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Abstract
Background/aims: Dose-escalation studies are essential in the early stages of developing novel treatments, when the
aim is to find a safe dose for administration in humans. Despite their great importance, many dose-escalation studies
use study designs based on heuristic algorithms with well-documented drawbacks. Bayesian decision procedures
provide a design alternative that is conceptually simple and methodologically sound, but very rarely used in practice,
at least in part due to their perceived statistical complexity. There are currently very few easily accessible software
implementations that would facilitate their application.
Methods: We have created MoDEsT, a free and easy-to-use web application for designing and conducting single-agent
dose-escalation studies with a binary toxicity endpoint, where the objective is to estimate the maximum tolerated dose.
MoDEsT uses a well-established Bayesian decision procedure based on logistic regression. The software has a user-
friendly point-and-click interface, makes changes visible in real time, and automatically generates a range of graphs,
tables, and reports. It is specifically aimed at clinicians as well as statisticians with limited expertise in model-based
dose-escalation designs who may have limited access to statistical methodology support, and does not require an
in-depth understanding of statistics any statistical programming skills to evaluate the operating characteristics of, or
implement, the Bayesian dose-escalation design.
Results: MoDEsT comes in two parts: a ‘Design’ module to explore design options and simulate their operating
characteristics, and a ‘Conduct’ module to guide the dose-finding process throughout the study. We illustrate the
practical use of both modules with data from a real phase I study in terminal cancer.
Conclusion: Enabling both methodologists and clinicians to understand and apply model-based study designs with
ease is a key factor towards their routine use in early-phase studies. We hope that MoDEsT will enable incorporation of
Bayesian decision procedures for dose escalation at the earliest stage of clinical trial design, thus increasing their use
in early-phase trials.
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Introduction

The primary aim of many phase I dose-escalation studies is
to estimate the maximum tolerated dose (MTD) of a novel
drug or treatment. In practice this often means identifying
a dose for which the probability of a patient developing a
dose-limiting toxicity (DLT) is close to a prespecified target
toxicity level (TTL), typically between 0.20 and 0.33 in
cancer trials. Patients enter the study in cohorts of one or
more (usually three), and for every new cohort a decision is
made whether to stay at the current dose level, escalate or
de-escalate the dose, or stop the study entirely. A statistical
study design informs and guides this process, but the ultimate
decision will always be based on clinical judgement.

It is good practice that early-phase dose escalation designs
use a well-fitting statistical model to synthesise all available
information (from prior knowledge and accumulating patient
data) and deduce a recommendation for how to proceed with
the study.1,2 The first model-based designs were developed
in the 1990s, most prominently the continual reassessment

method3, and also Bayesian decision procedures,4,5 which
are closely related to one another.6

The alternative to model-based designs are methods that
rely on largely heuristic rules or algorithms, such as the
3+3 design. The only real virtue of these algorithms is
their simplicity (at least when nothing unforeseen happens),
but on the downside they are less likely to identify the
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correct MTD maximum tolerated dose than model-based
designs, require on average more patients to reach a
dose recommendation, have less flexibility to accommodate
deviations from the pre-specified dose-escalation procedure,
and lack any theoretical foundation.7–10 Despite these clear
drawbacks, rule-based designs are still in wide use, while
the uptake of model-based designs remains slow, especially
in the public sector.11–13 Unfortunately, the latter appear to
many as a black box requiring specialist statistical input—
which they are not14. There is also a misconception that
they are overly complicated because they require more
planning than rule-based designs, such as the choice of a
prior probability distribution (or ‘prior’ for short).

In this paper we introduce MoDEsT (Model-based
Dose Escalation Trials), a free and easy-to-use web tool
for designing and conducting single-agent dose-escalation
studies guided by a Bayesian decision procedure to estimate
the MTD maximum tolerated dose.15 This method is
conceptually straightforward and statistically sound: it uses
logistic regression to model the relationship between dose
and risk of toxicity, which many are familiar with, and
allows the investigator to specify prior distributions for dose-
toxicity model parameters through the means of ‘pseudo-
observations.’ These pseudo-observations should represent
our best guesses, prior to the start of the study, at the
toxicity outcomes that would be recorded if hypothetical
(i.e. pseudo-)patients were administered certain doses of
the compound. Usually, priors are specified by stipulating
pseudo-observations for the lowest and highest doses
available for administration during the future study. Prior
specification can be informed by a scientific understanding
of the drug’s anticipated mechanism of action. Alternatively,
the pseudo-observations can be set so as to ensure the
procedure has favourable operating characteristics (so-called
‘operational priors’).

