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Abstract  

Pancreatic Neuroendocrine Neoplasms (PanNENs) are rare, highly 

heterogeneous tumours. There have been significant recent advances in our 

knowledge of genomic events underlying their pathogenesis. However, treatment 

decisions remain largely based on tumour stage and grade which is inadequate, 

the current classification paradigm failing to capture the significant heterogeneity in 

tumour biology.  

The first aim of my thesis was to establish a large registry for PanNENs and then 

clinically phenotype the patients included. The next aim was to develop a novel 

assay to subtype PanNENs, based on our previously derived PanNETassigner 

molecular subtypes, and to establish if the subtypes assigned were prognostic. 

The PanNEN registry and PanNETassigner assay were successfully developed. 

Clinical data and tissue samples from the registry were used to test, validate and 

refine this assay. The assay demonstrated that the metastasis-like primary-1 

subtype (MLP-1) was associated with a poor prognosis.  

Novel therapeutic options are required in PanNENs and trials of immunotherapy 

are underway, although knowledge of the immune microenvironment in this 

disease is lacking. The last aim of my thesis was therefore to describe immune 

related gene expression across the PanNETassigner molecular subtypes.  

The poor prognosis MLP-1 subtype had an immune high phenotype, associated 

with hypoxic tumours and signalling within damage-associated molecular pattern 

pathways. The immune gene expression profile demonstrated generates the 

hypothesis that the MLP-1 subtype may be more amenable to an 

immunotherapeutic approach than other subtypes.  

Overall, my thesis demonstrates that molecular subtyping can be used to provide 

valuable additional information both regarding prognosis and the immune 

microenvironment in PanNENs. The assays and hypotheses developed here now 

require additional testing in pre-clinical mechanistic studies, larger cohorts of 

patients and prospective clinical trials. With such further validation the 

PanNETassigner subtypes may pave a way forward for a more personalised 

approach for patients with this rare tumour type. 
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1 Introduction 
 

1.1 Epidemiology of Pancreatic Neuroendocrine Neoplasms 

 

Neuroendocrine neoplasms (NENs) are rare and heterogeneous tumours 

with widely varying morphologies and behaviours. NENs arise in multiple 

organs, originating in different neuroendocrine cells across the body. Over 

65% occur in the GI tract, known as Gastroenteropancreatic (GEP) NENs1. 

Whilst GEP-NENs remain a rare cancer, their incidence has significantly 

increased in recent decades to 5.25/100,000/year, according to 

Surveillance, Epidemiology and End Results (SEER) program data2. 

Moreover, as many GEP-NENs are slow growing, with a reasonable length 

of survival even with metastatic disease, their prevalence is relatively high 

and rising3,4,5. 

This rising incidence of GEP-NENs has been documented across the 

globe6,7,8,9. The aetiology for this increase is likely multifactorial, attributed 

to an aging population, improved detection due to the growing use of 

screening endoscopies and cross-sectional imaging, improved data capture 

by registries and an increased awareness of the disease both in the 

medical and in the general population3,4. 

Pancreatic neuroendocrine neoplasms (PanNENs) are the 3rd most 

common GEP-NEN, after small bowel and rectal NENs, with an incidence 

of 0.33-0.48/100,000/year6,3 (Figure 1.1 A and B). After Pancreatic Ductal 

Adenocarcinoma (PDAC), PanNENs are the second most common 

epithelial cancer of the pancreas, with an overall mortality rate of 60%10,11.  

Sporadic PanNENs can present at any age, but the highest incidence is 

found in patients between the ages of 30 and 60, with no significant 

difference in incidence between men and women12. In the past, a large 

proportion of PanNENs were thought to be functional, secreting hormones 

resulting in specific patterns of symptoms. However, as diagnostic 

techniques have improved and more non-functional tumours are being 
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identified, it is now believed that over 60% of PanNENs are non-

functional13. 

Overall survival (OS) varies significantly between patients, from under 1 to 

over 20 years, and is influenced by a number of factors including disease 

stage (Figure 1.1 C). Although PanNENs tend to be slow growing, in the 

region of 60% of patients will have nodal metastases at diagnosis, and 30% 

will have liver metastases14. 5-year survival ranges from 60-100% for 

localised disease to 25% for metastatic disease15. In dedicated centres the 

5-year survival for metastatic disease can be over 60%, highlighting the 

importance of specialised care for this rare tumour type15. Although 

relatively good in oncological terms, these prognoses remain life-limiting for 

the majority and significantly worse for many patients. 
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Figure 1.1 Incidence (A), Prevalence (B) and Median OS according to 
Stage and Grade (C) for PanNEN Patients (1973-2012) 

 

Figure 1.1 is modified from Trends in the Incidence, Prevalence, and 

Survival Outcomes in Patients With Neuroendocrine Tumors in the United 

States (JAMA Oncol.2017;3(10):1335-1342.doi:10.1001/jamaoncol.2017.0589)  
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1.2 Clinical Features and Diagnosis of PanNENs 
 

As with all NETs, presenting symptoms for PanNENs may be initially mild 

and non-specific such as abdominal pain, nausea, weight loss and 

anaemia. Pain can be caused by mass effect from the primary tumour itself 

or from liver capsule pain, due to metastatic liver disease. For patients with 

non-functional tumours a high index of suspicion is therefore required and 

diagnosis may be delayed for many years16. Patients with functional 

tumours, may have specific patterns of symptoms according to the peptide 

hormone released, making them more easily recognisable (Table 1.1)17.  

The 4 classic functional PanNENs are Insulinomas, Gastrinomas, 

Glucagonomas and VIPomas18. Insulinomas and Gastrinomas tend to be 

diagnosed earlier, due to the significant symptoms caused by large 

volumes of peptides released, whereas Glucagonomas and VIPomas may 

be diagnosed later. Other functional tumours, such as somatostatinomas, 

GRFomas, ACTHomas, PTHrPomas and PanNETs causing Carcinoid 

syndrome, are less common17.  

The diagnosis of a PanNEN is based on the clinical picture, blood and urine 

tests for secreted peptides and amines, a variety of imaging modalities, 

including somatostatin receptor (SSTR) scintigraphy or SSTR PET/CT 

scans for well differentiated NENs, and histopathology19. Both European 

and American NET societies have published extensive guidelines regarding 

the diagnostic pathway13,20,21. These investigations enable the patient’s 

tumour to be classified according to tumour type, grade and stage, which in 

turn facilitates risk stratification and treatment planning. However, there are 

significant limitations regarding the precision of the current classification 

paradigm and its ability to personalise treatment planning in this very 

heterogeneous disease. 
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Table 1.1 Functional Syndromes Associated with PanNENs 

 

Tumour (Syndrome) Symptoms Associated Peptide Incidence (per 

million/year) 

Insulinoma  
(Hypoglycaemia syndrome) 

Confusion, sweating, dizziness, weakness, 
unconsciousness, relief with eating 

Insulin 1-2 

Gastrinoma  
(Zollinger-Ellison syndrome) 

Diarrhoea with or without severe peptic ulceration Gastrin 1-2 

Glucagonoma 
(Glucagonoma Syndrome) 

Necrolytic migratory erythema, weight loss, diabetes 
mellitus, stomatitis, diarrhoea, DVT, depression 

Glucagon 0.1 

VIPoma  
(Verner-Morrison Syndrome) 

Profuse watery diarrhoea and marked hypokalaemia, 
hypochlorhydria 

Vasointestinal polypeptide 
(VIP) 

0.1 

Somatostatinoma 
(questionable if syndrome exists) 

Cholelithiasis, weight loss, diarrhoea, steatorrhoea, 
diabetes mellitus, achlorhydria 

Somatostatin <0.1 

ACTHoma  
(Cushing’s Syndrome) 

Weight gain, round face, menstrual changes, hirsutism, 
hypertension, bruising, depression, dorsal fat pad, 

abnormal glucose tolerance 

ACTH (Adrenocorticotropic 
hormone) 

<0.1 

PTHrPomas (Hypercalcaemia)  Symptoms due to raised calcium PTHrP (Parathyroid hormone 
related peptide) 

<0.1 

GRFoma (Acromegaly)  Enlarged hands and feet, coarsened facial features, 
thickened skin, excessive sweating, skin tags, fatigue and 

muscle weakness 

GRF(Growth hormone 
releasing factor) 

Unknown 

Carcinoid Syndrome Dry flushing, palpitations, diarrhoea, abdominal pain, 
wheezing, carcinoid heart disease, pellagra 

Serotonin < 50 total cases 
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1.3 Staging of PanNENs  

 

A number of different staging systems have been proposed for PanNETs, 

the European Neuroendocrine Tumour Society (ENETs) and the American 

Joint Committee on Cancer/ Union for International Cancer Control 

(AJCC/UICC) TNM classifications being the most commonly used22. Whilst 

both have been shown to be prognostic, the ENETs PanNET specific 

classification previously demonstrated superiority over the 7th edition AJCC 

system in predicting patient outcomes22. The AJCC classification was 

subsequently altered, introducing a PanNET specific system, to bring it 

closer to the ENETs classification in the 8th edition in 2017 (Table 1.2). 

Table 1.2 ENETs /8th edition AJCC TNM Classifications 

 ENETs and AJCC/UICC 8th Edition* 

Tx 

T0 

T1 

T2 

T3 

 

T4 

Tumour cannot be assessed 
No evidence of primary tumour 
Tumour limited to the pancreas, <2 cm 
Tumour limited to the pancreas, 2 to 4 cm 
Tumour limited to the pancreas, >4 cm; or tumour invading 
the duodenum or common bile duct 
Tumour invading adjacent organs (stomach, spleen, colon, 
adrenal gland) or the wall of large vessels (celiac axis or the 
superior mesenteric artery 
 

Nx 

N0 

N1 

Regional lymph nodes cannot be assessed 
No regional lymph node involvement 
Regional lymph node involvement 
 

M0 

M1 
No distant metastasis 
Distant metastases 
 

Stage I T1 N0 M0 
 

Stage IIA 

Stage IIB 

T2 N0 M0 
T3 N0 M0 
 

Stage IIIA 

Stage IIIB 

T4 N0 M0 
Any T N1 M0 
 

Stage IV Any T Any N M1 
 

*Note PanNECs are staged separately in AJCC system, alongside PDAC  
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The prognostic ability of the ENETs/8th edition AJCC has been since 

compared to the 8th edition AJCC classification for exocrine pancreatic 

cancer (EPC), which includes an N2 category for involvement of ≥4 regional 

lymph nodes. This analysis concluded that the EPC classification was 

superior, although noted that the differences were minimal23. A further 

modified ENETs classification with prognostic significance has also been 

proposed, with slightly altered staging groups24.  

A clear consensus staging system to avoid confusion, to ensure guidelines 

are appropriately followed and to enable accurate comparable research 

would be ideal, but it is not yet clear which classification will fill this space. 

At present, it is reasonable to use the ENETs/8th edition AJCC 

classification and indeed this is referred to in current guidelines13. 

Whichever staging system is ultimately used, its prognostic ability is 

complemented by histopathological grading of the tumour. 

1.4 Histopathological Classification of PanNENs 

 

To improve the classification and management of heterogeneous GEP-

NENs the ENETs devised a grading system, adopted by the World Health 

Organisation (WHO) in 201022. In this tiered classification, NENs are 

divided into 3 grades, according to various histopathological features and 

the tumour’s proliferative index, assessed by Ki-67% or Mitotic Index (MI). 

The Ki-67 Index is a measure of active cell cycling using monoclonal 

antibody staining and the MI is an assessment of the proportion of cells with 

visible chromosomes25.  

The main division in the WHO classification is between well and poorly 

differentiated tumours; the former grouped as grade 1/2 NETs and the latter 

labelled grade 3 Neuroendocrine Carcinomas (NECs). The 3 grades have 

been demonstrated to have prognostic significance across multiple studies, 

with grade 1 tumours (Ki-67<3%) having the best prognosis and grade 3 

tumours (Ki-67>20%) the worst26,11 (Table 1.3 and Figure 1.2).  

This split between well and poorly differentiated tumours also appears to be 

biologically relevant as clear differences have been documented in genetic 
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alterations between the two groups. Well differentiated NETs may have 

mutations including MEN1, DAXX/ATRX, TSC and NF1 but poorly 

differentiated NECs are more likely to have p53, CDKN2A or RB mutations, 

or share alterations associated with PDAC such as KRAS or SMAD4 

mutations27,28,29. 

Figure 1.2 Examples of poorly and well differentiated GEP-NENs 

Haematoxylin and Eosin (H&E) staining showing a well differentiated (A) 

and a poorly differentiated GEP-NEN (B). Ki-67 monoclonal antibody 

staining demonstrating a tumour with a low Ki-67 index (C) and a high Ki-67 

index (D). Images provided by histopathologist Monica Terlizzo. 

Whilst the WHO grading system has significant value, there remains 

substantial heterogeneity of disease behaviour within the grades. Further, 

there is controversy as to the optimum Ki-67 cut-offs used to assign grade, 

with various alternative cut-offs proposed in the literature (Table 1.4). For 

example, a number of groups have advocated a higher Ki-67 threshold for 

grade 2 disease, at 5%, which may improve the prognostic value of the 

classification or subdividing grade 3 disease at a Ki-67 of 55%30,31,32,. 

 

The heterogeneity within the classification system was in part recognised 

by the WHO, who published an update to their 2010 classification in 2017, 

adding a 3rd well differentiated NET subgroup, NET grade 312. Tumour 

samples classified as NET grade 3 are well differentiated but have a Ki-67> 

20% (Table 1.5). Patients within this new NET grade 3 subgroup are 
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reported to have a somewhat worse prognosis than grade 2 NET patients, 

but a better prognosis than grade 3 NEC patients33. However, the WHO 

2017 update did not alter the Ki-67 cut-off between grade 1 and 2 disease, 

or include any maximum Ki-67% for the new grade 3 PanNET group and 

the problem of heterogeneity within grades persists.  
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Table 1.3 Selected Studies demonstrating the prognostic value of WHO grade in PanNETs 

Study Population (n) Ki-67 cut-offs investigated Endpoint Prognostic Significance Reference (Year) 

 

PanNET (61) 

Non-functional 

 

2% 

 

OS 

 

Prognostic in univariate 

analysis 

 

La Rosa et al.34 

(1995) 

 

PanNET (324) 

Mixed 

 

2% 

 

OS 

 

Prognostic on multivariate 

analysis 

 

Ekeblad et al.11 

(2008) 

 

Foregut NET (PanNET 131) 

Mixed 

 

≤2%, 3-20% and >20% 

 

OS 

 

Prognostic on multivariate 

analysis 

 

Pape et al.35 

(2008) 

 

GEP-NET (PanNET 288) 

Mixed 

 

≤2% vs. >20% 

 

OS 

 

Prognostic on multivariate 

analysis 

Garcia-Carbonero et 

al.36 

(2010) 

 

PanNET (131) 

Mixed 

 

≤2%, 3-20% and >20% 

 

OS 

 

Prognostic on univariate but 

not multivariate analysis 

 

Khan et al.37 

(2013) 

 

PanNET (166)  

Non-functional 

 

≤2%, 3-20% and >20% 

 

 

OS 

 

Prognostic on multivariate 

analysis 

 

Bu et al.38 

(2018) 
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Table 1.4 Selected studies demonstrating the prognostic value of alternate Ki-67 index cut-offs in PanNETs 

 

Study Population (n) Ki-67 cut-offs investigated Endpoint Prognostic Significance Reference (Year) 

PanNET (54) 

Functional and Non-functional 

5%  OS Prognostic on multivariate 

analysis 

Pelosi et al.39  

(1996) 

PanNET (274) 

Resected 

≤5%, 6-20% and >20% OS Prognostic on multivariate 

analysis 

Scarpa et al. 26 

(2010) 

PanNET (202) 

Advanced 

5% PFS Prognostic on multivariate 

analysis 

Panzuto et al.40  

(2011) 

PanNET (1072) 

Resected 

4.85% OS Prognostic on multivariate 

analysis 

Rindi et al. 41 

(2012) 

PanNET (131) 

Mixed 

≤5%, 6-20% and >20% OS Prognostic on multivariate 

analysis 

Khan et al.37 

(2013) 

GI-NEC (305) 

Mixed 

55% OS Prognostic on univariate but 

not on multivariate analysis 

Sorbye et al.42 

(2013) 



 
24 

 

 

Table 1.5 WHO Classification of GEP-NENs from 2010 and 2017 

 

In clinic, this heterogeneity of disease behaviour within grades causes 

significant problems. It may manifest as a patient having a lower grade 

tumour (1/2) which behaves more like a grade 3 tumour and perhaps 

should be treated more aggressively upfront and vice versa. However, 

currently there is no way to predict such disease behaviour at baseline or to 

determine which patients may require treatment intensification or indeed 

de-escalation, sparing them unnecessary treatment and attendant side 

effects. There is a clear unmet clinical need for novel prognostic and 

predictive markers to complement grade and stage, guide prognostication 

and support individualised treatment decisions. 

1.5 Molecular Biology and Subtypes of PanNENs 

 

The majority of pNENs are sporadic, but they may occur as part of one of 

the familial cancer syndromes, such as Multiple Endocrine Neoplasia 1 

(MEN1), Von Hippel Lindau (VHL), Neurofibromatosis type 1 and Tuberous 

sclerosis18. Studying the genetic mutations seen in these syndromes and 

the molecular profiling of sporadic PanNENs have been key steps in 

understanding the development and progression of these tumours, with 

whole-genome analysis recently published29.  

Recurrent genetic alterations have been described in four main pathways in 

sporadic PanNETs: telomere maintenance (DAXX/ATRX), chromatin 

remodelling (SETD2, ARID1A, MLL3), mTOR pathway activation (PTEN, 
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TSC1/2, DEPDC5) and DNA damage repair (CHEK2, BRCA2, MUTYH, 

ATM), with MEN1 inactivation influencing all four pathways28, 29.  

Chromosomal instability (CIN) has also been noted as a feature of GEP-

NETs43,44. It has been suggested that in PanNET CIN may be a result of 

mutations in MEN1/DAXX/ATRX leading to chromosomal gains and 

losses44. Interestingly, high levels of CIN appear to be associated with a 

trend towards improved prognosis in PanNET but a poorer prognosis in 

small intestinal (SI) NET, although these results require additional 

mechanistic studies and validation in a larger population44,43. 

As for CIN, attempts have been made to associate mutations and other 

molecular features with prognosis or treatment response in PanNENs, but 

the majority of studies have been small and retrospective in nature, often 

covering mixed populations, with at times conflicting results45. Strong, 

clinically relevant conclusions cannot yet be drawn. For example 

DAXX/ATRX mutations and alternative lengthening of telomeres (ALT) 

have been associated with a poor prognosis across a number of 

studies29,46,47,48 but with an improved prognosis in one study28 and with no 

significant difference in survival in analysis of the PanNET patients in the 

RADIANT trials44.  

Due to the complexity and heterogeneity of NENs, a number of groups 

have elected to take an integrated approach to studying their molecular 

biology, defining molecular or transcriptomic subtypes. 

One group used DNA microarray analysis, quantitative real-time PCR and 

hierarchical clustering in a small group of PanNETs (n=19) to reveal a 

‘benign’ and ‘malignant’ cluster, which correlated with the WHO 

histopathological classifications used at the time, being well-differentiated 

endocrine tumours (WDETs) and well-differentiated endocrine carcinomas 

(WDECs)49. Molecular subtypes have also been reported in SI-NETs and in 

pulmonary NENs, where they were found to have prognostic 

significance43,50. 

Our laboratory previously defined 3 molecular subtypes in sporadic 

PanNENs based on an integrated analysis of gene expression (221 genes), 
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microRNA (30 miRs) and mutations (targeted mutational profiles of MEN1, 

DAXX/ATRX, TSC2, PTEN and ATM), collectively named the 

PanNETassigner signature51. The existence of these three transcriptional 

subtypes was supported by Scarpa et al. who reported three similar 

subtypes using RNA-sequencing29.  

The three PanNETassigner subtypes, Metastasis-like-primary (MLP), 

Insulinoma-like and Intermediate, each have specific features as described 

below (Figure 1.3). As yet their prognostic significance has not been 

assessed, although the MLP subtype was found to be associated with 

metastases51. 

Figure 1.3 PanNETassigner Molecular Subtypes 

 

The association noted between these molecular subtypes and grade of 

disease is particularly interesting. grade 1/2 PanNETs are heterogeneous, 

associated with all three molecular subtypes, whereas grade 3 tumours are 

predominantly associated with the MLP subtype.  

These data led to the hypothesis that subtyping using the PanNETassigner 

signature may be able to facilitate patient stratification, in addition to grade 

and stage. For example, potentially being used to select those grade 1/2 

patients falling into the MLP subtype, whose disease biology may cause the 

tumour to behave more aggressively than would be expected according to 

grade alone (see Chapters 2 and 3).  
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1.6 Current Treatment of PanNENs 

 

PanNET survival increased from 2000-2004 to 2009-2012 (HR 0.56, 95% 

CI 0.44-0.70)3. This may be in part due to the increased number of active 

treatments available, thanks to a number of large, international studies, 

conducted despite the inherent difficulties associated with research into 

rare diseases. However, the impact of lead time bias due to improved 

detection and length time bias in light of the indolent nature of many 

PanNETs should not be overlooked. 

To help clinicians navigate the increasing complex PanNEN treatment 

landscape, extensive guidelines have been published, both in Europe, with 

UKINETS and ENETS guidelines in 2012 and 2016 respectively, and in 

America, with the North American NET Society (NANETs) guidelines 

updated in 2013 and the NCCN guidelines which are currently being 

updated13,20,52,53. The treatment paradigms outlined are largely based upon 

grade and stage of disease, alongside tumour functionality and 

somatostatin receptor (SSR) status, as there are no other validated 

prognostic and/or predictive biomarkers routinely used in clinical practice. 

Treatment is aimed at controlling tumour growth and functional symptoms. 

Surgery remains the only curative treatment, but PanNEN patients 

frequently present with advanced disease, when this is often impossible. 

When surgery is not an option, patients with grade 3 NECs tend to be 

treated aggressively with immediate platinum-based chemotherapy 

doublets, whereas patients with grade 1 and 2 NETs, are frequently treated 

with a less aggressive approach. Initially a combination of watchful waiting 

and somatostatin analogues (SSAs) may be used, before more intensive 

treatment with chemotherapy (including streptozocin, dacarbazine, 

doxorubicin, 5FU and temozolomide), targeted agents (sunitinib and 

everolimus), peptide receptor radionuclide therapy (PRRT) and targeted 

liver metastasis treatments when initial treatment fails (Table 1.6).  

The best treatment for grade 3 NET disease is not yet clear, but it has been 

suggested that streptozocin and temozolomide regimens be used, rather 
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than cisplatin based doublets, and that other treatment options considered 

for grade 1 and 2 patients be considered, in light of grade 3 NET’s similar 

molecular profile and SSR expression13,54. Patients with functional disease 

are treated with SSAs and other therapies targeted to the specific functional 

syndrome in question. 

There is a lack of trial evidence directly comparing active treatments or their 

sequencing and meta-analyses of existing trial data are limited by the 

variations in patient populations and response criteria55. There are also 

difficulties associated with assessing the effectiveness of therapies for well 

differentiated NETs, due to the more indolent nature of the disease, disease 

stabilisation rather than objective shrinkage as a response and PanNET’s 

relatively long survival, making survival assessments challenging.  

Despite the variety of treatment options available for PanNENs, novel 

therapeutics are urgently required, particularly for those patients with more 

aggressive or advanced disease. Patients should be encouraged to enter 

clinical trials where available and a broad range of trials are currently on-

going for PanNEN patients, including trials of immunotherapy.  

Early data from a small number of immunotherapy studies suggest that a 

proportion of PanNET patients may benefit from such treatments. For 

example, the KEYNOTE 028 study of Pembrolizumab reported a clinical 

benefit in PD-L1 positive PanNET patients (NCT02054806)56. As for all 

PanNEN treatments, biomarkers are required to define the patients most 

likely to benefit from an immunotherapeutic approach and a more in-depth 

understanding of the immune landscape in this disease is required to inform 

potential future combination studies, to enable a higher proportion of 

patients to respond (see Chapter 4). 

As yet, there is no gold standard treatment, clear order of therapies or 

strong evidence base to determine which patients may benefit from the 

more aggressive treatment options earlier, according to clinical, 

pathological or molecular characteristics. Decisions are made based on 

disease bulk, stability of disease, the side effect profile of particular 

therapeutics, patient preferences and the availability of particular 
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treatments. Novel biomarkers which could help to predict the behaviour of 

PanNETs, alongside grade and stage, would be a highly clinically relevant 

addition to the treatment paradigm. This need for novel biomarkers has 

been highlighted as a priority in consensus meetings of leaders in the field, 

both in America and in Europe in recent years57,58. 
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Table 1.6 Range of Treatment Options available for Advanced PanNET 

Therapy Situation Benefit Toxicity Key Trial 
Watch and Wait G1/2 stable disease No toxicity N/A N/A 
Somatostatin 
Analogues 
Ocreotide 
Lanreotide 

G1/low G2 (Ki-67<10%), 
low tumour burden, stable 
disease, minimal 
symptoms due to tumour 
bulk  
(Note Octreotide trial in 
midgut only) 

Control hormone 
secretion in functional 
tumours, increased 
PFS, long acting 
preparations 

Well tolerated, nausea, bloating, steatorrhoea, glucose intolerance, 
gallstones 

PROMID59 
CLARINET60 

Targeted Treatments 
Sunitinib 
 

Progressive G1/G2 but not 
overly symptomatic patient 

Increased PFS, 
 

Infections, myelosuppression, thyroid dysfunction, hypoglycaemia, 
psychiatric disorders, headache, taste changes, cardiac disorders, 
hypertension, thromboembolism, bleeding, GI disorders including 
perforation, rash, hand-foot skin reactions, skin discolouration, 
arthralgia, proteinuria, renal impairment, delayed wound healing 

Raymond et al. 61 
 

Targeted Treatments 
Everolimus 

Progressive G1/G2 but not 
overly symptomatic patient 

Increased PFS,  
Control of refractory 
hypoglycaemia 

Infections, myelosuppression, hyperglycaemia, insomnia,  rash, 
headache, bleeding, hypertension, thromboembolism, pneumonitis, 
GI disorders, arthralgia, proteinuria, cough,  diabetes,  stomatitis, 
hypercholesterolaemia, oedema, epistaxis, liver dysfunction  

RADIANT-262  
RADIANT-363 
 

Chemotherapy 
STZ/5FU, 
Doxorubicin/5FU 
CAPTEM, Cisplatin 
Doublets (NEC) 

Progressive or bulky 
G1/G2, G3 NEN, 
symptomatic patient 

Increased PFS and 
higher objective 
response rates 

Standard chemotherapy toxicities dependent upon regimen, 
including myelosuppression, nausea, hair loss, and renal 
dysfunction 

Moertel et al. 6465 
Kouvaraki et al.66 
Dilz et al. 67 
Kunz et al. 68 
Sorbeye et al.42 

Peptide Receptor 
Radionuclide Therapy 
(PRRT) 

Progressive, SSTR 
positive PanNET 
(NETTER-1 midgut only) 

Improved PFS Neutropenia,thrombocytopenia and lymphopenia, hepatic and renal 
dysfunction, leukaemia, myelodysplatic syndrome 

NETTER-169  
Brabander et al. 70 

Liver Directed 
Therapy 
Surgery/ Embolisation 

Uncontrolled functional, 
non-functional with 
symptomatic liver disease 

Control symptoms Surgical complications and high risk of recurrence Limited trials 
De Baere et al.71 
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1.7 Biomarkers in PanNENs 

 

Due to the heterogeneity of PanNEN disease behaviour discussed and 

wide range of potential treatment options, there is a significant unmet need 

for novel biomarkers in clinic57,58. Biomarkers are required to facilitate early 

diagnosis, aid prognostication, predict and detect recurrence after surgery, 

and predict and monitor response to treatment.  

Current PanNEN guidelines recommend the use of stage and grade as 

prognostic biomarkers and also suggest the use of a number of biomarkers 

to aid diagnosis and in some cases follow-up 13,21,72. These include CgA, 

pancreatic peptide (PP) and Neuron Specific Enolase (NSE), although all 

three have significant limitations and relatively poor sensitivity and 

specificity73. 

To date, the majority of biomarkers studied for PanNENs have been 

monoanalytes, considering just one variable such as CgA, NSE or PP. It 

has been suggested that multianalyte biomarkers may become more 

important in the future in this disease due to their more multidimensional 

nature57. It also seems likely that a multi-modal approach will be required, 

incorporating molecular imaging, which has been employed to good effect 

in the field of theranostics in NENs, alongside tissue and serum based 

assays. 

Novel Prognostic Biomarkers 

As the prediction of prognosis in PanNENs is so difficult, for well 

differentiated PanNETs in particular, much effort has been made to identify 

new prognostic biomarkers to complement grade and staging. Many novel 

biomarkers have been investigated, with some of the most promising 

including circulating tumour cells (CTCs) and molecular assays for 

variables such as the presence of ALT, or particular microRNAs (miRNAs), 

although their clinical significance is as yet uncertain (Table 1.7). Further 

mechanistic research and prospective validation is required for all of these 

potential biomarkers before they could be taken forward into clinical 
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practice. To date, therefore, grade and stage remain the only validated 

prognostic biomarkers routinely used.  

It is to be hoped that prospective longitudinal trials such as the Uppsala 

University Biomarker Study of Pancreatic Neuroendocrine Tumours 

(NCT03741517), the Princess Margaret Hospital NET-SEQ study 

(NCT02586844) and the Royal Marsden PaC-MAn Study (NCT03840460) 

will shed further light on key biological changes in PanNENs throughout the 

course of the disease and in response to treatment, highlighting further 

potential biomarkers and clarifying the clinical significance of those already 

being considered. 
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Table 1.7 Selected Potential Prognostic Biomarkers investigated in PanNEN 

 

Marker Details References 
Chromogranin A (CgA) Elevated baseline CgA associated with reduced PFS and OS and CgA a prognostic factor for patients 

treated with everolimus 
BUT false elevations associated with PPIs, renal/hepatic impairment, hypertension etc. 
Poorly differentiated disease less likely to secrete CgA and association with poor prognosis not 
consistent through all studies 

11,74,75,76,59 

Pancreastatin Elevation of baseline pancreastatin associated with poor PFS/OS for resected PanNET or post 
chemoembolization and an increase in pancreastatin after starting SSAs associated with poor 
prognosis 
BUT assay not widely available and can be non-specific 

77,78 

Neuron specific enolase (NSE) Elevated versus non-elevated baseline NSE associated with reduced PFS and OS  74 
MEN1 and DAXX/ATRX  Mutations in DAXX/ATRX with or without MEN1 mutations associated with increased OS  

BUT DAXX/ATRX mutations and alternative lengthening of telomeres (ALT) have also been associated 
with a poor prognosis across a number of studies  

28,29,46,47,48 

mTOR  High expression of mTOR or its activated downstream targets associated with adverse clinical 
outcomes 

79 

PTEN/ TSC1/ TSC2/ DEPDC5 PTEN, TSC2, TSC1 and DEPDC5 loss of function mutations have all been associated with a reduction 
in OS 

48,29,80 

CDKN1B (p27) Loss of CDKN1B expression associated with decreased survival in GEP-NETs 81 
CTCs ≥ 1 CTC in 7.5ml blood associated with reduced PFS and OS and changes in CTCs associated with 

OS in various NETs including PanNETs, best prognostic group being patients with 0 CTCs before and 
after treatment 

82,76 

Chromosomal instability (CIN) Higher CIN demonstrated trend towards increased OS in PanNET patients 44 
CK19 In a number of studies CK19 expression correlates with PanNET OS  

BUT not in all studies, only when detected with the RCK108 antibody and mainly in insulinomas  
83,84 

SSTR2a Tissue SSTR-2a but not SSTR-5 expression associated with improved OS 85 
KIT KIT expression associated with low OS on univariate but not multivariate analyses 84 
MicroRNAs (miR) miR-21 overexpression correlated with high Ki-67 and liver metastases 86,87 
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Imaging Biomarkers 

Due to the difficulties associated with evaluating disease stabilisation as a 

treatment response using standard measures, such as RECIST, and the 

indolent behaviour of many NENs, there has been much interest in the use 

of functional imaging. This has been aided by the expression of SSTRs in 

GEP-NETs, which may be targeted by radionuclides attached to 

somatostatin analogues.  

