping is learned and the network is equivalent to its shallower

counterpart.

The networks presented so far are compressing the information contained in images to

classify them as belonging to a particular class, or to predict some number in regression

problems. Image segmentation aims to label each pixel of an image with a corresponding

class. Stacking convolutional and pooling operations help the network to learn what can
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Figure 6.11: Residual block: this is an important building block of residual neural networks.
The output of an earlier layer is fed directly into a later layer via a sum. This allows for reducing
vanishing gradients, as well as developing deeper networks, without degradation of the training
performance (see text).

be seen in the image but loose information on where it can be seen. One way to segment

an image is to classify each pixel in the network separately [21].

Another way is to recover the information on where something is present in the

image. Modern segmentation networks typically consist of encoding and decoding parts,

where the encoding part learns about the "what" and the decoding part recovers the

"where" information. A widespread network for segmentation in biomedical imaging has

been introduced by Ronneberger et al. [126], which comprises an encoding or contracting

part and a decoding or expanding part. As I used this network in my work, I introduce

its components in detail. Figure 6.12 illustrates the architecture of the U-Net network.

It has approximately 15 million parameters.

The expanding part mirrors the contracting part, which gives it the u-shaped

architecture. The contracting path consists of repeated applications of convolutions,

(each followed by a ReLU activation) and max-pooling operations. Each pooling layer

in the contracting part is replaced by an upsampling or transposed convolution part in

the expanding part. There are various methods to conduct an upsampling operation:

nearest neighbour interpolation, bilinear or bicubic interpolation. Instead of manually

choosing the interpolation method, a U-Net learns how to upsample optimally by using

an operation known as transposed convolution. Dumoulin and Visin [34] provide more

details on how transposed convolutions work. Feature maps from the contracting part

are copied to the expanding part via skip connections. This feeds contextual information

into the location information branch, retaining the lost spatial information from pooling

operations. A 1×1 convolution in the last layer reduces the number of output channels

to the number of labels.

6.2.6 Software tools and libraries

Several open-source deep learning libraries have been developed that provide an efficient

GPU-implementation of essential operations in neural networks, allowing users to
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Figure 6.12: U-Net architecture: example for 5 different resolution levels, starting at x feature
channels and doubling the feature channels at each level (ending at 16x feature channels at
the lowest resolution). Each rectangle corresponds to a feature map. The feature channels are
denoted at the top of the rectangles. Striped boxes represent copied feature maps. The coloured
arrows denote different operations, as indicated in the legend. Due to the fully convolutional
nature of the network, the image input size is flexible.

implement ideas and focus on how to set up a particular network without needing

to reimplement the basic operations. The most popular ones include Tensorflow [1],

Keras [19] and Pytorch [113]. They all provide application programming interfaces,

mostly in the programming language Python.

6.3 General infrastructure

The aim of the presented work in this chapter was to investigate the feasibility of deep

learning-based approaches applied to the segmentation of OARs in HNC MR images.

We restricted this investigation to the segmentation of the parotid glands. The most

prevalent side effect for HNC patients is xerostomia [71, 82, 106], which is caused by

radiation damage to the salivary glands. Sparing the parotid glands in an RT treatment

could therefore significantly reduce complications [106, 156] and renders an accurate

segmentation is crucial. Moreover, parotid glands can vary significantly in shape and

size between patients.

I implemented all deep learning approaches in Python (version 3.6) using the open-

source libraries Tensorflow (version 1.10.0) [1] and Keras (version 2.2.2) [19]. For pre-

and postprocessing of input and output, I further used the python modules numpy
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(version 1.14.5), nibabel (version 2.3.0), scikit-learn (version 0.20.0) and scipy (version

1.1.0).

As discussed in section 6.2.1, many hyperparameters can be tuned, rendering it

impractical to determine the best ones in a grid search. For this reason, I started from a

deep learning-based approach that has been proven to work well in similar applications

and restricted myself to adapt only a few of the hyperparameters. Due to the small

amount of MR imaging data, I used an 80/20 split into training/validation data for

hyperparameter optimisation and validated the developed approaches in a 9-fold cross-

validation setting, where in each fold, 8/9 of the data was used for training and 1/9 for

testing purposes. This led to the training of 9 networks with a different combination of

training and testing data. This was different for the CT imaging data, as more data was

available, and hence, I used a 70/10/20 split into training/validation/testing for training

these networks. In contrast to the MR training, where multiple networks were trained

for each fold in the cross-validation, only one network was trained for the CT network.

For evaluation purposes, I used the geometrical evaluation tools, as described in

chapter 4. I did not perform any dosimetric evaluation, as the nature of this work was

exploratory. For clinical validation, one would need to follow the workflow as described

in chapter 4 and generate treatment plans for each set of auto-generated contours.
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6.4 Automated segmentation using a convolutional neural

network

6.4.1 Introduction

In the last two years, after I started looking into deep learning approaches, a few studies

were investigating the segmentation of ROIs in HNC, all of these applied to CT images

[16, 66, 97, 127, 145]. Table 6.1 lists details on these studies.

This work aimed to investigate the feasibility of using CNN-based approaches to

segment OARs on HNC MR images, and to determine the drawbacks and necessary

consequent steps to counter these drawbacks. For this purpose, I started from a

widespread network architecture [126] and investigated different techniques, such as

varying the dimensionality of the input (2D, 2.5D, 3D) and following a multi-modality

approach. Additionally, I studied the impact of standard deep learning techniques such

as the application of dropout, data augmentation and different loss functions. To the best

of my knowledge, I was the first to study CNN-based approaches for the segmentation

of OARs on HNC MR images.

6.4.2 Materials and Methods

6.4.2.1 Data acquisition and preparation

The 27 T1w and T2w MR images from MD Anderson, together with the manual

segmentation of the parotid glands served as input to the networks. For more details on

image acquisition parameters and image preprocessing steps, see chapter 3.

6.4.2.2 Neural network specifications

General settings

I chose the U-Net architecture [126] (5 resolution levels, starting at 64 features and

ending at 1024 features at the lowest resolution in the bottleneck), as it has proven to

be successful in many recent applications for medical imaging. The architecture of a 2D

U-Net is illustrated in figure 6.12 on page 110. I used the Adam method [73] to optimise

a Dice loss function as defined in equation (6.11) on page 101.

I explored the usage of dropout layers with various probabilities and placements within

the architecture of the U-Net. Furthermore, I introduced random data augmentations

(translations, rotations and mirroring). Both methods were described in section 6.2.3 as

a common strategy to mitigate generalisation problems. As I did not find any increase in

the model performance, I decided not to pursue these methods any further for this study.
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Table 6.1: An overview of published studies on the application of CNNs to the segmentation
of ROIs in HNC.

study # modality input data approach regions of interest

[66] 50 CT 2.5D (tri-planar
orthogonal
patches)

separate CNN per
ROI

spinal cord,
mandible, parotid
glands,
submandibular
glands, larynx,
pharynx, eye globes,
optic nerves, optic
chiasm

[145] 32 CT 3D (cropped
images to
patient contour)

multi-organ,
shape-constrained
U-Net with residual
blocks

brainstem, optic
chiasm, mandible,
optical nerves,
parotids, and
submandibular
glands

[97] 43 CT & MR 2D (orthogonal
patches)

6 2D CNNs, then
stacked

parotid glands

[16] 200 CT 3D patches multi-step, adapted
3D U-Net

spinal cord,
mandible, parotid
glands, oral cavity,
brainstem, larynx,
oesophagus,
submandibular
glands and the
temporomandibular
joints

[127] 157 CT 3D patches 3D U-Net submandibular
glands, parotid
glands, larynx,
cricopharynx,
pharyngeal
constrictor muscle,
upper oesophageal
sphincter, brain
stem, oral cavity and
oesophagus
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In addition, I employed two different loss function: Dice loss and weighted cross-entropy.

I did not see any difference between using a Dice or a weighted cross-entropy loss

function and therefore decided to use the Dice loss function as opposed to the weighted

cross-entropy, this loss function does not include any further hyperparameters.

The output of the U-Net is a segmentation map with values between 0 and 1,

providing the likelihood of a structure being present or not (in this case the parotid

glands). I chose to set everything above 0.5 to 1 and 0 otherwise.

Applying deep learning to 2D slices only considers image information in 2D planes.

3D volumes consume a large computational memory, and 3D convolutions have high

computational costs on the other hand, and therefore need to compromise at other

points. As a compromise, I first implemented a 2.5D network, where instead of using

2D slices as inputs, I used three adjacent slices to take into account information from

neighbouring slices. As another approach, I chose 3D volumes around the regions of

interest, where instead of feeding the full 3D volumes, I restricted the field of view in

the axial plane to the region of interest.

In MRI, different sequence parameters are used to manipulate the contrast of the

resulting images and highlight regions of interest. To exploit this, I implemented a

multi-modality approach, where I used the information from T1w images to guide the

segmentation of the T2w images. All approaches are detailed in the following paragraphs

and illustrated in figure 6.13.

2D approach

The input data to the 2D U-Net comprised the 2D axial slices of each 3D volumetric

imaging dataset. Each 2D slice was fed into the network, leading to 24 times 30 slices

for the training dataset in each fold. I trained the network for 60 epochs with a learning

rate of 10−4. The network is illustrated in the top part of figure 6.13.

Adjacent slices: 2.5D approach

In the 2.5D network, I fed the two adjacent slices as two additional input channels into

the network, as illustrated in the central part of figure 6.13. The network was trained

for 60 epochs and a learning rate of 10−4.

3D approach as a two-step process

Due to limitations in GPU memory and to focus the network on the relevant regions

of interest, I used 3D patches of 128x128x16 voxels (1x1x4mm3), centred at the centre

of mass of each parotid gland. To obtain the centre of mass for the testing data, I
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Figure 6.13: This figure illustrates methods A, B and D, all using the same network architecture
(2D U-Net with 5 resolution levels, starting at 64 features and ending at 1024 features at the
lowest resolution in the bottleneck). Each rectangle corresponds to a feature map. The feature
channels are denoted at the top of the rectangles. Striped boxes represent copied feature maps.
The coloured arrows denote the different operations as indicated in the legend. The output for
all three approaches is a 2D segmentation map.
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2D U-Net
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Step 1 : determine the centroid position of each parotid, extract 3D image patches

Step 2 : feed 3D image patches into 3D U-Net

Figure 6.14: 3D U-Net architecture: In the first step, a rough segmentation is performed
(using a 2D U-Net) to determine the location of the left and right parotid glands. From this,
3D patches centred at the centroid coordinate of each parotid are extracted and fed into a 3D
U-Net, as shown below in step 2.

performed a rough segmentation using a 2D U-Net as a first step. Figure 6.14 illustrates

the workflow of this approach. I used 3D convolutions instead of the 2D convolutions in

the previous approaches. Due to highly anisotropic voxels, I performed the convolution

in the first two levels with anisotropic convolutional kernels (3x3x1 voxels), as well

as max-pooling kernels (2x2x1 voxels). In all other levels, I used isotropic kernels

(convolutional: 3x3x3 voxels, max-pooling: 2x2x2 voxels).