Onerous tasks that are currently a barrier to the use
of model-based designs, like setting a prior, become easy
with MoDEsT: it allows trying out different priors and
immediately visualises the consequences in terms of the
operating characteristics (e.g. probability of identifying the
correct MTD maximum tolerated dose, expected number of
patients required) of the procedure. This provides users with
insight as to how dose recommendations come about, thus
demystifying the model-based design.

In contrast to most other software for study design,
MoDEsT is specifically aimed at both clinical trialists and
statisticians with no previous experience of model-based
dose escalation who would default to the 3+3 design for
simplicity, although we believe it is also useful for statistical
experts who already have a thorough understanding of
model-based dose escalation. The intuitive point-and-click
interface of MoDEsT encourages users to play around with
and explore a variety design options, allows them to watch
changes become effective in real time, and get a feel for
the design’s performance in different clinically relevant
scenarios. It facilitates the consideration and inclusion
of efficient model-based dose escalation at the earliest
stage of clinical trial design, which should always be a
collaborative effort between clinical and statistical experts.
as no specialised statistical programming is required.

MoDEsT was written in the R16 programming language
and using the extension package shiny,17 which provides a
framework for building interactive web applications. shiny
is steadily gaining popularity in the context of methods
for early-phase dose finding. Recent years have seen the
development of shiny apps to

• design and run dose-escalation studies using the
continual reassessment method,18

• design dual-agent dose-escalation studies,19

• compare the performances of various model- and rule-
based designs,20,21

• simulate the highest achievable (i.e. optimal bench-
mark) accuracy when selecting the maximum tolerated
dose.22

There are also a number of graphical user interfaces
(GUIs) for dose-finding methods that are not based
on shiny, such as ‘NextGen-DF’ (now called ‘U-
Design’)23, ‘Web-EWOC’24, a plethora of tools
provided by the MD Anderson Cancer Center
(https://biostatistics.mdanderson.org/softwaredownload),
and commercial packages such as EAST Escalate
(https://www.cytel.com/software/east) and FACTS
(https://www.berryconsultants.com/software). To the best of
our knowledge, none of them holds any functionality for the
method outlined above. The only software implementation of
this method that we are aware of is ‘Bayesian ADEPT’,25,26

which has been defunct for several years. Further distinct
strengths of MoDEsT are:

1. it runs under any operating system;
2. it does not require any software package to be

installed;
3. its point-and-click interface means no specialist

software or programming skills are required;
4. it automatically generates PDF reports;
5. it is free to use.

Methods

Bayesian decision procedure
The Bayesian decision procedure implemented in MoDEsT
is made up of four main components: 1) a logistic
regression model, 2) prior information about the dose-
toxicity relationship, 3) a gain function, and 4) a set of rules
for (de-) escalating the dose and stopping the study. We
describe each component in more detail briefly below.; for
a detailed exposition we refer to the original paper by Zhou
& Whitehead.15

1) Logistic model. We assume the relationship between dose
and risk of toxicity follows a logistic model

log

(
P(dose-limiting toxicity)

1− P(dose-limiting toxicity)

)
= β0 + β1 log(dose)

where the logit transformation of the probability (i.e. the log
odds) of observing a DLT dose-limiting toxicity (left-hand
side of the Eequation 1) is assumed to depend on the log-
transformed dose in a linear fashion (right-hand side of the
Eequation 1); see the illustration in Figure 1. We use toxicity
data from study patients to estimate the values of the model
parameters β0 (intercept) and β1 (slope).
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Figure 1. Example of an S-shaped dose-toxicity curve (left)
and the corresponding straight line after transformation (right).
The dotted horizontal line indates a target toxicity level of 0.3, or
log(0.3/0.7)=–0.847 on the logit scale. P(DLT) is the probability
of a dose-limiting toxicity.