68Gallium (Ga) PET (DOTATATE/TOC/NOC) has demonstrated its 

superiority over Octreoscan and is now regarded as the gold standard SRS 

in NENs88,13. Both 68Ga-DOTATATE and 68Ga-DOTANOC PET scans have 

been demonstrated to have prognostic value in advanced NETs, including 

PanNETs89,90,91. This result is not surprising as well differentiated, low 

grade tumours tend to have the highest avidity on 68Ga-PET scans. 

However, this causes difficulties in assessing higher grade tumours and in 

interpreting response to treatment, as a reduction in avidity may represent a 

treatment response or grade progression in the tumour. Therefore 68Ga-

PET scans are most useful for aiding clinical decision making for grade 1/2 

NETs, particularly as a predictive biomarker regarding PRRT eligibility and 

SSA treatment, but not as helpful for determining treatment response or for 

NEC patients. 

FDG-PET scans are complementary to 68Ga-PET scans as they are more 

likely to be positive in tumours with high rates of proliferation, grade 3 NET 

and NEC. A positive FDG-PET scan has been associated with rapidly 

progressive disease and reduced OS in advanced GEP-NETs92,93. Due to 

their contrasting qualities it has been suggested that results from the two 

types of PET scan, 68Ga and FDG, be combined as a “NETPET score” of 1-

594. This score has prognostic value with the patients with 68Ga negative 

and FDG positive disease, a score of 5, having the poorest prognosis, 

although further validation is required94. 
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Predictive biomarkers 

In addition to the aforementioned SRS and PRRT/SSA treatment, a range 

of predictive biomarkers have been considered in PanNENs. Biomarkers 

which could predict response to systemic treatments for patients with 

advanced PanNEN are particularly appealing. Such biomarkers would 

enable patients to be spared significant potential side effects, not to 

mention the considerable costs to the provider, should the treatment be 

deemed unlikely to be of benefit.  

For the targeted agents sunitinib and everolimus, multiple biomarkers have 

been considered, although as yet none are used in clinical practice.  

Potential predictors of clinical outcome for sunitinib include baseline levels 

of stromal cell-derived factor-1α (SDF-1α) and soluble vascular endothelial 

growth factor receptor-2 (sVEGFR-2)95,73. For everolimus, however, levels 

of baseline VEGF pathway biomarkers were not predictive of efficacy in the 

RADIANT-3 trial population96. Low baseline VEGF-A, placental growth 

factor (PlGF), and sVEGFR-1 were identified as potential prognostic factors 

for PanNET progression on everolimus96. Early data has also suggested 

that assessment using IHC for p-AKT in patient tissue may be used to 

select patients with activity within the PI3K/AKT/mTOR pathway required 

for everolimus efficacy, but this requires further investigation97. 

The methylation pattern of the DNA damage repair enzyme O-6-

methylguanine-DNA methyltransferase (MGMT) and a subsequent 

reduction in its expression has been associated with an increased 

sensitivity to alkylating chemotherapy drugs such as temozolomide98. In 

PanNETs, MGMT promoter hypermethylation and low MGMT expression 

has been associated with response to temozolomide99,100. Further 

prospective testing is required before MGMT testing could be incorporated 

into the guidelines but this approach has been used in other tumour types, 

such as glioblastoma101. 

The potential predictive biomarkers discussed above are all monoanalytes, 

usually investigated based on an understanding of the specific treatment’s 

mechanism of action. The NETest, initially developed as an mRNA based 
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liquid biopsy to diagnose NENs, is a potential predictive biomarker with a 

different approach102. The multianalyte assay measures the expression of 

51 genes in 1ml of blood and provides a score of disease status: high, 

intermediate or low, based on an algorithmic analysis103. The NETest has 

been reported to have a high specificity and high sensitivity, both 94%, in 

detecting PanNEN104.  

To expand the utility of the NETest, Modlin et al. completed a regulatory 

network analysis and identified 8 gene “omic” clusters with relevance in 

NET biology. The activity within these clusters is used to scale the NETest 

score with a view to better defining an individual tumour’s biology103. The 

updated NETest has now been investigated in a number of clinical settings 

beyond diagnosis in pancreatic and other NENs. In a small GEP-NET study 

(n=35) the test was able to predict residual/recurrent disease after 

surgery105 and in another GEP-NET study (n=28) to predict disease 

progression on SSA approximately 5 months before progressive disease 

was visible on routine imaging106. More recently, the NETest was combined 

with grade and used as a PRRT predictive quotient (PPQ) with an accuracy of 

>90% at predicting efficacy of PRRT treatment in NETs107. Whilst the blood 

based NETest appears to have great potential for clinical use, as yet it is 

not clear how it may best be used to guide clinical management; for 

example, it is not clear whether stopping treatment when the NETest 

predicts disease progression prior to its appearance on imaging would be 

beneficial, particularly when treatment lines may be limited. Further 

validation of the NETest in a larger cohort is awaited, with a prospective 

study of “clinical utility” in 200 GEP-NET and pulmonary NET patients due 

to complete in December 2020 (NCT02948946).  

Another novel approach to predictive biomarkers has been to consider a 

metabonomic phenotyping strategy for NENs. In one small study of mixed 

NENs (n=28) differences in hippurate metabolism measured in urine 

samples were used to differentiate between SI-NET and PanNET, between 

functional and non-functional tumours and between metastatic and 

localised disease108.  
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The number and variety of approaches to find novel biomarkers for 

PanNENs underline the need and determination in the field to improve the 

current classification paradigm, to enable more personalised treatment, 

based on a patient’s disease biology, to overcome the challenges caused 

by the inherent heterogeneity in this disease. 
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1.8 Hypothesis 

The clear unmet clinical need for novel biomarkers to enable individualised 

risk-adapted therapeutic strategies for PanNEN patients, alongside the 

opportunity to investigate whether the PanNETassigner molecular subtypes 

previously defined by our laboratory could help meet this need, led to my 

thesis.  

Novel therapeutic approaches are also required for PanNENs, with 

immunotherapy an obvious area for exploration. However, as yet little is 

known about the immune landscape in PanNENs. My thesis therefore also 

considers immune related gene expression in PanNENs and how this is 

stratified by the PanNETassigner molecular subtypes. 

The hypothesis for my thesis is that the PanNETassigner molecular 

subtypes may be used to refine prognostication, improve classification and 

provide a means to divide patients with different immune phenotypes for 

PanNEN patients.  
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1.9 Research Aims 

To test this hypothesis my thesis has the following aims:  

1. To establish a large, well annotated clinical registry for PanNENs 

(Chapter 2) 

 

2. To clinically phenotype and assess disease heterogeneity in the 

patients included in this registry (Chapter 2) 

 

3. To develop and validate a novel gene expression assay based on 

the PanNETassigner molecular signature and subtypes (Chapter 

3) 

 

4. To assess the prognostic significance of the molecular subtype 

assigned by this assay in PanNEN patients from the registry 

(Chapter 3) 

 
5. To describe immune related gene expression across the 

PanNETassigner molecular subtypes, and consider possible 

causes for differential expression and any potential therapeutic 

opportunities this may afford (Chapter 4) 
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2 Establishing a PanNEN Registry (PaNACeA study) 
 

Abstract 

Objective 

The unmet need for novel biomarkers to enable a more personalised 

approach for PanNEN patients is accepted with worldwide consensus in the 

field. Due to the rarity of PanNENs, it has been difficult to conduct the 

translational studies required to develop such biomarkers. This is due to a 

lack of robust datasets including both tissue samples and matched clinical 

data. We therefore sought to establish such a dedicated PanNEN registry, 

including patients of all grades and stages of disease. 

 

Design 

The PaNACeA study was developed to support the retrospective collection 

of clinical data and matched tissue for this PanNEN registry. The registry 

covered two sites, the Royal Marsden Hospital (RM), London and the ARC-

NET Research Centre, Verona University. For the RM cohort, all of the 

patients diagnosed with PanNEN between 1st Jan 2004 and 1st September 

2014 were included (n=77). The Verona cohort consisted of 2 groups of 

patients (n=205). 45 patients were part of a legacy collection from previous 

pathology studies conducted at the ARC-NET centre, collected between 

1988 and 2005. The remaining 160 patients were consecutively recruited 

and consented between 2011 and 2014 under the ARC-NET biobank 

protocol. A prospective analysis of tumour grade was performed on tumour 

samples where possible. The entire registry was clinically phenotyped. 

Survival analyses were conducted using Kaplan-Meier methodology. Cox-

proportional hazards regression analysis was used in univariate and 

multivariate analyses. 

Results 

Clinical data was collected for 282 patients and tissue samples for 257. 

Patient characteristics were consistent with those previously published 
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(median age 56, 56% men, over 90% sporadic and 80% non-functional 

tumours). The RM and Verona cohorts differed with regard to stage of 

disease and surgical intervention, with a much larger proportion of the RM 

cohort having advanced disease (70% stage IV versus 17% in the Verona 

cohort) and a smaller proportion of the RM cohorthaving curative intent 

surgery (29% versus 100% in the Verona cohort).  

The median follow up for the entire cohort was 31 months, median OS was 

79 months and the 5 year survival rate was 59%. For grade 2 patients there 

was a large range in OS with an IQR of 3.6-8 years.  

On multivariate analysis stage (stage IV vs. Stage I/II/III) (p<0.001) and 

grade (p<0.009) were independent poor prognostic factors. For the whole 

cohort, as Ki-67 index increased by 1 unit the risk of death increased by 

1.3%. 

Conclusion 

A large international registry for PanNEN clinical data and tissue was 

successfully developed. The consistency with previously published data 

across patient characteristics and survival analyses provides assurance 

that the dataset is of good quality and representative of PanNENs more 

generally. As such, the registry provides a robust sample set for biomarker 

correlation to be discussed in the next chapters.  

Whilst stage and grade were independently prognostic in registry patients, 

Ki-67 analyses also demonstrated the arbitrary nature of dividing patients 

into grades using this continuous variable. The clinical phenotyping and 

survival analyses here once more note the substantial heterogeneity in this 

disease, particularly regarding survival for grade 2 patients. There remains 

a significant unmet clinical need for biomarkers to allow clinicians and 

patients to navigate this heterogeneity in grade 2 disease. These data 

therefore highlight the need to develop novel means of stratifying patients 

according to their disease biology and provide support for the further 

investigation of a potential role for the PanNETassigner molecular subtypes 

in this setting.  



 
42 

 

2.1 Background and Rationale 
 

Research into rare cancers is challenging, and as a result outcomes for 

patients with such tumours are often worse than for those with more 

common malignancies109. Many studies to date have understandably 

grouped together a wide variety of NENs from different sites, to ease 

recruitment and increase sample size. However, it has become apparent 

that even NENs originating from subtly different sites in the gastrointestinal 

tract may represent very different diseases, making it sometimes difficult to 

deduce clinically relevant findings, even from studies restricted to GEP-

NENs110.  

PanNENs themselves are a highly heterogeneous group. As outlined in 

Chapter 1, this heterogeneity has driven a search for reliable biomarkers to 

improve prognostication and enable a more tailored approach to treatment 

selection. As developing biomarkers has been established as a key area of 

unmet need in PanNENs, large robust datasets of tumour samples and 

matched clinical data devoted specifically to this disease are of the utmost 

importance, to enable the required translational work58.  

To this end, we sought to establish a large registry dedicated to PanNENs, 

collecting patient data and tissue samples from the Royal Marsden Hospital 

(RM) and ARC-NET, Verona. This registry aimed to include patients with all 

stages and grades of disease, who had received a wide range of 

treatments. Data obtained would be used to understand the heterogeneity 

of PanNEN disease behaviour in registry patients. Clinical phenotyping 

would be conducted to ensure that the patients included were 

representative of PanNEN patients more broadly, which in turn would 

support the application of any conclusions from subsequent translational 

work to a wider PanNEN population. 

 

This chapter outlines the development of the retrospective PaNACeA study, 

under which the registry was established, and the analysis of the clinical 

phenotyping data obtained. 
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2.2 Methods  

2.2.1 Securing Funding  

With support from Naureen Starling and Anguraj Sadanandam, the Chief 

Investigator (CI) and scientific lead for the study, respectively, I wrote a 

successful application for an NIHR Biomedical Research Centre (BRC) 

flagship grant as a co-applicant. The PaNACeA study (Pancreatic 

Neuroendocrine Assigner signature Class Assessment) was awarded 

£224, 910 (BRC no. 910 A144 (W92360)). 

 

Funding for the ARC-NET biobank was provided by the Italian Ministry of 

Research, Association of Cancer Research and Foundation for Diseases of 

the Pancreas. 

2.2.2 Patient and Public Involvement  

I approached the NET Patient Foundation charity to request their opinion on 

and input into our funding application for the PaNACeA study and a 

PanNEN registry. Having reviewed the project they provided the following 

statement of support:  

 

“On reading the proposal for the study I feel that the premise of the study 

resonates well with the current situation. Classification of these complex 

tumours has aided general pathways for care but the unique individual 

nature of each patient does require a more in-depth approach. Grade 2 

NETS are a difficult group where variation in the presentation is quite 

extensive. Low Ki-67 with aggressive nature vs. 15% Ki-67 with relatively 

indolent behaviour in some cases. The question is why? We wholly support 

your research proposal as will the NET patient community, who through 

research have shown that their greatest fear is the fear of the unknown / the 

future. By gaining an understanding of what tumour type they have and the 

implications of their individual tumour we will be able to give some 

indications as to what the future may hold. I look forward to the involvement 

of the NET patient community with this study.” Catherine Bouvier – Director  
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I subsequently set up a patient focus group of 4 NET patients who kindly 

provided opinions on the priority research questions, the lay summary, 

protocol and plans for dissemination of the results of the study. 

2.2.3 PaNACeA Study Set up and management  

With the support of the GI unit clinical trials team, I then set up the 

PaNACeA study (Protocol in Appendix 2.1). Study set up included: 

• Preparing the RM Committee for Clinical Research (CCR) 

application and presenting the study at the CCR meeting to obtain 

approval following scientific peer and research governance review 

(CCR4476, 18/04/2016) 

• Liaising with the Research Ethics Committee (REC) and obtaining 

approval (16/LO/0984, 27/05/2016) 

• Completing the Integrated Research Application System (IRAS) 

application and obtaining HRA approval (194534, 08/08/2016) 

• Writing the protocol  

• Setting up the clinical databases (for clinical and histopathology 

data) 

• Setting up the Material Transfer agreement and the contract with 

ARC-NET, Verona 

Once the PaNACeA study opened (September 2016), I was the trial 

physician. My responsibilities in this role included: 

 

• Day-to-day oversight of the study, including working with the 

biological specimens co-ordinators to ensure sample retrieval  

• Liaising with the team in Verona regarding tissue samples and to 

support consistent clinical data collection 

• Liaising with the finance teams at the ICR and RM and managing the 

study budget 

• Preparing reports for Trial Management Group Meetings (TMG) and 

BRC and REC Annual Progress Reports (APR) 

• Preparing study amendments 

• Collecting clinical data for RM patients 
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• Laboratory work as detailed in Chapters 3 and 4 

2.2.4 PanNEN Registry Design 

PaNACeA is a retrospective translational tissue collection study. The study 

includes separate registries for both PanNEN and non-pancreatic GEP-

NEN patients but only data from the PanNEN registry are included in this 

thesis (Protocol in Appendix 2.1). 

Primary objective  

• To establish a large international registry of clinical data and 

matched tissue samples, dedicated to PanNEN patients. 

 

Secondary Objectives 

• To clinically phenotype all patients included in the registry 

• To assess the impact of stage, grade and other clinical variables on 

survival for registry patients 

 

Inclusion Criteria for PanNEN registry 

• Histological diagnosis of PanNEN 

• Treatment received at RM or ARC-NET, Verona 

• Tissue sample available and/ or clinical data available 

Exclusion Criteria for PanNEN registry 

• Other primary cancer at or before diagnosis 

 

2.2.5 Consent 

In this study the data and tissue are link-anonymised. The Human Tissue 

Authority (HTA) code of practice for consent states that if the tissue is 

anonymised then tissue taken from living patients that does not have 

consent for future research may be used in ethically approved research 

projects without the patient’s consent (HTA: Code of Practice 1 on Consent, 

from paragraph 127 to 129). Hence, as agreed with the REC, we did not 

routinely seek specific consent for the purpose of this study. The patients 
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included from the Verona biobank were routinely consented prior to 

surgery, as part of the biobank protocol. 

2.2.6 Clinical Data Collection 

I devised a database for clinical data collection and then collected and 

checked the clinical data for the RM patients. I liaised with Rita Lawlor, 

ARC-NET Verona, to arrange the clinical data collection for the Verona 

patients and then combined the two datasets. 

Essential data fields included patient demographics, symptoms leading to 

diagnosis, tumour size, tumour functionality, baseline investigations, tumour 

differentiation, Ki-67 index, staging, treatment and survival. 

2.2.7 Tissue Collection and Histological Assessments 

PanNEN tumour tissue (fresh frozen and/or Formalin Fixed Paraffin 

Embedded (FFPE)) was collected, where available. Tumour sections were 

submitted for immunohistochemical (IHC) examination by an expert 

pathologist (for RM cohort patients by Monica Terlizzo/ Daniel Nava 

Rodrigues and for Verona cohort patients by the ARC-NET pathology 

team). Slides were reviewed and cut as described in section 3.2.3. Ki-67 

index, differentiation and MI were analysed to determine tumour grade 

according to the WHO 2010/2017 classification. Ki-67 was analysed on 

2,000 tumour cells in an area of high staining and expressed as a 

percentage of stained cells. MI was assessed according to standard ENETs 

criteria. On light microscopy, mitotic figures were evaluated in at least 40 

high power fields (HPF), with results expressed by the number of mitoses 

per 10 HPF. We elected to use the WHO 2010/2017 Ki-67 recommended 

cut-offs for grade, with grade 2 disease having a Ki-67 index between 3% 

and 20%, rather than the 5% cut-off proposed by a number of groups26,37. 

In light of the debates surrounding the optimum cut-offs we also analysed 

Ki-67 as a continuous variable. 

2.2.8 Statistical Analyses 

I wrote the statistical analysis plan (SAP) in conjunction with statistician Ria 

Kalaitzaki (see protocol in Appendix 2.1 for full details).  
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Sample size 

Sample size was limited by the number of patients who were treated for 

PanNENs at the Royal Marsden Hospital and at the University of Verona 

within the site specific time points, and for whom clinical data and/or tumour 

tissue was available for analysis. Since the registry opened we have had 

the opportunity to develop an additional collaboration with Dr. Raj 

Srirajaskanthan’s team, Kings College Hospital. This collaboration will 

enable the collection of clinical data and FFPE samples for another cohort 

of approximately 300 PanNEN cases, including 150 resections and 30 

patients with grade 3 PanNEC. I wrote an amendment to the PaNACeA 

protocol to include this additional cohort and with trial coordinator Richard 

Crux arranged for regulatory approval (Substantial amendment 1, approved 

02/11/2018). I have since liaised with the team at Kings to ensure 

consistent clinical data collection and tissue preparation. As the first 40 

samples were received in the Sadanandam laboratory in April 2019, they 

will not be included in this thesis. 

Analysis 

Statisticians Henry Nanji and Ria Kalaitzaki performed the survival analyses 

and I completed the clinical phenotyping analysis and interpreted the 

results. The majority of the statistical analysis is descriptive, reported using 

percentages. Categorical data were described using counts and 

percentages and compared using the Chi-squared (X2) test. Continuous 

data were described using medians and inter-quartile ranges (IQR). Means 

were compared using a two-sided, paired T-Test. A two sided p value of 

less than 0.05 was considered statistically significant. Survival analyses 

were conducted using Kaplan-Meier methodology. Overall survival (OS) 

was defined as time from the date of diagnosis to death of any cause. Cox-

proportional hazards regression analysis was used in univariate and 

multivariate analyses.  

2.2.9 Overview of my role 

As described above, I secured funding for, set up and subsequently 

managed the PaNACeA study and PanNEN registry. Dr Naureen Starling, 

as the CI for the study had overall oversight. 
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2.3 Results 

2.3.1 Clinical Data Collection, Tissue Retrieval and Central Review 

Clinical data were collected for 282 patients. For the RM cohort, all of the 

patients diagnosed with PanNEN between 1st Jan 2004 and 1st September 

2014 were included (n=77). The Verona cohort consisted of 2 groups of 

patients (n=205). 45 patients were part of a legacy collection from previous 

pathology studies conducted at ARC-NET (1988- 2005). The remaining 160 

patients were consecutively recruited and consented under the ARC-NET 

biobank protocol (2011-2014). Whilst clinical data was matched for the 

majority of variables, data was missing for a small number of categories in 

the Verona cohort (ethnicity, baseline investigations, symptoms and 

treatments). Thus some analyses are for the whole cohort whilst others are 

specific to the RM cohort. 

Tissue was collected for 257 patients (FFPE samples for 57 RM patients 

and fresh frozen samples for 200 Verona patients, with FFPE tissue also 

available for 44 Verona patients) (Figures 2.1 and 2.2). For the Verona 

cohort, central histopathology review had been conducted prospectively for 

all tissue. For the RM cohort we planned to conduct a similar central review. 

However, due to challenges collecting the tissue, grade was ultimately 

assigned from central Ki-67 review for 10 patients, from central MI review 

using H&E slides for 8 patients, and from the original diagnostic 

histopathology reports for 44 patients and grade remained unknown for 15 

patients (Figure 2.2). 

Figure 2.1 Clinical Data and Tissue Collection for the Verona Cohort 

 

 

 

 

 

205 patients with resected PanNEN 
identified from ARC-NET database 

Excluded 
(n=5) 

Tissue 
unavailable 

for 5 
patients 

included in 
the clinical 
database 

Clinical Data (n=205) 
Clinical data retrospectively 

collected for all 205 patients from 
patient records 

Tissue (n=200) 
 FFPE and fresh frozen tissue 
were previously prospectively 

collected for the legacy collection 
and the ARC-NET biobank, with 
central Ki-67 review at collection 
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Figure 2.2 Clinical Data and Tissue Collection for the RM Cohort 

77 patients diagnosed with PanNEN 
between 01/01/04 and 01/09/14 

identified from RM database Excluded (n=12) 
12 patients 

previously declined 
consent for tissue 

to be used in 
translational work 

Clinical Data (n=77) 
Clinical data was 
collected for all 77 

patients from the RM 
electronic patient records 

 
FFPE Tissue Retrieval  

(n=65) 
Tissue was requested 
from referring hospital 

FFPE Tissue Retrieved  
(n=57) 

 

Unavailable 
(n=8) 

8 patients had 
no tissue 
available 

Central Ki-67 analysis 
(n=10) 

Sufficient remaining tissue for 
Ki-67 staining*** 

Insufficient 
Tissue (n=17) 

for both 
laboratory work 

and Ki-67 
analysis** 

Insufficient 
Tissue (n=26) 
for any further 

analysis 
Sections Cut and  

Central H&E Review  
 (n=31) 

 

Insufficient Tissue (n=4) 
for further analysis 

Laboratory Work (n=27) 
Tissue sent for 

macrodissection and RNA 
extraction (see Chapter 3) 

Mitotic Index Assessment 
(n=31) 

(For 10 patients with MI and Ki-
67, Ki-67 used to grade)* 
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* For the 21 patients graded by MI, 8 had previously unknown grades, 11 original 

grades were concordant with central review and 2 discordant. When discordant, 

the original grades were used. 

**When there was limited tissue available, tissue for laboratory analyses was 

prioritised over central histopathology review  

*** For the 10 patients graded by Ki-67 index, 2 had previously unknown grades, 6 

original grades were concordant with central review and 2 were discordant. When 

discordant the original grades were used. 

 

2.3.2 Patient Demographics across the entire cohort 

The patients had a median age of 56 years and there was a slightly higher 

proportion of men (56%) compared to women (44%). For the patients 

where ethnicity had been documented, there was a higher representation of 

white patients (81%) compared to other ethnic backgrounds. The vast 

majority of patients had sporadic disease (92.5%). For those patients with 

familial disease, MEN1 was the most frequently documented familial 

syndrome (48%) (Table 2.1) 

2.3.3 Tumour and Disease Characteristics across the entire cohort 

The proportion of patients with WHO 2010 grade I and 2 disease was 

similar (44% and 41% respectively), with a smaller number having grade 3 

disease (8%). Of the patients with grade 3 disease, using the WHO 2017 

classification, 52% had a poorly differentiated tumour (grade 3 NEC) and 

43% had a well differentiated tumour (G3 NET) (Table 2.1). 

Overall, the number of patients with Stage III and IV disease was similar at 

approximately 30% each. Fewer patients had Stage I and II disease (15% 

and 24% respectively). 38% of patients with non-metastatic disease had 

nodal involvement at baseline. 31% of patients had metastatic disease at 

baseline, with 29% of all patients having metastatic liver disease. 80% of 

the patients in the registry had curative intent surgery. 
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Table 2.1 Patient Demographics and Baseline Disease Characteristics 

Characteristic All Patients 
(n=282) 

RM 
(n=77) 
(%) 

Verona 
(n=205) 
(%) 

p value 
(RM vs. 
Verona) 

Age at diagnosis*  
Median  
(range) 

56  
(17-87) 

63 
(17-87) 

56 
(17-84) 

p= 0.15 

Sex*  
Male 
Female 

156 (56%) 
125 (44%) 

42 (55%) 
35 (45%) 

114 (56%) 
90 (44%) 

p= 0.84 

Ethnicity **  
White 
Asian  
Black  
Mixed  

56 (81%) 
7 (10%) 
5 (7%) 
1 (1%) 

56 (81%) 
7 (10%) 
5 (7%) 
1 (1%) 

N/A N/A 

Sporadic/ Familial***  
Familial  
Sporadic  

21 (7.5%) 
259 (92.5%) 

0 (0%) 
77 (100%) 

21 (10%) 
182 (90%) 

p=0.003 

Familial Syndrome
ǂ
  

MEN1 10 (48%) 
VHL 3 (14%) 
Not documented 8 (38%) 

10 (48%) 
3 (14%) 
8 (38%) 

0 (0%) 
0 (0%) 
0 (0%) 

10 (48%) 
3 (14%) 
8 (38%) 

N/A 

Grade  
Grade 1  
Grade 2  
Grade 3  
Unknown  

124 (44%) 
117 (41%) 
23 (8%) 
18 (6%) 

27 (35%) 
23 (30%) 
12 (16%) 
15 (19%) 

97 (47%) 
94 (46%) 
11 (5%) 
3 (1%) 

p<0.001 

Grade 3 NET/NEC
ǂǂ

  
G3 NET  
G3 NEC  
G3 differentiation unknown  

10 (43%) 
12 (52%) 
1 (4%) 

0 (0%) 
11 (92%) 
1 (8%) 

10 (90%) 
1 (10%) 
0 (0%) 

N/A 

Differentiation  
Well  
Poorly  
Unknown  

258 (92%) 
12 (4%) 
12 (4%) 

56 (72%) 
11 (14%) 
10 (13%) 

202 (99%) 
1 (<1%) 
2 (1%) 

p<0.001 

Stage  
I  
II  
III  
IV  
Unknown  

41 (15%) 
67 (24%) 
80 (28%) 
88 (31%) 
6 (2%) 

5 (6%) 
11 (14%) 
5 (6%) 
54 (70%) 
2 (3%) 

36 (18%) 
56 (27%) 
75 (37%) 
34 (17%) 
4 (2%) 

p<0.001 

N1 at diagnosis (Stage I-IIIb) 
ǂǂǂ

  
Stage IIIb 
Stage I/II/IIIa 

72 (38%) 
116 (62%) 

4 (19%) 
17 (81%) 

68 (41%) 
99 (59%) 

p=0.05 

Liver Metastasis at diagnosis  
Yes  
No  
Unknown  

81 (29%) 
199 (71%) 
2 (1%) 

47 (61%) 
30 (39%) 
0 (0%) 

34 (17%) 
169 (82%) 
2 (1%) 

p<0.001 

Curative Intent Surgery  
Yes 
No 

227 (80%) 
55 (20%) 

22 (29%) 
55 (71%) 

205 (100%) 
0 (0%) 

p<0.001 

* n=281 **n=69 ***n=280 
ǂ
 n=21 

ǂǂ
 n=23 

ǂǂǂ 
n=188  

Note percentages in the table have been rounded. Categorical data were described using 

counts and percentages and compared using the X
2
 test. Continuous data were described 

using medians and means were compared using T-Test. 
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2.3.4 Differences in Characteristics of the RM and Verona Cohorts 

The demographics of the RM and Verona cohort were well matched 

regarding age and sex. A higher proportion of the Verona cohort had a 

familial syndrome (p=0.003).  

As would be expected due to the origins of the cohorts, the characteristics 

of the RM and Verona cohorts differed substantially when considering stage 

or grade of disease and curative intent surgery (all p< 0.001). All of the 

patients in the Verona cohort underwent curative intent surgery, with only 

17% having metastatic disease. In the RM cohort, the majority of patients 

presented with advanced disease (70% metastatic) and less that 30% had 

curative intent surgery (Table 2.1 and Figure 2.3). 

Figure 2.3 Proportions of patients according to ENETS Stage  

A RM Cohort (n=77) 

 

B Verona Cohort (n=205) 

 

7%
10% 4%

1%
5%

70%

3%

I II a II b III a III b IV Unknown

17%

18%

10%

3%

33%

17%

2%

I II a II b III a III b IV Unknown
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2.3.5 Baseline Symptoms and Investigations 

Baseline symptoms and investigations were assessed in the RM cohort, 

and apart from functionality which was assessed across all 282 patients 

(Table 2.2). The majority of patients had non-functional disease (79%). For 

patients with functional disease, insulin was the most frequently secreted 

hormone (43%).  

88% of RM patients reported at least one symptom at diagnosis (Figure 

2.4). Abdominal pain and weight loss were each reported by over 50% 

patients, with diarrhoea and fatigue in over 20%. 

Chromogranin A and B (CgA and B) were measured in 82% of the RM 

cohort. CgA was elevated in a higher proportion of patients than CgB (62% 

vs. 33%). All of the RM patients had a baseline CT with a high proportion 

(74%) also having Somatostatin Receptor Scintigraphy (SRS). Endoscopic 

Ultrasound Scans (EUS), Magnetic Resonance Imaging (MRI) and Positron 

Emission Tomography scans (PET) were used less frequently (Table 2.2). 

Figure 2.4 Baseline Symptoms in RM Cohort (n=77) 

 

68/77 RM cohort patients reported baseline symptoms. Between them these 68 

patients reported 131 symptoms, which are shown in the pie-chart above, divided 

into 8 categories. Abdominal pain and weight loss were the most common 

symptoms, each experienced by over 50% patients as outlined in Table 2.2. 
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Table 2.2 Baseline Symptoms and Investigations 

Characteristic n=77(%) 

 

Functionality* 
Functional  
Non-Functional  
Unknown 

56 (20%) 
229 (79%)  
3 (1%) 

Hormone Secreted if Functional ** 
Insulin  
Gastrin  
Glucagon  
ACTH/Cortisol  
Somatostatin  
PP  
Serotonin  
VIP  

24 (43%) 
15 (27%) 
8 (14%) 
3 (5%) 
3 (5%) 
1 (2%) 
1 (2%) 
1 (2%) 

Symptoms  
Yes  
No  

68 (88%) 
9 (12%) 

Symptoms reported  

Abdominal Pain  
Weight Loss  
Diarrhoea  
Fatigue  
Hypoglycaemia  
Dysphagia  
GI Bleeding  
Flushing  

42 (55%) 
41 (53%) 
16 (21%) 
16 (21%) 
6 (8%) 
5 (6%) 
4 (5%) 
1 (1%) 

Chromogranin A *** 
Elevated  
Normal   

39 (62%) 
24 (38%) 

Chromogranin B *** 
Elevated  
Normal  

21 (33%) 
42 (67%) 

Baseline Imaging Investigations  
CT Yes  
            No   
SRS Yes  
 No  
MRI Yes  
 No  
EUS Yes  
 No   
PET Yes  
            No  

77 (100%) 
0 (0%) 
57 (74%) 
20 (26%) 
18 (23%) 
59 (77%) 
14 (18%) 
63 (82%) 
13 (17%) 
64 (83%) 

*n=282 **n=56 ***n=63 
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2.3.6 Systemic Treatment 

Data on systemic treatments administered was only available in the RM 

cohort (n=77). The most common treatments were chemotherapy, SSAs 

and watchful waiting, but a broad range of treatments were given (Figure 

2.5). For those patients who received chemotherapy, multiple different 

regimens were used (Figure 2.6).  