I trained the network for 60 epochs with a learning rate of 10−4 in the first step,
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using downsampled images (128x128x30 voxels, 2x2x4 mm3 voxel size). The 3D network

was trained for 40 epochs with a learning rate of 10−5.

Multi-modality

To use complementary information on the regions of interest, I explored the usage of

other MRI contrasts to guide the segmentation. For this, I registered corresponding

T1w images to the T2w images and fed them into the network as two input channels.

The network is illustrated in the bottom part of figure 6.13. I trained the network for 60

epochs with a learning rate of 10−4.

6.4.2.3 Computation time

Run time was determined for programme execution on a single Tesla V100 with 16 GB

VRAM. I calculated the mean and average values from the individual run times of the

9-fold cross-validation. The inference time is stated per patient.

6.4.2.4 Geometric evaluation

To evaluate the geometrical accuracy of the U-Net approach, I chose a 9-fold cross-

validation, where for each fold, 3 MR images comprised the test data and the remaining

24 MR images the training data. Geometric differences between the ground truth and

the CNN-derived segmentations were evaluated by calculating the 3D DSC, HD and

MSD, as described in chapter 4. Due to their symmetry, I simultaneously segmented

both parotid glands and divided them into the left and right part in a post-processing

step.

6.4.3 Results

Figure 6.15 provides examples of the auto-generated contours overlayed with the manual

contours, comparing all four approaches (2D, 2.5D, 3D and multi-modality). The

rows represent the four approaches, whereas the columns are four different examples of

patients. The contours generally follow the manual contours well. The auto-segmentation

of the patient in the last column is a negative example for approaches C (3D) and D

(multi-modality), where for approach C, most of the left parotid is left out, being entirely

missed out for approach D. The patient in the second column is an example where it is

difficult to tell whether the auto-generated or manual contours are the more accurate

ones: the part included additionally for the right parotid in the auto-generated contours

in comparison to the manual ones might as well be part of the parotid gland which

might have been missed out in the manual procedure.
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Figure 6.15: This figure shows in each column a typical example comparing the manually
segmented parotids (light blue) to approach A (2D, dark blue, first row), approach B (2.5D, red,
second row), approach C (3D, green, third row) and approach D (multi-modality, yellow, fourth
row), respectively. Each example originates from a different patient image.
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Table 6.2: Training and inference times for the four CNN-based approaches (2D, 2.5D, 3D
and multi-modality). Training times are the average of 9 folds, whereas inference times are the
average of 27 patients.

method ttrain [min] tinf [s]

2D (A) 24.65 ± 0.22 0.90 ± 0.06
2.5D (B) 25.35 ± 0.25 0.88 ± 0.04
3D (C) 376.28 ± 75.85 1.54 ± 0.44
multi-modality (D) 25.56 ± 0.21 0.90 ± 0.04

Table 6.3: Evaluation of geometric accuracy of auto-segmenting the left and right parotid
gland, comparing different methods using the U-Net.

ROI method DSC HD [mm] MSD [mm]

right approach A (2D) 0.84 ± 0.07 16.75 ± 10.37 2.00 ± 1.46
parotid approach B (2.5D) 0.81 ± 0.07 19.15 ± 10.08 2.27 ± 1.38

approach C (3D) 0.83 ± 0.06 16.15 ± 11.64 1.85 ± 1.27
approach D (multi-modality) 0.82 ± 0.09 15.69 ± 9.96 2.04 ± 1.45
inter-observer variability 0.84 ± 0.04 10.76 ± 4.35 1.40 ± 0.45

left approach A (2D) 0.85 ± 0.08 15.19 ± 8.09 1.63 ± 1.27
parotid approach B (2.5D) 0.83 ± 0.05 15.89 ± 5.91 1.83 ± 0.77

approach C (3D) 0.80 ± 0.12 16.36 ± 6.78 1.90 ± 1.08
approach D (multi-modality) 0.79 ± 0.17 16.85 ± 9.97 2.38 ± 2.19
inter-observer variability 0.83 ± 0.04 10.94 ± 3.75 1.59 ± 0.63

6.4.3.1 Computation time

Training and inference times can be found in table 6.2. Approaches A, B and D all had

a training time of approximately 25 minutes and an inference time of less than 1 second.

In comparison, approach C (3D) took on average 376 minutes to train with an average

inference time of 1.54 seconds.

6.4.3.2 Geometric evaluation

Figure 6.16 shows the boxplots of all methods and ROIs employed in this study. Table 6.3

lists mean values and standard deviations for all approaches and ROIs. For comparison,

I included the inter-observer variability.

With a mean DSC larger than 0.8 and a mean MSD smaller than 2.5mm, all

approaches achieved a geometric accuracy which was in the same ballpark as the inter-

observer variability. There were no significant differences in the average performance

of any of the approaches. While the 3D approach tended to have a smaller variance of

accuracies and less severe outliers, the multi-modality approach added some uncertainty

in comparison to the plain 2D approach. Adding adjacent slices did not improve the

segmentation accuracy.
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Figure 6.16: Comparison of different CNN-based approaches: Boxplots of, from top from
bottom, the DSC, the MSD and the HD for both parotid glands (x-axis) and all automated
segmentation approaches (A in blue, B in red, C in green, D in yellow). I also included the
inter-observer variability (grey). Stars indicate statistical significance (p<0.05/3).

6.4.4 Discussion

I investigated the application of CNN-based approaches to the segmentation of the

parotid glands and benchmarked them with the inter-observer variability, as well as

the multi-atlas based approach, introduced in chapter 5. I furthermore compared to

published studies in similar applications. To my knowledge, this was the first study

to demonstrate that auto-contouring parotid glands on MR images using CNN-based

approaches can achieve an accuracy comparable to the inter-observer variability.

6.4.4.1 Computation time

Compared to a conventional commercial method, for instance, atlas-based segmentation,

the computation time, especially the inference time, was much faster for the deep learning
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approaches. While the computation time for atlas-based approaches can be further

reduced, by, e. g. parallel computations, they still require minutes in comparison to a

second for deep learning-based approaches. This renders deep learning-based approaches

feasible in an adaptive clinical workflow, such as envisioned with the MR-Linac.

6.4.4.2 Geometric evaluation

I compared four different approaches: approach A (2D), approach B (2.5D), approach

C (3D) and approach D (multi-modality). All approaches achieved an accuracy that

was of the same size as the inter-observer variability with a DSC larger than 0.8 and an

MSD smaller than 2.5mm. There were no clear benefits of using one or the other for

the data in this study. Since all approaches achieved an accuracy that was already in

the same range as the inter-observer variability, it was challenging to detect differences

in the approaches. As found before in the atlas-based approach, the HD was sensitive to

local errors and did not reflect the overall accuracy well.

Adding further information, such as done in the multi-modality approach (approach

D), did not increase the accuracy but instead led to more outliers. This may be attributed

to the finding that the T2w and corresponding T1w images may not have been correctly

aligned and therefore led to inconsistent information for the CNN. While one might have

expected an improved performance by using additional information from the adjacent

slices, this approach also did not lead to an increase in performance. The 3D approach

decreased the general spread of values, but the overall accuracy did not improve in

comparison to the 2D approach. Due to memory-related restrictions of the hardware, I

followed a two-step approach by first finding an approximated bounding box close to

the parotids and then using a 3D patch with the centroid at this bounding box. This

requires the first step to being sufficiently accurate as otherwise the parotid might be

missed in the extracted 3D patch. Another approach would be to use overlapping 3D

patches at random locations of the images without the need for the first step. I did not

explore this approach in this study due to time limitations.

The accuracy of the deep learning-based approaches was comparable to the atlas-

based segmentation (DSC: 0.85±0.04, MSD: 1.65±1.08 mm, HD: 16.41±12.10 mm, see

chapter 5).

Table 6.4 lists mean reported geometric measures for a comparison of my results to

published studies on CNN-based approaches applied to the segmentation of the parotid

glands. All of the reported studies used CT images (with one study adding MR images

in a multi-modality approach). In particular, the 2D approach ranked highest compared

to published studies. The training data of published studies were of similar size as mine

except for two studies [16, 127]. I expect that with more training data, one can increase
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Table 6.4: Comparison of geometric evaluation for the approaches developed in this study to
published studies

ROI DSC MSD[mm] mod # study

right 0.84 ± 0.07 2.00 ± 1.46 MR 27 approach A (2D)
parotid 0.81 ± 0.07 2.27 ± 1.38 MR 27 approach B (2.5D)

0.83 ± 0.06 1.85 ± 1.27 MR 27 approach C (3D)
0.82 ± 0.09 2.04 ± 1.45 MR 27 approach D (multi)
0.85 ± 0.04 1.65 ± 1.08 MR 27 atlas-based (chapter 5)
0.84 ± 0.02 1.12 ± 0.56 CT 32 Tong et al. [145]
0.79 1.57 CT+MR 43 Močnik et al. [97]
0.78 ± 0.05 - CT 50 Ibragimov and Xing [66]
0.86 ± 0.05 - CT 200 Chan et al. [16]
0.83 ± 0.02 - CT 157 Rooij et al. [127]

left 0.85 ± 0.08 1.63 ± 1.27 MR 27 approach A (2D)
parotid 0.83 ± 0.05 1.83 ± 0.77 MR 27 approach B (2.5D)

0.80 ± 0.12 1.90 ± 1.08 MR 27 approach C (3D)
0.79 ± 0.17 2.38 ± 2.19 MR 27 approach D (multi)
0.83 ± 0.06 1.65 ± 1.57 MR 27 atlas-based (chapter 5)
0.84 ± 0.03 0.96 ± 0.34 CT 32 Tong et al. [145]
0.79 1.57 CT+MR 43 Močnik et al. [97]
0.77 ± 0.06 - CT 50 Ibragimov and Xing [66]
0.85 ± 0.03 - CT 200 Chan et al. [16]
0.83 ± 0.03 - CT 157 Rooij et al. [127]

the generalisability of the trained model and reduce the number of outliers.

6.4.4.3 Limitations and future work

In this study, I focused on the segmentation of the parotid glands. While the segmentation

of these OARs is crucial, the methodology from this study is not limited to this specific

organ and I expect that one can easily transfer the approach to the segmentation of other

ROIs. Out of the many OARs relevant for the treatment planning of RT in HNC, the

parotid glands are the most challenging ones to contour. Furthermore, including multiple

OARs as different labels in one network could improve the geometric accuracy as more

information would be available to the CNN and outliers may be reduced. Therefore I

believe that automatic contouring of other OARs should perform similar or better than

of the parotids. However, including these data was beyond the scope of this thesis.

A further limitation of this study was the small number of available training data.