2) Prior information. To get the Bayesian decision procedure
started before any patient data are available, we need
prior information on the dose-toxicity relationship. Guessing
values of the model parameters β0 and β1 would be hard,
so we prefer to formulate our prior beliefs about the toxicity
rates of two distinct doses. The strength of these beliefs can
be expressed in terms of their ‘effective sample sizes’27:
the information from, say, 3 pseudo-observations will be
weighted as if they had been obtained from 3 real patients,
and mathematically converted into so-called beta priors.15

3) Gain function. A gain function can be used to quantify,
for each dose, the advantage of prescribing different dose
levels to the next cohort of patients, where larger gains are
to be preferred. Thus the gain function helps to determine
which dose should be recommended for the next patient
cohort. The ‘patient gain’ function would assign the dose
currently thought to be closest to the target toxicity level
(which is optimal from a current patient’s perspective)
whereas the ‘variance gain’ function would choose the
dose that will likely maximise learning about the dose-
toxicity relationship (which is optimal from an investigator’s
perspective and also from the perspective of future patients
who will be treated beyond the current clinical trial).5 In
practice the choice of gain function is unlikely to have a
significant impact on the performance characteristics of the
study design, but this can be explored in MoDEsT.

4) Escalation and stopping rules. Dose recommendations
are determined primarily by the model and the gain function,
but we may wish to apply additional restrictions such as:

• always start at the lowest dose;
• do not skip over any doses when escalating;
• do not escalate upon observing a toxicity in the current

cohort.

Stopping recruitment to the study will be recommended once

• the maximum number of patients have been analysed;
• a pre-defined maximum number of consecutive

patients receiving the same dose has been reached;
• a sufficiently accurate estimate of the MTD maximum

tolerated dose has been obtained;
• no dose among those in the pre-specified set is deemed

safe.

Implementation
We have created the web app MoDEsT written in the R
16 programming language and using the extension package
shiny, 17 which provides a framework for building
interactive web applications. shiny is steadily gaining
popularity in the context of methods for early-phase dose
finding. Recent years have seen the development of shiny
apps to

• design and run dose-escalation studies using CRM, 18

• design dual-agent dose-escalation studies, 19

• compare the performances of various model- and
rule-based designs, 20,21

• simulate the highest achievable (i.e. optimal
benchmark) accuracy when selecting the MTD.
22

There are also a number of graphical user interfaces
(GUIs) for dose-finding methods that are not based
on shiny, such as ‘NextGen-DF’ (now called
‘U-Design’) 23, ‘Web-EWOC’ 24, a plethora of
tools provided by the MD Anderson Cancer Center
(https://biostatistics.mdanderson.org/softwaredownload),
and commercial packages such as EAST Escalate
(https://www.cytel.com/software/east) and FACTS
(https://www.berryconsultants.com/software). To the best of
our knowledge, none of them holds any functionality for the
method outlined above. The only software implementation
of this method that we are aware of is ‘Bayesian ADEPT’,
25,26 which has been defunct for several years. Further
distinct strengths of MoDEsT are:

1. it runs under any operating system;
2. it does not require any software package to be

installed;
3. its point-and-click interface means no specialist

software or programming skills are required;
4. it automatically generates PDF reports;
5. it is free to use.

Results

The MoDEsT app
MoDEsT comes in two parts: a ‘Design’ module to
investigate candidate design options and simulate their
operating characteristics, and a ‘Conduct’ module to guide
decision making throughout the study, incorporate accruing
patient data into the model and provide summaries of the
final dataset on completion of the study. Both modules
are fully reactive i.e. changes made by the user become
effective in real time. MoDEsT can be accessed online
(https://www.modest.lancaster.ac.uk https://medstats-
lancs.shinyapps.io/design/ and https://medstats-
lancs.shinyapps.io/conduct/) from any device with a
web browser. For R users the app is also available in the
add-on package modest.28 We will keep maintaining both
the web app and the R package (including bug fixes and
possibly adding new options), hence the appearance and
functionality of MoDEsT may change slightly as it evolves.
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The ‘Design’ module. The ‘Design’ module takes as
inputs the basic study parameters (maximum sample size,
cohort size, dose levels, TTL target toxicity level, gain
function), the pseudo-observations needed to specify prior
distributions for parameters of the dose-toxicity model,
‘true’ values of model parameters for simulation of the
Bayesian procedure in different scenarios, and additional
escalation and stopping rules as detailed above; all these
are conveniently specified via sliders, text and tick boxes
(Figure 3). The app then creates graphical displays of
the dose-toxicity curves, simulates an example of a study
given the current specifications, and suggests a variety of
scenarios* for use in a subsequent simulation study (Figure
4). For the scenario chosen MoDEsT assesses a variety of
operating characteristics and presents the results in tables and
graphics. On the basis of the inputs the app generates a CSV
design file that can subsequently be fed into the ‘Conduct’
module. Additionally a report summarising the design, prior
information, and simulation results can be downloaded in
PDF format.