Figure 2.5 Systemic Treatments Administered in the RM Cohort 

 

 

Figure 2.6 Chemotherapy Regimens Administered in RM cohort 
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34%

4%
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2.3.7 Survival Analyses 

For the entire cohort (n=282), 63 (22%) of the patients were dead and 186 

(66%) were alive at the time of analysis, with 33 (12%) lost to follow up. Of 

the 33 patients lost to follow up censoring data was available for 7 patients. 

Survival data was therefore available for 256 patients overall.  

Median follow up was 31 months. According to site, the median follow up 

was 45.3 months for RM and 27 months for Verona. As would be expected 

due to the different characteristics of the 2 cohorts and the longer follow up 

for the RM cohort, the death rate was higher in the RM cohort at 56% 

compared to the Verona cohort at 10%.  

The last death occurred at 98.5 months for a RM patient and no other later 

deaths occurred except for one ARC-NET patient at 262 months. Due to 

the high influence of this data point, which stretched the observations, the 

analysis time was truncated at 100 months (~8 years). This reduced the 

number of patients included in the survival analyses by 22, from 256 to 234. 

In the 100 months’ time period, 62 deaths were observed (43 in the RM 

cohort and 19 in the Verona cohort).  

Data for 234 patients were used to conduct the following survival analyses. 

Median Overall Survival (OS) 

OS was assessed for the entire cohort and according to stage and grade 

(Figures 2.7-2.9 and Table 2.3). Survival time of living patients was 

censored on the last date a patient was known to be alive or lost to follow-

up. Median OS for the entire cohort was 79 months (95% CI 50.0-NE). Due 

to the low number of deaths occurring in ENETS stages I, II, III, these were 

combined and investigated versus stage IV disease. Survival was improved 

for stages I/II/III combined compared to stage IV and this was statistically 

significant (log-rank test p <0.001). There was also a statistically significant 

difference in OS for the three grades (log-rank test p <0.001). 
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Figure 2.7 OS in all patients (All grades/Stages) 

Note analysis time was truncated at 100 months 

Figure 2.8 OS according to ENETs stage (combined I/II/III vs. IV) 

 

 

 

Note analysis time was truncated at 100 months
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Figure 2.9 OS according to WHO 2010 Grade 

 

Note analysis time was truncated at 100 months 

 

Table 2.3 Median OS, 2 year and 5 year survival rates  

 Median (months) 
(95% CI) 

2 year (%) 
(95% CI) 

5 year (%) 
(95% CI) 

Entire Cohort  

(n=234) 79  
(50.0-NE) 

80.1 
(73.6-85.1) 

59.3 
(47.8-69.1) 

According to Stage 

I/II/III (n=150) 
 
 
IV (n=81) 

96 
(84.0-NE) 
 
28.1 
(19.8-48.7) 

95.1  
(89.8-97.6) 
 
52.9 
(40.3-64.1) 

84.3  
(69.3-92.3) 
 
25.1 
(13.0-39.2) 

According to Grade 

Grade 1 
(n=102) 
 
Grade 2  
(n=98) 
 
Grade 3 
(n=20) 

NE 
(NE)  
 
79  
(56–96)  
 
13.5 
(6–NE) 

89 
(80.9–94.5)  
 
84.2 
(74.1–90.6)  
 
19.5 
(1.6–52.4) 

67.5 
(47.5–81.3)  
 
62.1 
(43.1–76.5) 
 
NE 
(NE) 
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Univariate Analysis 

On univariate analysis grade, baseline lymph node involvement/ liver 

metastases and stage were identified as statistically significant poor 

prognostic factors (Table 2.4). Results were adjusted for cohort of origin 

(RM/ Verona). 

Table 2.4 Univariate Analysis 

Variables  HR 95% CI p value 

Grade 

Grade 1 
Grade 2 
Grade 3 

1.00 
2.05 
13.19 

 
1.19 - 3.53 
6.35 - 27.43 

 
0.03 
<0.001 

N1 at diagnosis 

No 
Yes 

1.00 
2.25 

 
1.45 - 3.49 

 
0.002 

Liver Metastasis at diagnosis 

No 
Yes 

1.00 
2.76 

 
1.69 – 4.51 

 
0.001 

Stage  

I/I/III 
IV 

1.00 
4.22 

 
2.43 – 7.30 

 
<0.001 

Elevated baseline CgA/ B 

Not Elevated 
Elevated 

1.00 
1.18 

 
0.56 - 2.47 

 
0.657 

 

Multivariate Analysis 

Stage and grade were the only factors found to be significant at the 5% 

level on multivariate analysis (Table 2.5). 

Table 2.5 Multivariate Analysis 

Variable HR 95% CI p value 

Stage     
I/I/III 
IV 

1.00 
4.12 

 
1.97 - 8.64 

 
<0.001 

Grade    [<0.009]1 
Grade 1 
Grade 2 
Grade 3 

1.00 
1.37 
4.43 

 
0.69 – 2.73 
1.67 – 11.7 

 
0.359 
0.003 

1: overall effect 
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The risk of death was 12% higher for patients with ENETs stage IV disease 

compared to stages I/II/III (log-rank p < 0.001).  

A higher grade was also associated with an increased risk of death (HR 

increased from 1 to 1.37 to 4.43 relative to the reference group, grade 1, 

log-rank p < 0.001). Although the HR was not significant when grade 2 was 

compared to grade 1 disease (p=0.359). 

As Ki-67 index increased by 1 unit, with all other variables held constant, 

the risk of death increased by 1.3%. 

2.3.8 Assessment of Heterogeneity across and within Grades 

 
There was a statistically significant difference between grades for all of the 

variables listed in Table 2.6. 

Table 2.6 Heterogeneity across and within grades 

Variable Grade 1 Grade 2 Grade 3 Significance* 
 

Disease Extent (n=264) 

I/II/III 
IV 
Unknown 

105 (85%) 
18 (15%) 
1 (<1%) 

72 (61%) 
43 (37%) 
2 (2%) 

8 (35%) 
15 (65%) 
0 (0%) 

p<0.001 

N1 at diagnosis (Stages I-IIIb) (n=185) 

Yes 
No 

26 (25%) 
79 (75%) 

39 (54%) 
33 (46%) 

7 (88%) 
1 (13%) 

p<0.001 

Liver Metastases at diagnosis (n=274) 

Yes 
No 

17 (13%) 
117 (87%) 

44 (38%) 
73 (62%) 

10 (43%) 
13 (57%) 

p<0.001 

Curative Intent Surgery (n=277) 

Yes 
No 

112 (90%) 
12 (10%) 

98 (82%) 
21 (18%) 

12 (35%) 
22 (65%) 

p<0.001 

Median OS (n=220) 

Median 
IQR 

NE 
(51.5-NE) 

79 
(44.4-96) 

13.5 
(6-24) 

p<0.001** 

Tumour Size (n=201) (mm) 

Median  
Mean 
IQR 

29 
31 
15-45 

45 
48 
30-69 

35 
39 
25-50 

p<0.001 for 
G1 vs. G2***  
 

* Categorical data described as counts and percentages and compared using X
2
 test, 

continuous data described with medians and means, with means compared using T-Test. 

**Survival differences compared using log-rank test  
***G1 vs. G3 and G2 vs. G3 not significant 
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However, a wide range of behaviour was also evident within each grade, 

particularly within grade 2 disease (Table 2.6). For example, whilst the 

majority of localised grade 1 patients had node negative disease and the 

majority of localised grade 3 patients had nodal involvement, for the grade 

2 patients there was a roughly even division (54% with nodal involvement 

vs. 46% node negative). Further, although the majority of grade 2 patients 

had localised disease, a sizeable minority had metastatic disease (37%). 

Grade 2 patients also had a wide range of tumour sizes (IQR 30-69mm) 

and a large range in OS, with an IQR of between 3.6 years and 8 years. 

These data highlight the substantial heterogeneity of disease behaviour 

within grade 2 patients. 
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2.4 Discussion 

In this chapter, I have described the set-up of a large, international PanNEN 

registry (within the PaNACeA study) and presented clinical phenotyping 

and survival analyses for the 282 patients included to date.  

Clinical data was collected across the 2 study centres, RM and ARC-NET, 

Verona for patients diagnosed with PanNEN between 1988 and 2014. The 

majority of the data was collected for the entire registry, with baseline 

symptoms, investigations and treatments being specific to the RM cohort. 

The characteristics of the 2 cohorts differed significantly, as all of the 

patients in the Verona cohort (n=205) had undergone curative intent 

resections, whereas the majority of the RM cohort patients (n=77) had 

advanced, metastatic disease (70%) and had systemic treatment rather 

than surgery. As such, the two cohorts are complementary, covering a 

broader range of disease than either would have done alone.  

The demographics reported for the entire PanNEN registry (n=282) are 

consistent with published literature, with a median age of diagnosis of 56 

years, a roughly equal split between men and women, a large majority of 

patients having non-functional, sporadic disease, with MEN1 being the 

most common of the familial cancer syndromes documented and insulin the 

most commonly secreted hormone111,14,41,112,113,.  

Tumour and disease characteristics were also assessed across the entire 

cohort (n=282). Using the WHO 2010/17 Ki-67 cut-offs outlined, there was 

a smaller percentage of grade 3 tumours (8%) versus grade 1 and 2 

tumours (44% and 41% respectively). Tumour differentiation fits this 

pattern, with the vast majority of patients having well differentiated disease 

(92%). This distribution of grade and differentiation is as expected, as 

205/282 patients were from the Verona cohort where all patients underwent 

curative intent resections. A large, international cohort of 1072 PanNEN 

patients who had undergone surgery reported a similar distribution with 

6.8% grade 3 patients41. 
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The distribution of stage across the whole cohort is also broadly consistent 

with the literature, with perhaps a slightly higher frequency of stage III and 

IV patients14,41,112. This is likely to be due to the influence of the RM cohort 

as the majority of patients in the RM cohort had stage IV disease (70%) 

versus only 17% of the Verona cohort. In the Verona cohort, a relatively 

large percentage of patients had stage IIIb disease (37%).  

The high proportion of patients with stage IIIb (any T N1 M0) disease is 

reflected in the percentage of patients with nodal disease at baseline, with 

38% patients with localised disease having nodal involvement. Most 

patients (67%) had localised disease at baseline and the majority of 

patients who presented with stage IV disease had liver metastases (81/88, 

92%). This observation is consistent with studies reporting the liver as the 

most frequent site of metastasis for GEP-NETs14,114. 

PanNEN symptoms are often non-specific, contributing to diagnostic delays 

and often incorrect initial diagnoses16,17,18. Within the RM cohort, where the 

majority of patients had metastatic non-functional disease, 88% of patients 

reported at least one symptom at baseline. The top 4 symptoms reported 

here, abdominal pain, weight loss, diarrhoea and fatigue are non-specific, 

as expected. All 6 RM patients with insulinomas reported symptoms of 

hypoglycaemia, highlighting the more symptomatic pattern observed with 

functional tumours.  

CgA/B were assessed in 82% of the RM cohort at baseline. CgA was 

elevated in almost twice as many patients as CgB (62% vs. 33%). As the 

patients in the RM cohort were diagnosed between 2004 and 2014, CgB 

was routinely measured for the majority. However, more recently the 

routine measurement of CgB has fallen out of practice due to its limited 

utility115. That only 33% of cases in the RM cohort had an elevated CgB 

supports this decision. CgA is still routinely measured and is recommended 

as a circulating biomarker by the ENETs consensus guidelines 201613. 

Although CgA performed better than CgB in the RM cohort only 62% 

patients had a baseline elevation, supporting the need for improved 
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biomarkers in this disease and agreeing with concerns raised in the 

literature about the performance of CgA116–118. 

All of the patients in the Verona cohort had curative intent surgery versus 

only 29% in the RM cohort. This low proportion of patients undergoing an 

operation in the RM cohort is understandable as patients would commonly 

be referred to RM for systemic treatment, with more advanced disease. It is 

likely this low percentage of operated patients will have contributed to the 

survival figures for the RM cohort, as radical surgery has been linked to 

improved survival in PanNET11. 

Systemic treatment data was only available in the RM cohort. The range of 

systemic therapies received by the 77 RM patients highlights the complexity 

of treating PanNENs. If anything the situation for patients today is even 

more complex as, for the majority of the RM cohort everolimus, sunitinib 

and PRRT were not treatment options at the time. Studies such as 

SEQTOR, where the optimum sequencing of everolimus and chemotherapy 

is being investigated, may help to clarify the treatment paradigm. Yet, what 

is really required are prognostic and predictive biomarkers to help select 

therapy for those patients who require it, whilst sparing the others toxicity 

from unnecessary or ineffective treatments.  

Survival analyses were conducted across the whole registry. At a median 

follow up of 31 months, 63 (22%) patients had died, 186 (66%) were still 

alive and 33 (22%) patients were lost to follow up. As would be expected, 

the death rate was higher in the mainly metastatic RM cohort at 56%, 

compared to the Verona cohort at 10%.  

The median OS (79 months) and 2 and 5 year survival rates (80% and 59% 

respectively) reported are comparable to other PanNEN studies and SEER 

registry data, particularly when noting the high proportions of stage IIIb and 

IV patients37,119,14.  

Due to the low number of deaths occurring in patients with ENETS stage I, 

II and III disease, these were combined and investigated together versus 

stage IV disease. Survival was improved for stages I-III compared to stage 

IV disease (p <0.001). Stage IV disease remained a poor prognostic factor 
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on multivariate analysis, associated with a 12% higher risk of death than 

stage I-III disease. As for OS, the 2 and 5 year survival rates for early and 

advanced disease are in line with the literature14,119. 

Using the WHO recommended Ki-67 cut-offs for grade, there was a 

statistically significant difference in OS across the three grades (p <0.001) 

but 5 year survival rates were very similar between grade 1 and 2 disease 

(67% and 62%) demonstrating the difficulties of assigning prognosis in well 

differentiated PanNETs. Whilst grade overall was prognostic on multivariate 

analysis (p <0.009), the Hazard Ratio (HR) was not significant for grade 2 

versus grade 1 disease, as previously described by Scarpa et al. and 

leading to the proposal for a 5% cut-off119.  

When, however, Ki-67 was assessed as a continuous variable there was a 

1.3% increase in the risk of death for each 1% increase in Ki-67 index. This 

level of increased risk of death is akin to that previously presented, where a 

1% increase in Ki-67 was linked to a 2% increased risk of metastasis. This 

study reported a hazard ratio for progression of 1.02 for each increasing 

unit in Ki-67% unit (p < .001)40. 

Analysing Ki-67 in this manner makes both biological and statistical sense 

as Ki-67 is a continuous variable and dichotomization of such variables may 

result in reduced power in regression models and loss of information 

regarding individual differences120. This analysis demonstrates that grade is 

a purely arbitrary division and again highlights the need for improved 

methods of sub-dividing PanNEN patients with biological relevance and 

prognostic significance. 

The limitations of dividing PanNEN patients into grades based on these 

arbitrary limits are particularly evident for grade 2 patients. This group of 

patients demonstrates substantial heterogeneity of disease behaviour in the 

registry patients, with an OS IQR of between 3.6 years and 8 years.  

The PanNEN registry has a number of limitations. To include as many 

PanNEN patients with matched clinical data and tissue as possible, the 

data collected here encompassed a broad time period (1988-2014). The 

available treatments varied significantly over the time period, which may 



 
66 

 

have impacted upon OS. Further, patients’ disease was reported and 

classified differently at various time points, creating challenges for 

consistent data collection. 

These challenges of consistent data collection underline the importance of 

minimum dataset documentation for all patients, particularly for those with 

rare diseases. In recent years, the various guidelines including PanNENs 

have recognised this and frequently specified a minimal dataset for 

inclusion in pathology and staging reports for PanNENs12,72,121.  

Consistent data collection, histopathology techniques and reporting were all 

made more challenging by the PanNEN registry encompassing 2 sites in 

different countries. However, as discussed above, minimum datasets will 

make such studies easier in the future. The development of ENETs Centres 

of Excellence (CoE) across Europe since 2009 has also supported a more 

standardised approach and will continue to facilitate such international 

collaboration, essential for studies in this rare disease. 

Another limitation is the retrospective nature of the PanNEN registry. 

Collecting both data and tissue samples retrospectively can be problematic, 

especially over a long time period. This is highlighted by the lower than 

expected number of tissue samples available for the RM cohort for central 

histopathology review or further analysis. The development of prospective 

biobanks, such as the ARC-NET protocol, is therefore of paramount 

importance to enable high quality translational work. Since working on the 

PanNEN registry, with CI oversight (Naureen Starling), I set up the PaC-

MAn Study to support the prospective collection of tissue and other 

samples from patients with newly diagnosed PanNEN. 

Notwithstanding these limitations, the PanNEN registry described here, 

including clinical data for 282 patients and matched tissue for 227 patients, 

is a valuable resource for this rare tumour type. In light of the consistency 

with previous PanNEN studies regarding patient demographics, tumour and 

disease characteristics and survival analyses, the clinical phenotyping of 

the registry provides assurance that the dataset is of good quality and 
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representative of a wider population. As such, the registry provides a robust 

sample set for biomarker correlation, to be discussed in the next chapters. 

Whilst stage and grade were independently prognostic, Ki-67 analyses also 

demonstrated the arbitrary nature of dividing patients into grades using this 

continuous variable. The clinical phenotyping and survival analyses 

reported here once more note the significant heterogeneity in this disease, 

particularly for grade 2 patients. There remains a significant unmet clinical 

need for biomarkers to enable clinicians and patients to navigate this 

heterogeneity in grade 2 disease. These data therefore highlight the need 

to develop novel means of stratifying patients according to disease biology, 

in addition to stage and grade, and provide support for further investigation 

of the potential role of the PanNETassigner molecular subtypes in this 

setting (Chapter 3). 
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3 Development of the PanNETassigner Assay 

Abstract  

Objective  

Treatment decisions in PanNENs are currently determined by grade and 

stage of disease. However, as demonstrated in Chapter 2 and elsewhere, 

grade is an arbitrary measure and, due to the significant level of within 

grade heterogeneity of disease behaviour, particularly for grade 2 patients, 

this paradigm is inadequate. Gene expression signatures have been used 

extensively in other tumour types to guide treatment decisions. A similar 

index for PanNENs, to improve patient prognostication and classification, 

would be highly clinically relevant. The aim of this chapter was to develop 

and validate a novel gene expression assay based on the PanNETassigner 

molecular subtypes previously defined by our laboratory, and then to 

assess the prognostic significance of the subtypes assigned by this assay. 

Design 

A custom assay of 228 genes was developed using the NanoString 

nCounter gene expression platform, based on the PanNETassigner 

signature. The ability of this novel PanNETassigner NanoString assay to 

derive subtypes was assessed in a training set of PanNEN patient samples 

(n=48). The concordance of subtypes derived using the novel assay with 

subtypes previously derived using microarray was assessed (n=19). The 

assay was tested in a further 96 fresh frozen samples and reproducibility 

was assessed. Significance Analysis of Microarrays (SAM) was performed 

to refine the 228 gene PanNETassigner assay to 78 robust genes and 

centroids were derived for each subtype. The refined assay, called the 

Nano-PanNET assay, was then validated using FFPE tissue (n=58). An 

RNAseq validation cohort (n=98) was also used to assess the centroids 

derived and concordance between platforms and between FFPE and fresh 

frozen tissue was assessed. Prognosis according to PanNETassigner 

subtype assigned was evaluated using Kaplan-Meier methodology.  
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Results 

A novel 228 gene PanNETassigner NanoString assay was successfully 

developed and demonstrated to have 95% concordance with previous 

subtyping results using the microarray platform. Replicates confirmed assay 

reproducibility. A refined 78 gene Nano-PanNET assay was developed and 

validated using FFPE tumour tissue. The analyses demonstrated 91% 

concordance of gene expression using the refined 78 gene assay in fresh 

frozen and FFPE samples. 92% concordance was demonstrated across 

RNAseq and NanoString platforms, using the 78 gene centroids. Survival 

analyses revealed that patients assigned the MLP-1 subtype had a poor 

prognosis, with a 5 year survival rate of 60%, whilst patients with the 

Insulinoma-like subtype had a good prognosis, 5 year survival rate 100%. 

 

Conclusion 

A novel robust 78 gene Nano-PanNET assay has been developed which 

can subtype patient samples using both fresh frozen and FFPE tissue. 

Patients assigned the MLP-1 subtype have been demonstrated to have a 

poor prognosis, with a 15% lower 5 year survival rate than any of the other 

PanNETassigner molecular subtypes. Approximately 20% of PanNENs fall 

into the MLP-1 subtype and this subtype is represented across all 3 

PanNEN grades. Additional validation in a larger cohort is now required to 

establish if the Nano-PanNET assay developed here is prognostic on 

multivariate analysis and could be optimised for use in clinic. If so, the 

Nano-PanNET assay may potentially be used to improve current 

classification strategies, enabling a more personalised approach for 

PanNEN patients. 
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3.1 Background and Rationale 

 

As previously outlined, treatment decisions for PanNEN patients are 

currently based on stage and grade of disease, alongside functionality and 

SSTR status, as there are no other validated prognostic and/or predictive 

biomarkers routinely used in clinical practice for patient stratification. Yet 

there is significant heterogeneity of clinical behaviour within grades and 

controversy remains as to the optimum Ki-67 index cut-offs30,31,32.  

From data presented in Chapter 2, for patients in the PanNEN registry, risk 

of death increased overall by 1.3% per unit increase in Ki-67% value, 

irrespective of grade of disease. This demonstrates again that Ki-67 is a 

continuous variable for risk of death and that dividing patients into 3 grades 

according to fixed Ki-67 cut-offs is an arbitrary division, rather than a 

separation of disease according to distinct biological differences. Further, 

patients with grade 2 disease demonstrated highly heterogeneous disease 

behaviour with an OS IQR of 3.6-8 years. There is therefore an unmet 

clinical need for novel biomarkers which can separate patients according to 

their tumours’ biology and to complement grade to predict prognosis and 

guide treatment decisions for PanNEN patients. 

Our laboratory previously defined 3 PanNEN molecular subtypes, based on 

an integrated analysis of gene expression, microRNA and mutations, and 

collectively named the PanNETassigner signature (see Chapter 1). The 

subtypes described are Insulinoma-like, Intermediate and metastasis like 

primary (MLP), which can be sub-divided into MLP-1 and MLP-2. The 

prognostic value of these molecular subtypes has not previously been 

examined, although metastatic disease was found to be associated with the 

MLP subtype51.  

Associations between these subtypes and grade of disease were previously 

investigated. Grade 1 and 2 PanNETs were found to be heterogeneous, 

variably associating with all three molecular subtypes, whereas grade 3 

tumours were exclusively associated with the MLP subtypes51. These data 

and the association of the MLP subtype with metastases, led to the 
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hypothesis that our molecular classification of PanNEN into subtypes may 

provide a useful tool for additional patient stratification, according to tumour 

biology. 

Expression signatures have been used extensively in other tumour types, 

particularly breast cancer. The Prosigna test measures risk of recurrence122 

and the breast cancer Genomic Grade Index predicts response to 

chemotherapy and separates subtypes of breast cancer123. The Breast 

Cancer Index (BCI) stratifies breast cancer patients into three risk groups 

and provides an assessment of tumour recurrence124. A similar index for 

GEP-NETs, to improve patient prognostication and classification, would be 

highly clinically relevant.  

Various platforms have been used to develop such clinical assays, 

including the NanoString nCounter system. This platform uses digital 

molecular barcoding to enable the detection and quantification of the 

expression of up to 800 genes in a single sample. NanoString supplies a 

range of standard assays (including the immune profiling panel used in 

Chapter 4) but also allows researchers to design their own custom assays, 

using the ElementsTM technology program.  

For such custom assays, nCounter ElementsTM supply a TagSet, consisting 

of a fluorescently labelled reporter tag and a biotinylated universal capture 

tag, and the target-specific oligonucleotide probe pairs (A and B) are 

supplied by the researcher to match their genes of interest. The reporter 

tags and capture tags hybridize to the target specific oligonucleotide probes 

A and B, which in turn hybridize to the RNA target. The complete structure 

is known as a tag complex (Figure 3.1). 
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Figure 3.1 nCounter ElementsTM Tag Complex 

 

 

Modified from NanoString Elements
TM

 training slide set (Sept 2016) 

 

The unique pattern of six colour spots on each reporter tag create the 

barcodes required for data collection and the capture tag facilitates 

immobilisation of the hybridized complex in an nCounter cartridge, which is 

imaged using a digital analyser. As the assay uses direct digital detection of 

messenger RNA (mRNA), both reverse transcription and amplification of 

complementary DNA (cDNA) using polymerase chain reaction (PCR) are 

not required, eliminating potential amplification bias. Gene expression is 

measured by counting the number of times a barcode for a specific gene is 

detected (Figure 3.2). 

This platform has been demonstrated to be favourable over various other 

techniques based upon a number of features including sensitivity, technical 

reproducibility, robustness (particularly with low quality FFPE samples), and 

in light of its practicality as a lower cost clinical application125. Further the 

technology has already been used to develop a number of clinical assays 
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across multiple tumour types, including the aforementioned Prosigna Breast 

Cancer Prognostic Test126,127,128,129,130,131. 

Figure 3.2 NanoString Hybridization and Decoding Process 

Modified from NanoString ElementsTM training slide set (Sept 2016)  

The first aim of this chapter was to develop, refine and validate a novel 

gene expression assay based on the PanNETassigner molecular subtypes 

using the nCounter platform. 

The second aim was to use this Nano-PanNET assay to assess the 

prognostic significance of the PanNETassigner subtypes in a sizeable 

cohort of PanNEN patients. The ultimate ambition was to establish if the 

Nano-PanNET assay could potentially, with further validation, be used to 

refine the current classification paradigm, to enable a more personalised 

approach to treatment for PanNEN patients. 
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3.2 Methods 

3.2.1 PanNEN Tissue Samples and Clinical Data 

PanNEN tissue samples and matched clinical data were collected from 

ARC-NET, Verona and RM, London, within the PanNEN registry 

(PaNACeA study CCR4476, Research Ethics Committee approval 

reference 16/LO/0984, May 2016) as described in Chapter 2. Microarray 

gene expression data from work previously conducted by our lab was also 

used for validation purposes and these samples are described as the 

Microarray cohort (n=19). 

Verona Cohort 

RNA isolated from fresh frozen tissue was provided for 200 patients from 

the Verona cohort. RNA isolated from matched normal pancreatic tissue 

was provided for 20 of these patients. RNA from selected samples was 

used for NanoString (n=144) and RNAseq analyses (n=98). For 44 patients, 

RNA extracted from FFPE tissue was also provided, which was used for 

NanoString analyses alone.  

RM Cohort 

27 FFPE samples were collected as described in Chapter 2 (Figure 2.2). 

RNA was extracted and used for NanoString analyses.  

Microarray Cohort 

The PanNEN gene expression data for the Microarray cohort was originally 

from Missiaglia and colleagues, Verona (GEO Omnibus ID GSE73338; ref 

34), and had been used by our lab previously in the original development of 

the PanNETassigner molecular subtypes51,80. Gene expression in this 

cohort was assessed using an 18.5 K Human oligo-microarray from the 

Ohio State University Cancer Centre and analysed using R and 

Bioconductor as described132,133,134. Data from the 19 samples which 

overlapped with samples from the Verona cohort were used in validation 

analyses. 
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Figure 3.3 details the analyses carried out across these samples and 

Figure 3.4 provides an overview of the steps involved in the development of 

the PanNETassigner assay. 

 

Figure 3.3 Overview of Tissue Samples and Analyses Performed  

 

*19 samples overlapped between the Microarray and Verona cohorts 
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Figure 3.4 Overview of the project to develop, refine and validate a 
novel PanNETassigner NanoString Assay 
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3.2.2 228 gene PanNETassigner NanoString Assay Development 

 

A panel of 228 genes (including 30 housekeeping genes) was selected for 

a NanoString ElementsTM custom assay, based on our PanNETassigner 

signature51. Target specific probes were designed by NanoString. Probes 

were checked using Basic Local Alignment Search Tool (BLAST), an 

algorithm for comparing biological sequence information with established 

sequence databases, to confirm identity and optimum isoform coverage. 

Final probes were selected and ordered from Integrated DNA Technologies 

and the corresponding TagSets from NanoString Technologies. 

3.2.3 Wet Lab Techniques 

 

Nucleic Acid Extraction and quality/quantity assessment 

For the RM cohort samples, haematoxylin and eosin (H&E) slides cut from 

tissue blocks successfully obtained through the PanNEN registry were 

assessed by an experienced Gastrointestinal Histopathologist (Monica 

Terlizzo), as described in the slide protocol below. If tumour content was 

limited, slides for RNA extraction were prioritised over slides for central 

histopathology review. 

Protocol for PanNEN registry slides 

1. 1x H&E slide cut for each available block  

2. Histopathologist reviewed (tumour content/cellularity) and advised 

which block to use.  

3. Histopathologist outlined tumour on the H&E slide for the chosen 

block to enable macrodissection before RNA extraction 

4. Biological specimens team then cut the chosen block as follows: 

• H&E (4 micron thick) 1st slide 

• 1 slide for Ki-67 

• 5-7 slides (at 7 micron thick) for RNA extraction 

• 6-10 Additional slides for IHC  

• H&E (4 micron thick) last slide 

 



 
78 

 

The 5-7 selected tissue sections for RNA extraction then underwent 

deparaffinization, macrodissection and processing (RecoverAllTM Total 

Nucleic Acid Isolation Kit AM1975 protocol) (Figure 3.5). Quality and 

quantity of extracted RNA was assessed using NanoDrop-2000 

Spectrophotometer and Agilent RNA-6000 Bioanalyzer systems, 

respectively. 

Figure 3.5 Macrodissection Process 

 

For the Verona cohort similar processes were followed but samples were 

not macrodissected. Here Allprep Qiagen was used for 184 fresh frozen 

samples and GuSCN for 16 fresh frozen samples as previously 

described135. For the FFPE samples RecoverAllTM was used, as in the RM 

samples.  

RNA was diluted for the NanoString experiments. 100ng RNA was loaded 

in 5µL (dilution 20ng/µL) when possible. However, for the RM samples 

70ng in 7µL was used (dilution 10ng/µL) due to the quantity of RNA 

available.  

nCounter ElementsTM Process 

Oligonucleotide probe pools were created and hybridized to 

reporter/capture Tags and these Tags were hybridized to the RNA target, 

according to the NanoString ElementsTM manual (version 2, Sept 2016) as 

previously described136,137. Following hybridization, samples were purified, 

orientated and immobilised in their cartridge using the nCounter Prep 

Station before being loaded into the Digital Analyser (Figure 3.2). The 
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molecular barcodes were counted and decoded, results stored as a 

Reporter Code Count (RCC) file. The RCC files were analysed alongside 

the Reporter Library Files (RLFs), containing details of the custom probes 

and housekeeping genes selected.  

 

RNA sequencing (RNAseq) (n=98) 

In the Verona RNAseq samples, gene expression was assessed by 

RNAseq as previously described138. RNAseq was carried out by the Mayo 

Clinic Core Facility, Rochester. RNA was diluted (200ng/20uL) and quantity 

and quality assessed using Qubit® Fluorometer and Agilent RNA 6000 

Bioanalyzer. A column based DNA extraction method was used before 

RNAseq libraries were prepared using PolyA selection and RNA library 

prep using NEBNext-Ultra RNA Directional kit to produce Illumina 

compatible libraries. The libraries were sequenced using a HighSeq2500 

with Paired-Ends 2x100 and targeted depth of 50 million reads/sample.  

3.2.4 Bioinformatics Techniques 

nSolverTM v3.0 analysis 

The nSolverTM software analysis package was used to perform Quality 

Control (QC) and normalisation of the expression data from the NanoString 

assays. QC steps included assessment of assay metrics (field of view 

counts/binding density), internal Code Set controls (6 positive and 8 

negative controls to assess variations in expression level according to 

concentration and to correct background noise respectively) and principal 

component analysis to assess batch effect. Following QC steps, raw data 

were normalised to housekeeping genes selected using the geNorm 

algorithm within nSolverTM. 

Integrative Latent Variable Model (iLVM)  

The Integrative Latent Variable Model (iLVM) was used to measure 

concordance between subtyping using the microarray and NanoString 

platforms. The 19 samples from the Microarray cohort which overlapped 

with the Verona cohort were used for this analysis. Specifically, we 

assessed the concordance of subtypes attributed using the novel 
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NanoString assay with those previously attributed to these 19 samples 

using the PanNETassigner multi-omics signature and microarray data. 