To account for variations found between different patients and even of the same patients

on different days, one would need a larger database that incorporates these substantial

variations. Moreover, the algorithm may fail when applied to images with different
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settings compared to the ones trained on, for instance, different contrast settings or

resolutions. See a more thorough evaluation of this issue in chapter 7. Potential solutions

to this problem using deep learning based methods are addressed in the following sections.

6.4.5 Conclusion

This study demonstrated the enormous potential for the application of CNNs to segment

ROIs for RT treatment planning purposes with the accuracy comparable to conventional

approaches such as atlas-based segmentation. In comparison to atlas-based segmentation

methods, the computation time was much shorter (sub-second compared to minutes

or hours) with a simple 2D approach. These short computation times render deep

learning-based approaches suitable for online treatment planning workflows. A limiting

factor of this study was the small amount of training data. I address potential solutions

to this problem in the following sections.
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6.5 Transfer learning from CT images

6.5.1 Motivation

Deep learning faces a bottleneck with the lack of the availability of sufficient annotated

training data. While it is still unclear how many training examples these algorithms

will require, it is evident that the generalisability increases with an increasing variety in

the training data. However, as discussed before, a sufficient amount of representative

annotated training data is usually not available. Images are acquired with different

scanners or scan protocols. Manual annotation of data usually requires expert knowledge

and is a time-consuming and error prone process. Moreover, some labels needed for the

training of such algorithms may not be necessary for the clinical routine and therefore

often need to be created only for the underlying research studies.

Recently, it has been shown that a technique called transfer learning can significantly

improve the performance of deep learning models suffering from limited training data by

leveraging existing data of related problems [18]. In transfer learning, a model, which was

constructed to learn a task A from a large dataset, is applied to boost the performance

of a model to learn a task B on a typically much smaller dataset. The model designed for

task A is called a pre-trained model. Transfer learning originates from the finding that

many deep learning tasks share common elements which can be recycled in a new task

[166]. An analogy in the real world is the finding that it is generally easier for someone

to learn a third language compared to the second language, due to shared vocabulary

and general transferable logic of languages. In a clinical scenario, a clinician may find

it easier to annotate an ROI for a new imaging modality, e. g. MRI, with his or her

experience on annotating another imaging modality, e. g. CT.

Litjens et al. [92] and Cheplygina [18] provide reviews on the application of transfer

learning techniques to medical image processing. Published studies have used both pre-

training on natural images and related medical images. However, due to the availability

of more training data in the field of natural image processing, the former has been

used more frequently until now. A drawback of using pre-trained classification models

on natural images is that they are often restricted to fixed image sizes and comprise

unnecessary model complexities, rendering a direct application to medical imaging

challenging.

With MRI only starting to be routinely used in RT, as well as the existing variety

in scanners and scanning protocols, the wealth of training data as seen for natural

images is generally not available for consistent RT-specific MR images. On the other

hand, there is a wealth of publicly available, annotated CT images, for instance, in the
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Cancer Imaging Archive [22]. In this section, I exploited this finding to train a 2D CNN

using annotated CT data and subsequently fine-tuned the learned model by training the

network on MR images. To the best of my knowledge, the only two published studies

using transfer learning for medical image segmentation are [17, 148], where only the

latter applied transfer learning to a CNN. To my knowledge, this study was the first to

retrain CT networks for automatically contouring the parotid glands on MR images in

HNC patients.

6.5.2 Materials and Methods

6.5.2.1 Data preparation

The 27 T2w MR images, as well as the public database, including 202 CT images, served

as imaging database. For more details on acquisition and preprocessing techniques, see

chapter 3.

6.5.2.2 Segmentation approach

I chose a 2D U-Net [126], as introduced in the previous section 6.4, with 5 levels, as

well as 64 feature channels in the first level and 1024 channels in the last level. For

the baseline approach (training with the CT data), as well as the transfer learning

approaches, I optimised a Dice loss function with the Adam optimiser.

Pre-training using CT data

I trained the network with the CT data for 60 epochs, with an initial learning rate of 10−4.

I gradually reduced the learning rate throughout the training process by monitoring the

validation loss: if the validation loss did not improve after 10 epochs, the learning rate

was automatically reduced to half its size, down to a minimum of 10−8 .

Transfer learning

There are two general approaches to transfer learning:

(1) training a CNN with source data and extracting specific features from this network

to train a classifier for the target data.

(2) training a CNN with source data and training the same CNN with the target data

using the pre-trained network as initialisation.

In this work, I focused on the second approach. During the training of the CNN using the

target data, it is common to keep some of the weights fixed, also known as ’frozen’ and
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only allow for updates of some weights. Typically in transfer learning, the pre-trained

weights from the shallower levels (earlier in the network chain) are kept unchanged and

only deeper levels (later in the network chain) are adapted to the problem at hand. This

procedure stems from the widely accepted intuition that shallower levels refer to low-level

features, such as edges, and develop into more complex shapes in the deeper levels [85].

Another approach is to only initialise the network with the pre-trained weights and

perform a fine-tuning of all the layers on the new dataset [18].

I aimed to transfer information about the variety of shapes, as well as the locations of

the parotid glands within the head, from the CT to the MR segmentation problem. For

the U-Net architecture, it was non-trivial to know where this information was exactly

stored and hence which weights to fix. According to the widely accepted intuition of how

more complex structures are learned in deeper layers, and the architecture of the U-Net,

the desired information on shape and appearance is likely contained in the encoding

part with more complex structures towards the bottleneck. The "where" information is

restored from the condensed information of the bottleneck in the decoding part.

In this work, I initialised the network’s weights with the pre-trained weights from

the CT network. As it is unclear where precisely a U-net stores the relevant information

for transfer learning, I implemented three educated guesses for this purpose:

(1) train all layers (all trainable, approach A)

(2) freeze the encoding path (encoder fixed, approach B)

(3) freeze layers around the bottleneck (bottleneck fixed, approach C)

By initialising the weights with the CT network in approach A (all trainable), one would

have a "warm" start in the optimisation process, which should be superior to a random

initialisation. Retraining all layers enabled the possibility to adjust all weights according

to the new images.

Approach B (encoder fixed) is typically done in transfer learning. The intuition is

that the concept of edges and simple shapes, which are thought to be described by the

encoder, is common to all images and can hence be transferred from one to another

application.

Approach C (bottleneck fixed) built on the likelihood that the complexity of shapes

for the parotid glands is "stored" in these layers. As I wanted to transfer this knowledge

to the MR application, I kept the weights in the bottleneck fixed in this approach.

Figure 6.17 illustrates all of the approaches. For all three approaches, I trained the

network for 30 epochs with a learning rate of 10−6.
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pre-training
withCT images

2D U-Net

initialiseU-Netwith
pre-trainedweights

transfer learning
withMR images

trained 2D U-Net
encoder fixed

bottleneck fixed

Figure 6.17: Transfer learning workflow: First the network was trained using the CT data in
(1). Then this network was used with its pre-trained weights (2) as initialisation and trained on
the MR data in (3). I employed three different strategies: re-training all layers, freezing the
encoding part (red line) and freezing the bottleneck (green line).

6.5.2.3 Computation time

The run time was determined for programme execution on a single Tesla V100 with

16 GB VRAM. I calculated the mean and standard deviations of multiple runs (9-fold

cross-validation). All inference times are stated per patient.

6.5.2.4 Geometric evaluation

I randomly split the 202 CT scans into 70% training, 10% validation and 20% testing

data. The validation data were only used to choose the best hyperparameters, whereas

the testing data were never seen by the network during the training phase and only used

to evaluate the final performance.

To evaluate the accuracy of the transfer learning approach for the segmentation of

the 27 MR images, I performed a 9-fold cross-validation (for each fold 24 patients for

training, 3 for testing the network). I evaluated the geometric performance by calculating

geometric differences between the manual and the CNN-derived segmentations with the
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Figure 6.18: This figure shows in each column a typical example comparing the manually
segmented parotids (light blue) to approach A (all trainable, dark blue, first row), approach B
(encoder fixed, red, second row) and approach C (bottleneck fixed, green, third row), respectively.
Each example originates from a different patient image.

original image resolution, using the DSC, the HD and the MSD as geometric metrics. I

furthermore compared its performance to the inter-observer variability, determined by

comparing manual segmentations from three different experts, as described in chapter 4

and published in [72].

6.5.3 Results

Figure 6.18 provides examples of 4 different patients, comparing all three transfer learning

methods. While approach A and approach C (top and bottom row) generally follow the

manual contours well, approach B (encoder fixed) misses out on parts of the parotids

and in some cases even misses out on the full parotid (see the first column in the second

row).
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Table 6.5: This table lists training and inference times for all transfer learning approaches.
Training times were averaged over the 9-fold cross-validation. Inference times were averaged
over all 27 patients.

method ttrain [min] tinf [s]

all trainable (A) 12.40 ± 0.12 0.97 ± 0.16
encoder fixed (B) 10.21 ± 0.02 0.93 ± 0.13
bottleneck fixed (C) 11.40 ± 0.12 0.97 ± 0.15

Table 6.6: Evaluation of geometric accuracy of auto-segmenting the left and right parotid gland,
comparing three different transfer learning approaches: all trainable (approach A), encoder fixed
(approach B) and bottleneck fixed (approach C). As a benchmark, I also include the geometric
accuracy of the CT-trained network, the inter-observer variability (see chapter 4), as well as the
training from scratch of the MR network from section 6.4.

ROI method DSC HD [mm] MSD [mm]

right all trainable (A) 0.79 ± 0.06 18.88 ± 8.96 2.45 ± 1.08
parotid encoder fixed (B) 0.52 ± 0.15 28.08 ± 14.47 5.44 ± 2.87

bottleneck fixed (C) 0.80 ± 0.05 19.05 ± 9.20 2.38 ± 1.06
CT only 0.81 ± 0.07 13.01 ± 5.61 1.87 ± 0.84
from scratch (MR) 0.84 ± 0.07 16.75 ± 10.37 2.00 ± 1.46
inter-observer variability 0.84 ± 0.04 10.76 ± 4.35 1.40 ± 0.45

left all trainable (A) 0.80 ± 0.06 17.79 ± 7.01 2.17 ± 0.98
parotid encoder fixed (B) 0.70 ± 0.12 19.14 ± 7.65 2.96 ± 1.51

bottleneck fixed (C) 0.80 ± 0.07 17.93 ± 7.50 2.19 ± 1.01
CT only 0.82 ± 0.05 12.98 ± 5.15 1.74 ± 0.53
from scratch (MR) 0.85 ± 0.08 15.19 ± 8.09 1.63 ± 1.27
inter-observer variability 0.83 ± 0.04 10.94 ± 3.75 1.59 ± 0.63

6.5.3.1 Computation time

Table 6.5 lists training and inference times for the three different transfer learning

approaches. While the training time increased slightly with a smaller number of fixed

layers, differences were small, in the order of a minute, for all approaches. The overall

training time was in the order of 10-12 minutes. The inference time did not differ

substantially between the three approaches and was approximately 1 second.