The ‘Conduct’ module. The ‘Conduct’ module requires the
user to upload a design file (obtained from the ‘Design’
module) and supply (anonymised) patient data. The latter
can either be uploaded as a CSV file (typically created
with a text editor or spreadsheet software such as Microsoft
Excel, OpenOffice/LibreOffice Calc, or Google Sheets), or
entered manually via a spreadsheet interface. The app then
produces graphical displays of the data, fits the logistic
model, calculates the current estimate of the MTD maximum
tolerated dose, and recommends either a dose for the next
cohort or stopping the study in case a relevant criterion
is fulfilled (Figure 5). A PDF report summarising the
design, data, analysis, and recommendation is available for
download. This can all be easily produced by the clinical
study team for each dose review meeting so that dose
recommendations based on statistical analyses of current and
past patient data are used real-time alongside clinical opinion
from the investigators to decide on dosing for the next patient
cohort.

Getting help. While the app’s user guidance should be
intuitive and most inputs and outputs self-explanatory,
additional help may occasionally be required. The quickest
way to learn more about an input element (e.g. slider,
button, check box, text box) is by mousing over it, and
a tooltip will appear. A full description/documentation
of all of MoDEsT’s functionality along with a detailed
explanation of all inputs and outputs is given in the help
pages on the website. They are also included in the R
package in the form of two HTML vignettes (https://cran.r-
project.org/web/packages/modest/vignettes/Design.html and
https://cran.r-project.org/web/packages/modest/vignettes/Conduct.html).

Example: a phase I study of quercetin
The workflow when designing and conducting a study with
MoDEsT is best illustrated with a real data example. In
the following we re-design and re-analyse (parts of) a
dose-escalation study of a novel drug product in terminal
cancer that originally used a 3+3-type design with several
spontaneous modifications.

Dataset. Ferry et al. conducted a phase I study of the
flavonoid quercetin in cancer patients suffering from a
variety of forms of solid tumour no longer amenable to
standard therapies.30 They assessed 9 dose levels (60, 120,
200, 300, 420, 630, 945, 1400, 1700 mg/m2) with the aim of
finding the MTD maximum tolerated dose under the premise
that a 20% risk of renal toxicity (WHO grade ≥ 2) would be
acceptable. A maximum of 18 patient cohorts of size 3 was
to be recruited to the study.
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Figure 2. Overview of the quercetin study data.

Figure 2 provides an overview of the study data from
a total of 52 patients. We note a number of oddities and
decisions made against the rules of 3+3:

• The dose was escalated to 1400 mg/m2 for the 8th
cohort despite a DLT dose-limiting toxicity having
been recorded for the 7th cohort at 945 mg/m2.

• DLTs Dose-limiting toxicities occurred in both the
10th and 11th cohort at 1400 mg/m2, and yet the dose
was not de-escalated for the 12th cohort.

• No DLTs dose-limiting toxicities occurred in the 12th
cohort, but the dose was de-escalated for the 13th
cohort to 945 mg/m2.

• The 12th cohort consisted of 4 patients.
• A DLT dose-limiting toxicity was recorded for the

17th cohort at 630 mg/m2, still the dose was escalated
to 945 mg/m2 for the 18th cohort.

• The 16th, 17th, and 18th cohort each consisted of 2
patients only.

These deviations cannot be incorporated within the 3+3
design with its inherent inflexibility. This design no
longer provides a relevant contribution to dose-escalation
decisions, whereas the model-based procedure implemented
in MoDEsT can easily handle cohorts of non-standard size
and dose recommendations overruled by clinical judgement.