Subtypes were attributed in the 19 Verona cohort samples using 

NanoString gene expression data and the Integrative Latent Variable Model 

Method (iLVM). iLVM is a dimension reduction method, which uses 

latent/unobserved variables to identify clusters within data, designed in 

house (Gift Nyamundanda). It was chosen as a method here as it is good at 

finding clusters in data even when only small numbers of variables are 

available (n=19). 

Assignment of Subtypes using 228 gene PanNETassigner NanoString 

Assay (n=144) 

Normalised expression data was log2 transformed and median centred. 

Genes with ≥ 20% zero expression were removed to overcome background 

artefact/noise as described139. To assess potential batch (or technical) 

effects between different runs of NanoString assay experiments we used 

our exploBATCH computational tool140. exploBATCH contains a tool 

findBATCH, which uses probabilistic principal component analysis with 

covariates, to assess batch effects by identifying those principal 

components that are associated with the given batch information. Those 

principal components with 95% confidence interval (CI) not containing zero 

will inform significant batch effect in the data and are corrected with 

ComBat141.  

 

ComBat estimates how much each gene’s expression is proportional to the 

batch for every gene. A regression model is then applied to remove this 

effect. A form of unsupervised clustering, Non-negative Matrix Factorisation 

(NMF), was subsequently used to determine PanNETassigner subtypes, 

applied using the R/BioConductor platform as previously described142,143.  

 

Refinement of 228 Gene PanNETassigner NanoString Assay  

A smaller, robust panel of differentially expressed genes was derived from 

the 228 gene panel using Significance Analysis of Microarrays (SAM). 

SAM, distributed by Stanford University in an R-package, is a non-
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parametric statistical technique using multiple permutations to assess 

whether gene expression changes are statistically significant144. 78 genes 

were selected for the Refined PanNETassigner NanoString assay, named 

the Nano-PanNET assay. Prediction Analysis for Microarrays (PAM) 

centroids were then created for every gene for each PanNETassigner 

subtype using these 78 genes. The PAM centroid may be considered as 

the average expression of a particular gene in that subtype, scaled by 

variability145. PAM centroids can be used for single sample prediction and 

PAM analysis was performed using R-based pamr tool.  

 

Validation of Refined 78 gene Nano-PanNETAssay 

The same bioinformatics techniques were used in the validation samples, to 

assess and correct batch. Pearson Correlation was then used to score 

each sample’s gene expression data against the PAM centroids, giving a 

Pearson Correlation score for each subtype and subtypes were assigned. 

Concordance was then assessed both across platforms and between FFPE 

and fresh frozen samples. 

 

Survival Analyses 

OS according to molecular subtype attributed by the PanNETassigner and 

Nano-PanNET assays was assessed using Kaplan Meier methods and Cox 

regression was used to compare survival rates between subtypes and 

investigate if grade and molecular subtype were independent prognostic 

variables. R statistical computing (http://www.r-project.org) was used for all 

calculations.  
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3.2.5 Overview of my role 

 
PanNEN patient samples and Clinical Data 

The tissue samples and clinical data utilised in the development of the 

Nano-PanNET assay are from the PanNEN registry. My role in the set-up 

and management of this registry is described in detail in Chapter 2. 

 

228 gene PanNETassigner NanoString Assay Development 

Based on our lab’s PanNETassigner signature, I selected a panel of 

subtyping and housekeeping genes for the 228 gene PanNETassigner 

NanoString assay. I worked with NanoString to arrange the design of target 

specific probes for the novel panel. I checked all 228 probes using the 

Basic Local Alignment Search Tool (BLAST), an algorithm for comparing 

biological sequence information with established sequence databases, to 

confirm identity and optimum isoform coverage. I then selected the final 

probes, with the support of Anguraj Sadanandam, and ordered them from 

Integrated DNA Technologies alongside the TagSets from NanoString. 

Wet Lab Work 

With the support of Chanthirika Ragulan (Higher Scientific Officer), I carried 

out the following lab work: 

 

• All NanoString work for 144 samples analysed using the 228 gene 

assay 

• NanoString work for 44 fresh frozen samples using the 78 gene 

Nano-PanNET assay (NanoString work for 36/44 FFPE samples 

using 78 gene assay was carried out by Krisha Desai, Post-Doctoral 

Training Fellow, after I had taught her the processes involved) 

• Sourced quotes for RNAseq work and prepared samples for RNAseq 

(including appropriate RNA dilutions and quality control) 

• Visited ICR core facility to watch and understand the RNAseq 

workflow  
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• All RM cohort sample work including macrodissection, RNA 

extraction, quality and quantity assessments and NanoString work 

using 78 gene Nano-PanNET assay 

 

Bioinformatics Work 

With the support of Gift Nyamundanda, Kate Eason and Anguraj 

Sadanandam (Bioinformaticians), I carried out the following bioinformatics 

work: 

 

• NSolver and nCounter Advanced analyses for NanoString data, 

including all quality control assessments (validated by Chanthirika 

Ragulan) 

• Used TreeView and Cluster 3.0 to assess gene expression 

• Survival Analyses (validated by Gift Nyamundanda) 

• Liaised with bioinformaticians to select appropriate clinical data for 

multivariate analyses and interpreted the results 

• Generated figures in Adobe Illustrator and PowerPoint 

 

The remainder of the bioinformatics work was carried out by Gift 

Nyamundanda and validated by Anguraj Sadanandam. 

 

 

Communication of Results 

I have communicated data from this chapter as follows: 

 

• I presented this project as a poster at the NIHR Research Leaders of 

the Future meeting, Leeds 2016. (A translational study in 

Gastroenteropancreatic Neuroendocrine tumours (GEP-NETs) to 

validate and assess a new molecular classification (PaNACeA)).  

• With Anguraj Sadanandam, I wrote an abstract based on data from 

this chapter, selected for oral presentation at ENETs 2018. 
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(Development of a multiplex biomarker assay to subtype pancreatic 

neuroendocrine tumours (PanNETs) with distinct prognosis and 

mutations). 

• I presented this project at the ICR Conference as an oral 

presentation, London 2018. (A translational study in Pancreatic 

Neuroendocrine tumours (PanNETs)). 

• I am in the process of preparing a manuscript (including 

figures/tables) for submission, with support from the co-authors. 
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3.3 Results 

3.3.1 Initial Testing of 228 gene PanNETassigner NanoString Assay 

(n=48) 

 

228 gene PanNETassigner NanoString assay 

The 228 gene assay PanNETassigner NanoString assay, hereafter referred 

to as the 228 gene assay, was successfully developed as described in 

methods. The final 228 genes and those genes removed following BLAST 

analysis are detailed in Supplementary Table 3.1 (Appendix 3).  

Quality and Quantity of RNA for Fresh Frozen samples from Verona 

Cohort (n=144) 

For the 144 samples processed with the 228 gene assay the median RNA 

concentration was 222ng/µL, range 2.8 to 4099ng/µL. RNA Integrity 

number (RIN) ranged from 6.5 to 10.  

228 gene assay Test Set (n=48) 

The 228 gene assay was effectively performed on a test set of 48 fresh 

frozen samples from the Verona cohort. Gene expression data was 

successfully generated and analysed within nSolver. All samples formally 

passed the nSolver QC steps as described in methods. However, 4 

samples were flagged for review and these were omitted from further 

analysis. 3 samples were flagged due to just lower than threshold (0.95) 

linearity on positive controls which was thought to be caused by RNA 

purification issues. 1 sample was flagged due to having a slightly increased 

binding density (2.4) which was attributed to an excess of RNA. 

3.3.2 Suitability of the NanoString platform 

As described in methods, subtyping details were already available for 19/48 

from the test set, from microarray data used in our previous Cancer 

Discovery publication51. Before developing the assay further we wished to 

confirm that the NanoString platform could be used to accurately assign 

PanNETassigner subtypes. We therefore assessed the concordance 

between subtypes previously assigned using microarray data and subtypes 

assigned here using the novel 228 gene assay. We used iLVM to cluster 
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the NanoString gene expression data to assign subtypes, as the low 

number of samples available (n=19) made other techniques such as PAM 

and Pearson correlation less reliable.  

Using the NanoString gene expression data for the 19 samples, iLVM 

identified 3 clusters, corresponding to the Insulinoma-like, the Intermediate 

and the MLP PanNETassigner subtypes. The concordance between the 

subtypes assigned using iLVM with the original subtypes was assessed. 

The misclassification error rate was 5% with 18/19 samples correctly 

classified (Figure 3.6 and Table 3.1). 

Figure 3.6 Strong Concordance between subtypes derived from 
Microarray data and NanoString data (iLVM)  

 

Figure A 1/19 samples assigned a different subtype by iLVM using 228 gene 

assay data vs. microarray data. This is seen as a green circle, representing a 

sample which was assigned as Intermediate according to microarray data but MLP 

according to NanoString data.  

Figure B. This proportion plot highlights the 95% concordance seen with the 2 

platforms, with just 1 sample misclassified. 
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Table 3.1 Subtypes Assigned using Microarray Data and 228 gene 
Assay (n=19) 

Misclassified sample highlighted in red 

Sample Microarray Subtype Nanostring iLVM Subtype 

1634T MLP MLP 
1635T MLP MLP 
1637T MLP MLP 
1638T Intermediate Intermediate 
1644T Insulinoma Insulinoma 
1649T Intermediate Intermediate 
1650T Intermediate Intermediate 
1656T MLP MLP 
1657T* Intermediate MLP 

1660T MLP MLP 
1665T Intermediate Intermediate 
1672T Insulinoma Insulinoma 
1913T MLP MLP 
1914T MLP MLP 
1921T Insulinoma Insulinoma 
1923T Intermediate Intermediate 
1929T MLP MLP 
1934T Intermediate Intermediate 
1935T Intermediate Intermediate 

 

3.3.3 Further Testing of the 228 Gene Assay (n=96) 

Having demonstrated the suitability of the NanoString platform to assess 

PanNETassigner subtypes, we went on to perform the 228 gene assay on 

an additional 96 samples. Gene expression data was successfully 

generated and analysed within nSolver. All 96 samples formally passed the 

nSolver QC steps as described in methods with no flagged samples. 

The data from the test set of 48 samples and from the additional 96 

samples were then combined. The 144 samples overall included 6 

replicates and 7 matched normal tissue samples. Heatmaps of the results 

for the tumour samples and replicates are shown below (Figures 3.7 and 

3.8). 
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Figure 3.7 Heatmap of gene expression data from the 228 gene Assay  

(n= 127, 6 replicates, 7 normal and 4 flagged samples removed) 

 

Figure 3.8 Technical Reproducibility of the 228 gene Assay  

(n=6 replicates) 

  

The 6 replicate samples were processed using the 228 gene assay 4 months 

apart. The replicates all demonstrated a high correlation of gene expression (~1), 

confirming the assay’s technical reproducibility. 
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3.3.4 Subtyping using the 228 gene Assay (n=144) 

We next used the NanoString gene expression data from the 144 samples 

to assign PanNETassigner subtypes. As described in methods only the 

genes with >80% non-zero expression were included. Here of the 198 

genes (228 genes with the 30 housekeeping genes removed), 7 genes 

were removed from the subsequent analyses due to ≥ 20% zero expression 

(Figure 3.9). 

 

Figure 3.9 Genes with ≥ 20% zero expression removed from analysis 

  

 

Batch Effect Assessment and Correction 

To assess any batch effects between different runs of nCounter platform 

experiments we used exploBATCH as described in methods (Figure 

3.10)140. As this did demonstrate a batch effect, ComBat was used to 

correct this. 

7 Genes 

Removed: 

CHI3L2 

ELSPBP1 

GCGR 

GRM5 

KLKB 

MLN 

TMPRSS4 



 
90 

 

Figure 3.10 exploBATCH analysis of batch effect for 228 Gene Assay 

A Baseline     B After ComBat 

 

This figure shows probabilistic Principal Components (pPC) and their 95% 

confidence intervals. If the confidence interval crosses 0 then there is no batch 

effect. A Here pPC2’s confidence interval doesn’t cross 0, demonstrating a batch 

effect, which required correction B Demonstrates that the batch effect has been 

removed using ComBat. 

Non-negative Matrix Factorisation (NMF) and Rank Survey 

NMF was applied to the gene expression data for 127 samples (6 

replicates, 7 matched normal samples and 4 flagged samples removed 

from the original 144 samples) across 191 genes (30 housekeeping and 7 

genes with high levels of zero expression removed from original 228 

genes)141,143,145. This clustering paradigm revealed 4 subtypes.  

The silhouette and cophenetic quality measures, which form part of the 

NMF analysis, support 4 subtypes (Figure 3.11). For each sample, the 

silhouette analysis considers the distance between each gene’s expression 

level and the expression level for that gene in the subtype as a whole (the 

subtype’s centroid). Following multiple runs (100), the number of subtypes 

chosen minimises the variability of gene expression between samples of 

the same subtype and maximises the variability between samples of 

different subtypes. The cophenetic analysis measures how robust the 4 

subtypes are, considering if the process were repeated how many times 

each sample would be allocated to the same subtype. 
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Figure 3.11 Cophenetic and Silhouette Analyses as part of NMF  

 

Cophentic and Silhouette analyses support 4 subtypes as both cophenetic 

coefficient and silhouette width fall for subtype numbers above 4. 

Silhouette width was used again, this time from a single run, to determine 

the most representative samples for each subtype. Non-representative 

samples were removed as they may represent samples with mixed 

subtypes. Here 14 samples were removed, leaving the 113 most robust 

samples which were subsequently used to refine the 228 gene panel 

(Figure 3.12). 

Figure 3.12 Single Run Silhouette to determine most representative 
samples for further analysis of PanNETassigner subtypes 

 

In the silhouette plot the 
samples with a silhouette width 

of <0, on the left of the plot, 
represent potentially mixed 
samples and were removed 

before analyses were 
conducted to select the final 
genes for the refined panel 
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3.3.5 Development of the Refined 78 gene Nano-PanNET Assay  

Gene expression data from the 113 remaining samples was then used to 

refine the 228 gene assay. SAM, a univariate approach to assess 

differentially expressed genes as described in methods, was used to select 

the smallest number of genes which could be used to differentiate the 

PanNETassigner subtypes (Figure 3.13)144. This approach selected 78 

genes (Supplementary Table 3.2, Appendix 3.2) for the Nano-PanNET 

assay. 

 

Figure 3.13 SAM used to derive refined 78 gene Nano-PanNET Assay 

 

PAM was then used to derive centroids for each of the 78 genes in each of 

the 4 PanNETassigner subtypes (Figures 3.14 and 3.15)145.  

This figure demonstrates that if the 

228 panel is refined to 78 genes the 

misclassification error rate remains 

low (2%) but as the number of 

genes is reduced further the 

misclassification error rate 

increases. Therefore 78 genes were 

selected for the final refined panel. 
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Figure 3.14 PAM Centroids for Refined 78 gene Nano-PanNET Assay 

 

  

The PAM centroids represent the average expression pattern for each of 

the refined panel of 78 genes in each of the 4 subtypes 
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Figure 3.15 Heatmap of Expression of selected 78 genes (n=113) 
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3.3.6 Survival Analysis according to PanNETassigner Subtype  

Having developed the refined 78 gene panel we wished to establish if the 

subtypes assigned had prognostic significance. Full clinical data was 

available for 97/113 of the patients whose samples were subtyped as 

above. The distribution of grades and subtypes across the cohort was 

assessed (Figure 3.16). The most frequently assigned subtype was 

Intermediate (38%), followed by Insulinoma-like (29%), with smaller 

percentages assigned to the MLP-1 and MLP-2 subtypes (18% and 15% 

respectively). Over 90% of patients had grade 1 or 2 disease. Of the 97 

patients, 15 had functional disease. 10/15 functional cases were 

Insulinoma-like, 2/15 MLP-1 and 3/15 MLP-2 with 29% of the Insulinoma-

like tumours being insulinomas. 

Figure 3.16 Distribution of (A) PanNETassigner Subtypes and (B) WHO 
2010 Grades (n=97) 

A Distribution of PanNETassigner Subtypes 

 

B Distribution of WHO 2010 Grades 

 

Note percentages are rounded in these figures but original values to add up to 100% 
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OS according to PanNETassigner subtype was analysed, with the MLP-1 

subtype demonstrating the poorest and the Insulinoma-like subtype the 

best survival (p≤0.05) (Figure 3.17). Median OS was 71 months (95% CI 

56, NR) for the MLP-1 subtype but was not reached for the other 

PanNETassigner subtypes. Survival according to WHO 2010 grade was 

considered in the same cohort, with grade 3 patients having the worst 

prognosis and grade 1 the best, consistent with the literature (p<0.001) 

(Figure 3.18).  

Figure 3.17 OS according to PanNETassigner Subtype (n=97) 
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Figure 3.18 OS according to WHO 2010 Grade (n=97) 

 

The distribution of grades across the PanNETassigner subtypes was 

analysed. All 3 grades were present in the Insulinoma-like, Intermediate 

and MLP-1 subtypes. The MLP-1 subtype was enriched for grade 3 patients 

compared to the other subtypes (29% of MLP-1 patients were grade 3). 

However, the majority of MLP-1 patients were grade 2 (47%) and grade 1 

patients were also present (24%) (Figure 3.19).  
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Figure 3.19 WHO 2010 Grade according to PanNETassigner Subtype 

 

 

We wanted to establish whether the PanNETassigner molecular subtypes 

could be used to stratify patients within grades. We therefore analysed OS 

according to PanNETassigner subtype for grade 1 and 2 patients 

separately (Figures 3.20 and 3.21). A major limitation here is that this 

division results in very small numbers of patients available for each 

analysis, making any statistical analysis challenging. Grade 3 was not 

similarly assessed as only 8 patients had grade 3 disease in this cohort. We 

also assessed survival for grade 1 and 2 patients combined, excluding the 

patients with more aggressive grade 3 disease, to establish if the same 

patterns were seen when the enrichment of grade 3 patients in the MLP-1 

subtype was removed (Figure 3.22). 

Within the 42 grade 1 patients, the 4 subtyped as MLP-1 were all censored 

as they were lost to follow up. The Insulinoma-like patients had a better 

prognosis than the Intermediate or MLP-2 patients, but this result did not 

reach statistical significance. 

Within the 47 grade 2 patients, the 8 subtyped as MLP-1 and 6 as MLP-2 

had a poorer prognosis but this was not statistically significant, possibly due 

to the small numbers available for analysis. Again the Insulinoma-like 

patients had the best prognosis. 
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When grade 3 patients were excluded and grade 1 and 2 patients were 

analysed together, a similar pattern was seen, with the MLP-1 patients 

having the poorest prognosis and insulinoma-like patients the best. 

However, this was not statistically significant. 

Figure 3.20 OS according to PanNETassigner subtype for Grade 1 
Patients  
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Figure 3.21 OS according to PanNETassigner subtype for Grade 2 
patients 
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Figure 3.22 OS according to PanNETassigner subtype for Grade 1 and 
2 patients 

 

3.3.7 Validation of the 78 Gene Nano-PanNET Assay using FFPE 

samples from the Verona Cohort (n=44) 

 

Having demonstrated that the PanNETassigner subtypes had prognostic 

significance, we sought to validate the refined 78 gene Nano-PanNET 

assay using additional patient samples. The assay was therefore tested in 

44 FFPE PanNEN patient samples from the Verona cohort. All samples 

passed the NSolver QC steps. The same QC steps involving removal of 

genes with ≥20% zero expression, assessing and correcting batch effect 

were completed as previously. Subtypes were successfully assigned using 

Pearson correlation to the previously derived 78 gene panel centroids. 
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37/44 of the FFPE samples overlapped with the 144 fresh frozen samples 

used to test the 228 gene assay. The correlation between gene expression 

results obtained using the fresh frozen versus the FFPE samples was 91% 

(Figure 3.22).  

 

Figure 3.23 Correlation between the expression of the refined panel of 
78 genes in fresh frozen and FFPE patient samples (n=37) 

 

A scatter plot showing the median expression of the 78 genes, assessed by the 

NanoString platform, in fresh frozen and FFPE tissues (n = 37). Colours indicate 

each gene’s association with the PanNETassigner subtypes, according to the 

centroids derived for each gene. 

 

The concordance of subtypes assigned in the FFPE samples with those 

assigned in the fresh frozen samples was also assessed, measured at 68% 

(Figure 3.23). The Insulinoma-like subtype was assigned more frequently in 

the FFPE than in the fresh frozen samples.  

 

Figure 3.24 Concordance of PanNETassigner subtypes assigned 
using FFPE and Fresh Frozen Tissue by NanoString assay (n=37) 

 

 

This figure demonstrates the concordance between subtypes assigned using fresh 

frozen versus FFPE tissue (25/37 subtypess matched, concordance 68%).  
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3.3.8 Validation of 78 gene panel centroids with RNAseq data (n=98) 

The centroids for the refined 78 gene panel were assessed using RNAseq 

data from 98 fresh frozen samples from the Verona cohort. Here subtypes 

were successfully allocated based on gene expression data from RNAseq 

and using Pearson correlation to the 78 gene panel centroids.  

 

The 98 RNAseq fresh frozen samples overlapped with 98/127 fresh frozen 

Verona samples originally subtyped (section 3.4.3) Concordance between 

the subtypes assigned using gene expression data from the two platforms, 

RNAseq and NanoString, was assessed (Figure 3.24). This analysis 

demonstrated a 93% concordance with 91/98 samples assigned the same 

subtypes using data from the 2 platforms. Here the Insulinoma-like subtype 

appeared to be more frequently assigned in the RNAseq samples. 

 

Figure 3.25 Concordance between subtypes assigned using 78 gene 
panel centroids with RNAseq data (fresh frozen) and using NanoString 
assay data (fresh frozen) (n=98) 
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3.3.9 Validation of 78 gene Nano-PanNET Assay using FFPE samples 

from the Royal Marsden Cohort as a real world example (n=27) 

 

Quality and Quantity of RNA from RM Cohort (n=27) 

Available tissue was collected for RM patients in the PanACeA study as 

described in methods and in Chapter 2. Tumour samples were obtained for 

57 of the 77 patients in the RM cohort. Of these 57, 30 samples did not 

have sufficient tissue for further analysis (Figure 2.2).  

Ultimately, 29 FFPE tissue samples were available for 27 patients (2 

patients had tissue available from both a pancreatic primary and a site of 

metastasis). 10 of the 29 samples were from pancreatic resection 

specimens and 19 were from biopsies (Supplementary Table 3.3, Appendix 

3.3). All 10 resection specimens had adequate RNA concentrations for 

further analysis. Only 4/19 of the biopsy specimens had adequate RNA 

concentrations for further analysis. The 4 biopsy specimens with adequate 

RNA concentrations were all from pancreatic biopsies. None of the 10 liver 

biopsy specimens provided sufficient RNA for further analysis. 

For the 14 samples ultimately processed with the 78 Gene Nano-PanNET 

assay the median RNA concentration was 122ng/µL, range 5.76 to 

480ng/µL. 

 

Refined 78 gene Nano-PanNET assay applied to RM cohort (n=14) 

12/14 of the samples passed the QC steps as previously described and 

were successfully subtyped (Figure 3.25, Supplementary Table 3.3). 2/14 

samples failed the normalisation QC step, due to content normalisation 

flags. One of the samples was a biopsy sample from 2005, the second 

oldest sample obtained, with a very low initial RNA concentration 

(5.92ng/µl). The other 3 successful biopsy samples in the RM cohort were 

from 2011, 2013 and 2014. As low amounts of intact RNA and sample 

degradation over time can cause a content normalisation flag, this may 

have been why this sample failed. The other failed sample was a resection 

specimen from 2010. It is less clear why this more recent sample failed. 

Low amounts of intact RNA may have contributed again as this sample had 
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a low initial RNA concentration (140ng/µl) compared to the mean 

concentration of the resection specimens overall (237ng/µl). Other potential 

causes include pipetting errors and inaccurate quantification. 

In the RM cohort 70ng RNA in 7µL was used in the NanoString assay 

experiments, versus the 100ng in 5 µL used in the Verona samples. For the 

other 12 RM samples, acceptable gene expression results were obtained 

using 70ng RNA in 7µL and this dilution was not thought to be the cause for 

the 2 samples’ QC failures. 

Figure 3.26 78 gene Nano-PanNET Assay Results for RM Cohort 
(n=12)  

 

3.3.10 Inclusion of 2 Erroneous Samples and Additional 

Bioinformatics Assessments Completed 

Having completed the above analyses of the 228 gene and 78 NanoString 

assays, during collection of additional clinical data it was noted that 2 of the 

samples had been sent from Verona in error. These 2 samples were not 

PanNET samples but one pancreatic ductal adenocarcinoma (PDAC) 

sample (1579) and one sample from a patient with pancreatitis (1041). 

These samples were not included in the original analysis of subtype 

concordance using the 228 gene assay and the overlapping Microarray 

cohort subtypes (n=19). They were also not included in the survival 

analyses as there was no clinical data available (n=97). However, they 

were used in developing the refined 78 gene Nano-PanNET assay.  

 

To check that the inclusion of these samples had not adversely affected the 

misclassification error rate of the refined 78 gene panel we repeated all of 

the analyses with these 2 samples excluded. This resulted in a refined 
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panel of 81 genes, with 77/81 genes overlapping with the original refined 78 

gene panel. The 81 gene signature had a misclassification error rate of 1%. 

When the 77 gene signature was applied to the training cohort of 125 

samples (i.e. the 127 samples with the 2 incorrect samples removed) the 

misclassification error rate remained unchanged at 1%. We therefore 

concluded that it was acceptable to proceed with the 78 gene signature. 
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3.4 Discussion 

 

In this chapter I have described the successful development of a novel 

Nano-PanNET assay with potential prognostic significance. The initial 228 

gene assay was demonstrated to achieve good-quality, reproducible results 

in fresh frozen samples with a high level of concordance with subtyping 

results achieved using microarray data (95%, n=19).  

Having confirmed that the PanNETassigner subtypes could be reliably 

assigned using the nCounter platform, the 228 gene assay was refined to a 

78 gene Nano-PanNET assay and corresponding centroids were developed 

(n=127). These centroids, representing the average gene expression of 

each of the 78 genes across the 4 subtypes, were validated using RNAseq 

data from fresh frozen samples, again with high concordance (93%, n=98).  

For the majority of patients diagnosed with PanNEN however, fresh frozen 

tissue samples are not available. Although FFPE samples may contain only 

small concentrations of, or highly degraded, RNA, they are the most 

frequently available samples both for diagnosis and biomarker assessment. 

The 78 gene assay was therefore tested in FFPE samples both from the 

Verona and RM cohorts (n=58). Working with FFPE samples versus fresh 

frozen samples provided a number of challenges. 

For the RM cohort, there was a predictable rate of attrition during sample 

retrieval. 77 PanNEN patients were selected for inclusion in the PanNEN 

registry and attempts made to collect tissue for 65 cases, as 12 patients 

had declined inclusion in translational work. The majority of these 65 

patients had initially been diagnosed at their district general hospital before 

being referred to RM for treatment. Whilst histopathology samples had 

been reviewed at RM, they were subsequently returned to their referring 

centres, as per Royal College of Pathologist guidelines. 57/65 tissue 

samples were ultimately obtained but this was a lengthy process, 

highlighting the difficulties of such retrospective sample collection. 
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Following central histopathology review, 27/57 cases contained sufficient 

tissue for further analysis. Then, following macrodissection and RNA 

extraction, 14/27 had adequate RNA for NanoString analysis.  

Of note, whilst all of the 10 resection specimens obtained had adequate 

RNA, only 4/19 biopsy samples did so. In particular not 1 of the 10 liver 

biopsies had sufficient concentrations of RNA for further analysis. This is an 

important observation as the liver is often chosen as a biopsy site in 

patients with advanced disease. From this data, noting the small sample 

size and the need for further validation, it appears that routine diagnostic 

liver biopsies may not yield sufficient RNA for additional translational work, , 

in PanNEN patients, as there is not sufficient tissue remaining following 

diagnostic tests. 

In the Verona cohort, all of the samples were from resections and were 

carefully stored in the ARC-NET biobank. The FFPE samples were 

therefore both readily obtainable and were from larger resection specimens. 

All of the 44 FFPE samples from Verona had adequate RNA for further 

analysis. In addition to this being due to the nature of resection versus 

biopsy specimens, the samples in Verona had been carefully prepared and 

stored as part of a biobank, which was not the case for the diagnostic 

biopsies at various district general hospitals for the RM samples. As 

discussed in Chapter 2, such challenges highlight the need for prospective 

biobanks with robust protocols for obtaining and storing tissue, to enable 

high quality translational work. 

Once available FFPE samples were obtained and adequate RNA extracted, 

the 78 gene assay was successfully performed, assigning subtypes in 

56/58 FFPE samples (44 Verona and 14 RM FFPE samples). The ability to 

obtain robust results with low RNA concentrations on the nCounter platform 

is consistent with published data and is important when considering using 

the 78 gene assay in a real world setting125. 

The concordance between subtypes assigned using NanoString gene 

expression data in the Verona FFPE and fresh frozen samples was then 

assessed (n=37). Here concordance was 68%, although the correlation of 
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gene expression between FFPE and fresh frozen samples was higher at 

91%. The subtype concordance between fresh frozen and FFPE samples is 

lower than the cross-platform concordance for fresh frozen samples 

reported with RNAseq and NanoString data, at 93% (n=98). The reason for 

the lower concordance between subtypes assigned in FFPE tissue and 

fresh frozen tissue is as yet uncertain. The challenges of obtaining good 

quality gene expression results with archived FFPE tissue are well 

documented, although a number of studies have demonstrated the 

advantages of NanoString in this setting126,147,148. Further analyses 

investigating whether differences in sample cellularity may have contributed 

to this are on-going. The impact of storage time on the samples is also 

being investigated. RNA was extracted soon after resection for the fresh 

frozen samples but for the FFPE samples the extraction took place many 

years later. It is possible that RNA degradation over this time may have 

impacted upon these results148. 

The Verona FFPE samples were noted to be more frequently assigned the 

Insulinoma-like subtype than the fresh frozen samples when NanoString 

data was used (10 more were subtyped as Insulinoma-like in the FFPE 

than the fresh frozen samples, over 37 cases). The fresh frozen RNAseq 

samples were also more frequently assigned the Insulinoma-like subtype 

than the fresh frozen NanoString samples, although the level of 

discordance was lower within the fresh frozen samples (6 more were 

subtyped as Insulinoma-like in the RNAseq than the NanoString samples 

over 98 cases). The reason for this is also currently being investigated.  

It is possible that genes relating to various normal pancreatic functions with 

high levels of expression in the Insulinoma-like centroids, such as CLPS 

and CTRL, may have been expressed in any associated normal pancreatic 

tissue present in the samples. The Verona FFPE samples were not 

macrodissected and as such small amounts of normal pancreas may 

potentially have been included in the samples and impacted subtyping. 

However, the RNAseq fresh frozen samples were prepared in the same 

way and at the same time as the NanoString fresh frozen samples so the 

slight increase in assignation of the Insulinoma-like subtype in the RNAseq 
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samples cannot be explained in this way. Our collaborators in Verona are 

currently looking back at the 6 samples from the RNAseq cohort, that were 

assigned Insulinoma-like using RNAseq data but not using NanoString 

data, to investigate this further. 

If the 78 gene Nano-PanNET assay were to be taken forward and 

developed for use in clinic, the challenges of using FFPE samples in a real 

world setting would have to be carefully considered, both from the point of 

view of obtaining adequate RNA from biopsy samples and from ensuring 

that the Insulinoma-like subtype is not over assigned. In addition to the 

PAM50-based Prosigna Breast Cancer Prognostic Gene Signature Assay, 

our lab has recently successfully developed a NanoString assay to classify 

colorectal cancers (CRC), the CRCAssigner, which can also be used 

effectively in FFPE samples, demonstrating that this approach is 

achievable126,149. 

The 78 gene assay now requires further validation and optimisation, using 

additional FFPE and fresh frozen samples, to confirm whether 

macrodissection is required and the minimum RNA concentrations which 

could be used to provide robust results for PanNEN samples. I note that for 

the PAM50-based Prosigna Breast Cancer Prognostic Gene Signature 

NanoString Assay, macrodissection has been noted to be a key step to 

maximise diagnostic accuracy and the recommended RNA input is between 

125 and 500ng RNA, although at validation reasonable results were 

achieved using lower inputs of 62.5ng150. 

In this project, all of the samples, whether in the Verona or RM cohort, are 

from baseline resections or biopsies. Using these samples we were unable 

to compare molecular subtypes between primary and metastatic tissues 

within the same patient or consider subtype evolution over time or following 

treatment. Ki-67 variability between primary and metastatic disease, as well 

as grade progression, have been reported in PanNET patients151,152,153,154. 