6.5.3.2 Geometric evaluation

Figure 6.19 illustrates the boxplots of the DSC, HD and MSD of the three transfer

learning approaches for both parotid glands. Mean and standard deviations are provided

in table 6.6. As a reference, I also included the accuracy of the trained CT network, the

MR training from scratch, as well as the inter-observer variability.

With a mean DSC of 0.8, mean HD of 19mm and mean MSD of 2.4mm, approaches

A (retraining all layers) and C (keeping the weights of the bottleneck fixed) achieved

a similar accuracy. While the accuracy stayed below the inter-observer variability, as
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Figure 6.19: Boxplots of the DSC, the MSD and the HD for both parotid glands (x-axis) and
all automated segmentation approaches (A in blue, B in red, C in green). As a benchmark, I
included the accuracy of the source network (CT only, in yellow). I also show the inter-observer
variability (grey). Stars indicate statistical significance (p<0.05/3).

well as training the network from scratch, these values are included within one SD of

all approaches. Approach B (keeping the encoder fixed) had a worse performance, in

particular for the right parotid (mean DSC=0.5, mean HD=28.1mm and mean MSD=5.4

mm).

6.5.4 Discussion

I investigated the application of transfer learning approaches for a 2D U-Net, where I pre-

trained with CT images (202 in total) and re-trained with MR images (27 in total). Unlike

in typical transfer learning applications, I did not merely want to transfer the ability

to detect edges and simple shapes. Instead, I aimed to transfer the gained knowledge

about the variety of shapes and locations of the parotid glands from the network trained
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Figure 6.20: This figure demonstrates a case where deep learning went wrong and was fooled
by an elephant-skin-like texture overlayed over a cat image to be classified as elephant. This is
an example supporting the texture-based picture of how networks learn. Figure extracted from
Geirhos et al. [47].

on CT images to MR images. For this purpose, I explored different transfer learning

strategies, varying the number and location of "frozen" layers (weights fixed). To the

best of my knowledge, I was the first to re-train CT networks to automatically contour

the parotid glands on MR images of HNC patients. I showed that it was indeed possible

to apply transfer learning to this application, however, it was challenging to determine

where the desired information was stored in the networks.

Deep learning research is currently still mostly a grey box where it is not entirely

clear what the network learns in which layer. As mentioned at the beginning of this

section, it is a commonly accepted intuition that the shallower levels refer to low-level

features, such as edges, and develop into more complex shapes in the deeper levels [85].

This shape-based intuition has been contradicted by recent research on CNN features

referring to texture based learning. This was, for instance, evident in a study where

a network would classify an object with the shape of a cat but an elephant-skin-like

texture as an elephant [47]. An illustration of this failure is provided in figure 6.20.

This finding supports the hypothesis that texture-based features are more important

than shape-based features. I hypothesised that information about the contrast is most

likely learnt in the encoding part of the network. This hypothesis is supported by the

significantly worse performance of approach B, in particular for the right parotid. There

was a large difference in the geometric measures compared to the other two approaches

(∆(DSC): 0.10-0.28, ∆(HD): 2-10mm, ∆(MSD): 0.80-3.06mm). In this approach, I

kept the pre-trained weights of the encoder fixed and only re-trained the decoder. I

believe that the poor accuracy was due to the difference in contrast between CT and
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parotid contours only
circumvent half the
parotids

right parotid only en-
closes half the parotid

contour of left parotid
fully missing in this
slice

Figure 6.21: This figure illustrates three typical example of poor quality CT contours, where
the contours do not enclose the full parotids (left and right parotid in the first column, right
parotid in the second column) or are fully missing (left parotid in the last column).

MR images, which was most likely learnt in the encoding part of the network. Hence,

keeping those weights fixed to the CT-initialised ones may not allow for the network

to detect MR-specific features in the transfer learning. Furthermore, the MR images

provide more details on soft-tissue contrast. This information was not present in the CT

images and hence was not learned in the pre-trained network.

There was no substantial difference between keeping the weights of the bottleneck

fixed (approach C) or re-training all layers (approach A). This finding supports the

hypothesis that the variety of shapes is stored in the bottleneck of the network and

therefore does not need to be adapted to the MR images. Additionally, the network

might "forget" about the different shapes of the structure of interest that it has learned

in the pre-training when there are no examples reflected in the target dataset.

All transfer learning approaches performed slightly worse compared to training the

network from scratch with the MR data (transfer learning: DSC≥0.80, HD≤17.79 and

MSD≤2.17, compared to DSC=0.85±0.11, HD=15.97±13.14 and MSD=1.82±1.93) The
quality of the manual contours for the CT images was not as high as for the MR images.

The CT images have been contoured by a range of different clinicians from various

hospitals and are not as consistent as the ones created for this dataset. Three typical

poor examples of these contours are illustrated in figure 6.21. The quality of the CT

contours certainly had an impact on the initialised weights and could therefore have

contributed to the worse accuracy I obtained via transfer learning.

Due to all of the mentioned arguments, it remains challenging to transfer specific

knowledge gained from pre-trained networks to a new application. In the following

section, I investigate a potential solution to this problem.
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A limitation of this study was that the dataset which I used as a source database

was small in comparison to other studies of transfer learning (hundreds of CT images

compared to millions of natural images). However, this will often be the case in medical

imaging. Furthermore, while I explored on a suitable setting of the hyperparameters, I

did not perform a systematic investigation of the optimal parameters. This could have

an impact on the final performance of the networks. However, such grid searches are

time-consuming and could lead to an overfitting to the data, in particular for small

datasets.

Additionally, I could not exclude the possibility that the capacity of the network

was large enough for approach C (bottleneck fixed) to be only relying on the non-frozen

weights to fit the MR training data, without a significant benefit of having the weights

initialised based on the training with the CT data.

6.5.5 Conclusion

In this study, I investigated the use of transfer learning from one larger imaging dataset

(202 CT images) to a smaller dataset (27 MR images). While I could achieve an

accuracy close to the inter-observer variability, it remained unclear what information

was transferred through these approaches. I propose potential solutions to this problem

in the next section.
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6.6 Cross-modality learning

6.6.1 Introduction

A general approach to tackle the lack of training data is to augment them with random

rotations, translations, geometric scaling, mirroring or contrast stretching. While these

methods try to increase the variety in the training data, they generally are not able to

mimic the large variabilities existing in the full population of patients’ anatomies.

Instead of only using rotations and translations, one could employ elastic deformations

of the training data to increase the variations between images. However, a major drawback

of elastic deformations is that arbitrary deformations may not reflect typical anatomy

seen in patients, whereas designing representative deformations is a time-consuming

process and requires expert-knowledge on variations seen in patients. Moreover, data

augmentations introduce additional hyperparameters into the deep learning setup, e. g.

translation range, rotation angles, deformation settings, which need to be tuned in

addition to the already existing hyperparameters.

Another approach is to use pre-trained networks on related problems via transfer

learning. However, I have shown in the previous section (6.5) that conventional transfer

learning approaches did not increase the performance of the final network and I believe

that the variety in anatomical shapes from the larger (CT) dataset may be lost in the

re-training process. Moreover, both approaches, i. e. training a network from scratch

and transfer learning, require that both, annotation and training, need to be repeated

for every novel MR contrast setting.

Recently, image generation methods with deep learning have been introduced. The

so-called generative adversarial networks (GANs) [51] can learn to mimic any distribution

of data. A GAN consists of two neural networks competing with each other: the generator

and the discriminator network. The basic principle is illustrated in figure 6.22. The

discriminator’s task is to classify presented examples as real or fake, while the generator

needs to fool the discriminator by generating real-looking examples from random noise.

Competition in this adversarial "game" drives both, the discriminator and the generator

network, to improve through joint optimisation until the fake data are indistinguishable

from the real data. GANs have been applied to image-to-image translation problems,

such as described in [69], where input images from one domain were mapped to output

images of another domain. Instead of a pure GAN, they used a conditional GAN,

where the input images were used as a condition on the generated data distribution.

Instead of random noise, images from the source domain were fed into the generator and

real data was represented by the target imaging domain. A drawback of the approach
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random noise generator fake data

real data
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Figure 6.22: Generative adversarial network (GAN): The discriminator tries to classify input
images as real or fake ones, while the generator tries to generate fake data which closely matches
the data distribution of the real data to fool the discriminator.

by Isola et al. [69] is that paired input and output data are needed. Zhu et al. [169]

extended this approach to unpaired datasets in their CycleGAN. The focus was to learn

a mapping between two different image collections through cycle-consistent GANs, e. g.

by transforming photographs into paintings of a certain artist and vice versa. Wolterink

et al. [159] applied a CycleGAN to the creating of synthetic CT images from brain MR

data.

In this study, I used a CycleGAN to generate synthetic MR images from CT images.

Instead of using the generated synthetic images for data augmentation, I took one step

further and trained a 2D CNN solely based on the synthetic MR images to segment the

parotid glands. This resembled the situation where one would like to reuse annotated

data from a different imaging domain (here CT images) to a new imaging domain

(here MR images) without the necessity to employ the time-consuming and expensive

annotation process. To the best of my knowledge, this was the first study to generate

synthetic MR images from CT images for the purpose of training a network to segment

MR images.

6.6.2 Materials and Methods

Figure 6.23 provides an overview of the method employed in this study. It consisted of

three steps:

(1) For each axial slice of the CT images, a corresponding synthetic MR axial slice

was generated using the CycleGAN.

(2) A 2D U-Net was trained using the synthetic MR images and corresponding manual

contours from CT images as input.

(3) The trained 2D U-Net was used to propose contours on unseen real MR images.

6.6.2.1 Data preparation

Imaging data comprised the 27 T2w MR images from the MD Anderson Cancer Center,

as well as the 202 CT images from public databases. Further details on image acquisition
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(see figure 6.24)
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(1) Synthetic MR generation
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MR images
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(3) Inference with real MRs

Figure 6.23: This figure provides an overview on the novel cross-modality learning method: in
the first step (top row), synthetic MR images are generated through the CycleGAN method.
The synthetic MRs are then fed into a 2D U-Net, together with the annotations from the CT
images (second row). In a third step, the trained network is applied to unseen real MR images
(bottom row).
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parameters or image processing steps are provided in chapter 3.

6.6.2.2 Synthetic MR generation

Step (1) of the workflow consisted of the synthetic MR generation. The unpaired 2D slices

from the CT and MR images were fed into a 2D CycleGAN network to generate synthetic

MR images for each of the 202 CT images. I used the PyTorch [113] implementation

provided by Zhu et al. [169], available on Github1. In the following paragraphs, I shortly

describe the CycleGAN and the adjustments I made to this implementation. Further

details on the original implementation are provided on Github1 and in [169].