∗The simulation scenarios are based on Table 1 of Zhou & Whitehead
(2003) 15 and Table 7.9 of Whitehead (2006). 29
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Study design. We set the study design parameters
(maximum sample size, cohort size, dose levels, TTL
target toxicity level) as in Ferry et al.’s original study
and use the patient gain function to drive dose-escalation
recommendations (Figure 3). We specify a ‘pessimistic’
or ‘conservative’ prior distribution for parameters of the
dose-toxicity relationship by specifying pseudo-observations
consistent with the opinion that, a priori, we would expect
to see 0.3 DLTs dose-limiting toxicities if 3 patients
were treated with 60 mg/m2 and 1.5 DLTs dose-limiting
toxicities if 3 patients received 1700 mg/m2, corresponding
to anticipated DLT dose-limiting toxicity risks of 10% and
50%, respectively. Note that non-integer values of DLTs
dose-limiting toxicities are acceptable when specifying prior
distributions. For the assumed ‘true’ dose-toxicity model
used to simulate DLT dose-limiting toxicity occurrences
we choose the ‘true’ DLT dose-limiting toxicity risks
on the lowest and highest doses to be 3% and 40%,
respectively. One does not necessarily have to specify priors
by considering DLT dose-limiting toxicity risks on the lowest
and highest dose levels, but we do recommend choosing one
dose at the lower and one at the upper end of the spectrum.

For the purpose of this example, we enforce starting at the
lowest dose, not skipping over any doses when escalating,
and not escalating when a DLT dose-limiting toxicity occurs
in the current cohort. We consider trial designs which
would recommend stopping the study for accuracy once 12
consecutive patients have received the same dose, or when
the ratio of the upper and lower 95% credible limit around
the estimated MTD maximum tolerated dose is 3 or less.

Figure 3. Input mask of the ‘Design’ module with specifications
inspired by the quercetin study.

From these inputs MoDEsT generates a number of graphs
and tables to summarise the operating characteristics of the
stipulated design. We see that if our simulation model were
indeed the true dose-toxicity curve, the MTD maximum
tolerated dose would be estimated as 584 mg/m2, but only
206 mg/m2 under the much more cautious prior model
(Figure 4, top left panel). Unsurprisingly, the 95% credible

band around the prior curve is extremely wide, as it is based
on only 3 (pseudo-)observations.

Figure 4. Top left: ‘Model’ tab of the ‘Design’ module displaying
the prior and the assumed true dose-toxicity curve. Top right:
‘Example’ tab of the ‘Design’ module showing one simulated
example dataset. Bottom left: ‘Scenarios’ tab of the ‘Design’
module giving an overview of six simulation scenarios. Bottom
right: ‘Simulations’ tab of the ‘Design’ module summarising
simulation results.

MoDEsT displays one simulated realisation of a study
which proceeds according to the proposed Bayesian dose-
escalation procedure and stopping rules, simulating patient
outcomes setting DLT dose-limiting toxicity risks equal to
values consistent with the current dose-toxicity simulation
model. This is intended as an illustrative example of what
the study could look like. A single simulated dataset, and
the corresponding evolution of the dose-escalation trial, will
not necessarily be representative of what would typically be
observed if the true underlying dose-toxicity relationship was
identical to the simulation model. However, by simulating
a large number of trials and averaging across them, we can
deduce what might happen on average. MoDEsT is designed
to allow easy repeated simulation, which will be helpful in
getting a feel for the variation of output that can occur.

The example trial shown in Figure 4 (top right panel) is
stopped after 12 cohorts, when 12 consecutive patients have
received the same dose (420 mg/m2), upon de-escalation
from 630 mg/m2). The 95% credible band for the MTD
maximum tolerated dose becomes narrower over the course
of the study and always contains the ‘true’ value of 584
mg/m2.

To facilitate assessment of the design’s operating char-
acteristics, MoDEsT automatically creates six simulation
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scenarios that can be used in the simulation study: the
standard scenario defined by the ‘true’ simulation model,
and five additional scenarios derived from it that imply lower
(‘inactive’) or higher (‘potent’) toxicity rates over the whole
dose range or parts of it. They are summarised in a table and
graph, alongside the prior for comparison (Figure 4, bottom
left panel).