Further, within a single PanNET patient, variable genomic profiles were 

noted in high versus low grade histological areas, with a progressive 

accumulation of genetic changes seen in the high grade regions155. It is 
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therefore not unreasonable to consider that the PanNETassigner subtypes 

may also vary between primary and metastatic settings and over time, but 

this requires further study. 

Considering such potential intra-patient and even intra-tumoural 

heterogeneity, the best approach to assigning a subtype or indeed 

subtypes for an individual patient will also have to be considered. It is 

unlikely to be acceptable for a patient to undergo multiple biopsies to 

assess potential subtypes present in different sites of disease or over time. 

It may be that, in the future, gene expression analysis of circulating tumour 

cells (CTCs) from liquid biopsies becomes an option to assess 

PanNETassigner subtypes and indeed such techniques are already being 

developed156,157,158,103.  

If these technical issues can be overcome, from the survival analyses 

presented here the PanNETassigner subtypes may potentially be used to 

provide additional prognostic information. In the survival analyses 

performed on 97 patients from the Verona cohort, the MLP-1 subtype was 

found to have a reduced median OS of 71 months (p<0.05). Median OS 

was not reached for the other subtypes, with the Insulinoma-like subtype 

having the best predicted 5 year survival rate. Due to the low number of 

events it was not possible to carry out the planned multivariate analyses 

and attempts to stratify grade 1 and grade 2 patients by PanNETassigner 

subtype did not reach statistical significance, possibly due to the very small 

numbers of events which occurred and patients in each group. 

As noted in Chapter 2, additional samples are now being made available for 

the PanNEN registry, from a Kings College cohort, and prospective 

PanNEN tissue samples are being collected in the RM sponsored PaC-

MAn study. To obtain further additional samples, I, with the support of 

Anguraj Sadanandam, wrote a translational research proposal for the 

international SEQTOR trial of sequential everolimus or streptozocin/5FU 

(STZ/5FU) chemotherapy (Appendix 3.4). This proposal has now passed 

the appropriate regulatory steps and has been incorporated into substantial 

amendment 4 for the SEQTOR study. All of these additional FFPE and 
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fresh frozen samples will be used to further validate and optimise the 78 

gene assay and to test the prognostic significance of the subtypes assigned 

in a larger cohort, with more events. If possible the predictive significance of 

the subtypes will be assessed with regards to treatment in the larger cohort. 

  

The MLP-1 subtype having a poor prognosis is consistent with our labs’ 

previous observations that the MLP tumours were enriched for 

metastases51. The MLP subtypes (MLP-1 and MLP-2) share a number of 

biological features which may contribute to this poor prognosis.  

The first feature involves carbon metabolism, with significant differences 

previously described in the MLP versus the Insulinoma-like subtypes. 

Insulinoma-like tumours, which had a good prognosis in our data, were 

enriched for genes associated with the regulation of insulin and transporting 

glucose, as seen in mature β cells of the pancreas. MLP tumours, on the 

other hand, demonstrated increased expression of hexokinase (HK1) and 

lactate transporter (MCT1/ SLC2A2) genes. These genes code for proteins 

which play important roles in glycolysis, with HK1 driving high glycolytic 

activity and MCT1 ensuring efflux of the lactic acid produced. The 

increased expression of such proteins associated with high levels of 

glycolytic activity has been associated with poorly differentiated and larger 

tumours, positive lymph node metastases, vascular invasion, advanced 

tumour stage and reduced survival across multiple solid tumours159,160,161.  

The ability to metabolise glucose anaerobically through glycolysis is an 

important feature for MLP tumours as they have been reported to be less 

vascularised than other subtypes and enriched for genes associated with 

hypoxia and hypoxia-inducible factor (HIF) signalling51,29. Hypoxia and HIF 

signalling have in turn been linked to cancer stem cell renewal, immune 

suppression and the promotion of epithelial to mesenchymal transition 

(EMT) resulting in the development of metastases162,163,164,165. 

EMT provides cancer cells with an enhanced ability to metastasize, through 

the loosening of cell-cell adherences and through enriched invasive and 

migratory behaviours. MLP tumours were also previously noted to be 
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enriched for genes associated with EMT such as Vim51. Tumours which 

have undergone EMT are thought to be more aggressive, have increased 

stem-like features and are associated with increased inflammation, all of 

which again fit with the MLP-1 phenotype166. 

The MLP-1 tumours were enriched for patients with grade 3 disease 

compared to the other subtypes (29%) and such high grade disease is 

associated with reduced survival41,112. Indeed, the inclusion of these NEC 

patients is a limitation of the study, as biologically such tumours are a 

distinct group compared to their well differentiated counterparts27. Yet 71% 

MLP-1 patients had grade 1/2 disease and, within the grade 2 patients 

alone, a trend towards reduced survival for the MLP patients versus the 

other subtypes remained, although this was not statistically significant and 

requires validation. In the analyses planned using the aforementioned 

additional samples, the NEC and NET patients will be assessed separately 

to investigate whether the MLP-1 subtype maintains its poor prognosis, 

without the enrichment for grade 3 patients. 

In the survival analyses, the Insulinoma-like subtype had the best 

prognosis. As discussed above, the Insulinoma-like subtype has been 

noted to be enriched for genes associated with mature β cells and appears 

to have a different cellular origin to the MLP subtypes51. 29% of the 

Insulinoma-like tumours assessed within the survival analyses were 

insulinomas, which are known to be less likely to metastasize and have a 

prolonged survival versus other PanNENs167,168. However, 71% Insulinoma-

like patients did not have insulinomas and 39% had grade 2 or 3 disease, 

highlighting that the PanNETassigner subtype may be able to provide 

supplementary information, additional to the clinical characteristics currently 

used, to inform prognostication 

Following the work outlined in this chapter, further study is required to 

establish if the PanNETassigner subtypes remain prognostic in a larger 

cohort and on multivariate analyses, and this work is underway. Additional 

mechanistic studies in animal and cell line models, to confirm potential 

causes for these survival differences, are also planned. As discussed 
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above, the 78 gene Nano-PanNET assay developed here similarly requires 

further analytical and clinical validation. If these investigations confirm the 

prognostic significance and clinical utility of the PanNETassigner subtypes 

and assay, the 78 gene assay developed here could be deployed to 

analyse patient samples in trials or in clinic.  

In the future, a model combining PanNETassigner subtype with stage and 

grade may be developed and would support a more disease biology based, 

personalised approach to treatment for PanNEN patients. 
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4 The Immune Landscape of PanNENs 
 

Abstract  

Objective  

To date, little is known about the immune microenvironment in PanNENs. 

The aim of this chapter is to describe immune related gene expression in 

this disease and to consider possible causes for differential expression and 

the potential therapeutic opportunities this may afford. 

 

Design 

This study involved the analysis of immune related gene and protein 

expression from 320 PanNEN patient tumour samples (FFPE and fresh 

frozen) in this rare tumour type. Multiple platforms and various 

bioinformatics techniques were used including microarray, RNAseq, 

NanoString, multiplex IHC, Significance Analysis of Microarrays (SAM), 

Gene Set Enrichment Analysis (GSEA) and single sample Gene Set 

Enrichment Analysis (ssGSEA) and Cell type Identification By Estimating 

Relative Subsets Of known RNA Transcripts (CIBERSORT). Three main 

cohorts of patients were included, a training cohort (n=72) and two 

validation cohorts (n=146). 

 

Results 

This study demonstrated the differential expression of immune related 

genes, not by grade or other clinical parameters, but according to our 

previously described PanNETassigner molecular subtypes. The MLP-1 

subtype was found to have an immune high phenotype, with the highest 

expression of and diversity of immune related gene expression. This 

phenotype was associated with larger hypoxic tumours, necroptosis and 

activity within the Damage Associated Molecular Pattern (DAMP) pathway 

in the MLP-1 samples. 
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Conclusion 

This study provides comprehensive and novel phenotypic data regarding 

the immune microenvironment in PanNENs, identifying a subtype of 

patients with an immune high phenotype and a putative pathway to explain 

this enrichment with therapeutic potential. 
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4.1 Background and Rationale 

 

Despite our improved understanding of the molecular nature of PanNENs, 

novel therapeutic approaches for patients remain elusive. One obvious area 

for exploration is immunotherapy and multiple trials of immune checkpoint 

blockade are underway in various NENs (NCT02923934/NCT03043664/ 

NCT03095274). Interim results from a small number of studies suggest that 

a proportion of PanNEN patients may benefit from such treatments. The 

KEYNOTE 028 study of Pembrolizumab reported a clinical benefit in PD-L1 

positive PanNEN patients (response rate 6%) (NCT02054806) 56 and anti-

tumour activity was observed in PD-L1 unselected PanNEN patients with 

anti-PD-1 drugs JS001 (response rate 29%) (NCT03167853)169 and 

Spartalizumab (response rate 3%) (NCT02955069)170 (Table 4.1).  

 

Notwithstanding these trials, however, little is known about the immune 

landscape of PanNENs. The few studies considering this subject have been 

small and retrospective in nature, considering just one or two biomarkers, 

and as yet no clear subgroup of potentially immunotherapy sensitive 

PanNEN patients has been defined (Table 4.2).  

 

Comprehensive, detailed profiling and analysis is required to enable us to 

optimise and personalise patient selection approaches for immunotherapy, 

to ensure that PanNEN patients are given the best opportunity to respond 

to this treatment and to inform possible rational combination studies in the 

future.  

 

To this end, this chapter focuses on the analysis of immune related gene 

expression in PanNEN patient tumour samples, across our previously 

described PanNETassigner molecular subtypes.  
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Table 4.1 Selected Immunotherapy Trials in PanNENs registered on ClinicalTrials.gov 

NCT Number 
(Phase) 

Population 
(n) 

Treatment Selection Criteria Primary Endpoint Results 

NCT 02834013 
(Phase II) 

Rare Tumours 
(n=707) 

Nivolumab and 
Ipilimumab 

No specific PanNET criteria Overall Response 
Rate 

Ongoing 

NCT 03147404 
(Phase II) 

GEP NEC 
(n=30) 

Avelumab Grade 3 NEC Best Response Ongoing 

NCT 02923934 
(Phase II) 

Rare Tumours 
(n=120) 

Nivolumab and 
Ipilimumab 

No specific PanNET criteria Clinical Benefit Rate Ongoing 

NCT 03095274 
(Phase II) 

GEP and Lung NET 
(n=126) 

Durvalumab and 
Tremelimumab 

Grade 1/2 PanNET Clinical Benefit Rate Ongoing 

NCT 03043664 
(Phase Ib/II) 

GEP NET 
(n=26) 

Pembrolizumab and 
Lanreotide Depot 

Grade 1/2 NET Overall Response 
Rate 

Ongoing 

NCT 03591731 
(Phase II) 

Advanced, Refractory 
Pulmonary or GEP Poorly 
Differentiated (NEC) 
(n=180) 

Nivolumab 
Monotherapy or 
Nivolumab Plus 
Ipilimumab 

Grade 3 NEC Objective Response 
Rate 

Ongoing 

NCT 02939651 
(Phase II) 

Metastatic high-grade 
NET (n=21) 

Pembrolizumab Ki 67> 20% Objective Response 
Rate 

Ongoing 

NCT 03190213 
(Phase II) 

Metastatic/unresectable 
NEC of non-pulmonary 
origin (n=40) 

Pembrolizumab Ki-67 >20% and/or > 20 
mitoses/10 hpf 

Overall Response 
Rate 

Ongoing 

NCT 02054806 
(Phase I) 

Advanced Solid Tumours 
(n=477, 16 PanNET) 

Pembrolizumab PD-L1 +ve  
(≥ 1% modified proportion 
score, IHC QualTek) 

Best Overall Response Ongoing, PanNET 
Interim results171: ORR 
6%, SD 88% 

NCT 03167853 
(Phase Ib) 

Advanced NET 
(n=40, interim results 
n=23, 7 PanNETs) 

JS001 Non-functional 
Ki 67 >10% 
Well/poorly differentiated 

Overall Response 
Rate 

Ongoing, Interim 
results169: ORR 28.6%,  
DCR 47.6% 

NCT 02955069 
(Phase II) 

Advanced or metastatic 
thoracic/GEP NET/NEC 
(n= 116, 33 PanNET) 

Spartalizumab Progressive Well or poorly 
differentiated 
Non-functional PanNET 

Overall Response 
Rate 

PanNET: PR 3%, SD 
54.5%, DCR 57.6% 
GEP NEC:DCR 19%170  
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Table 4.2 Selected Studies of Potential Immune Biomarkers in GEP-NENs 

Immune Biomarker Results 
 

N Ref 

PD-L1 expression and Grade in GEP 
NENs 

PD-L1 expression associated with Grade. PD-L1 expressed in 29% poorly 
differentiated and 0% well differentiated GEP NENs 
 
PD-L1 expression and intensity directly correlated (P<0.001) with Grade 
increase from 1 to 3 

59 (24 PanNEN) 
 
 
57 (10 PanNEN) 

172 
 
 
173 

PD-L1 expression in Metastatic GEP-
NET 

PD-L1 expressed in 22% tumours, associated with Grade 3 disease, PFS 
and OS 

32 (14 PanNET) 174 

PD-1 and PD-L1 expression in Midgut 
NET 

PD-L1 expressed in 69% tumours, associated with a cytotoxic lymph node 
like structure (LLS) formation 

32 175 

PD-1, PD-L1 and PD-L2 expression in 
small bowel NET 

30% expressed PD-L1 in tumour cells/ within TILs, 0% expressed PD-L2 62 176 

PD-L1 expression in small cell NEC 
(pulmonary and extrapulmonary) 

PD-L1 expression was not present in tumour cells but was present in 
tumour infiltrating macrophages (18.5%) and correlated with TILs 

94 (33 extra-
pulmonary) 

177 

Neutrophil/Lymphocyte ratio (peripheral 
blood) in resectable PanNETs 

Pre-operative NLR independent prognostic factor for LN metastasis and 
Relapse Free Survival 

95 178 

T Cell Infiltrate in G1-G3 GEP NENs PD-L1 expression only seen in Stage IV disease and in patients with Ki-67 
>20% 

52 179 

FOXP3 + Regulatory T Cell in 
PanNETs 

FOXP3+ Regulatory T Cell expression associated with reduced OS 101 180 

T Cell Infiltrate in resectable 
intermediate grade NETs 

Robust T cell infiltrate associated with improved RFS after resection 
Increased Regulatory T Cells associated with reduced survival after liver 
metastasis resection  

87 NETs 
39 NETs with 
liver mets 

181 

Tumour Mutational Burden (TMB) 4.2% high TMB, mean TMB 5.8 mutations/MB 
Mean TMB 0.82 mutations/MB 

75 
98 

182 
29 

Microsatellite Instability (MSI) PanNET did not demonstrate MSI-H status  
33% of sporadic insulinomas MSI-High  
0% mismatch repair deficiency in unselected PanNET cases 

75 
55 
35 

182 
183 
184 
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4.2 Methods 

4.2.1 PanNEN Patient Samples 

 

Figure 4.1 details the PanNEN samples included in this chapter and the 

analyses completed. 

 

Preliminary work in NanoString cohort (n=48) 

Immune gene profiling using the NanoString PanCancer Immune Profiling 

assay was carried out on a cohort of PanNEN tumour samples from the 

PanNEN registry, established as described in Chapter 2 (PaNACeA study, 

REC reference 16/LO/0984, CCR 4476, IRAS project ID 194534).  

 

Microarray Training cohort (n=72) 

PanNEN microarray gene expression data from work previously conducted 

by our lab was used as a training cohort. The gene expression data was 

originally from Missiaglia and colleagues, Verona (GEO Omnibus ID 

GSE73338; ref 34), and had been used by our lab previously in the original 

development of the PanNETassigner molecular subtypes51,80. Gene 

expression in this cohort was assessed using an 18.5 K Human oligo-

microarray from the Ohio State University Cancer Centre and analysed 

using R and Bioconductor as described132,133,134. PanNETassigner 

molecular subtypes had already been assigned as previously described51.  

 

Validation cohorts 

Berlin cohort (n=26) 

PanNEN microarray gene expression data from work previously conducted 

by our lab was used as a validation cohort. The gene expression data was 

from Wiedenmann and colleagues, Berlin, and had been used by our lab 

previously in the original development of the PanNETassigner molecular 

subtypes51. Gene expression was assessed using Affymetrix GeneChip 

Human array and analysed using R and Bioconductor with 

PanNETassigner subtypes already assigned as previously described51. 
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RNAseq cohort (n=120) 

The second validation cohort consisted of samples from the Verona cohort 

in the PanNEN registry. All 48 of the NanoString cohort samples 

overlapped with this cohort and 10 samples overlapped between the 

NanoString, Microarray and RNAseq cohorts. 

 

Mismatch Repair (MMR) cohort (n=24) 

MMR was assessed in a cohort of PanNEN tumour samples from the RM 

cohort, again within the PanNEN registry. 

 

Multiplex IHC cohort (n=30) 

Multiplex IHC was conducted on a cohort including 8 FFPE samples from 

the Microarray cohort and an additional 22 FFPE samples from the RNAseq 

cohort. 
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Figure 4.1 Overview of PanNEN Samples and Analyses Conducted 
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4.2.2 Wet Lab Techniques 

Standard nCounter Chemistry Process 

The PanCancer Immune Profiling assay was ordered from NanoString 

Technologies. Hybridisation reactions were performed according to the 

nCounter® XT Assay Manual (Version 11, July 2016). The nCounter Prep 

Station, nCounter Digital Analyser and nSolverTM v3.0 analysis steps were 

carried out as previously described in Chapter 3. 

 

RNA sequencing (RNAseq) 

In the RNAseq cohort, gene expression was assessed by RNAseq as 

previously described138. RNAseq was carried out by Eurofins Genomics 

(n=13) and at the Mayo Clinic Core Facility, Rochester (n=161). 120/174 

samples sequenced were analysed here. RNA was diluted (200ng/20uL) 

and quantity and quality assessed using Qubit® Fluorometer and Agilent 

RNA 6000 Bioanalyzer. A column based DNA extraction method was used 

before RNAseq libraries were prepared using PolyA selection and RNA 

library prep using NEBNext-Ultra RNA Directional kit to produce Illumina 

compatible libraries. The libraries were sequenced using a HighSeq2500 

with Paired-Ends 2x100. Targeted depth was 50 million reads/sample. 

 

Multiplex IHC 

Multiplex IHC was carried out in the Melcher Laboratory at the ICR, using 

the OpalTM 7 Solid Tumour Immunology Kit to detect 3 lymphocyte markers 

(CD8, CD20 and FOXP3), a macrophage marker (CD68), PanCK and DAPI 

in FFPE tissue slides. Slides were prepared according to the OpalTM 7 Solid 

Tumour Immunology manual (Version 3). The Vectra® fluorescent 

multispectral imaging system was used to analyse the 6 fluorophores in 

situ.  

 

Mismatch Repair (MMR) analysis 

Expression of MMR proteins was evaluated by IHC according to UK 

NEQAS guidelines. Tumours were dichotomised into MMR positive or 

negative. Tumours showing nuclear staining in the presence of satisfactory 
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internal controls, i.e. leucocytes, were interpreted as having preserved 

MMR expression. Tumours with an absence of nuclear staining in the 

presence of satisfactory internal controls were considered MMR negative.  

 

PanNETassigner Subtype Allocation 

To enable the assessment of immune related gene expression, multiplex 

IHC and MMR to be analysed according to PanNETassigner subtype, 

samples were subtyped, using PAM centroids and Pearson correlation, as 

outlined in Chapter 3, where possible. 

 

4.2.3 Bioinformatics Techniques 

nCounter Advanced Analysis 

Analyses were carried out using the nCounter Advanced Analysis Plugin, 

including immune cell type profiling and immune pathway scoring, 

according to the nCounter Advanced Analysis Plugin for nSolver Software 

User Manual (MAN-10030-01 August 2016). Statistically significant 

differences between immune cell types profiled were assessed using 

Student TTest and corrected for multiple testing using Benjamini-Hochberg 

correction with a False Discovery Rate (FDR) of <0.05. 

Significance Analysis of Microarrays (SAM) 

Significance Analysis of Microarrays (SAM) was used to identify 

differentially expressed immune related genes from a panel of 600 immune 

related genes as previously described51,185,132,186,187. The 600 genes had 

been selected to match the commercial nCounter® PanCancer Immune 

Profiling Panel of 730 genes used in the preliminary NanoString cohort. 

600/730 genes were included in the microarray gene set.
 The statistical 

parameters applied to select the differentially expressed genes were false 

calls <1 and a FDR <0.05. This technique was used to identify differentially 

expressed immune genes according to various clinical parameters and 

PanNETassigner subtype in the Microarray cohort.  
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SAM was also used in the Berlin and RNAseq validation cohorts to analyse 

the differential expression of the 132 differentially expressed immune 

genes, selected using the SAM analysis of the Microarray cohort, again 

using a FDR of <0.05. 

 

Shannon Entropy Plots of Diversity versus Specialisation 

Using the immune related gene expression data from the Microarray cohort 

a Shannon Entropy analysis was conducted, measuring the diversity of 

gene expression and the specialization of gene expression, or average 

gene specificity, for each PanNETassigner subtype as previously 

described188,189. Here the entropy of diversity and specificity were 

normalised between 0 and 1 as recommended in the R based bioconductor 

package BioQC. 

 

Fantom5 CAGE Gene Set Analysis 

To analyse the expression of genes associated with various cell types 

across the innate and adaptive immune systems, a set of transcriptomic cell 

type markers was chosen, based on the work of Rooney and colleagues 

according to analysis of Fantom5 CAGE data190,191. Gene expression was 

analysed according to both PanNETassigner subtype and these immune 

cell type gene sets in the Microarray cohort. Of the 107 genes making up 

the transcriptomic cell type markers, 80 were represented in the microarray 

data. With a FDR of 0.2, 50/80 (62.5%) were statistically significantly 

differentially expressed across the PanNETassigner subtypes.  

 

Molecular Signatures Database (MSigDB) 

The Molecular Signatures Database (MSigDB) website (v6.3) was used to 

analyse overlaps between the 132 differentially expressed genes across 

the PanNETassigner subtypes and the Immunologic C7 MSigDB gene sets. 

 

GSEA and ssGSEA  

GSEA is a computational method that determines whether a particular gene 

set shows statistically significant differences in expression across a 

collection of samples within a particular dataset, according to their 
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phenotype192. A standalone GSEA package from GenePattern was used to 

analyse overlaps between differentially expressed genes across the 

PanNETassigner subtypes and the Immunologic C7 MSigDB gene sets.  

 

ssGSEA calculates a separate enrichment score for each and every sample 

and gene set, independent of the sample’s phenotype. This provides a 

gene set enrichment profile for every sample as previously described193. 

ssGSEA was used on the Microarray cohort gene expression data to 

validate observations regarding immune related gene expression across 

the PanNETassigner subtypes. This analysis was repeated in the validation 

cohorts. Gene expression according to hypoxia (Hypoxia Hallmarks 

msigdb.gmt) and necroptosis (Necropototic Process msigdb.gmt) gene sets 

was also assessed. This analysis was conducted using the 

ssGSEAProjection R package downloaded from GenePattern. 

 

CIBERSORT 

CIBERSORT, an analytical tool developed by Newman et al. using a gene 

expression based deconvolution algorithm, was used to provide an 

estimation of the abundances of immune cell types194. CIBERSORT uses a 

signature matrix of 547 immune related genes to derive relative proportions 

of 22 types of immune cells. CIBERSORT was used to analyse the 

Microarray cohort gene expression data to validate our observations 

regarding immune related gene expression across the PanNETassigner 

subtypes. Of the 547 immune cell related genes, 441 were represented in 

the microarray data. CIBERSORT uses Monte Carlo sampling to derive a p-

value for every sample. Cases with a FDR of <0.2 were considered.  

 

RNAseq Analyses 

The fastq results file was analysed for QC, mapping quality to the 

transcriptome (Q30) and genome and for intragenic RNA species. PCA was 

performed to identify outliers before further analysis. For downstream 

analyses, sequencing reads were mapped to transcripts using the RSEM 

(v1.2.29) software program195, normalised, converted to counts per million, 

log2 transformed and median centred. Samples were allocated 
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PanNETassinger subtypes using a consensus clustering-based NMF R 

package as described in Chapter 3, based on a panel of genes selected 

from our initial Cancer Discovery paper51.  

4.2.4 Overview of my role 

 

Concept  

Having worked with NanoString assays in the development of the 

PanNETassigner assay, I proposed that our lab assess immune related 

gene expression in a cohort of PanNEN samples using the NanoString 

PanCancer Immune Profiling assay. The results of this initial preliminary 

experiment led to this chapter. I also suggested that multiplex IHC analyses 

be included in the project. 

 

PanNET patient samples and Clinical Data 

The tumour samples for the NanoString, RNAseq and MMR cohorts 

analysed here are from the PanNEN registry. My role in the set-up and 

management of this registry is described in detail in Chapter 2. The 

expression data for the Microarray and Berlin cohorts was already available 

from an earlier project within the Sadanandam lab. 

 

Wet Lab Work 

With the support of Chanthirika Ragulan (Higher Scientific Officer), I carried 

out the following lab work: 

• All NanoString work, as previously described in Chapter 3 

• Sourced quotes for RNAseq work and prepared samples for RNAseq 

(including appropriate RNA dilutions and quality control) 

• Visited ICR core facility to observe and understand the RNAseq 

workflow  

• Arranged for appropriate slides to be cut for mIHC work and assisted 

David Mansfield (Higher Scientific Officer) in performing the assays 
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• Arranged for appropriate slides to be cut and stained for MMR 

analysis, completed by Daniel Nava Rodrigues (Research Fellow in 

Histopathology) 

 

Bioinformatics Work 

With the support of Gift Nyamundanda, Kate Eason, Yatish Patil and 

Anguraj Sadanandam (Bioinformaticians), I carried out the following 

bioinformatics work: 

 

• NSolver and nCounter Advanced analyses for NanoString data, 

including all quality control assessments, as previously described in 

Chapter 3 (validated by Chanthirika Ragulan) 

• MSigDB work (validated by Yatish Patil) 

• CIBERSORT work (validated by Yatish Patil and Anguraj 

Sadanandam) 

• Liaised with the bioinfomaticians to advise regarding selection of 

gene sets for analysis (e.g. expanded immune signature analysis/ 

genes of interest as targets for immunotherapy etc.) 

• Interpreted the results for GSEA/ssGSEA/RNAseq analysis with 

bioinformaticians 

• Analysed mIHC data to establish which proteins had significantly 

different expression levels across the PanNETassigner subtypes 

• Generated figures in Adobe Illustrator and PowerPoint 

 

The remainder of the bioinformatics work was carried out by Yatish Patil 

and validated by Anguraj Sadanandam. 
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Communication of Results 

I have communicated data from this chapter as follows: 

 

• I wrote the abstract, based on our preliminary NanoString data, 

selected for oral presentation at ESMO 2017 and presented at the 

conference. I was awarded an ESMO Travel Grant for the proffered 

oral paper. 

• I have presented this project at the BRC GI Cancer PPI meeting as a 

mini-oral and poster. (Immune Landscape of Pancreatic 

Neuroendocrine Tumours, London 2018). 

• I have written and prepared the manuscript (including figures/tables) 

for submission based on the remainder of the data, with support from 

the co-authors. 
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4.3 Results 

4.3.1 Preliminary Work: NanoString Immune Profiling Assay reveals 

differential immune gene expression across PanNETassigner 

subtypes (n=48) 

NanoString’s Immune Profiling Assay was performed on 48 PanNEN 

samples (including 3 matched normal samples) and gene expression data 

was analysed according to PanNETassigner subtype. This initial analysis 

combined MLP-1 and MLP-2 samples into 1 MLP subtype, due to the small 

number of samples. The analysis focused on the 2 non-functional subtypes, 

MLP and Intermediate, as it was felt that there was more of an unmet need 

for novel therapies in these patients (n=32). 

 

308 immune-related genes were found to be differentially expressed 

between the MLP and Intermediate subtypes. 28/30 of the most 

differentially expressed genes had a higher expression in MLP vs. 

Intermediate (Figure 4.2).  

 

Figure 4.2 Heatmap to demonstrate enrichment of the MLP Subtype 
for Immune Related Gene Expression 

 (n=48, 28/30 most differentially expressed genes shown) 

 

 

Gene signatures thought to predict outcomes with checkpoint blockade, 

such as the expanded immune signature, were assessed and 
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demonstrated enrichment in the MLP vs. the Intermediate subtype (Figure 

4.3). The expanded immune signature assessed here is based on the 

“preliminary expanded immune signature” of 28 genes defined by Ribas et 

al196. Expression data for 25/28 genes was available in the NanoString 

panel.  

Figure 4.3 Heatmap to demonstrate the enrichment of the Preliminary 
Expanded Immune Signature in the MLP vs. the Intermediate Subtype 
(n=32) 

 

 

 

4.3.2 Preliminary work: NanoString analyses reveal MLP subtype has 

a high Immune Cell Abundance and is enriched for multiple 

immune pathways 

Immune cell abundance was assessed in the MLP and Intermediate 

subtypes using the NSolver analysis program as described in methods. 

Immune cell abundance was statistically significantly higher in the MLP vs. 

Intermediate samples across multiple cell types (Figure 4.4). These 

changes were found to translate into higher immune pathway scores, also 

assessed by NSolver and based on immune gene expression (Figure 4.5).  
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Figure 4.4 Box Plots to demonstrate enriched Immune Cell Abundance 
across multiple cell types in the MLP vs. Intermediate Subtype 

 

 

*p values calculated using Student TTest applied to MLP and Intermediate 

subtype data and corrected for multiple testing using Benjamini and Hochberg 

Figure 4.5 NSolver Immune Pathway Scores increased in MLP subtype 
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These preliminary observations in the NanoString cohort led to the 

analyses described below being undertaken, to establish if other clinical 

parameters were linked to immune gene expression, to confirm whether the 

MLP subtype did indeed have an immune high phenotype, to establish 

possible causes for this and to consider potential therapeutic opportunities. 

 

4.3.3 Immune related gene expression is not dependent upon grade 

of disease, liver metastases or genetic mutations  

The expression of immune related genes was analysed according to clinical 

parameters of prognostic significance in PanNETs, specifically being grade 

of disease, the presence or absence of liver metastases and the presence 

or absence of key genetic mutations (specifically MEN1, DAXX/ATRX and 

mTOR pathway)28,29,46,197. Associations with tumour grade were of 

particular interest as a number of on-going immunotherapy studies have 

restricted PanNET patient inclusion to grade 3 patients (NCT03591731, 

NCT02939651, NCT03190213).  

 

To establish the distribution of immune related genes within these groups, 

data from the Microarray training cohort (n=72) was analysed using SAM 

and a panel of 600 immune related genes, as outlined in methods. The 

characteristics of this cohort are summarised in Table 4.3.  
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Table 4.3 Summary characteristics for Microarray Cohort 

 
PanNETassigner 
subtypes 

No. 
Samples 
(%) 

Material used in 
expression profiling  

Liver 
Metastases 

WHO Grade 

Insulinoma-like  16 (22%) All primary tumours  0/16 (0%) G1 13/16 (81%) 
G2 3/16 (19%)  

Intermediate  25 (35%) Primary 24/25 (96%)       
LN met 1/25 (4%)  

5/25 (20%) G1 18/24 (75%) 
G2 6/24 (25%)  

MLP-1       20 (28%) Primary 19/20 (95%)          
LN Met 1/20 (5%)  

9/19 (47%) G1 4/19 (21%) 
G2 11/19 (58%) 
G3 4/19 (21%)  

MLP-2      11 (15%) Primary 6/11 (55%)      
Met 5/11 (45%)  

9/11 (82%) G1 2/6 (33%)    
G2 4/6 (67%)  

All Samples 72 65 (90%) Primary               
7 (10%) Metastases 

23/71 (32%)  G1 37/65 (57%) 
G2 24/65 (37%) 
G3 4/65 (6%)  

 
To our surprise, only 12 genes (2% of 600 immune gene panel) were found 

to be differentially expressed according to grade of disease (Figure 4.6A). 

Even these 12 genes were not specific to a particular grade; a subset of 

grade 2 tumours sharing gene expression with grade 1 or 3 tumours. This 

suggests that, in itself, grade of disease is not a useful way to sub-divide 

patients when considering immune related gene expression.  