General workflow and objectives

The aim was to generate a "corresponding"2 MR image IMR for each CT image ICT.

For this purpose, the generator network GMR was trained. To ensure that the generated

MR images were indistinguishable from real MR images, the discriminator network DMR

was introduced. It aimed to distinguish between real and fake MR images. As described

before, these two networks compete with each other in an "adversarial game". The

adversarial loss was defined as:

Ladv(GMR, DMR, IMR, ICT) = (DMR(IMR))2 + (1−DMR(GMR(ICT)))2 (6.21)

for an unpaired input (ICT, IMR).

The "game" of the two networks can be understood as a "min-max game", where

the discriminator aims to maximise the objective and the generator tries to minimise it:

min
GMR

max
DMR
Ladv(GMR, DMR, ICT, IMR) (6.22)

In theory, this loss function does not guarantee that an individual input ICT is mapped to

the desired IMR. Moreover, it could learn to map any CT image to the same, unique, MR

image. To reduce the space of possible mappings, Zhu et al. [169], therefore, introduced

a cycle-consistency loss. For this, they included two further networks, generator GCT,

which maps real MR to synthetic CT images, and discriminator DCT, discriminating

between real and fake CT images. The adversarial loss for these two networks can be

obtained by replacing the MR with the CT in equation (6.21).

To restrict the mapping of the CT image to an MR image that resembles features

of this CT image, cycle-consistency losses are introduced. These guarantee that the
1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
2There is no one-to-one mapping for this case, so the aim is to map to a "plausible" MR image.
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Figure 6.24: Illustration of the CycleGAN method: two cycles are introduced such that the
generated synthetic images resemble the input images (Cycle for synthetic MR images at the
top and for synthetic CT images at the bottom).

generated CT image that has gone through the full cycle (CT->MR->CT) is similar to

the original CT. With the L1 norm || · ||1, the cycle-consistency loss yields

Lcycle,CT(GMR, GCT, ICT) = ||GCT(GMR(ICT))− ICT||1 (6.23)

for a real CT image ICT and vice versa for IMR. Figure 6.24 illustrates these forward

(CT→MR→CT) and backward cycles (MR→CT→MR).

To constrain the generated synthetic MR images to ones that geometrically match the

source CT images, I introduced a further geometric consistency loss. For this purpose, I

determined the external masks through Otsu thresholding and binary closing operations

(see also chapter 3) of both, the source CT and the synthetic MR and calculated the

binary cross-entropy between these masks. I introduced the same loss for the mapping in

the opposite direction (source MR to synthetic CT). With M(I) denoting the external

mask of an image I, the geometric loss term yields as

Lgeo,CT(GMR, ICT) =M(GMR(ICT)) · log(M(ICT)) (6.24)

+ (1−M(GMR(ICT))) · log(1−M(ICT)) (6.25)

for a real CT image ICT and vice versa for IMR. This loss function is different from the
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Figure 6.25: Generator network: This figure illustrates the network used for the generator
in this study. It consists of 3 convolutional layers, followed by 9 residual blocks, 2 transpose
convolutional layers and a final convolutional layer with a tanh activation function.

default network from Github3. The full training objective is given as:

LcycleGAN =Ladv(GMR, DMR, ICT, IMR) + Ladv(GCT, DCT, IMR, ICT)

+ λCT · Lcycle,CT + λMR · Lcycle,MR

+ λgeo,CT · Lgeo,CT + λgeo,MR · Lgeo,MR. (6.26)

with relative weights λi for each of the individual contributions.

Generator network

The generator network takes as input a 2D image of the source domain and generates a

2D image of the target domain. It is illustrated in figure 6.25. The network consists

of
3https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Figure 6.26: Discriminator network: This network consists of 5 convolutional layers and
classifies images into two categories: real or fake. It was introduced in [69] as PatchGAN.

• 3 convolutional layers, each followed by batch normalisation and ReLU activation

• 9 residual blocks, as introduced in chapter 6.11

• 2 transposed convolutional layers

• a 1x1 convolutional layer with a tanh activation function (see section 6.2.1.2).

Residual networks utilise so-called short-cuts or skip connections, as illustrated in

figure 6.11 on page 109. For more details on the generator network, I refer to [169].

Discriminator network

The discriminator network takes as input a 2D image and classifies the image as real

(label=1) or fake (label=0). It consists of 5 convolutional layers. This discriminator

network was introduced by Isola et al. [69]. They called it a 70x70 PatchGAN. The

patch, in this case, does not mean that patches are used as input to the network but

that the prediction is formed from overlapping regions with a receptive field size of

70x70. This can be calculated from equation (6.6). The PatchGAN is essentially a fully

convolutional neural network. Figure 6.26 illustrates this network. Further details can

be found in [69].

Training parameters

I employed the recommended settings, as described in [169]. I used the Adam optimiser

[73] with a batch size of 1 and an initial learning rate of 0.0002. I kept this learning

rate fixed for the first 100 epochs and linearly decayed the learning rate to zero for the

next 100 epochs. I furthermore found the best settings for the weights of the respective

contributions to the loss function to be λCT = λMR = 10 and λgeo,CT = λgeo,MR = 10.
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Data cleaning as input for segmentation network

Since not all synthetic MR images perfectly matched the input CTs, I performed a

data cleaning where I only selected slices that were suitable for the segmentation of

the parotid glands. I explored constraints on the external outline of the head and

decided to perform a refinement 2D registration to map synthetic MR images to the

original CTs. I performed the registration using the Elastix toolkit [74] in two steps:

first determining any possible translations and finally a deformable registration with a

B-spline transformation, as introduced in chapter 5. I used a CPP grid spacing of 8mm

in the deformable registration. For both steps, I employed the mutual information as

similarity measure between CT and synthetic MR images and used the gradient descent

method as the optimiser. I chose parameter settings for the deformable registration

as recommended in the user manual (SPα=1, SPA=20, SPa=1000 and control point

grid spacing of 8mm). As the synthetic MR images were already generated in the same

geometrical space as the CTs, the segmentation of the CTs formed the gold standard

MR segmentation for the segmentation network.

6.6.2.3 Segmentation network

After data cleaning, I fed all remaining 2D synthetic MR images (approximately 1500)

into a 2D U-Net as training data. I split the data into 80% training and 20% validation

to choose suitable hyperparameters. I used the same network architecture as introduced

in figure 6.13. The inference was performed on the 27 real MR images. I trained the

network for 100 epochs and with an initial learning rate of 5× 10−5. I gradually reduced

the learning rate by monitoring the validation loss, down to a minimum of 10−7.

6.6.2.4 Computation time

The run times were determined for programme execution on a single Tesla V100 with 16

GB VRAM. Inference times are stated per patient, where I calculated the average over

all 27 patients, as well as the standard deviation.

6.6.2.5 Geometric evaluation

I evaluated the performance of the segmentation network by calculating the DSC, HD

and MSD between manual and auto-generated contours and compared to the accuracy

of the CT network as a benchmark.
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Figure 6.27: Typical examples of synthetic MRIs and their corresponding source CTs: The
green boxes highlight example cases that were selected for further learning. The red boxes
highlight cases where the CycleGAN failed to produce anatomically corresponding MR images
for the corresponding CT images and hence were rejected for further analysis.

6.6.3 Results

6.6.3.1 Synthetic MR generation

Figure 6.27 illustrates selected (green box) and rejected example cases (red boxes) of

synthetic MR images together with their corresponding source CT images. In some
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Figure 6.28: This figure shows in each column a typical example case of the cross-modality
learning approach (in red). The manual contours are shown in blue. The rows correspond to an
axial, sagittal and coronal cross section, respectively. Each example originates from a different
patient image.

rejected cases, the synthetic MR images appeared as if they could be real MR images.

However, they did not reflect the anatomy visible in the source CT images.

6.6.3.2 Computation time

Training of the CycleGAN took approximately 72 hours. The training of the 2D U-Net

took approximately 150 minutes, whereas inference was made within 0.86 ± 0.02 seconds.

6.6.3.3 Qualitative segmentation results

Figure 6.28 illustrates four typical example cases for auto-generated contours using the

cross-modality approach, comparing to the manual contours. I selected an axial, sagittal

and coronal view for each of the patients. The auto-generated contours followed the

manual ones closely.

6.6.3.4 Geometric evaluation

Table 6.7 lists mean and standard deviations for the DSC, HD and MSD, comparing

the cross-modality learning to the accuracy of the trained CT network. The cross-

modality learning accuracy (DSC: 0.77±0.07, HD: 18.32±10.12mm, MSD:2.51±1.47mm)

stayed below, but was close to the inter-observer variability (0.84±0.04, 10.76±4.35mm,
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Table 6.7: Evaluation of the geometric accuracy of auto-segmenting the left and right parotid
gland of the cross-modality learning approach. As a benchmark, I also include the geometric
accuracy of the CT-trained network.

ROI method DSC HD [mm] MSD [mm]

right cross-modality learning 0.76 ± 0.06 18.32 ± 10.12 2.66 ± 1.26
parotid CT only 0.81 ± 0.07 13.01 ± 5.61 1.87 ± 0.84

MR only 0.84 ± 0.07 16.75 ± 10.37 2.00 ± 1.46
inter-observer variability 0.84 ± 0.04 10.76 ± 4.35 1.40 ± 0.45

left cross-modality learning 0.77 ± 0.04 17.75 ± 7.49 2.36 ± 0.75
parotid CT only 0.82 ± 0.05 12.98 ± 5.15 1.74 ± 0.53

MR only 0.85 ± 0.08 15.19 ± 8.09 1.63 ± 1.27
inter-observer variability 0.83 ± 0.04 10.94 ± 3.75 1.59 ± 0.63

1.40±0.45mm), as well as the CT-trained (DSC: 0.82±0.09, HD: 13.01±5.61mm, MSD:

1.81±0.99mm) and MR-trained networks (DSC: 0.84±0.07, HD: 16.75±10.37mm, MSD:

2.00±1.46mm).

6.6.4 Discussion

In this study, I employed a new technique, cross-modality learning, to reuse knowledge

gained from one application (annotated CT images) in a new application (non-annotated

MR images). To the best of my knowledge, I was the first to generate synthetic MR

images from annotated CT images to train an MR segmentation network. I found that

it was indeed possible to obtain decent quality annotations of MR images with only

annotated CT data.