Figure 4 (bottom right panel) shows summary tables
and graphs of 1000 simulations performed within seconds
by the press of a button under the (anticipated) standard
scenario. In this example the average sample size required
was 36.28 patients (averaged over all 1000 simulated trials),
the average of the maximum likelihood estimate (MLE)
of the MTD maximum tolerated dose was 649.86 mg/m2,
with a large mean squared error (MSE) and notable bias,
and an average toxicity rate of 14%, which is well below
the targeted 20%. We see how many simulated trials were
stopped for which reason(s); the sum of the percentages is
greater than 100% because multiple stopping criteria can be
fulfilled at the same time. We also get an overview of the
sample sizes used, numbers of DLTs dose-limiting toxicities
observed, reasons for stopping, and doses recommended as
the MTD maximum tolerated dose across the 1000 simulated
trials. These summary plots and tables produced instantly
by MoDEsT will be sufficient for most users but a detailed
account of all individual simulation runs can be downloaded
as a CSV file.

Study conduct. For illustrative purposes we present and
discuss here only the analyses following the 7th and the last
cohort, respectively; in practice a similar analysis would be
performed after every single patient cohort.

We upload the design file and a CSV containing the study
data. MoDEsT generates tabular overviews of the design
parameters and patient data, as well as plots such as the one
in Figure 2. We recommend that users review this output
to double-check the information and also whether data have
been read in as intended i.e. correct columns were specified
for the cohort, dose, and response variable.

In Ferry et al.’s study the dose was escalated from 945
to 1400 mg/m2 for the 8th cohort, despite a DLT dose-
limiting toxicity being observed in the 7th cohort (Figure
2). Re-analysing the data up to and including the 7th cohort
with MoDEsT, we find that the Bayesian dose-escalation
procedure recommends administering 945 mg/m2 to the 8th
patient cohort (Figure 5, left panel), which is in line with our
the stipulated safety rule of not escalating when a DLT dose-
limiting toxicity has been observed in the current cohort. Due
to the amount of data accruing, the 95% credible band is
much narrower than for the prior.

The dataset accrued upon completion of the study
comprises 52 patients, which is less then the envisaged
maximum sample size of 54, so we have to tick the box
in MoDEsT to indicate that the study has been stopped
(Figure 5, right panel). The final model-based estimate of
the MTD maximum tolerated dose is 998 mg/m2, but this
is influenced by the very pessimistic prior. Removing the
pseudo-observations used to formulate the prior yields a
final (maximum likelihood) estimate of 1090 mg/m2 and
a marginally wider credible band. Both estimates lead to
a recommendation of 945 mg/m2 for the MTD maximum

tolerated dose, which is the same as in Ferry et al. However,
had MoDEsT been used in the original study, the deviations
from the protocol (such as smaller and larger cohorts) could
easily have been accommodated, and the (clearly too high)
dose of 1700 mg/m2 would probably never† have been
administered.

Figure 5. ‘Recommendation’ tab of the ‘Conduct’ module after
the 7th cohort (left) and after the final analysis (right) of the
quercetin study.

Discussion
Building trust in the utility, safety, and practical applicability
of model-based dose-escalation designs is an essential
step towards their wider acceptance within the clinical
community. To assist this process we have created MoDEsT,
a software tool that is straightforward to use even without
any specialist knowledge of statisticals or programming.
We are positive it will convince trialists and statisticians
that model-based methods are a feasible and worthwhile
alternative to the 3+3 design and can be implemented with
limited additional effort. Tasks that currently discourage
many clinicians from using model-based designs, like having
to set a prior, are made simple in MoDEsT. One of the mmain
advantages of the software is that it allows investigators
to input different (hypothetical or real) datasets ahead of
time to see what dose recommendations the Bayesian dose-
escalation procedure would generate, allowing them to
develop some intuition as to how the procedure is working
and how it would compare with their own intuition or
algorithmic rules they might be more familiar with. We hope
that by seeing the effects of changing design parameters
in real time, trialists will become more confident in using
model-based designs and that these will increasingly become
the norm in early-phase dose-escalation studies.
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