 

When the data was assessed according to the presence or absence of liver 

metastases, 7 genes (1.2% of the 600 immune gene panel) were 

differentially expressed (Figure 4.6 B). 6 (1%) were differentially expressed 

according to MEN1 mutations, 9 (1.5%) according to DAXX/ATRX 

mutations, and 3 (0.5%) according to mTOR pathway gene mutations 

(Figures 4.6 C, D and E). Therefore, as was the case with grade, liver 

metastases and genetic mutations do not provide a useful way to subgroup 

patients when considering immune related gene expression. This data 

suggests that our current methods of prognostication for PanNET patients 

do not provide a tool for differentiating patients according to immune related 

gene expression.  
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Figure 4.6 Immune Related Gene Expression According to Clinical 
Parameters of Importance and PanNETassigner Subtype 

 
Subtypes (Top Bar) 

 

SAM analysis of Microarray cohort (n=72) to determine the differential expression 

of immune related genes according to both clinical parameters and 

PanNETassigner subtypes, to establish which provided the dominant phenotype. 

In heatmaps A-E each column represents 1 of 72 patient samples and each row 

represents a differentially expressed gene. In the rainbow bar below the heatmap, 

red indicates elevated expression, blue decreased, and white no change. (Genes 

selected using SAM, FDR<0.05 and False Calls<1). Each sample’s 

PanNETassigner subtype is also highlighted in top bar.  
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A Heat map of 12 differentially expressed immune related genes according to 

grade (1, 2 or 3). B Heat map of 7 differentially expressed immune related genes 

according to the presence or absence of liver metastases. C Heat map of 6 

differentially expressed immune related genes according to MEN1 pathway 

mutations. D Heat map of 9 differentially expressed immune related genes 

according to DAXX/ATRX pathway mutations. E Heat map of 3 differentially 

expressed immune related genes according to mTOR pathway mutations.  

 

4.3.4 Differential expression of immune related genes according to 

PanNETassigner subtype 

Based on our preliminary NanoString work, we hypothesized that immune 

related gene expression may vary according to the PanNETassigner 

subtype. Indeed, the small numbers of genes differentially expressed 

according to grade, metastases or mutational status further segregated 

according to our previously published 4 PanNETassigner subtypes; 

Insulinoma-like, Intermediate, MLP-1 and MLP-2 (Figure 4.6 A-E).  

 

We next considered the PanNETassigner subtypes alone. Here 132 genes 

(22% of 600 immune related genes) were found to be statistically 

significantly differentially expressed between the 4 subtypes (Figure 4.7A 

and Supplementary Table 4.1). Of these 132 immune genes, MLP-1 was 

highly enriched for 74 (56%) genes, followed by MLP-2 with 25 (19%) and 

Intermediate 21 (16%) genes. Insulinoma-like samples appear to be 

immune-low, with only 12 (9%) enriched genes (Figure 4.7B).  

 

These findings were validated using the Berlin (n=29) and RNAseq (n=120) 

validation cohorts. In the previous SAM analysis, 132 immune genes were 

differentially expressed in the Microarray cohort. SAM analyses were 

repeated to establish which of these 132 genes were differentially 

expressed according to PanNETassigner subtype in the validation cohorts. 

In the Berlin cohort, data for 129/132 of the genes was available and for 

132/132 in the RNAseq cohort data. In the Berlin cohort 128/129 of the 

genes were differentially expressed across the PanNETassigner subtypes 

and 131/132 of the genes in the RNAseq cohort. Overall, 127/132 of the 

immune genes were common between all three cohorts demonstrating the 
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robustness of these genes in discriminating the immune landscape in 

PanNEN subtypes (Figure 4.7C). In both validation cohorts the MLP-1 

subtype was enriched for immune related gene expression (Figures 4.7D 

and 4.7E).  

 

Overall, these analyses show that the PanNETassigner MLP-1 subtype 

defines a group of patients enriched for immune related gene expression 

more successfully than clinical parameters of importance in PanNETs, 

including grade. 
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Figure 4.7 PanNETassigner Subtypes and Immune Related Gene 
Expression 

 

 
 

A SAM analysis of Microarray cohort (n=72) determined 132 differentially 

expressed immune related genes according to PanNETassigner subtype alone. 

Each column represents one of 72 patient samples and each row represents a 

differentially expressed gene. In the rainbow bar below the heatmap red indicates 

elevated expression, blue decreased, and white no change. (FDR<0.05 and False 

Calls<1). B Pie chart demonstrating the proportions of differentially expressed 

immune related genes in each PanNETassigner subtype. 74 (56%) had the 
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highest level of expression in MLP-1, 25 (19%) in MLP-2, 21 (16%) in Intermediate 

and 12 (9%) in Insulinoma-like. C Vendiagram to demonstrate the overlap 

between the differentially expressed immune related genes according to 

PanNETassigner subtype in the Microarray cohort with the 2 validation cohorts 

(Berlin and RNAseq cohorts). Of the 132 differentially expressed immune related 

genes in the Microarray cohort, 127 were also differentially expressed in both 

validation cohorts (FDR 0.5). D HeatMap of differentially expressed immune 

related genes in the Berlin cohort which overlap with the 132 differentially 

expressed immune related genes in the Microarray cohort. E HeatMap of 

differentially expressed immune related genes in the RNAseq cohort which overlap 

with the 132 differentially expressed immune related genes in the Microarray 

cohort. Heatmap details as before. 

 

4.3.5 MLP-1 subtype demonstrates a highly diverse pattern of 

immune gene expression 

Having noted that the MLP-1 subtype is enriched for immune related gene 

expression, we considered the pattern of this enrichment. A Shannon 

Entropy analysis was conducted to measure the diversity and specialisation 

of immune related gene expression across the PanNETassigner subtypes 

(Figure 4.8A). Typically, a highly diverse cancer type will not be specialised 

and vice versa. This analysis revealed that the MLP-1 subtype had the 

highest diversity of immune related gene expression with the second lowest 

specialisation. The MLP-2 subtype had the second highest diversity but 

was the most specialised. Both the Insulinoma-like and Intermediate 

subtypes demonstrated low diversity of immune related gene expression 

but the Insulinoma-like subtype had the second highest specificity whereas 

the Intermediate subtype had the lowest specificity.  

 

To establish if the high diversity and low specialisation seen in the MLP-1 

subtype translated into an increase in immune pathway and network 

activity, gene expression within the Microarray cohort tumour samples was 

analysed against the Immunologic C7 Molecular Signatures Database 

(MSigDB) gene set using the GSEA/MSigDB website (v6.3) as 

described198. Whilst each of the subtypes except Insulinoma-like 

demonstrated some enrichment for a number of the Immunologic C7 gene 

sets, this positive enrichment was markedly higher in the MLP-1 and MLP-2 

subtypes versus the others (Figure 4.8 B-E). Interestingly, while MLP-1 
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showed only positive enrichment of the gene sets, MLP-2 showed both 

positive and negative enrichments. This could be because MLP-2 is highly 

diverse (positive enrichment) but specialised (negative enrichment) as 

shown by the Shannon index. Overall, MLP-1 demonstrates highly diverse 

immune gene expression with enrichment of multiple immune pathways.  

 

Figure 4.8 High Diversity of Immune Gene Expression in MLP-1 
Subtype 

 
 
A Shannon Entropy plot, measuring the diversity of gene expression and the 

specialisation of gene expression in each PanNETassigner molecular subtype. 

The MLP-1 subtype had the highest diversity of immune related gene expression 

with the second lowest specialisation. B-E GSEA analysis of gene expression 

within the Microarray cohort against the Immunologic C7 MSigDB gene set, 

according to PanNETassigner subtype. Positive enrichment was markedly higher 

in the MLP-1 subtype versus the other subtypes, suggesting a greater enrichment 

for immune related gene sets 

4.3.6 MLP-1 Subtype is enriched for Hypoxia and Necroptosis genes  

We next considered potential causes for the MLP-1 subtype’s immune 

reaction. In our initial description of MLP-1, and in Scarpa et al.’s 

subsequent analysis, it was noted to be less vascularised than other 

subtypes and enriched for genes associated with hypoxia and HIF 

signalling51,29. We therefore considered whether a propensity for hypoxia 

could result in increased stimulation of the immune system resulting in 

MLP-1’s immune enriched phenotype.  
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Using expression data from the Microarray cohort, MLP-1 was confirmed to 

be associated with a high hypoxia score versus the other subtypes (Figure 

4.9A). Further, a large proportion of MLP-1 patients were found to have a 

high hypoxia score (Figure 4.9B), associated with a reduction in OS, 

suggesting that hypoxia may be a driving feature here (Figure 4.9C). This 

increase in hypoxia fits with the observation that MLP-1 tumours tend to be 

larger than tumours of other subtypes (Figure 4.9D), as larger tumours are 

more prone to hypoxia199. 

 

Hypoxia ultimately results in cell death in a variety of ways. Necroptosis is a 

form of programmed cell death associated both with such cellular metabolic 

stress and with promoting immune and inflammatory responses200,201,202. 

We found that the MLP-1 subtype was associated with a high necroptosis 

score and that high score was associated with both a reduction in survival 

and was correlated with a high hypoxia score, especially in MLP-1 (Figures 

4.9E-H). These results provide a possible link to explain why the hypoxic 

MLP-1 subtype may have an inflamed phenotype. 



 
142 

 

Figure 4.9 Enrichment of MLP-1 Subtype for Hypoxia and Necroptosis 
Genes 

 
 

A Boxplot of ssGSEA Hypoxia Gene Set Score across the PanNETassigner 

subtypes with a significantly increased score in the MLP-1 subtype (p<0.01 for a 

difference across all 4 subtypes). B Pie chart showing the proportion of MLP-1 

samples with a high (89%) or low (11%) ssGSEA hypoxia score. C Kaplan Meier 

survival plot according to hypoxia score, demonstrating that patients with a high 



 
143 

 

hypoxia score have reduced survival vs. those patients with a low hypoxia score 

(p<0.01). D Box Plot of Tumour size according to PanNETassigner subtype 

demonstrating that the MLP-1 subtype is enriched for larger tumours (p<0.07 for a 

difference across all 4 subtypes). E Boxplot of ssGSEA necroptosis gene set score 

across the PanNETassigner subtypes with a significantly increased score in the 

MLP-1 subtype (p<0.01 for a difference across all 4 subtypes). F Pie chart 

showing proportion of MLP-1 samples with a high (78%) or low (22%) necroptosis 

score. G Kaplan Meier survival plot according to necroptosis score, demonstrating 

that patients with a high necroptosis score have reduced survival vs. those 

patients with a low necroptosis score (p=0.1). H Scatter plot of correlation between 

the hypoxia score and necroptosis score across the PanNETassigner subtypes 
 

4.3.7 MLP-1 is enriched for genes associated with the DAMP 

pathway, Toll-Like Receptors and Dendritic Cells 

Necroptosis results in an inflammatory phenotype through the release of 

DAMPs, which in turn elicit immune responses203,204,205,206. We therefore 

analysed the expression of 14 key DAMP genes in the Microarray cohort. 

The expression of 12/14 of the genes was significantly enriched in the MLP-

1 subtype (Figures 4.10A and B). In the MLP-1 samples, the expression of 

11 of these 12 genes was positively correlated with the necroptosis score 

(Figure 4.10C). Only Toll Like Receptor Adaptor Molecule 1’s (TICAM1 or 

TRIF) expression was negatively correlated. TICAM1 forms part of the toll-

like receptor (TLR) signalling cascade, although possibly plays a more 

critical role in the pathogen associated molecular pattern (PAMP) pathway 

than the DAMP pathway204. 

 

Toll Like Receptor 3 (TLR3) was the DAMP pathway gene most 

significantly enriched in MLP-1 (FDR=5.11E-05). High TLR3 expression 

was associated with a reduction in OS in the Microarray cohort, with over 

80% of the MLP-1 subtype having such high expression (Figures 4.10D and 

E). Expression of this receptor is seen in myeloid cells including dendritic 

cells (DCs), which are antigen presenting cells (APCs) and play a key role 

in activating the T cell-based adaptive immune system207,208,209. The MLP-1 

subtype was found to be enriched for the expression of genes linked to 

dendritic cells (Figure 4.10F). These observations provide a putative 

pathway to explain how the hypoxic MLP-1 tumour cells trigger the DAMP 
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pathway, resulting in the increased transcription of multiple genes involved 

in immune responses (Figure 4.10G). 

4.3.8 MLP-1 Subtype is enriched for genes associated with multiple 

aspects of the immune response 

We next considered specific immune related genes highly expressed in 

MLP-1. We investigated the functions of the 74 SAM-determined 

differentially expressed genes with the highest expression in the MLP-1 

subtype. Approximately 20 genes code for proteins which play a major role 

in T cell functioning and immune checkpoints (including CD274/PD-L1, 

PDCD1LG2/PD-L2 and LAG3) and interferon signalling/the Stimulator of 

Interferon Genes (STING) pathway (IFIT2, IFNAR1, IL18, IFI16, ISG15 and 

SPP1). Others code for proteins which are important in macrophage and 

DC functioning (CCRL2, TREM1/2, ANXA1, MSR1 and numerous TLRs) 

and antigen processing and presentation (PSMB9, PSMB10, PSMB8, 

CTSS and HLA-DPA1) (Figure 4.10H).  

 

We formally assessed these observations using GSEA to analyse overlaps 

between the set of 132 differentially expressed genes with increased 

expression in the MLP-1 subtype and the Immunologic C7 MSigDB gene 

sets. All 30 gene sets with FDR q<0.01 were involved in T cell functioning, 

myeloid cell functioning or interferon signalling (Supplementary Table 4.2). 
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Figure 4.10 Enrichment of the MLP-1 pathway for DAMP pathway 
genes 
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A Node plot of 12/14 key DAMP pathway genes significantly enriched in the MLP-

1 subtype. Expression of TRL3, TLR7 and CASP1 are most significantly enriched. 

B Heatmap of the 12 DAMP pathway genes, demonstrating enrichment in the 

MLP-1 subtype. In the rainbow bar below the heatmap red indicates elevated 

expression, blue decreased, and white no change. C Bar plot of DAMP pathway 

genes and their correlation with necroptosis score in the MLP-1 samples 

demonstrating a positive correlation in all but 1 gene (TICAM1). D Kaplan Meier 

survival plot according to TLR3 expression, demonstrating that patients with high 

TLR3 expression have reduced survival vs. patients with low TLR3 expression 

(p<0.04). E Pie chart showing proportion of MLP-1 samples with high (83%) or low 

(17%) TLR3 expression. F Boxplot of ssGSEA DC gene set score across the 

PanNETassigner subtypes with a significantly increased score in the MLP-1 

subtype (p<0.01 for a difference across all 4 subtypes). G Schematic to 

demonstrate the potential significance of DAMP gene enrichment in the MLP-1 

samples at a cellular level, with enriched genes highlighted in red. H Heat map to 

demonstrate enrichment of the MLP-1 subtype for genes associated with T Cell 

functioning, the STING pathway, macrophage and DC functioning and antigen 

processing and presentation 

 

4.3.9 MLP-1 Subtype is enriched for the genes of multiple immune 

cell types 

Having observed the above patterns of immune related gene expression in 

the MLP-1 subtype, we specifically investigated gene expression related to 

selected immune cell types. We chose a set of transcriptomic markers for 

genes associated with specific immune cell types, based on the work of 

Rooney and colleagues according to analysis of Fantom5 CAGE data190,191. 

Gene expression was analysed according to the Rooney et al. immune cell 

type gene sets, across the PanNETassigner subtypes using ssGSEA and 

the Microarray cohort.  

 

82% of the 80 genes from Rooney et al., were highly expressed in the MLP-

1 subtype. 14 genes had significantly (FDR<0.05) increased expression in 

the MLP-1 subtype versus the other PanNETassigner subtypes, with a fold 

change of ≥1.5 (Figure 4.11A). Just 1 of the transcriptomic cell type genes, 

FUCA1, had a significantly decreased expression in MLP-1 versus the 

other subtypes. FUCA1, a target of p53, encodes a protein involved in the 

degradation of fucose-containing glycoproteins and glycolipids. Reduced 

expression, as in the MLP-1 subtype, has been associated with poor 

prognosis in a number of cancers210. 
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The pattern of increased expression in the MLP-1 subtype was observed 

across both myeloid cell specific and lymphoid cell specific genes. As 

predicted by the observations of gene functions (Figure 4.10H) and 

enrichment for components of the DAMP pathway (Figure 4.10A), here the 

MLP-1 subtype expressed genes associated with macrophages and 

neutrophils, cells involved in both T cell stimulation and inhibition and APC 

stimulation and inhibition, Major Histocompatibility Complex (MHC) Class I, 

a type I Interferon response and cytolytic activity (Figure 4.11B).  

 

ssGSEA analyses were completed to confirm the statistical significance of 

the enrichment of immune cell types across the PanNETassigner subtypes. 

MLP-1 was enriched for co-inhibition of T cells, MHC Class I and 

macrophages (Figures 4.11C-E) along with the other cell types in Figure 

4.11F, confirming the earlier findings.  
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Figure 4.11 Enrichment of the MLP-1 Subtype for genes associated 
with multiple immune cell types 

 
A Volcano Plot to demonstrate differentially expressed immune genes within 

Rooney et al gene set in MLP-1. For fold change >1.5 and adjusted p <0.05, 14 

genes had significantly increased expression in MLP-1 versus the other 

PanNETassigner subtypes and 1 had significantly reduced expression. B Heat 

map of 14 Rooney et al genes with a fold change >1.5 and significantly increased 

expression, including 4 genes with a fold change > 2 (*). Immune cell types 

associated with the specific genes highlighted. In the rainbow bar below heatmap 

red indicates elevated expression, blue decreased, and white no change. C-E 

Boxplots of ssGSEA score across PanNETassigner subtypes with increased score 

in MLP-1. Using FDR <0.01, in MLP-1 there was a statistically significant increase 

in gene expression associated with co-inhibition of T cells, MHC Class I cells and 

macrophages. F Correlation plot for mean ssGSEA scores for MLP-1 cell types. G 

and H Boxplots of CIBERSORT proportions across PanNETassigner subtypes 
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with an increased score in MLP-1. Using FDR of <0.05, M1 macrophages 

demonstrated an increased abundance on CIBERSORT analysis in MLP-1 versus 

the other PanNETassigner subtypes, whereas M2 macrophages demonstrated a 

reduced abundance. I and J Heatmaps to demonstrate gene expression 

associated with M1 and M2 macrophages across PanNETassigner subtypes 

 

4.3.10 MLP-1 tumours display elements of both immune stimulation 

and immunosuppression 

 

We considered how the different immune cell types correlated with each 

other in the MLP-1 subtype and how such correlation could lead to immune 

activation or immunosuppression. Based on the positive correlation of 

ssGSEA scores between immune cell types (Figure 4.11F), our data 

suggests the presence of immune activation through APC (plasmacytoid 

dendritic cells; pDCs) induced T-cell co-stimulation and cytolytic activity, 

potentially through MHC class-I molecule expression by MLP-1 tumour cells 

(there is a high positive correlation between cytoloytic activity and MHC 

class-I). 

 

There was also a high positive correlation of ssGSEA scores between 

macrophages and the co-stimulation of T Cells in MLP-1 subtype (Figure 

4.11F). Furthermore, there was an increase in the abundance of M1 

macrophages (anti-tumorigenic) in the MLP-1 subtype and a reduction in 

M2 macrophages (pro-tumorigenic) by two different analyses (Figure 4.11 

G-J). These analyses suggest the co-stimulation of T cells through M1 

macrophages in the MLP-1 subtype. 

 

On the other hand, cytolytic activity was highly correlated with the co-

inhibition of T cells, suggesting a potential feedback mechanism leading to 

reduced adaptive T cell mediated immune-stimulation, which has been 

reported in other tumour types. This is further substantiated by the negative 

correlation between the co-inhibition of T cells and MHC class-I and 

between the co-inhibition of APC and MHC class-I. At the same time, the 

significantly high expression of immune check-point genes such as LAG3 
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and C10orf54 in the MLP-1 subtype suggests an immunosuppressive 

microenvironment in this poor prognostic subtype (Figure 4.11B)211.  

 

Overall, these data suggest that the MLP-1 subtype has elements of 

immune stimulation, modulated via myeloid cells (DC and M1 macrophage) 

and the DAMP pathway, leading to subsequent immunosuppression, in turn 

potentially leading to tumour progression and poor prognosis. 

 

4.3.11 Validation Cohorts support patterns of immune cell gene 

expression in Microarray Cohort  

Using ssGSEA analysis, we considered the presence of immune cell types 

across the PanNETassigner subtypes in the Berlin and RNAseq validation 

cohorts. Based on our Microarray cohort analysis, we specifically 

considered macrophages, co-inhibition of T Cells and MHC Class I. In both 

validation cohorts, as in the Microarray cohort, there was an elevated 

ssGSEA score for macrophages, the co-inhibition of T Cells and MHC 

Class I in the MLP-1 subtype versus the Insulinoma-like and the 

Intermediate subtypes (Figure 4.12A-F).  

 

The difference in the validation cohorts is that the MLP-2 subtype samples 

also demonstrated an increased ssGSEA score for macrophages, co-

inhibition of T cells and MHC Class I. These data are therefore supportive 

of the pattern of increased immune related gene expression in the MLP 

subtypes, as observed in the Microarray cohort. 
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Figure 4.12 ssGSEA Analyses for Validation Cohorts  

 

 
 

ssGSEA analysis of Berlin validation cohort demonstrates increased scores in both MLP-1 

and MLP-2 subtypes A-C Boxplots of ssGSEA scores of interest (FDR ≤ 0.2) across 

PanNETassigner subtypes in the Berlin validation cohort (n=26). Here, as in the Microarray cohort, 

there was an elevated ssGSEA score for macrophages, the co-inhibition of T Cells and MHC Class I 

in the MLP-1 subtype vs. the Insulinoma-like and the Intermediate subtypes. The difference here is 

that the MLP-2 subtype samples also demonstrated increased ssGSEA score for macrophages and 

co-inhibition of T cells. 

 

ssGSEA analysis of RNAseq validation cohort demonstrates increased scores in in both MLP-

1 and MLP-2 subtypes D-F Boxplots of ssGSEA scores of interest (FDR ≤ 0.05) across 

PanNETassigner subtypes in RNAseq validation cohort (n=120). Here, as in the Microarray cohort, 

there was an elevated ssGSEA score for macrophages, the co-inhibition of T Cells and MHC Class I 

in the MLP-1 subtype versus the Insulinoma-like and the Intermediate subtypes. The difference here 

is that the MLP-2 subtype samples also demonstrated increased ssGSEA score for macrophages 

and MHC Class I.  
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4.3.12 Other PanNETassigner subtypes demonstrate different 

enrichment patterns 

We next assessed gene expression across the remaining 3 

PanNETassigner subtypes, MLP-2, Intermediate and Insulinoma-like. We 

again looked at the Rooney et al. gene sets, ssGSEA and CIBERSORT 

analyses, according to PanNETassigner subtype. 

 

The Insulinoma-like subtype had a low expression of immune related 

genes 

Overall, the Insulinoma-like subtype had a low expression of the majority of 

the immune related genes. Using the Rooney et al. immune cell type gene 

set, 3 genes had increased and 4 genes had reduced expression in the 

Insulinoma-like subtype versus the other subtypes. However, on ssGSEA 

analysis there were no statistically significantly increased enrichment 

scores for the Insulinoma-like samples. Further, on CIBERSORT analysis 

the Insulinoma-like subtype did not have the highest abundance for any 

immune cell type. 

 

The Intermediate subtype is enriched for B cells  

Using the Rooney et al. immune cell type gene set, 4 genes had 

significantly increased and 4 genes had significantly reduced expression in 

the Intermediate subgroup versus the other PanNETassigner subtypes 

(Figure 4.13A). The 4 genes with increased expression play roles in B cell 

functioning, co-stimulation of APCs, a type II IFN response and neutrophil 

functioning (Figure 4.13B). Those with reduced expression all have 

increased expression in MLP-1 and are associated with macrophages, a 

type I IFN response and co-inhibition of T cells.  

 

The ssGSEA analysis demonstrated a significant increase in the 

enrichment score for B cells (Figure 4.13C) and on CIBERSORT analysis 

there was a statistically significant increase in naïve B cell abundance and 

a reduction in memory B cell abundance (Figure 4.13D and E). We note 

that a high number of infiltrating naïve B cells has been associated with 

improved prognosis in a number of different cancers212. 
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MLP-2 shares some features of enrichment with the MLP-1 subtype 

Of the 132 differentially expressed immune related genes, 25 (19%) genes 

had the highest expression in the MLP-2 subtype. Using the Rooney et al. 

immune cell type gene sets, considering a fold change of 1.5 and an 

adjusted p value of <0.05, none of the genes had a significantly increased 

fold change in the MLP-2 subtype versus the other PanNETassigner 

subtypes (Figure 4.13F).  

 

In the ssGSEA analysis, the MLP-2 subtype was not seen to have the 

highest expression of any of the differentially expressed cell type gene sets. 

However, the MLP-2 subtype did have a higher expression of co-inhibition 

of T cell and MHC Class I genes than the Intermediate and Insulinoma-like 

subtypes (Figure 4.11 C and D). Further, in the validation cohorts the MLP-

2 subtype was enriched for macrophages, co-inhibition of T cells and MHC 

Class I alongside the MLP-1 subtype (Figure 4.12). 

 

On CIBERSORT analysis the MLP-2 subtype only demonstrated a high 

abundance of naïve CD4+ T cells with a FDR of < 0.05 and here the MLP-1 

subtype also followed this pattern (Figure 4.13G). 
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Figure 4.13 Immune Enrichment Patterns in Intermediate and MLP-2  

 
 

 

 

 

A Volcano plot to demonstrate differentially expressed immune genes within the Rooney et al. gene 

set in Intermediate. 4 genes had significantly increased and 4 had significantly reduced expression 

vs. other PanNETassigner subtypes (Fold change>1.5 and FDR <0.05). B Heat map of the 4 Rooney 

et al. genes with significantly increased expression in Intermediate. Associated cell types are 

highlighted and in the rainbow bar below the heatmap, red indicates elevated expression, blue 

decreased, and white no change. C Boxplot of ssGSEA score demonstrating an increase in gene 

expression associated with B Cells in Intermediate (FDR <0.05). D and E Boxplots of CIBERSORT 

proportions demonstrating increased abundance of naïve B cells in Intermediate, whereas memory B 

cells had reduced abundance (FDR <0.05). F Volcano Plot demonstrating that no differentially 

expressed immune genes within the Rooney et al. gene set had increased expression in MLP-2 vs. 

the other subtypes. G Boxplot of CIBERSORT proportions demonstrating increased abundance of 

CD4 T cells in MLP-2 (FDR <0.05) 
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4.3.13 Multiplex IHC demonstrates increased macrophage density in 

MLP-1 

We sought to validate the patterns of immune related gene expression 

demonstrated in the PanNETassigner subtypes using immune related 

profiles of protein expression (Multiplex IHC). Using available matched 

FFPE samples (n=30 from Microarray and RNAseq cohorts), we assessed 

the number of cells stained positive for CD20 (B cell marker), CD68 

(macrophage marker), CD8 (cytotoxic T cell marker), and FOXP3 

(regulatory T cell marker) within the tumour tissue (Figure 4.14 A-F). Using 

a median score of cell type/megapixel for the tumour samples, we 

considered differences in protein expression across the PanNETassigner 

subtypes, excluding the Insulinoma-like samples as FFPE was only 

available for 2 cases. 

 

The MLP-1 subtype demonstrated a statistically significant increased 

density of CD68 positive cells versus the Intermediate and MLP-2 subtypes 

(FDR=0.041) (Figure 4.14G). This is consistent with increased expression 

of the CD68 gene in the MLP-1 subtype in the RNAseq cohort (Figure 

4.14H).  

 

There was no statistically significant difference in CD8 staining across the 3 

subtypes which is consistent with the gene expression data. Similarly, there 

was increased staining for CD20 positive B cells in the Intermediate 

samples versus the MLP-1 and MLP-2 samples, but this did not reach 

statistical significance (FDR=0.5). Interestingly, the Intermediate subtype 

had a significantly increased density of FOXP3 positive cells versus the 

MLP-1 and MLP-2 subtypes (FDR=0.02).  

 

These IHC-based protein expression findings are consistent with gene 

expression data, which validates both the techniques, describing 

enrichment for macrophages in the MLP-1 subtype and B cells in the 

Intermediate subtype. 
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Figure 4.14 Multiplex IHC (mIHC) supports Macrophage enrichment of 
MLP-1 subtype 

 
 

A-C mIHC: Representative Slide Photos demonstrating protein expression of 

FOXP3 (Regulatory T Cell marker), CD8 (Cytotoxic T Cell marker) and CD20 (B 

Cell marker) in the Intermediate subtype samples. D-F mIHC: Representative 

Slide Photos demonstrating protein expression of CD68 (Macrophage marker), 

and to a lesser extent CD20 (B Cell Marker) and CD 8 (Cytotoxic T Cell marker) in 

the MLP-1 samples. G mIHC: Boxplot of median score of cell type/megapixel for 

each PanNETassigner subtype for macrophage marker CD68, demonstrating an 



 
157 

 

increased score in the MLP-1 subtype (FDR=0.041, for a difference across the 3 

subtypes). H Boxplot of CD68 expression in RNAseq cohort demonstrating 

significantly increased expression in the MLP subtypes versus the Intermediate 

subtype, supporting the mIHC data.  
 

4.3.14 Key Immunotherapy Targets are enriched in MLP-1 

To assess the potential clinical significance of the enrichment of immune 

related gene expression in the MLP-1 subtype, we next considered the 

expression of various known and potential immunotherapy targets across 

the PanNETassigner subtypes, using the Microarray cohort data. We first 

considered PD-L1 expression, as PD-L1 expression has been used as an 

inclusion criterion for clinical trials of immunotherapy in PanNET patients 

(NCT02054806). PD-L1 (CD274) was differentially expressed according to 

PanNETassigner subtype, with expression enriched in the MLP-1 subtype 

(Figure 4.15A). PD-L2 expression is similarly enriched in MLP-1, although 

PD-1 is not (Figure 4.15B). 

 

We next considered additional inhibitory immune checkpoints, LAG3, IDO1 

and C10orf54 (V-domain Ig suppressor of T cell activation, VISTA), which 

were also enriched in the MLP-1 subtype (Figure 4.15C-E). The expression 

of ICOS, a stimulatory checkpoint gene highly expressed in Regulatory T 

Cells was likewise increased in the MLP-1 subtype, again likely to 

contribute to the immunosuppressive microenvironment213 (Figure 4.15F). 

 

In light of the association of the MLP-1 subtype with macrophages genes 

and the DAMP pathway, we also looked at the expression of TLRs and 

CSF1R. A number of TLRs (TLRs 2, 3 and 4) and CSF1R were all enriched 

in the MLP-1 subtype (Figure 4.15G and H).  
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Figure 4.15 Key Immunotherapy Targets enriched in the MLP-1 
subtype 

 
 

A-E Boxplots of Inhibitory Checkpoint gene expression in the Microarray cohort, 

demonstrating a significant increase in the MLP-1 samples vs. the other subtypes 

(FDR < 0.005 for a difference across all 4 subtypes). F Boxplot of Stimulatory 

Checkpoint ICOS expression in Microarray cohort demonstrating significantly 

increased expression in the MLP-1 (FDR < 0.05 for a difference across all 4 
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subtypes) G-H Boxplots of Gene expression linked to Macrophage Functioning in 

Microarray cohort demonstrating increased expression in the MLP-1 subtype (FDR 

< 0.01 for a difference across all 4 subtypes) 

 

4.3.15 Deficient Mismatch Repair (MMR) not associated with 

PanNETassigner subtypes 

As Microsatellite instability has been postulated as a biomarker for 

immunotherapy in a number of solid tumours, we assessed MMR using 

immunohistochemistry in a cohort of 24 FFPE PanNEN samples from the 

RM cohort. We assessed staining of the 4 MMR proteins MSH2, MSH6, 

MLH1 and PMS2. Only 2/24 of the samples demonstrated MMR deficiency, 

both with loss of expression of MSH6 (Appendix 4, Supplementary Table 

4.3). 1 of the MMR deficient samples was Insulinoma-like and the other 

Intermediate, demonstrating no association with the PanNETassigner 

subtypes, although noting this is a small sample size. 

 

4.3.16 MLP Subtype enriched for Expanded Immune Signature across 

all cohorts 

We finally analysed the expanded immune signature across the 

PanNETassigner subtypes, as this signature has been demonstrated to 

predict response to PD-L1 blockade in a number of different solid tumours. 

Here the expanded immune signature used was based on the final 18 gene 

profile, developed by Ribas et al131. 