6.6.4.1 Synthetic MR generation

The CycleGAN was generally able to generate synthetic MR image from the input CT

images. In some cases, it failed, however, most of these failed synthetic MR images often

still looked like an MR image, albeit not corresponding to the anatomy of the source CT

image. Depending on the application, such images still could be useful. However, for my

purpose, where I assume that the contours are still correct, one requires a satisfactory

agreement between the represented anatomies. The failed generation could be because I

only had a small number of real MR images from which the CycleGAN could perform

a style transfer. As the CycleGAN learns to map features from the source data (here:

CT) to the target data (here: MR), it might focus on irrelevant features, such as smaller

heads in the target data. Failure to generate an MR that corresponded well to the input

CT especially happened at the superior and inferior boundary slices. Due to the limited

field of view of the training MR images in that direction, there were not a lot of samples

available for the CycleGAN to learn.
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I furthermore detected a systematically narrower external outline of the head for

the synthetic MR images compared to the source CTs. In theory, no penalty in the

CycleGAN prevents it from learning this narrowing function, as it could learn to generate

more "narrow" MR images in the forward generator and go back to "broader" CT images

in the backwards generator. This issue could be related to the skin outline being visible

in the CT images but not in the MR images. While I tried to enforce a better overlay

between these outlines by incorporating a geometric consistency penalty in the loss

function, I was not able to entirely remove this issue. As GANs have been shown to be

susceptible to hyperparameter settings, for instance, the weights of the individual loss

contributions, this issue may be improved by a better optimisation of these parameters.

In this study, I performed a 2D registration between the CT and the corresponding

synthetic MR image to mitigate these detected "narrowing" transformations.

Recent research has shown that GANs are generally challenging to train and face

problems with non-convergence, mode collapse (producing limited varieties of samples)

and diminishing gradients of the generator when the discriminator becomes too powerful

[49]. As they have been shown to be highly susceptible to hyperparameter selections

[49], I expect that one could improve the synthetic MR generation further by tuning

more hyperparameters. However, this would require more training such that overfitting

can be avoided. While this study was a proof-of-concept study, in future research one

could optimise these parameters further, with more data, to overcome the addressed

limitations.

6.6.4.2 Geometric evaluation

There are several points where the achieved accuracy can be further improved. The

quality of the ground truth contours for the CTs was not as high as for the MR images.

This was also evident from the accuracy of the CT-trained network. With more high-

quality CT contours, I am confident that the accuracy of the cross-modality learning

will improve.

Compared to the accuracy of training a network with MR images from scratch,

as described in section 6.4 (DSC: 0.85 ± 0.11, MSD: 1.81 ± 1.94mm), the cross-

modality learning performed worse. However, obtaining a high-quality segmentation is a

time-consuming process and would need to be repeated for every new contrast setting.

Furthermore, the comparison may be deemed unfair as the manual CT segmentation was

less consistent than the MR segmentation (see figure 6.21 on page 132 in the previous

chapter).

In comparison to the transfer learning approach of the previous section 6.5, I could

directly incorporate the varieties found in a larger patient database to the small subset
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of MR images. Furthermore, unlike the transfer learning approach, no additional manual

segmentation was necessary.

I anticipate that this method could be used to generally adapt a trained network

of one imaging modality to another imaging modality. Auto-segmentation approaches

are usually trained on a very particular subset of imaging data. These approaches

might work well when the target images are similar to the ones that have been used

in the development phase. However, in the clinical routine, there are frequent changes,

especially in MR image settings. While in a conventional approach this could mean

that a new database with annotations of the new images would need to be created,

the cross-modality learning would be able to reuse the already existing annotations on

existing data and transfer it to the new imaging settings.

6.6.4.3 Limitations and future work

A limitation of this approach was that 2D slices were predicted instead of directly

generating 3D volumes. This led to inconsistencies between some slices and only allowed

for a 2D segmentation network. Employing a fully 3D approach may reduce the number of

falsely predicted synthetic MR images. However, the 2D CycleGAN is already consuming

a large amount of memory and a 3D approach would further increase this.

At this point, 2D image registration between CT and synthetic MR slices was still

necessary. I am confident that in future work, this need could be removed with larger

datasets as this would enable the CycleGAN to capture the important features in both

imaging modalities and lead to better-quality synthetic MR images. Moreover, the

CT data I used in this study originated from different hospitals with various imaging

protocols and patient specifics. Despite this challenge, I found promising results in this

study and think that the quality of the synthetic MR images will improve further with

more consistent data.

6.6.5 Conclusion

This technique of cross-modality learning can be of great value for segmentation problems

with sparse annotated training data. I anticipate using this method with any non-

annotated MR dataset to generate synthetic MR images of the same type via image

style transfer from CT images. To properly learn the appearance of these MR images,

this would ideally be a large database. Furthermore, as this technique allows for fast

adaptation of annotated datasets from one imaging modality to another, it could prove

useful for translating between large varieties of MRI contrasts due to differences in

imaging protocols within and between institutions.
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6.7 Main findings and Conclusion

In this chapter, I explored the potential of deep learning-based approaches to the

segmentation of MR images of HNC patients for RT treatment planning. In the

following, the main findings and implications for future research are discussed.

Although I have shown in chapter 4 that calculating the dosimetric effect of auto-

segmentation is a more accurate assessment of its quality than purely geometric measures,

there was not enough time to do this within the scope of this thesis and it is therefore

left for future work.

Overall, the results of this chapter indicate that deep learning-based approaches

are capable of achieving accuracies comparable to state-of-the-art methods, such as

atlas-based segmentation approaches. Moreover, deep learning-based approaches are

much faster in segmenting images than atlas-based approaches (seconds compared to

minutes or hours). Additionally, atlas-based approaches scale linearly with the number

of training images, at least in their conventional and presented form. While the training

phase of deep learning-based approaches may increase, more training data do not impact

the inference time on new, unseen data. These findings suggest that deep learning-based

approaches may be excellent candidates for adaptive treatment workflows.

A limitation of this study was the limited number of training data. With this

drawback, it was not possible to entirely avoid overfitting to the data-at-hand, and it is

crucial to bear in mind a possible bias and a decreased performance in generalisability to

new data. Nonetheless, the methods developed in this study can be generalised for other

data and it is to be expected that the generalisability will improve with more variety in

an increasing collection of new data.

There has been little quantitative analysis of the amount of training data needed for

the development of generalisable and accurate deep learning-based methods in medical

imaging. While in computer vision, typically thousands and millions of image are

available, this is not the case for medical image. However, medical images have unique

characteristics which alleviate the strong need for massive datasets. First of all, they

are subject to more standardisation than natural images. Additionally, there is typically

less variance in the data distribution than found for natural images. These findings,

combined with the findings of this study, suggest that deep learning-based approaches

are feasible with smaller datasets than generally found in applications to natural image

processing.

An important finding was that increasing quantity does not necessarily imply in-

creasing segmentation quality. As one could see in the transfer learning approach, the

accuracy of training a network to segment CT images was below the accuracy of the
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trained MR network. While the variance in the CT database was more substantial and

may have contributed to lower overall accuracy, a likely reason for this finding is the

inferior quality of ground truth segmentations of the CT images.

I demonstrated promising applications that can alleviate the data problem at the

heart of medical image segmentation further. In particular, I introduced a synthetic

image generation method, cross-modality learning, by employing a generative adversarial

network approach. Despite some challenges in creating geometrically accurate synthetic

images, I am confident that this method can have an impact on using auto-segmentation

algorithms clinically. A problem with applying auto-segmentation methods in a clinical

routine is that the data which were used to develop the algorithm can differ significantly

from the real data encountered in the clinic, which can be messy and subject to

frequent changes. Cross-modality learning is able to overcome these pitfalls of developed

segmentation methods as it can bridge the gap between the data used for developing

segmentation algorithms and the data used in the clinical workflow.
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Chapter 7

Final comparison and exploration of

limitations

In this chapter, I summarise the findings from the previous chapters and compare

qualitatively the different auto-segmentation methods developed in this thesis, as well as

discuss their respective strengths and limitations.
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In this thesis, I designed, developed and implemented different auto-segmentation

methods. The first part of this chapter provides a summary and quantitative comparison

of the findings from the previous chapters. Afterwards, potential limitations are explored,

employing an independent test dataset. A quantitative assessment of auto-segmentation

accuracy requires observer delineations of ROIs. Unfortunately these were not available

for the independent test dataset so this chapter provides a purely qualitative assessment

of this dataset.

7.1 Summary and comparison of auto-segmentation

methods

Table 7.1 summarises the quantitative results of all auto-segmentation methods analysed

in this thesis and the strengths and limitations for each method, which are further

explored in the second part of this chapter. A 2D CNN could achieve an accuracy com-

parable to a multi-atlas-based method (DSC: 0.85±0.11 vs. 0.85±0.05, MSD: 1.82±1.94
vs. 1.67±1.21mm) but within a considerably shorter computation time (<1 s vs. 1800 s).

No significant differences between any of the CNN-based algorithms could be detected

for the data utilised in this study.

While the overall accuracy was similar between atlas- and deep learning-based

methods, the deep learning-based methods were better able to detect the boundaries of

parotid glands which were infiltrated by involved lymph nodes or primary tumours and

did not include them within the segmented ROI. Figure 7.1 illustrates typical examples.

The last column represents a rare example where the atlas-based outperformed the deep

learning-based method. The lymph nodes appear to have a similar texture compared to

the parotid gland itself, which was likely the reason that the network annotated this part

as parotid gland. However, in the majority of cases, the deep learning algorithm more

often excluded regions which were not part of the ROI. Since the shape and location of

tumours and involved lymph nodes varies widely among patients, it is difficult for an

atlas-based approach to recognize infiltrated normal structures. Deep-learning strategies,

on the other hand, are recognizing local shapes and edges and are, therefore, less affected

by global geometrical changes.

The 2D CNN was ignorant about any context information along the axial direction.

One would expect more consistent outlines in that direction by feeding information on

neighbouring axial slices into the network. I, therefore, explored two approaches: 2.5D

(feeding three adjacent slices as input) and fully 3D (feeding 3D patches). While in

theory, both methods should provide more consistent contours in that direction, no

significant differences to the 2D method could be detected for the data in this study,
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Figure 7.1: Segmentation examples: this figure provides 4 cases where the parotid glands
were infiltrated by involved lymph nodes. The blue line denotes the delineation using a 2D
deep learning-based approach, whereas the yellow line was created following an atlas-based
approach. Each column shows an example case with consecutive axial slices shown in each row.
The red arrows point towards involved lymph nodes. The first three columns highlight examples
where deep learning outperformed an atlas-based approach (green box) whereas the last column
provides a less common counter-example (red box).

which may be attributed to the small amount of data.

Combining multiple modalities could provide the network with complementary

information about tissues. I, therefore, explored how the combination of T1w and T2w

contrast could improve auto-segmentation. For the data in this study, there was no

improvement following this strategy. As the information is used complementary, a very

accurate registration is crucial between the two images, such that the network can

relate the contrast in two corresponding voxels accordingly. Despite registering the

images before feeding them into the network, there may have been residual errors in

the registration, and therefore, this multi-modality strategy did not help to improve the

auto-segmentation.