 

This analysis demonstrated enrichment of the expanded immune signature 

with a statistically significant increase in score in the MLP-1 subtype versus 

the other PanNETassigner subtypes in the Microarray cohort (Figure 

4.16A). The enrichment of the MLP-1 subtype versus the Insulinoma-like 

and Intermediate subtypes is also seen in the Berlin and the RNAseq 

cohorts (Figure 4.16 B and C). In both the Berlin and the RNASeq cohorts, 

the MLP-2 subtype is also enriched, supporting their previously noted 

similarities. 
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Figure 4.16 Expanded Immune Signature Enrichment in MLP-1 and 
MLP-2 

 
A Expanded immune signature score for Microarray cohort (note expression data 

for 13/18 genes in signature available in the Microarray cohort). B and C 

Expanded immune signature score in validation cohorts (for both validation 

cohorts data for all genes was available). As in the Microarray training cohort, the 

MLP-1 samples had higher scores than the Intermediate or Insulinoma-like 

samples. Here the MLP-2 samples also had high scores. 

 
Overall, these data generate the hypothesis that the MLP-1 subtype, with 

the highest and most diverse expression of immune related genes, 

enrichment for immunologic gene sets, DAMP pathway genes, multiple 

elements of the immune system and the expanded immune signature, may 

potentially be more vulnerable to immunotherapeutic approaches, 

compared to other PanNETassigner subtypes. The pathways which may be 

involved in generating this immune high phenotype from hypoxia and 

necroptosis, to myeloid cell activation via DAMP signalling and T cell co-

stimulation with a subsequent shift to T cell co-inhibition, provide a number 

of putative potential therapeutic targets (Figure 4.17 and Table 4.4).  
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Figure 4.17 Pathways of Immune Enrichment and Potential 
Therapeutic Opportunities in the MLP-1 Subtype 

 

Schematic of a putative pathway explaining the enrichment of immune gene 

expression in the MLP-1 subtype. Large MLP-1 tumours are prone to hypoxia and 

through necroptosis and subsequent stimulation of the DAMP pathway innate and 

adaptive immune response are activated. The consequences of the activation 

depend upon the balance between stimulation and inhibition of the immune 

response, particularly the T Cell response. Potential targets for therapy are 

highlighted in blue.  
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Table 4.4 PanNETassigner Subtypes, Immune Properties and Potential 
Treatment Approaches 

PanNETassigner 
Subtype 

Selected 
Enriched 

Immune Genes 

Enriched 
Immune Cell 

Type/ Function 

Potential 
Immunotherapy 

Approach 
Insulinoma-like STAT2 None  

 STAT4   

 IFIT1   

Intermediate RALGPS2 B Cells B Cell directed 
therapy 

 CCL26 Eosinophils Regulatory T cell 
inhibition 

 CCL13 Regulatory T 
Cells 

Combination therapy 

 CD46 NK Cell  

 IL32   

 IL4   

MLP-1 PD-L1 T Cells Anti-PD-L1 

 PD-L2 APCs Anti- PD-1 

 LAG3 Macrophages Anti-LAG 3 

 IDO-1 Neutrophils IDO-1 Inhibitors 

 CSF1R Dendritic Cells CSF1R inhibitors 

 IFI16 IFN Response TLR agonists 

 TLRs  STING agonists 

 DAMP pathway  Combination therapy 

MLP-2 CXCL10 T Cell Anti-PD-L1 

 LTK NK Cell Anti- PD-1 

 PVR Complement Combination therapy 

 CCL19 MAC  

 C1S/C1R   

 C8G   

 C9   
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4.4 Discussion 

Whilst trials of immunotherapy are on-going in PanNENs, the immune 

landscape of this disease is largely uncertain. In this chapter, I have 

outlined how we sought to describe immune related gene expression in 

PanNENs and consider how this may impact upon immune cell type 

distribution and functioning. Having previously described molecular 

subtypes in PanNENs, we specifically considered immune related gene 

expression across our PanNETassigner subtypes, to provide insights into 

the heterogeneity of the immune microenvironment in this disease, to 

consider potential causes for this heterogeneity, to assess whether a 

particular subtype of patients may be more amenable to an 

immunotherapeutic approach and to highlight potential immunotherapeutic 

targets. 

 

In this study, we demonstrated a differential expression of immune related 

genes across PanNEN patient tumour samples. This differential expression 

was not well described according to known clinical parameters of 

importance such as grade of disease, the presence of liver metastases or 

specific genetic mutations. However, PanNETassigner molecular subtypes 

could be used to divide patients into groups with varied immune related 

gene expression, with the MLP-1 subtype (approximately 20% of PanNEN 

patients) demonstrating a particularly immune-high phenotype.  

 

In light of our lab’s expertise in subtyping, this study focuses on the 

differential expression of immune related genes across our molecular 

subtypes. We recognise that it would also be of benefit to analyse the 

immune landscape of these tumours in a non-biased manner, and plan to 

undertake this as part of a future project.    

 

The MLP-1 subtype is enriched for genes involved in Hypoxia Inducible 

Factor (HIF) signalling51,29. HIF signalling has been linked to many aspects 

of immunity in the tumour microenvironment (TME), including up-regulation 

of immune checkpoints such as PD-L1 and CTLA-4214. Hypoxic cell 



 
164 

 

damage may also result in necroptosis and subsequent signalling through 

the DAMP and STING pathways, with myeloid cell recruitment, all 

demonstrated here to be enriched in the MLP-1 subtype204,215. These 

pathways are of great interest in cancer medicine as they provides links 

between cell damage, danger signals and an adaptive immune response 
204,205,203. Whilst much remains to be learnt about these pathways and their 

potential to either promote or inhibit tumour progression, they provide a 

plausible explanation for the MLP-1 subtype’s immune high phenotype. If, 

following mechanistic testing in animal models and cell lines, these 

pathways are confirmed to play a key role, a number of possible therapeutic 

targets such as TLR3 and HMGB1 may be identified.  

 

The immune genes highly expressed in MLP-1 covered both the lymphoid 

and myeloid cellular compartments and a broad range of innate and 

adaptive immune cellular activities. The analyses here support the 

presence of a co-ordinated immune response within the MLP-1 tumours, 

with enrichment for genes involved in antigen presentation, MHC Class-I, 

co-stimulation of T cells and cytolytic activity. As would be expected, such 

cytolytic activity was also associated with enrichment for genes involved in 

the corresponding inhibitory pathways, including checkpoint pathways (PD-

L1/CD274, LAG-3 and C10orf54/VISTA). We suggest that tumour 

progression occurs when the negative feedback outweighs anti-tumour 

cytotoxic activity. This enrichment of genes involved in inhibitory pathways 

provides a rationale for investigating whether the MLP-1 subtype patients 

are more likely to benefit from immune checkpoint inhibitor therapies than 

patients in other subtypes. 

 

A number of checkpoint inhibitor trials in NEN patients have used PD-L1 

positivity as an inclusion criterion. Earlier studies have shown that PD-L1 

(CD274) is expressed in GEP-NENs and that expression is associated with 

both grade and survival173,174,175,182. The largest of these studies in 

PanNENs (n=70) reported that 11% of patients were PD-L1 positive with a 

cut-off of 1% tumour cell staining and 3% with a cut-off of 5% tumour cells 

staining182. In our study, PD-L1 was differentially expressed across our 
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PanNETassigner subtypes with the MLP-1 subtype demonstrating the 

highest expression, again suggesting that investigating checkpoint inhibitor 

therapy may be appealing in this subtype.  

 

However, not all MLP-1 samples expressed PD-L1 and yet retained other 

aspects of the immune high phenotype. Further, experience to date with 

other solid tumours has informed us that PD-L1 expression alone is not 

always a reliable biomarker for checkpoint blockade, highlighting the need 

for other more reliable predictive biomarkers for immunotherapy treatments. 

These observations led us to consider the potential of other putative 

predictive biomarkers for immunotherapy in PanNEN patients, such as 

tumour mutational load or burden (TML/TMB), microsatellite instability and 

IFN-γ-related mRNA profiles, as well as the possibility of using our 

PanNETassigner subtypes 216,217,218,131.  

 

PanNENs have been reported to have a low TMB, of either 5.8 

mutations/megabase182 or 0.82 mutations/megabase29 in different 

publications. Both of these figures are significantly lower than those 

reported for the tumour types most sensitive to immune checkpoint 

blockade, such as melanoma or lung cancer, which have approximately 10 

mutations/ megabase, making it unlikely that TML/TMB will provide a useful 

predictive biomarker for immunotherapy in PanNETs and we therefore did 

not assess this here. 

 

There are limited and contradictory reports of MSI in PanNETs, with one 

paper reporting 33% of sporadic insulinomas to be MSI-High183 and another 

reporting no cases of MMR deficiency in 35 unselected PanNET cases184. 

In our study 8% (2/24) of the samples tested demonstrated a MMR 

deficiency, suggesting there may be a small percentage of PanNET 

patients for whom MSI may provide a potential biomarker, although this 

observation requires additional investigation in a larger patient sample and 

in patients treated with immunotherapy.  
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Various IFN-γ-related signatures have been demonstrated to predict 

response to PD-L1 blockade in a number of different solid tumours131. 

When we analysed the expanded immune signature across our 

PanNETassigner subtypes, a proportion of the samples demonstrated high 

levels of IFN-γ-related gene expression, suggesting that this signature 

should be investigated as part of the on-going clinical trials of 

immunotherapy in PanNEN patients to establish its potential predictive role 

here. The MLP-1 subtype demonstrated particular enrichment of IFN-γ-

related gene expression, again supporting the consideration of trials of 

immune checkpoint inhibitors in this group of patients.  

 

In our analysis, we also considered other aspects of the immune system, 

beyond immune checkpoints, with a view to improving understanding of, 

and providing a sound scientific rationale for, potential future combination 

studies of immunotherapy agents.  

 

Both on a transcriptomic and proteomic level, the MLP-1 cohort samples 

were consistently enriched for the expression of macrophage related genes 

and protein, suggesting an increased level of tumour associated 

macrophages (TAMs). The CIBERSORT analysis predicted a polarisation 

towards M1 macrophages with a reduction in M2 macrophage abundance 

and this was confirmed with a wider gene panel. Whilst this binary 

classification of macrophages is no doubt overly simplistic, M1 

macrophages are often considered anti-tumorigenic whereas M2 

macrophages are considered pro-tumorigenic. This polarisation requires 

further confirmation, but fits with the pro-inflammatory, cytotoxic phenotype 

displayed by these baseline MLP-1 samples. 

 

It would be interesting to assess how this macrophage polarisation varies 

over time, in metastases versus the primary disease and with treatment, 

noting our MLP-1 samples were almost all taken from the primary disease 

(95%) and were all taken pre-treatment. Over time, this high abundance of 

macrophages in the MLP-1 samples may become polarised towards M2 

macrophages. Such a switch in polarisation could contribute to the high 
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levels of invasion and migration characteristically seen in MLP-1 tumours. If 

this hypothesis were demonstrated to be correct, a treatment targeting 

TAMs, such as a CSF1R inhibitor, or one which can re-educate TAMs to an 

anti-tumorigenic phenotype may be worthy of investigation. We also note 

the MLP-1 samples were enriched for the expression of CSF1R, again 

making this a potentially appealing target for investigation. 

 

Similarly, DCs and the TLRs which activate them, also enriched in the MLP-

1 subtype, are thought to play a critical role regulating the immune 

system219. Tumour associated DCs have been described as dysfunctional, 

causing up-regulation of immune checkpoints, an increase in regulatory T 

cells and decreased OS in various tumours220,221,222,223. As both DC-

targeted and TLR-targeting treatment strategies are in development, this is 

another area which warrants consideration in MLP-1 patients224.  

 

Overall, the MLP-1 subtype appears to be enriched for gene expression 

relating to multiple aspects of the immune system. The MLP-2 subtype also 

demonstrated a greater level of enrichment for immune related gene 

expression than the Intermediate or Insulinoma-like subtypes. In the Berlin 

and RNAseq cohorts, the MLP-2 subtype was most enriched for the 

expanded immune signature versus the Intermediate and Insulinoma-like 

subtypes. Indeed, in the validation cohorts, the MLP-2 subtype also 

demonstrated an immune high phenotype, alongside the MLP-1 subtype. In 

the Microarray cohort, the MLP-2 subtype had the second highest level of 

expression of the differentially expressed immune related genes, after the 

MLP-1 subtype, and on multiple occasions demonstrated increased gene 

expression versus the Intermediate and Insulinoma-like subtypes (for 

example in cytolytic activity, co-inhibition of T cell genes and MHC Class I 

genes). Further, the MLP-2 subtype had the second highest level of 

diversity of immune related gene expression, after MLP-1, on the Shannon 

Entropy analysis. These findings are consistent with the many shared 

features these two subtypes demonstrate51.  
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MLP tumours are enriched for genes associated with epithelial to 

mesenchymal transition (EMT). EMT has been associated with the 

expression of immune checkpoints in multiple cancer types, including lung, 

kidney and cholangiocarcinoma166,225,226,. Moreover a pan-cancer EMT 

signature has been associated with immune activation and high levels of 

expression of immune checkpoints and other immune targets, such as PD1, 

PD-L1, CTLA4, OX40L, and PD-L2227. EMT has also been linked to a 

hypoxia, another important feature of MLP-1 tumours164,165.  

As MLP-1 and MLP-2 together make up approximately 30% of PanNEN 

patients, their immune high phenotype is worthy of further investigation to 

establish if these patients may be more amenable to an immunotherapeutic 

approach. 

 

In contrast to the MLP subtypes, the Intermediate subtype demonstrated 

particular enrichment for B cells, also with an increase in CD20 staining on 

multiplex IHC. Evidence is mounting that B cells may also have an 

important role to play228,229. As reported in patients with liver cancer, the 

increased tumour infiltrating B cells in our Intermediate subtype were 

associated with an increase in IFN-γ, CD40, a low Ki-67 and improved 

survival51, 230, 231. The significance of tumour infiltrating B cells in PanNENs 

requires further investigation, but as CD40 activated B cells can be potent 

APCs, this is an area worthy of consideration for Intermediate subtype 

PanNEN patients.  

 

As with the MLP subtypes, some of the observations regarding the 

Intermediate subtype fit with previously noted characteristics. The 

Intermediate subtype is known to be associated with MEN1 mutations, with 

50% of this subtype having a mutation versus <13% in the MLP and 

Insulinoma-like subtypes51. MEN1 codes for the tumour suppressor menin 

which plays a critical role in regulating CD4 +ve T cell senescence and 

preventing CD8+ve T cell dysfunction through limiting mTORC 1 

activity232,233. Loss of menin has been linked to CD8+ve T cell senescence, 

in turn associated with a senescence-associated secretory phenotype with 

increased pro-inflammatory cytokines and chemokines and matrix 
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remodelling alongside impaired immune memory formation. As discussed 

above, in our study the Intermediate subtype was enriched for pro-

inflammatory type II IFN (IFN-γ), and whilst the CIBERSORT analysis 

reported increased naïve B cells, there was a reduced abundance of 

memory B cells. 

 

Our study has a number of limitations. We recognise that compared to 

studies in other tumour types the sample size is relatively small. However, it 

should be acknowledged that in this rare tumour type, a study of 320 

tumour samples is a large study. The study is retrospective and includes 

samples taken at a single time-point, at baseline. The immune system is 

known to be highly dynamic and the best time to study immune related 

gene expression is unclear. Ideally, we would be able to analyse tissue and 

other samples prospectively, at multiple time-points, in primary and 

metastatic disease and in patients undergoing immunotherapy treatment. 

This would enable us to assess the impact of clonal evolution, inter-tumour 

heterogeneity and the impact of treatment. Such a study would also enable 

the analysis of additional data, such as TMB, the proteome, the role of 

liquid biopsies and the microbiome, as well as considering the 

transcriptome, however such analyses are beyond the scope of this study. 

 

This study has demonstrated that the MLP-1 subtype of PanNEN patients 

has an immune high phenotype, associated with an increased tumour size, 

hypoxia, necroptosis and DAMP/STING/TLR pathway activation. We have 

highlighted particular features of the immune system which may provide 

future treatment targets for investigation for these patients, noting that there 

is a level of heterogeneity within MLP-1 tumour samples.  

 

There is a complex interplay between tumour cells, and the immune system 

in PanNEN. The data presented here may serve as a spring-board for 

further investigation to understand this interplay, as outlined above. 

However, once this complexity has been elucidated, it seems likely that 

there will be a role for immunotherapy or its combination with other 

treatments, perhaps such as Peptide Receptor Radionuclide Therapy, 
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oncolytic viruses or targeted therapies in selected PanNEN patients. 

Following further investigation in prospective clinical trials as well as 

mechanistic studies, the PanNETassigner molecular subtypes may 

potentially play a role, providing putative predictive biomarkers for such 

immune therapies. 
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5 Conclusions 

The standardisation of PanNEN grading and staging, with the adoption of 

the WHO classification and ENETs/8th edition AJCC staging paradigms 

respectively, is an important step forward in the management of this rare 

disease. The current classification paradigm enables patients to be grouped 

into 4 grades and 4 stages of disease and has, without doubt, improved 

PanNEN management and facilitated patient stratification for clinical trials. 

Whilst these variables have prognostic significance, there remains a wide 

range of disease behaviour encompassed within each grade or stage. This 

is particularly apparent in the advanced disease setting, especially for 

grade 2 patients. This range of behaviour is likely due to heterogeneity in 

tumour biology which is not captured by the current classification paradigm. 

There is a well-recognised unmet clinical need for biomarkers to enable 

improved PanNEN patient stratification and treatment personalisation. 

The aims of my thesis were shaped by this unmet need. Large, well 

annotated datasets are required to facilitate translational work and 

biomarker development. To this end, this MD(Res) project succeeded in 

established a large international PanNEN registry, which currently includes 

282 patients and will increase in size with the addition of the Kings College 

cohort (Aim 1). The clinical phenotyping performed has confirmed that the 

registry patients are representative of PanNEN patients more generally and 

therefore provide a robust sample set for translational work and biomarker 

correlation (Aim 2). Further, to try and overcome some of the challenges 

experienced with retrospective tissue and data collection and with archived 

FFPE samples in the PanNEN registry, the RM sponsored Pac-MAn 

biobanking study has been developed. This study, which opened in January 

2019, will enable the prospective collection of tissue and other biological 

specimens from PanNEN patients at multiple time-points, facilitating 

additional translational work in the future. 

Molecular biomarkers have played an increasingly important role in 

prognostication and guiding treatment decisions across multiple tumour 

types in recent years234,235,236,237. Organisations such as Cancer Research 
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UK (CRUK) have developed roadmaps to describe how a newly discovered 

potential biomarker may be developed into an assay, suitable for the 

clinic238. To be incorporated into clinical practice, assays detecting such 

prognostic or predictive biomarkers must be robust, reproducible and have 

undergone rigorous analytical and clinical validation, as well as 

demonstrating clinical utility and value for money239.  

Our lab had previously defined 4 molecular subtypes in PanNEN, based on 

an integrated multi-omics analysis, collectively named the PanNETassigner 

signature51. The prognostic significance of the subtypes was previously 

unknown, but the association of one of the subtypes, MLP, with metastases 

led to the hypothesis that these subtypes may have prognostic significance 

and potentially could be developed as a molecular biomarker for PanNENs.  

My thesis therefore sought to develop an assay based on the 

PanNETassigner subtypes which could be readily deployed to analyse trial 

samples or in clinic, using the low cost nCounter Elements platform (Aim 3). 

The PanNETassigner assay was successfully developed and refined into a 

78 gene assay, the Nano-PanNET assay. The subtypes assigned by the 

assay were demonstrated to be reliable and reproducible. Further, the 

assay was able to assign PanNETassigner subtypes in both fresh frozen 

and more clinically available FFPE tumour samples, although further 

validation and optimisation is required in the FFPE setting in particular. The 

work described here is an essential preliminary step along the analytical 

validation pathway for the Nano-PanNETassay. 

Having demonstrated that it was possible to ascribe PanNETassigner 

subtypes using the 78 gene assay, my thesis also considered the 

prognostic significance of the subtypes assigned. Survival analyses 

revealed that the MLP-1 subtype (approximately 20% of PanNEN patients) 

was associated with a statistically significant reduction in OS, whereas the 

Insulinoma-like subtype (approximately 30% of PanNEN patients) had a 

prolonged OS, with the Intermediate and MLP-2 subtypes being in the 

middle (Aim 4). As has been a problem for many PanNEN studies, the 

prolonged survival, and subsequent low number of events in the patients 
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analysed, meant that multivariate analyses were not possible here. As 

described above, it is hoped that the results presented here will be 

validated and further interrogated in a larger patient sample in due course.  

Predictive as well as prognostic biomarkers are an unmet need in 

PanNENs. The first trials of immunotherapy are underway and, as for other 

tumour sites, biomarkers will be required to predict those patients who may 

benefit. A detailed understanding of the immune microenvironment in this 

disease is lacking and the last aim of my thesis was therefore to describe 

immune related gene expression, across our PanNETassigner subtypes 

(Aim 5). 

This analysis demonstrated that the clinical parameters used to direct 

standard therapies, such as grade of disease or the presence of liver 

metastases did not segregate patients according to immune related gene 

expression. Conversely, our PanNETassigner subtypes were able to sub-

divide patients by differential immune gene expression, a finding which was 

confirmed in two separate validation cohorts. The poor prognosis MLP-1 

subtype demonstrated both the highest level and diversity of immune-

related gene expression, associated with hypoxic tumours and signalling 

within the DAMP pathway. The immune gene expression profile 

demonstrated generates the hypothesis that the MLP-1 subtype may be 

more amenable to an immunotherapeutic approach than other subtypes. 

The theories outlined in this chapter now require further investigation in 

mechanistic studies and prospective clinical trials. 

Despite the limitations outlined in the discussions of each chapter, chiefly 

the retrospective nature of the PanNEN registry, the challenges of using 

FFPE tissue for molecular analyses and of survival analyses with limited 

events and the use of primarily baseline surgical resection specimens when 

assessing the dynamic immune system, the research presented here 

contributes significantly to the field. The large PanNEN registry, with 

additional samples still being collected, provides a useful platform for future 

clinical and biomarker studies in this setting. The PanNETassigner 

molecular subtypes have been identified as a potential future prognostic 
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biomarker, subject to validation, and the Nano-PanNET assay may provide 

a means for assigning these subtypes in clinic. Novel phenotypic data has 

been presented regarding the immune microenvironment in PanNENs 

which will hopefully lead to additional mechanistic studies and prospective 

clinical trials. 

Overall, my thesis demonstrates that molecular subtyping can be used to 

provide valuable additional information both regarding prognosis and the 

immune microenvironment in PanNENs. With the further validation and 

investigation outlined, the PanNETassigner subtypes may pave a way 

forward for a more personalised, disease biology directed approach for 

patients with this rare tumour type. 
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Appendix 1 
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ACTH Adrenocorticotropic hormone 
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APCs Antigen Presenting Cells 
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CoE Centres of Excellence 

CRC Colorectal Cancer 

CRUK Cancer Research UK 

CTCs Circulating Tumour Cells 

DAMP Damage Associated Molecular Pattern 

DAPI 4′,6-diamidino-2-phenylindole 

DC Dendritic Cells 

DNA Deoxyribonucleic acid 

EMT Epithelial to Mesenchymal Transition 

ENETs European Neuroendocrine Tumour Society  

EPC Exocrine Pancreatic Cancer 
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ESMO European Society for Medical Oncology 

EUS Endoscopic Ultrasound Scans  

FDG Fluorodeoxyglucose 

FDR False Discovery Rate 

FFPE Formalin Fixed Paraffin Embedded 

Ga Gallium 

GI Gastrointestinal 

GRF Growth hormone releasing factor 

GSEA Gene Set Enrichment Analysis 

H&E Haematoxylin and Eosin  

HIF Hypoxia Inducible Factor 

HPF High Powered Field 

HRA Health Research Authority 
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IFN Interferon 

IL-8 Interleukin-8 

iLVM Integrative Latent Variable Model  
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miR MicroRNA 
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MRI Magnetic Resonance Imaging  

mRNA Messanger RNA 

MSigDB Molecular Signatures Database  
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ng/µL nanograms/ microlitre 

NGS Next Generation sequencing 

NIHR National Institute of Health Research 
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PCR Polymerase Chain Reaction 
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PET Positron Emission Tomography  

PFS Progression Free Survival 

PIS Patient Information Sheet 

PlGF Placental Growth Factor 

PP Pancreatic Peptide 

pPC Probabalistic Principal Component 

PPI Patient and Public Involvement 

PPI Proton Pump Inhibitor 

PPQ PRRT predictive quotient  

PTHrP  Parathyroid hormone related peptide 

QC Quality Control 

RCC Reporter Code Count File 

REC Research Ethics Committee 

RECIST Response Evaluation Criteria In Solid Tumours 

RIN RNA Integrity number  

RLF Reporter Library File  

RMH Royal Marsden Hospital 

RNA Ribonucleic acid 

RNAseq RNA Sequencing 

SA Substantial Amendment 

SAM Significance analysis of Microarrays  

SAP Statistical Analysis Plan 

SDF-1α Stromal cell-derived factor-1α  

SEER Surveillance, Epidemiology and End Results  
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SOPs Standard Operating Procedures 

SRS Somatostatin Receptor Scintigraphy  

ssGSEA single sample Gene Set Enrichment Ananlysis 

SSTR Somatostatin Receptor  

STING Stimulator of Interferon Genes  

sVEGFR Soluble Vascular Endothelial Growth Factor 

TAMs Tumour Associated Macrophages 
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TMB Tumour Mutational Burden 

TME Tumour Microenvironment 

TMG Trial Management Group 
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1. Protocol synopsis 

Title of study:                A translational study in gastroenteropancreatic 

neuroendocrine tumours (GEP- NETs) to validate and 

assess the clinical utility of a novel molecular 

classification 

 

Chief Investigators:            Dr Naureen Starling  

 

No. of study centres:   3 (Royal Marsden Hospital, ARC-NET Verona and 

King’s College Hospital) 

 

Study period:                       1
st
 August 2016- July 8

th
 2020 

 

Primary objective:      To explore overall survival in pancreatic neuroendocrine 

patients according to PanNET molecular subtype 

attributed by the PanNETassigner signature  

Secondary Objectives:   1. To assess the association of grade, molecular subtypes, 

or a combined Model with prognosis of PanNET tumours 

2. To establish if non-pancreatic GEP-NETs can be 

classified by the PanNETassigner signature 

3. To further develop diagnostic assays (including 

Nanostring Technologies for gene and miR expression, 

IHC for protein expression and targeting sequencing for 

mutations) applicable in the clinic (this objective will not 

be addressed statistically) 

4. To assess overall survival according to different 

treatment modalities according to PanNET molecular 

subtypes  

 

Methodology:          Tissue samples from patients treated for 

gastroenteropancreatic neuroendocrine neoplasm over the 

last 10 years at Royal Marsden NHS Foundation Trust and 

at the University of Verona will be collected and transported 

for storage at The Royal Marsden NHS Foundation Trust. 

Molecular analyses including, among others, nCounter assay 

(Nanostring Technique), Ion AmpliSeq custom panel and 

Ion Torrent Personal Genome Machine, RNA isolation, real-
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time RT PCR using specific primers, IHC will be 

performed. Targeted sequencing will be carried out using 

the facilities from the University of Verona, Italy and their 

established protocol. The Centre for Molecular Pathology’s 

(CMP) Research Diagnostic facilities may also be used for 

this purpose. The molecular analyses data will be collected 

in a link-anonymised fashion and correlated to clinical 

outcome data. Tissue from a further cohort of PanNET 

patients treated at King’s College Hospital, London, with 

matched clinical data will also be transported to the Royal 

Marsden for storage and subsequent analysis. 

 

Number of patients:   Total: Approximately 805 GEP-NET samples with matched 

clinical data 

Approximately 77 PanNET samples with matched clinical 

data from Royal Marsden Cohort. 

Approximately 200 PanNET samples with matched clinical 

data from University of Verona Cohort. 

Approximately 350 PanNET samples with matched clinical 

data from the Kings Hospital Cohort. 

Approximately 178 non-pancreatic GEP-NET samples with 

matched clinical data from Royal Marsden Cohort. 

 

Main inclusion criteria: Patients with gastroenteropancreatic neuroendocrine 

neoplasm treated at The Royal Marsden NHS Foundation 

Trust , the University of Verona and King’s College 

Hospital, and whose tissue samples are available 

 

Primary Endpoint:           Overall survival (OS), defined as time from the date of 

diagnosis to death of any cause, according to PanNET 

molecular subtype attributed by the PanNETassigner 

signature. 

Secondary Endpoints:           1. OS by grade and molecular subtype. 

 2. OS according to PanNET molecular subtype in non-

pancreatic GEP-NETs. 

 3. OS according to different treatment modalities and 

molecular subtype.  
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Schema: 

 

 

 

 

2. Background 

Neuroendocrine neoplasms (NEN) are a very heterogenous group of tumours which 

are thought to originate from pluripotential progenitor cells that develop 

neuroendocrine characteristics. Although they are considered a rare neoplasm, their 

incidence has been increasing over the last 30 years, probably due to an ageing 

population, improved detection and increased awareness of the disease. Indeed, using 

data from the Surveillance, Epidemiology, and End Result (SEER) database a 

retrospective analysis conducted in USA showed a significant increase in the incidence 

of NENs from 1.9 persons per 100.000 in 1973 to 5.25 per 100.000 in 2004  (Yao JC, 

2008). A more recent comprehensive systematic review that included also patients 

from United States and Western Europe, confirmed this data. Furthermore, it reported 

that the age-adjusted incidence of gastroenteropancreatic neuroendocrine tumours 

(GEP-NETs) has increased steadily over the past four decades (1973 – 2007), 

increasing 3.65-fold in the USA and 3.8- to 4.8-fold in the UK (Fraenkel M, 2014). 

NENs may arise in different organs. The most common site of origin is the lung, 

followed by small intestine, pancreas, appendix and rectum (Yao JC, 2008). Our study 
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will focus on gastric, bowel and pancreatic tumours, which are grouped together as the 

GEP-NETs.   

Historically, NETs were classified into foregut (bronchi, stomach, pancreas, 

gallbladder, duodenum), midgut (jejunum, ileum, appendix, right colon) and hindgut 

(left colon and rectum) tumours according to their embryological origin, but in 2010 

the World Health Organisation (WHO) reclassified NETs according to grade and 

stage. Grading is performed on the basis of morphological criteria and the proliferative 

activity of the tumour (Ki-67 index), while staging is according to the tumour, node, 

metastasis (TNM) staging system. 

As a result, NENs have been divided into neuroendocrine tumours (NETs), which 

included the grade 1 and 2 well differentiated neoplasms, and neuroendocrine 

carcinomas (NECs), which consist of the poorly differentiated Grade 3 tumours. Grade 

1 tumours have a ki-67 of less than 3%, grade 2 between 3 – 20% and grade 3 of more 

than 20% (Bosman FT, 2010). 

The prognostic relevance of the WHO classification has since been established. GEP-

NETs tend to be slow-growing tumours with a 5-years overall survival of 

approximately 75%, that drops to 27-43% in patients with a pancreatic primary (Hauso 

O, 2008 ; Pape UF, 2008). Using the WHO classification, the 5-year survival rate 

varies according to grade, with a rate of 96%, 73% and 28% for grades 1, 2 and 3 

respectively. Survival also varies with stage, with 100% of patients with stage I disease 

and only 55% of patients with stage IV disease alive at 5 years (Pape UF, 2008). 

Multiple different treatments are currently available to treat GEP-NETs. However, 

there is neither a clear gold standard treatment nor a treatment paradigm to guide the 

order in which treatments are given. Currently, the choice of 1
st
 line treatment is often 

based on the WHO classification (Ramage JK, 2012 ; Young K, 2015).  

Surgery remains the only curative approach, and may be used even in oligometastastic 

disease (Pathak S, 2013). However, patients frequently present with advanced disease 

where surgery is not possible. In the palliative setting, patients with grade 1 or 2 

disease are frequently treated with a less aggressive approach, initially with a 

combination of watchful waiting and somatostatin analogues before more intensive 

treatment when initial treatment fails with chemotherapy (including streptozocin, 

dacarbazine, doxorubicin, 5FU/capecitabine and temozolomide), targeted agents in 

PanNETs (sunitinib and everolimus), peptide receptor radionuclide 

therapy/radiolabelled somatostatin analogues and liver directed treatments for 
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metastases. There is no strong evidence base to determine which patients would 

benefit from the more aggressive treatment options earlier, according to clinical, 

pathological or molecular characteristics. Patients with grade 3 disease tend to be 

treated more aggressively upfront with immediate platinum based chemotherapy 

doublets.   