A limitation of the studies discussed so far was the small dataset. Deep learning

would greatly benefit from more input data to generalise well on new data. I explored

a technique named transfer learning, where knowledge gained in one imaging domain

with a large number of available annotated images is transferred to an imaging domain
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with smaller datasets. Transfer learning was used to transfer knowledge of parotid

segmentation on CT imaging to MR imaging. While certain information, such as size,

shape and location are domain-independent and can be transferred to a new imaging

modality, it remains challenging to determine which layers of the network store the

desired transferable information.

With frequent sequence and scanner updates, algorithms trained using the pre-update

annotated images may not work well for post-update newly-acquired images. Cross-

modality learning can leverage the information learned from existing data to prevent

the need to acquire and annotate new datasets under the new protocol.

7.2 Exploring potential limitations using an independent

test dataset

As summarised in the previous part of this chapter, I could show in this thesis that

all developed auto-segmentation approaches were achieving an accuracy close to the

inter-observer variability. This was determined in a well-defined dataset (database 1). In

clinical reality, there may be changes in how images are acquired, leading to differences,

for instance, in contrast settings, image quality or field of view. To be aware of potential

limitations and solutions to them, I applied atlas- and deep learning-based methods to a

fully independent dataset.

7.2.1 Materials and methods

7.2.1.1 Data acquisition and preparation

The training data (database 1) comprised the library of 27 T2w images together with

the manual delineation of a clinician, introduced in section 3.1 on page 39. For testing

purposes, a library of T2w images of 13 healthy volunteers and 7 HNC patients (database

2) was acquired in the RT treatment position (following Schmidt and Payne [130]).

Figure 7.2 illustrates the set-up of a volunteer on the MR scanner. Three coils were

utilised: an 8-channel anterior coil, fixed to a bridge and folded around the volunteer or

patient’s head and neck, in conjunction with a 32-channel posterior coil, embedded into

the table, as well as a 32-channel anterior coil to cover the lower part of the neck and

the shoulders.

A T2w 3D turbo-spin-echo sequence was optimised with a varying flip angle for

radiotherapy planning purposes, balancing scanning time against a high signal-to-noise-

ratio. The final scanning time was approximately 7 minutes. The image acquisition

parameters of both training and testing data are provided in table 7.2. For the testing
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Figure 7.2: Scanning setup: This figure illustrates a top and side view of a volunteer, set up on
the Siemens MR scanner. The respective coils are indicated in the picture in the second column.

Table 7.2: Image acquisition parameters of the two databases (database 1: training, database
2: testing).

parameter database 1 (training) database 2 (testing)

vendor GE Healthcare Siemens
sequence type 2D T2w spin-echo 3D T2w turbo-spin-echo
field strength 3T 1.5T
FOV [#pixels] 512 x 512 384 x 288
#slices 30 208
voxel size [mm3] 0.5 x 0.5 x 4 0.78 x 0.78 x 0.80
phase encoding direction unknown anterior -> posterior
orientation axial sagittal
TE [ms] [96.72, 107.30] 184
TR [ms] [3198, 4000] 3500
varying flip angle [°] 90 (fixed) 120
number of excitations (averaging) 1 1.6
acceleration unknown GRAPPA (factor 3)

data, no gold standard contours were available. Figure 7.3 illustrates axial, sagittal and

coronal views of example cases from the database. There were substantial differences

between the two datasets, as images were acquired on different scanners from different

vendors, as well as different sequences and algorithms were employed. These factors

contributed to differences in signal-to-noise ratio, resolution or image quality.

To match the resolution of the testing and the training data, I resampled the test
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images to a voxel size of 1x1x1mm3 and the training images to a voxel size of 1x1x4mm3

with a bilinear interpolation scheme.

7.2.1.2 Atlas-based approach

To auto-segment each image from database 2 (13 healthy volunteers, 7 patients), it was

registered to each image of database 1 (27 patients), respectively, employing an affine

registration as initialisation and refining it with a deformable registration. Details on

the registration can be found in chapter 5. The test images (database 2) covered a much

larger field of view along the axial direction (head to foot). Therefore, a preprocessing

step was required to avoid a failure of the image registration. For this purpose, I reduced

the field of view in this direction to a similar (smaller) coverage like for the training

images (database 2). Figure 7.4 illustrates an example for this preprocessing step. I

then employed a multi-atlas weighted majority voting, as described earlier in chapter 5.

7.2.1.3 Deep learning-based approaches

To choose suitable hyperparameters, the 27 patients from database 1 were randomly

split into 80% for training and 20% for validation purposes. The trained model was then

applied to all images from database 2. I chose the 2D method in this investigation. All

deep learning-based approaches are described in detail in chapter 6.4.

7.2.2 Results

Without cropping the field of view for the atlas-based approach, the registration between

training and testing images failed in all cases and hence, also the segmentation failed. I,

therefore, manually cropped the images to a similar field of view, as shown in figure 7.4.

Figure 7.5 illustrates typical examples of atlas-based auto-segmented parotid glands.

Most of the contours followed the boundaries of the parotid glands closely. There were

some, usually isolated, voxels wrongly predicted as parotids, as indicated by the red

arrows in figure 7.5. However, these could be easily removed in a fast postprocessing

step.

For the deep learning-based approaches, the network would fail to segment the

parotid glands without any adjustments of the image intensities. Despite both being

T2w sequences, there were some substantial differences in both types of images, such as

a 2D compared to a 3D acquisition and a magnetic field strength of 1.5T compared to

3T. While the image registration in the atlas-based segmentation was not sensitive to

these differences, the deep learning-based method was. For this reason, any potential

image property must be reflected in the training data, such as contrast, signal-to-noise

155



Comparison 7.2 Exploring potential limitations

27 annotated patient images

7 patients

13 healthy volunteers

database 2: testing

database 1: training

Figure 7.3: Test and training data: The first column exemplifies an axial, sagittal and coronal
image of one patient from the training data used in this study. The second column illustrates
axial, sagittal and coronal slices of a patient (first row) and a healthy volunteer (second row)
from the testing data, respectively.
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Figure 7.4: Preprocessing step for atlas-based segmentation: the field of view is cut (green
dotted box) to match it to the training images.

ratio, sharpness or image quality. To mitigate this problem, I resampled the training

images in such a way that they looked more like the testing images. For this purpose,

I first downsampled them by a factor of 2x2 in the axial plane and then upsampled

them again to the original resolution. I then retrained the network with the resampled

training images. Figure 7.6 illustrates typical example cases comparing the atlas-based

method to the deep learning-based method. In general, except for the brain region, the

deep learning-based contours appear less fuzzy at the edges compared to the atlas-based

contours. At the top borders of the image within the brain, the deep learning-based

method tends to mispredict some voxels as parotids. However, these could easily be

removed in a postprocessing step or by including slices within this region in the training

data.

7.2.3 Discussion and conclusion

This thesis demonstrated that both, atlas- and deep learning-based method could

accurately auto-segment parotid glands, which could then be used for RT treatment

planning. In this chapter, I explored the potential limitations beyond a well-defined

dataset on a new dataset qualitatively. A quantitative assessment of auto-segmentation

accuracy requires observer delineations of ROIs. Unfortunately these were not available

so this chapter provided a purely qualitative assessment. A quantitative assessment is

left for future work.

The atlas-based method could cope with changes in resolution or image quality well.

However, it was susceptible to the field of view and required matching this field of view

in a preprocessing step.

The deep learning-based approach, on the other hand, was sensitive to the image

sequence properties. However, it was straightforward to incorporate expected varieties

within the training data. In this case, it was sufficient to simply blur the images with
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Figure 7.5: Segmentation examples: this figure provides 5 example cases of atlas-based auto-
segmented parotid glands, denoted with the yellow line. The rows each show a typical example,
whereas the columns illustrate the axial, sagittal and coronal cross-sections, respectively. There
were some, usually isolated, voxels wrongly predicted as parotids, as indicated by the red arrows
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Figure 7.6: Segmentation examples: this figure provides 5 example cases for atlas- and deep
learning-based auto-segmented parotid glands (yellow line: atlas-based, blue line: deep learning-
based). The rows each show a typical example, whereas the columns illustrate the axial, sagittal
and coronal cross-sections, respectively.
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a downsampling and subsequent upsampling operation. For more complicated cases,

where the contrast could have changed substantially, a promising solution would be the

cross-modality learning approach, where one could transfer the expertise gained in the

delineation of one type of sequence to any desired sequence through synthetic image

generation (see chapter 6.6.)

While the accuracy was similar for both atlas-and deep learning-based methods,

the deep learning-based methods outperformed the atlas-based ones to a large degree

concerning the computation time (minutes or hours compared to seconds). Furthermore,

with more input data, the computation time for atlas-based segmentation would increase

due to a larger number of registrations, while in the case of deep learning, this would

only affect the training time.

As an additional point, deep learning can cope with more unusual structures and

can better handle varieties in shapes or locations, when shown many example cases.

Therefore, deep learning-based approaches can be expected to outperform atlas-based

approaches when applied to, and in the presence of, irregular structures such as tumours.

In conclusion, both atlas- and deep learning-based approaches seem promising

applications to alleviate the enormous burden of manual segmentation and potential

limitations can be fixed easily as we have shown in this chapter for two substantially

varying MR sequences. With the collection of more data, I am confident that deep

learning can outperform atlas-based methods in terms of accuracy and, more strongly,

the computation time. Moreover, deep learning can better detect abnormalities, as well

as segment normal tissues which have been infiltrated by abnormalities.
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Chapter 8

Final discussion, conclusion and

future directions

This chapter summarises the main findings of this thesis and their implications on future

research, as well as potential clinical implementations. Moreover, the work is put in

the broader perspective of automation in radiation therapy and I give a prognosis on its

future.
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8.1 Scope of this thesis

8.1.1 The role of auto-segmentation, MRI and adaptive RT

The segmentation of OARs is essential for the treatment planning of RT. To minimise

side effects, such as swallowing dysfunction or dry mouth, it is crucial to accurately

localise these organs and take them into account when planning the optimal configuration

of beam intensities and arrangements. Conventional RT treatments rely on a snapshot of

the patient’s anatomy in time for the full treatment course of about six weeks, neglecting

potential changes in the patient’s anatomy due to weight loss, tumour or organ shrinkage

and swelling. With the introduction of MRI-guided treatment systems, one can better

visualise the soft-tissue contrast, which is crucial for many structures in the head and neck.

Besides the advantage that MRI provides for image quality due to a better visualisation

of soft tissues, as well as an extensive range of possible contrasts, it allows for functional

imaging which can visualise surrogates, for instance for tumour metabolism, hypoxia,

diffusion and perfusion. With these technological advances, real-time adaptive RT could

be realised where, instead of one snapshot in time, frequent updates on the patient’s

anatomy and pathophysiological processes can be exploited for treatment adaptation.

To fully utilise the promises of these techniques, automation of the workflow is crucial.

The current practice of manual segmentation by clinicians is time-consuming and tedious,

especially for HNC patients due to many OARs to spare and target volumes to outline.

Besides, there is generally no ground truth and, therefore, segmentation is subject to

substantial inter- and intra-observer variabilities.

8.1.2 Aim of this thesis

The aim of this thesis was, therefore, to automate this tedious segmentation process.

To the best of our knowledge, at the beginning of this thesis, there was no method

available which could accurately and rapidly segment OARs on MR images of HNC

patients. While previously atlas-based strategies were the state-of-the-art methods for

auto-segmentation and are established now in many commercial treatment planning

systems, artificial intelligence, in particular deep learning, has in recent years gained

popularity for a variety of tasks. This popularity was mainly driven by the general

availability of increased computational power, enabling to calculate and store the usually

memory-heavy deep learning-derived models.
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8.2 Main findings and applicability of this thesis

Following atlas-based (chapter 5) or deep learning-based (chapter 6) methods, I could

demonstrate that it was feasible to automatically segment OARs with a geometric

accuracy comparable to the measured inter-observer variability.

8.2.1 Atlas-based segmentation

I demonstrated that atlas-based segmentation was capable of generating clinically

acceptable contours on both, T1w (chapter 4) and T2w (chapter 5) MR images. However,

it was not suitable for daily adaptations due to relatively long computation times.

Furthermore, this registration-based approach was sensitive to global features such as the

head posture or the field of view, as I have shown in chapter 7. In addition to that, atlas-

based segmentation performs well for organs which have similar shapes and locations for

different patients. As this approach is based on an image registration between different

patients, this property would become a challenge in tumour segmentation.

8.2.2 Deep learning-based segmentation

The computational burden of conventional auto-segmentation algorithms can be allevi-

ated with deep learning-based methods, with prediction times in the order of seconds or

even sub-seconds (see chapter 6). Furthermore, deep learning-based methods are more

flexible and can be used to segment ROIs which vary in shape and location, such as

involved lymph nodes or tumour volumes, as we have demonstrated recently [55].

8.2.3 Applicability of developed algorithms

In this thesis, I chose one clinical indication, HNC, and segmented OARs with a focus

on the parotid glands. The parotid glands are crucial organs to spare, such that severe

side effects can be reduced or avoided. In addition, they can vary significantly in shape

and location in a patient cohort and are typically close to target regions, rendering

auto-segmentation a challenging task. I am confident that the developed methods can

be generalised for other clinical indications and ROIs. We have already demonstrated in

related work that one could apply the same deep learning algorithm to the segmentation

of involved lymph nodes on diffusion-weighted MR images [55].
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8.3 Validation of auto-segmentation algorithms

8.3.1 Suitable evaluation measures

Currently, auto-segmentation algorithms are commonly assessed by measures of volume

overlaps or geometrical distances to a reference segmentation. However, for an application

of auto-segmentation within an RT planning scenario, these geometric metrics are not

necessarily meaningful. For example, a disagreement between manual and automated

delineations in a region with a large dose gradient is likely to have a much more significant

impact on an over-dosage to OARs or under-dosage to target volumes than in a region

that only receives low doses. This emphasises the need for the establishment of additional,

more meaningful evaluation metrics. I have demonstrated in this thesis (see chapter 4)

that geometric measures alone are not sufficient to predict the impact of inaccurate

segmentation on RT planning. One, thus, needs to determine the impact of segmentation

errors on the planned dose distributions for a thorough evaluation of auto-segmentation

algorithms prior to their clinical implementation.

The computational burden of needing to calculate treatment plans for a dosimetric

evaluation could, for instance, be solved by learning from a large database of combined

information on the locations of the ROIs and the planned dose distributions. Moreover,

one could employ an RT-specific loss function in the training of deep learning-based

algorithms which could, for example, incorporate the distance to overlap with the target

volume.

8.3.2 Lack of ground truth

A challenge for a quantitative evaluation of auto-segmentation algorithms remains with

the definition of "expert" performance. The lack of objective reference annotations

hinders an unbiased quantification. This is problematic not only for the evaluation but

also for the development of auto-segmentation algorithms itself, as manual annotations

are commonly used as input in a supervised manner. This way, an algorithm can only

mimic the human performance and replicate potential errors. To mitigate this limitation,

one could combine the prediction of multiple experts to obtain a more accurate estimation

of the ground truth, as for example achieved with the STAPLE method [155].
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8.4 Change of clinical practice

8.4.1 Clinical implementation of auto-segmentation

I am convinced that adaptive RT will be one of the main driving forces for full automation

of routine tasks in the clinical RT workflow in the near future due to the necessity for full

exploitation of a large quantity of imaging data. This will pave the way for automation,

in particular, of segmentation, in the general clinical RT workflow.

While deep learning-based algorithms are still "black boxes" to a large degree [168],

it is easy for a human observer to verify the resulting automated delineation. For

these reasons, auto-segmentation could be implemented in the clinic now, as a starting

point for clinicians with the possibility to edit the proposed contours. I believe that

auto-segmentation will gradually replace manual delineation within the next five to ten

years, as clinicians gain confidence in the technique by observing its results. This would

allow them to focus on different tasks.

Several vendors are already offering auto-segmentation algorithms in their com-

mercial treatment planning systems, such as Eclipse (Varian Medical Systems, Palo

Alto, California), Monaco (Elekta AB, Stockholm, Sweden) and RayStation (Raysearch,

Stockholm, Sweden), and are currently investigating deep learning-based algorithms.

8.4.2 Margins and uncertainties

Currently, large margins are used for the CTVs to account for uncertainties, for instance,

in the patient setup or the delineation of ROIs. With rapid daily image segmentation,

these margins can be reduced since uncertainties in the location of ROIs will decrease

with daily image guidance and adaptation.

Moreover, Bayesian deep learning-based methods can simulate the delineation uncer-

tainty intrinsically [45, 133] and therefore remove the need to employ large population-

based margins for uncertainties in the delineation (expansion from the CTV to the PTV).

Instead, they could facilitate the introduction of non-isotropic margins, whose local

extension depends on the uncertainties of the target outline at the considered spatial

point. Furthermore, combining uncertainty predictions with better imaging techniques

may allow for shrinkage of the large CTVs which are currently necessary to include

potential regional involvement of lymph nodes and sub-clinical tumour spread. With

this, toxicities to the patient could be significantly reduced and a better quality of life

after treatment with RT may be achieved.
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8.5 Deep learning algorithms are data-hungry

8.5.1 Need for large and consistent databases

A significant barrier to deep learning in medical imaging and, in particular, RT are small

databases and a large variety in imaging protocols and guidelines. For this reason, an

easy pitfall is to overfit the limited data at hand but missing out on generalisability.

Extensive validation of such algorithms is essential to ensure safe clinical practice. Hence,

a crucial step is to establish large, publicly available databases with consistent ground

truth annotations. These large databases could prove as RT-community-wide testing

frameworks. Hospitals need to work together to gather these large databases. With

initiatives such as the MR-Linac consortium, such approaches may become a reality as

imaging data will be shared and standardised according to specific guidelines.

8.5.2 Generative adversarial networks for image synthesis

I have shown that GANs hold a tremendous promise in overcoming limitations due

to data sparsity (see chapter 6.6). GANs can help in exploring and discovering the

underlying structure of training data and learn to generate new images. These approaches

can be used to augment the small annotated datasets, typically available in medical

imaging. Furthermore, GANs can, for instance, enable MR-only treatment workflows

where a synthetic CT replaces the conventionally used planning CT with no additional

imaging dose to the patient. This way, the need for image registration between MR and

CT images would be limited, which is prone to uncertainty [159].

Typically, multiple MR sequences are routinely acquired due to the complementary

information they provide. GANs could reduce the time spent on the acquisition of

multiple sequences by reducing the number of acquisitions through learning from large

databases of previous patients with multiple sequences [165]. However, with image

generation methods, caution has to be taken as the training data distribution can differ

substantially from the actual data distribution in a real-world application. Applications

of GANs are still in their infancy but are likely to become the hot topic of the coming

years.

8.6 Artificial intelligence in RT beyond auto-segmentation

8.6.1 Incorporating more knowledge

Recent trends move towards incorporating more information into deep learning-based

algorithms [104, 112]. This may, for instance, include genetic data, patient demographics
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and multi-modality imaging data. At this stage, fully exploiting multiple modalities

is challenging since individual modalities typically possess different properties, such as

noise levels and dimensionality. Additive neural networks extract features from each

network and combine them at a later stage in a shared network. However, weighing the

importance of individual modalities is still challenging and subject to future research

[102].

8.6.2 Decisions and outcome prediction

In the more distant future, artificial intelligence could be applied to decision-making

systems, helping clinicians to base their decisions on a collection of larger datasets

which are difficult to process by humans. These applications could be recommendations

on a specific therapy, or prediction and prognosis of a certain type of treatment. For

example, one could predict the likelihood of patient survival and treatment-related

toxicities with the delivered dose to target volumes and OARs. For this endeavour, a

more systematic collection of data would be required compared to how it is currently

typically done. Those tasks pose a larger challenge in terms of their validation compared

to auto-segmentation, as quality-assurance is challenging. While deep learning-based

approaches developed with large databases have the potential to guide clinicians in

their decision making, it is difficult to justify a decision without knowing the reasons

why the algorithm has drawn a specific conclusion. It might, hence, be beneficial to

split larger tasks into smaller sub-tasks to be able to quality-assure each step on the

way. Furthermore, active research is underway to open the black box of deep learning

algorithms [32, 168].

8.6.3 Caveat

While deep learning-based approaches have demonstrated promising results and there

is a large and increasing number of publications in this field, care has to be taken as

to whether these approaches can generalise well. Furthermore, deep learning-based

approaches are not always the most suitable approach, so one has to carefully select

where applications other than deep learning-based approaches are sufficient or could

even perform better.
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8.7 Conclusion

In conclusion, I am confident that auto-segmentation will soon be routinely used in the

clinical workflow and that, more generally, many repetitive tasks of the RT treatment

process can be automated to assist humans. I believe that automated systems can reduce

human errors, improve consistency and create more time for other tasks. Automation

can augment, rather than replace, clinicians and can, therefore, have an enormous impact

on the quality of treatment outcome.
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A.1 Paper

The following paper has been peer-review and was published as

J. P. Kieselmann, C. P.Kamerling, N. Burgos, M. J.Menten, C.D. Fuller, S. Nill, M. J. Cardoso,

and U.Oelfke. “Geometric and dosimetric evaluations of atlas-based segmentation meth-

ods of MR images in the head and neck region”. Physics in Medicine and Biology 63

145007 (2018).
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A.2.1 MR in RT 2017

This conference abstract has been peer-reviewed and presented at MR in RT 2017.
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A.2.2 MR in RT 2018

This conference abstract has been peer-reviewed and presented at MR in RT 2018.
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A.2.3 MR in RT 2019

This conference abstract has been peer-reviewed and presented at MR in RT 2019.
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A.2.4 ICCR 2019

This conference abstract has been peer-reviewed and presented at ICCR 2019.
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