Due to the limited evidence available, a general consensus on the best approach to 

these patients, including the best order of these treatments, is hard to reach, and a clear 

standard of care is still lacking.  This is especially true for the grade 2 NETs, whose 

behaviour is often unpredictable in clinical practice (sometimes closer to grade 1, 

sometimes more similar to grade 3), making it difficult to predict which patient would 

benefit from a more aggressive treatment approach up front. 

 

3. Study rationale 

There is a clear unmet clinical need for markers to complement grade to predict 

prognosis and guide treatment decisions in GEP-NET. One of the hallmarks of 

PanNETs is its high molecular heterogeneity and the absence of oncogenic drivers, 

which could serve as prognostic indicators or be used for therapeutic purposes. 

Recurrent alterations have been described in a series of genes in sporadic PanNETs 

(n=58) including MEN1, DAXX/ATRX, TSC2, PTEN and ATM (Jiao, 2011). Large 

sample size studies that aim to better define the molecular characteristics of PanNET, 

to identify potentially targetable molecular alterations and to implement a stratified 

treatment approach for this disease, are urgently needed. 

However, for the first time, we have divided PanNETs into 3 distinct molecular 

subtypes based on an integrated analysis of gene expression (221 genes), microRNA 

(miR; 30 miRs) and mutations (targeted mutational profiles of MEN1, DAXX/ATRX, 

TSC2, PTEN and ATM), collectively named the PanNETassigner signature 

(Sadanandam, 2015): 

1. Metastases-like primary tumours (MLP primary tumours enriched for distant 

metastasis and associated with DAXX/ATRX, TSC2, PTEN and ATM mutations) 

2. MEN1-like/intermediate tumours (primarily enriched for MEN1 mutations; 

however, also for DAXX/ATRX) 

3. Insulinoma-like tumours (enriched for insulinomas with mutations in TSC2, PTEN 

and ATM) 
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The MLP subtype shows a high expression of mesenchymal phenotype-, stem cell-, 

glycolysis- and hypoxia-related genes. The MEN1-like/intermediate subtype has 

molecular characteristics in between insulinomas and MLPs. We have also determined 

the association between these molecular subtypes and grade of disease, according to 

Ki-67 expression. Grade 1 and 2 PanNETs are heterogeneous, variably associating 

with all three molecular subtypes, whereas higher grade 3 tumours are exclusively 

associated with the MLP subtype.  

In addition to the PanNET assigner signature, we have also identified a protein 

biomarker, ENPP2 that is highly expressed in a non-functional subset of MLP and 

intermediate subtype PanNETs, and may serve as a biomarker to distinguish PanNET 

subtypes. 

These data suggest that this molecular classification of PanNET into three subtypes 

may provide a useful tool for patient stratification and treatment selection over and 

above the current classification.  

A similar approach has been used in breast cancer. The Prosigna test measures risk of 

recurrence (ROR) as a ROR score, although here we will not be looking at a score to 

assess risk of recurrence but to assess prognosis and potentially to guide treatment 

(Nielsen, 2010). Further, Liedtke et al. demonstrated that the breast cancer genomic 

grade index, which is a 97-gene signature to stratify histological tumour grade into 

high and low risk groups, predicts response to chemotherapy and separates intrinsic 

subtypes of breast cancer (Filho, 2011). Similarly, the Breast Cancer Index (BCI) 

which combines HOXB13:IL17BR (H:I) and molecular grade index (MGI; based on 

tumour grade), stratifies breast cancer patients into three risk groups and provides 

assessment of tumour recurrence (Ma, 2008). In this proposal, we attempt to develop a 

similar index for GEP-NETs to improve patient prognostication and potentially guide 

treatment selection. 

This retrospective translational tissue collection study is intended to utilise an existing 

clinical database of RMH PanNET patients and tumour tissue alongside tissue with 

matched clinical data from Italy, where we have an active collaboration with Prof. 

Aldo Scarpa, the Head of Department of Pathology and Diagnostics at University of 

Verona and the Director of the Centre of Applied Research on Cancer (ARC-NET) in 

pancreatic cancer. An additional cohort of PanNET samples with matched clinical data 

from King’s College Hospital, London will also be analysed. These datasets will 

enable us to assess the validity of the PanNETassigner signature in a large well 

annotated clinical dataset of NET patients in 3 high volume tertiary centres. This is 
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with a view to establish if the signature can be used to stratify PanNET patients for 

prognosis and potentially to guide treatment. Furthermore, we will assess the same 

molecular classification in non-pancreatic GEP-NETs (stomach and bowel) to 

establish if these tumours can be divided into similar molecular subtypes, which will 

be novel.  

We hope that results from this study may promote the implementation of a more 

selective therapeutic approach to patients with PanNET through the acquisition of 

useful information on the biology of PanNET using the PanNETassigner (gene, miR 

and mutation) signatures and the development of biomarker assays, which predict 

prognosis and response to treatment.  

4. Study design 

This is a retrospective translational tissue collection study. The study will utilise an 

existing clinical database of RMH patients treated for GEP-NETs over the last 10 

years Tissue will be collected for these 255 patients and this dataset will then be 

combined with a dataset of 200 new PanNET samples from Italy and 350 PanNET 

samples from King’s College Hospital. The combined dataset (n=627 PanNET 

samples and n=178 non-pancreatic GEP-NET samples) will then be used to answer the 

primary and secondary endpoints. 

 

4.1 Inclusion criteria 

       Patients with: 

• Histological diagnosis of GEP-NET with known site of disease origin 

(RMH/University of Verona/King’s College Hospital Cohorts) 

• Tissue sample available 

• Matched Clinical data available 

4.2 Exclusion criteria 

Patients with: 

• Other primary cancer at or before diagnosis 

• All treatment received elsewhere, other than RMH/University of Verona/King’s 
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5. Study endpoints 

5.1 Primary endpoint 

Overall survival (OS), defined as time from the date of diagnosis to death of any 

cause, according to PanNET molecular subtype attributed by the PanNETassigner 

signature. 

      5.2 Secondary Endpoints  

 1. OS by grade and investigate the combined model of grade and molecular 

subtype to predict prognosis.  

2. OS according to PanNET molecular subtype in non-pancreatic GEP-NETs. 

 3.OS according to different treatment modalities and molecular subtype.  

 

 

6. Statistical consideration 

6.1 Sample size 

The sample size is limited by the number of patients who have been treated for 

GEP-NETs at the Royal Marsden Hospital,the University of Verona and at King’s 

College Hospital and for whom tissue is available for molecular analyses. We are 

expecting to retrieve tissue from approximately 627 PanNET samples and 178 

non-pancreatic GEP-NET samples.  

The distribution of the molecular subtypes is currently unknown but if we assume 

approximately equal distribution and a 2 year OS of around 57% (based on 

PanNET patient data  from the RMH clinical database) across all molecular 

subtypes and then further assume a difference in OS around this, then with 627 

PPanNET samples and:  

• 80% power 

• 2-sided 1.5% significance level (based on 3 tests, subtype  1v2, 1v3 and 2v3, 

standard p-value of 0.05 divided by 3 to account for this), 

we can detect a difference of at least 16% (or more) in 2 year OS from 38% to 

54% (HR = 0.64) between any 2 molecular subtypes (nQuery software- log-rank 

test for survival). A 16% difference is felt to be reasonable as according to 
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published data there is a 45% difference in 5 year survival between grade 2 and 

grade 3 GEP-NET (Ramage JK, 2012).  

 

Even after allowing for a 40% loss of tissue (n=~376) we can still detect a 

difference of 22% in 2 year OS from 38% to 60% (HR = 0.53) between any 2 

molecular subtypes.  

 

Similarly, in the non-pancreatic samples (GEP-NET, n=178), with 80% power and 

2-sided 1.5% significance level, we can detect a difference of at least 32% (or 

more) in 2 year OS from 38% to 70% (HR = 0.37) between any 2 molecular 

subtypes (nQuery software- log-rank test for survival). 

 

6.2 Statistical analysis: 

Due to the anticipated low number of events and patients all results will be 

interpreted with caution and with hypothesis-generating intention. A formal 

Statistical Analysis Plan (SAP) will be drafted and approved prior to any analysis. 

 Primary Endpoint 

The survival distributions of molecular subtypes will be estimated using the 

Kaplan-Meier method. Groups will be compared using Cox regression model.  

 

 Secondary Endpoint 1 

Cox proportional hazards models will explore the independent prognostic value of 

grade and subsequently in a multivariable model we will investigate grade and 

molecular subtype in combination. This analysis may adjust for other known pre-

defined prognostic factors. The proportionality assumption of the Cox model will 

be tested with Schoenfeld residuals.  

 

 Secondary Endpoint 2  

To explore OS according to PanNET molecular subtype in non-pancreatic GEP-

NETs. It is known that PanNET clinical characteristics are similar to those of the 

other GEP-NETs. Hence, in this objective we will use the 178 non-pancreatic 

GEP-NETs to evaluate if our molecular PanNET subtypes are applicable in non-

pancreatic GEP-NETs. The Kaplan-Meier method will be used to present the 
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survival estimates whilst Cox regression model will be used to compare the 

survival rates between groups. 

 

Secondary Endpoint 3 

PanNET samples from the RMH dataset will be used to test well-defined 

PanNETassigner gene and miR signatures from our previous study (Sadanandam 

et al., 2015; Cancer Discovery, under revision) with IHC markers using Cox 

regression analysis. 

 Secondary Endpoint 4 

Interaction tests will be used to investigate whether there was a differential 

treatment effect within molecular subtype defined subgroups. Again, Cox 

proportional hazards models will be used for this multivariable analysis which may 

adjust for pre-defined prognostic factors.  

 

 

7 Study procedure and assessments 

7.1 Collection and storage of tissue 

Tissue collected from the University of Verona, by Prof. Scarpa’s group, is already 

available at the Royal Marsden  NHS Foundation Trust for analysis (n=200 

PanNET). 

We will locate and retrieve the remaining samples for the patients from the Royal 

Marsden database (n=77 PanNET, n=178 non-pancreatic GEP-NET). 

We will locate and retrieve the samples for the King’s College Cohort with our 

collaborators at King’s College Hospital (n=350), who will also provide matched 

clinical data.  

Formalin-fixed, paraffin-embedded (FFPE) tissues from PanNETs and GEP-NETs 

will be reviewed for quality and tumour content before conducting the analysis. 

 

7.2 Molecular analyses 

The following procedures will be followed to perform the analysis of gene and 

miR expression in the study population. We will use nCounter assay (Nanostring 
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Technologies) of the matched patient samples. These will be subjected to 

computational subtype identification methods as described below. For the purpose 

of molecular subtyping a minimal sample size of 63 was estimated using pilot 

PanNETassigner gene profile data from 86 PanNET samples. Since a gene is either 

differentially expressed or not, we used a method that assumes that each of these 

tests has a Bernoulli distribution. The statistical power was set at 0.8 and the false 

discovery rate at 5%. The subtypes identified from gene and miR profiles will be 

reconciled using different sample enrichment analysis methods developed by us 

including our published hypergeometric test (Sadanandam A, 2014) and other 

methods such as frequency-distance metrics and prototype vector (Eason and 

Sadanandam, unpublished).  

Procedures including but not limited to the following will be conducted to perform 

the analysis of the human DNA samples, which will be analysed with a panel 

targeting all coding sequences of MEN1, ATRX, DAXX, PTEN, TSC2 and ATM. 

DNA will be prepared from human tumour tissue after neoplastic cell enrichment 

to about 70%. Next-generation targeted sequencing will be performed using an Ion 

AmpliSeq custom panel (Life Technologies) and Ion Torrent Personal Genome 

Machine (PGM, Life Technologies). Data analysis will be done using the Torrent 

Suite Software v.3.6 (Life Technologies). This analysis will assign each sample to 

a particular molecular subtype.  

PanNET samples from the RMH dataset will also be used to test well-defined 

PanNETassigner gene and miR signatures from our previous study (Sadanandam 

A, 2015; Cancer Discovery, under revision) using nCounter platform (Nanostring 

Technology; gene and miR all in one assay), RT-PCR (<10 genes or miRs), and  

immunohistochemistry (IHC for 4 selected protein markers). We have previously 

published a proof-of-concept RT-PCR and IHC assays for colorectal cancer 

subtyping (Sadanandam A, 2013). Moreover, we have a dedicated nCounter 

analysis system available in CMP (shared with Dr Valeri lab, ICR). For analysing 

the nCounter assay data (including 50 genes and 30 miRs), technical normalization 

will be performed using the synthetic positive controls to adjust the counts for each 

gene in that assay after performing the quality controls using nSolver analysis 

software. Then biological normalization will be performed to correct for 

differences in sample abundances. Each sample will be normalized to the 

geometric mean of the top 20 most highly expressed genes. Student t-test will be 

used on normalized counts to calculate statistical significances of pair-wise 

comparisons. R statistical computing (http://www.r-project.org) will be used for all 
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the calculations. RNA isolation and real-time RT-PCR using specific primers 

(already designed and optimised) for the biomarkers will be performed as 

described (Sadanandam A, 2014). For classification purpose using RT-PCR a 

standard curve using linearized plasmid containing the target sequence will be 

created for each gene or miR expression (Sadanandam A, 2014). Finally, the gene-

specific copy number will be calculated according to the standard curve followed 

by normalization and mean-centring of the data to assign each sample to a subtype 

as described (Sadanandam A, 2014). We will also test the use of up to 8 house-

keeping genes for normalization. We will perform IHC using a selected set of 

validated antibodies as described in our previous publication (Collisson EA, 2011). 

The resulting sample classifications from these analyses will then be compared to 

see concordance in classification using different methods. The significance of 

these classifications will be tested using Chi-Squared statistical test.  

Targeted sequencing will be done using the facilities from the University of 

Verona, Italy, as they have an established protocol. We will also involve 

pathologists from Italy and from Germany, who are already working on the GEP-

NET subtypes and grades. 

Analyses will be performed at the Royal Marsden and the institute of Cancer 

Research. However, some of the analyses may involve researchers outside the 

Royal Marsden and the Institute of Cancer Research including workers in 

commercial companies, or other health and research organizations, but this will be 

on the understanding that the sample is anonymised (see section 9 and 10)  

 

8 Reporting 

8.1 Annual reporting to REC 

The Ethics Committee will be notified of all projects receiving tissue and data 

from the tissue bank. 

8.2 Quality assurance/audit 

Systems of quality assurance, including all elements described in this protocol will 

be implemented. Quality control is applied to each stage of data handling to ensure 

that data are accurate, reliable and processed correctly. All data and documentation 

related to this study will be available for GCP audit and inspection by competent 

authorities. All research staff will assist in all aspects of audit/inspection 
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9 Confidentiality & Data Handling 

This trial should be conducted according to the approved protocol and its amendments, 

in accordance with The Medicines for Human Use (Clinical Trials) Regulations 2004 

as amended, the Research Governance Framework for Health and Social Care and the 

principles of GCP.  

In this study anonymisation will be carried out by a third party (not directly involved 

in this translational research) who will access the trial database and allocate a trial 

number for tissue samples which can be linked with a trial number for patient 

outcome, all patient identifiers will be removed. Tissue samples will be coded on 

entry to the study so that in all circumstances researchers carrying out the analysis 

will not have access to details that identify the patient and will see all data in an 

anonymised form.  

Data will be collected and maintained according to ICH-GCP standards and entered 

into the study password protected CRS Web database where it will be stored. Source 

documents will be maintained for 5 years and will be available for inspection by 

authorised staff including the Chief Investigator, Study Coordinator, and Statistician. 

Source documents will be made available if requested for monitoring and audit 

purposes to the Ethics and Research and Development departments and for inspection 

by regulatory bodies.  

 

10 Informed consent 

In this study the data & tissue will be link-anonymised and all analyses will be 

performed on archived diagnostic tissue. The Human Tissue Authority (HTA) code of 

practice for consent states that if the tissue is anonymised then tissue taken from 

living patients that does not have consent for future research may be used in ethically 

approved research projects without the patient’s consent. Hence we would not 

routinely seek specific consent for the purpose of this study. (Reference: HTA: Code 

of Practice 1 on Consent, from paragraph 127 to 129). 

 

11 Sample labelling, storage and destruction 

In order to protect patient identity all samples will not be labelled with any 

information that may lead to the direct identification of the patient concerned, 

including patients name, date of birth, or National Health Service (NHS) or hospital 
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number. Instead, tissue specimens from each patient will be labelled with the study 

name, the patient’s study number (assigned at registration) and initials. 

Tissue samples will be stored indefinitely in secure facilities at the RMH. However, 

the patient retains the right to have the sample material returned or destroyed at any 

time. 

The sponsor will be the exclusive owner of any data, discoveries, or derivative 

materials from the sample materials and is responsible, via the chief investigator, for 

the destruction of the sample(s) at the request of the research patient. 

  

12 Use of information 

All unpublished information relating to this study is considered confidential. 

 

13 Publication 

The investigators will co-ordinate publication strategies, presentations and peer 

review publication. 

 

14 Trial management group 

The role of the Trial Management Group (TMG) is to monitor all the aspects of the 

conduct and progress of the study, ensure that the protocol is adhered to. 

The TMG will develop and approve the molecular analysis plan 
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15 Amendments 

 
 
Changes from 
v1 to v2 
 

  

PAGE NUMBER V1 V2 
 
1 
 

 
 

 
Trial Team updated to include Sijy Pillai, Angela 
Gillbanks, Prof Aldo Scarpa and Dr Rajaventhan 
Srirajaskanthan 

4  Number of trial centres changed from 1 to 2 with 
the addition of King’s College Hospital 
Study duration extended to July 2020 

5-16  Throughout protocol updated to reflect the 
addition of a further 150 patient samples from the 
Verona Cohort 

5-16  Throughout protocol updated to reflect the 
addition of approximately a further 350 patient 
samples from the King’s College Hospital cohort 

12  Inclusion criteria updated to allow patients treated 
over 10 years ago to be included 
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Appendix 3 

Appendix 3.1 Supplementary Table 3.1 228 Gene Panel for PanNETassigner 

Nanostring Assay 

Original Gene Panel 
selected from 
PanNETassigner 
Paper 

Panel with genes 
removed after 
BLAST analysis 

Final Panel with 
housekeeping 
(highlighted blue) 

A1CF A1CF A1CF 

ABI3BP ABI3BP ABI3BP 

ACAD9 ACAD9 ACAD9 

ACADSB ACADSB ACADSB 

ACE ACE ACE 

ACVR1B ACVR1B ACVR1B 

ADAM28 ADAM28 ADAM28 

ADAMTS2 ADAMTS2 ADAMTS2 

ADAMTS7 ADAMTS7 ADAMTS7 

ADM ADM ADM 

AFG3L1 AFG3L1 AFG3L1 

AKR1C4 AKR1C4 AKR1C4 

ALDH1A1 ALDH1A1 ALDH1A1 

ANGPTL3 ANGPTL3 ANGPTL3 

APLP1 APOH APOH 

APOH AQP8 AQP8 

AQP8 ARRDC4 ARRDC4 

ARRDC4 BTC BTC 

ATHL1 C19orf77 C19orf77 

BCAT1 C20orf46 C20orf46 

BID C7orf68 C7orf68 

BTC CAPN13 CAPN13 

C19orf77 CAPNS1 CAPNS1 

C20orf46 CASR CASR 

C7orf68 CDS1 CDS1 

CADPS CEACAM1 CEACAM1 

CAPN13 CELA1 CELA1 

CAPNS1 CHI3L2 CHI3L2 

CASP1 CHST1 CHST1 

CASR CHST8 CHST8 

CDS1 CKS2 CKS2 

CEACAM1 CLCA1 CLCA1 

CELA1 CLDN1 CLDN1 

CHI3L2 CLDN10 CLDN10 

CHST1 CLDN11 CLDN11 

CHST8 CLPS CLPS 
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CKS2 CNPY2 CNPY2 

CLCA1 COL1A2 COL1A2 

CLDN1 COL5A2 COL5A2 

CLDN10 COL8A1 COL8A1 

CLDN11 COPE COPE 

CLPS CPA1 CPA1 

CNPY2 CPA2 CPA2 

COL1A2 CRYBA2 CRYBA2 

COL5A2 CTRC CTRC 

COL8A1 CTRL CTRL 

COPE CXCR4 CXCR4 

CPA1 CXCR7 CXCR7 

CPA2 CYP4F3 CYP4F3 

CRYBA2 DAPL1 DAPL1 

CSDA DEFB1 DEFB1 

CTRB1 DLL1 DLL1 

CTRC EFNA1 EFNA1 

CTRL EGFR EGFR 

CUZD1 EGLN3 EGLN3 

CXCR4 ELMO1 ELMO1 

CXCR7 ELSPBP1 ELSPBP1 

CYP4F3 ENC1 ENC1 

DAPL1 ENTPD3 ENTPD3 

DEFB1 ERBB3 ERBB3 

DLL1 F10 F10 

EFNA1 F12 F12 

EGFR F7 F7 

EGLN3 FAM19A5 FAM19A5 

ELMO1 FGB FGB 

ELSPBP1 FGD1 FGD1 

ENC1 FKBP11 FKBP11 

ENTPD3 FMNL1 FMNL1 

ERBB3 FOXO4 FOXO4 

F10 GAL3ST4 GAL3ST4 

F12 GATM GATM 

F7 GCGR GCGR 

FAM19A5 GLP1R GLP1R 

FCGR1A GLRA2 GLRA2 

FGB GLS GLS 

FGD1 GP2 GP2 

FKBP11 GRM5 GRM5 

FMNL1 GRSF1 GRSF1 

FOXO4 GUCA1C GUCA1C 

GAL3ST4 HAO1 HAO1 

GATM HGD HGD 

GCGR HR HR 

GLP1R HSD11B2 HSD11B2 
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GLRA2 IDS IDS 

GLS IFI44 IFI44 

GP2 IL18R1 IL18R1 

GRM5 IL20RA IL20RA 

GRSF1 IL22RA1 IL22RA1 

GUCA1C IMPA2 IMPA2 

HAO1 INS INS 

HERC5 IP6K2 IP6K2 

HGD KIT KIT 

HR KLK4 KLK4 

HSD11B2 KLK8 KLK8 

IDS LEF1 LEF1 

IFI44 LGALS2 LGALS2 

IL18R1 LGALS4 LGALS4 

IL20RA LOXL4 LOXL4 

IL22RA1 LRAT LRAT 

IMPA2 MAFB MAFB 

INPP5F MAP3K14 MAP3K14 

INS MASP2 MASP2 

IP6K2 MBP MBP 

KIT MIA2 MIA2 

KLK4 MLN MLN 

KLK8 MMP1 MMP1 

LEF1 MNX1 MNX1 

LGALS2 MOBKL1A MOBKL1A 

LGALS4 MX2 MX2 

LOXL4 MXRA5 MXRA5 

LRAT NAAA NAAA 

MAFB NDC80 NDC80 

MAP3K14 NEFM NEFM 

MASP2 NEK6 NEK6 

MBP NETO2 NETO2 

MIA2 NUDT5 NUDT5 

MLN NUPR1 NUPR1 

MMP1 P2RX1 P2RX1 

MNX1 PAFAH1B3 PAFAH1B3 

MOBKL1A PDGFC PDGFC 

MTP18 PDIA2 PDIA2 

MX2 PEMT PEMT 

MXRA5 PFKFB2 PFKFB2 

NAAA PFKFB3 PFKFB3 

NDC80 PLA1A PLA1A 

NEFM PLCE1 PLCE1 

NEK6 PLIN3 PLIN3 

NETO2 PLXDC1 PLXDC1 

NUDT5 PMEPA1 PMEPA1 

NUPR1 PMM1 PMM1 
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P2RX1 PNLIP PNLIP 

PAFAH1B3 PNLIPRP1 PNLIPRP1 

PDE4DIP PNLIPRP2 PNLIPRP2 

PDGFC POSTN POSTN 

PDIA2 PPEF1 PPEF1 

PEMT PRLR PRLR 

PFKFB2 PRSS22 PRSS22 

PFKFB3 PRSS8 PRSS8 

PIF1 PSMB9 PSMB9 

PLA1A PTPLA PTPLA 

PLCE1 PVRL4 PVRL4 

PLIN3 RAB17 RAB17 

PLXDC1 RAB7L1 RAB7L1 

PMEPA1 RARRES2 RARRES2 

PMM1 RBP4 RBP4 

PNLIP RBPJL RBPJL 

PNLIPRP1 REG1B REG1B 

PNLIPRP2 ROBO3 ROBO3 

POSTN SCD5 SCD5 

PPEF1 SERPINA1 SERPINA1 

PRLR SERPINA3 SERPINA3 

PRSS1 SERPIND1 SERPIND1 

PRSS2 SERPINI2 SERPINI2 

PRSS22 SH3BP4 SH3BP4 

PRSS3 SLC12A7 SLC12A7 

PRSS8 SLC16A3 SLC16A3 

PSMB9 SLC2A1 SLC2A1 

PTPLA SLC30A2 SLC30A2 

PTTG1 SLC7A2 SLC7A2 

PVRL4 SLC7A8 SLC7A8 

RAB17 SMARCA1 SMARCA1 

RAB20 SMEK1 SMEK1 

RAB7L1 SMO SMO 

RARRES2 SMOC2 SMOC2 

RBP4 SPAG4 SPAG4 

RBPJL SRGAP3 SRGAP3 

REG1B SSX2IP SSX2IP 

ROBO3 STEAP3 STEAP3 

SCD5 SUSD5 SUSD5 

SERPINA1 TACSTD2 TACSTD2 

SERPINA3 TAPBPL TAPBPL 

SERPIND1 TBC1D24 TBC1D24 

SERPINI2 TECR TECR 

SH3BP4 TFF1 TFF1 

SLC12A7 TGFBR3 TGFBR3 

SLC16A3 TGIF1 TGIF1 

SLC2A1 THBS2 THBS2 
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SLC30A2 TLE2 TLE2 

SLC7A2 TLR3 TLR3 

SLC7A8 TM4SF1 TM4SF1 

SLC8A2 TM4SF4 TM4SF4 

SMARCA1 TM4SF5 TM4SF5 

SMEK1 TMEM176B TMEM176B 

SMO TMEM181 TMEM181 

SMOC2 TMEM90B TMEM90B 

SPAG4 TMPRSS15 TMPRSS15 

SRGAP3 TMPRSS4 TMPRSS4 

SSX2IP TNFAIP6 TNFAIP6 

STEAP1 TOP2A TOP2A 

STEAP3 TSC2 TSC2 

SUSD5 TSHZ3 TSHZ3 

TACSTD2 TWIST1 TWIST1 

TAPBPL TYMS TYMS 

TBC1D24 USP29 USP29 

TECR VEGFC VEGFC 

TFF1 VIPR2 VIPR2 

TGFBR3 WNT4 WNT4 

TGIF1 ZNF521 ZNF521 

THBS2   AGK 

TLE2   AMMECR1L 

TLR3   CC2D1B 

TM4SF1   CNOT10 

TM4SF4   CNOT4 

TM4SF5   COG7 

TMEM176B   DDX50 

TMEM181   DHX16 

TMEM51   DNAJC14 

TMEM90B   EDC3 

TMPRSS15   EIF2B4 

TMPRSS4   ERCC3 

TNFAIP6   FCF1 

TOP2A   GPATCH3 

TSC2   HDAC3 

TSHZ3   MRPS5 

TWIST1   MTMR14 

TYMS   NOL7 

USP29   NUBP1 

VEGFC   PRPF38A 

VIPR2   SAP130 

WNT4   SF3A3 

ZNF521   TLK2 

    TMUB2 

    TRIM39 

    USP39 
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    ZC3H14 

    ZKSCAN5 

    ZNF143 

    ZNF346 
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Appendix 3.2 Supplementary Table 3.2 Refined 78 Gene PanNETassigner 

Panel and Centroids 

 

Gene ID Insulinoma-
like 

Intermediate MLP-1 MLP-2 

CLPS 1.7291 -0.6349 -0.5751 -0.5395 

CTRC 1.7024 -0.6376 -0.5535 -0.519 

CPA1 1.692 -0.6985 -0.5317 -0.3949 

CPA2 1.6891 -0.6103 -0.5477 -0.5661 

PNLIP 1.6669 -0.6912 -0.5098 -0.3992 

PNLIPRP1 1.6271 -0.6449 -0.4872 -0.4681 

CTRL 1.6233 -0.719 -0.4651 -0.3252 

GP2 1.4843 -0.7414 -0.3024 -0.2604 

PNLIPRP2 1.4047 -0.7112 -0.3687 -0.1255 

PDIA2 1.39 -0.6192 -0.3686 -0.3066 

REG1B 1.3047 -0.3919 -0.3827 -0.6619 

SERPINI2 1.2992 -0.4979 -0.4648 -0.3196 

SERPIND1 -0.0027 0.8235 -0.5206 -1.1861 

RBP4 0.2889 -0.5673 -0.2673 1.1367 

CLDN10 1.1139 -0.4771 -0.2451 -0.3489 

USP29 1.0346 -0.5693 -0.4623 0.2389 

TFF1 0.0031 -0.4046 0.9858 -0.3037 

EGLN3 -0.299 -0.1904 0.9789 -0.3076 

GLP1R 0.3482 -0.5853 -0.1588 0.9546 

CAPN13 0.1531 -0.3075 -0.374 0.8988 

GATM 0.8948 -0.3308 -0.1407 -0.4641 

SLC30A2 0.8837 -0.4404 -0.4117 0.123 

LOXL4 0.2272 0.5328 -0.5412 -0.8694 

HAO1 0.0719 0.7249 -0.8575 -0.6741 

AQP8 0.8541 -0.0756 -0.4266 -0.6199 

SLC16A3 -0.131 -0.3289 0.836 -0.0851 

INS 0.8221 -0.3271 -0.3037 -0.164 

SERPINA3 0.8209 -0.3938 0.1213 -0.5292 

RBPJL 0.7974 2.00E-04 -0.5601 -0.5395 

TACSTD2 0.7854 -0.4172 0.0852 -0.3797 

DAPL1 0.3791 -0.5345 -0.1134 0.74 

P2RX1 0.7278 -0.3267 -0.2653 -0.0676 

LRAT -0.0986 0.5567 -0.3045 -0.7115 

CYP4F3 -0.3759 0.6789 -0.4276 -0.4094 

SERPINA1 -0.251 0.5052 -0.0459 -0.6781 

ADM -0.1361 -0.2008 0.6746 -0.1651 

APOH -0.1671 0.6489 -0.4204 -0.6705 

LGALS2 0.6624 -0.164 -0.2861 -0.3024 

GLS -0.0749 0.5494 -0.3771 -0.6436 
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Gene ID Insulinoma-
like 

Intermediate MLP-1 MLP-2 

PFKFB3 -0.0387 -0.21 0.6416 -0.2534 

CRYBA2 -0.0123 0.5533 -0.6322 -0.439 

PRSS8 0.4144 0.0454 -0.0892 -0.6249 

ANGPTL3 -0.0804 0.6109 -0.5034 -0.6184 

IMPA2 0.3784 -0.1409 0.2876 -0.6144 

ACVR1B -6.00E-04 -0.3588 0.1591 0.6016 

SLC7A2 0.0949 0.4198 -0.592 -0.356 

MAFB 0.1145 0.5008 -0.5857 -0.5727 

ALDH1A1 -0.1662 0.5828 -0.419 -0.5275 

RARRES2 0.5732 -0.3157 -0.0524 -0.1137 

KLK4 0.5702 -0.2726 -0.3365 0.1396 

MASP2 0.5584 -0.2663 -0.389 0.2073 

FKBP11 -0.0429 0.474 -0.3653 -0.54 

GUCA1C 0.4919 0.0412 -0.2562 -0.5317 

SLC2A1 -0.1256 -0.1196 0.5261 -0.1807 

SRGAP3 -0.0512 -0.1841 -0.0242 0.5143 

WNT4 -0.0595 0.4323 -0.2939 -0.5092 

CELA1 0.5017 -0.3757 -0.2567 0.3755 

TLR3 0.1089 -0.2092 0.4951 -0.3031 

IL18R1 -0.1315 0.3657 -0.0974 -0.4899 

MOBKL1A -0.1914 0.4872 -0.4285 -0.2662 

ROBO3 0.4868 -0.3831 0.0197 0.0801 

EGFR 0.1232 -0.3177 0.4863 -0.0744 

STEAP3 0.4806 -0.4499 -0.0554 0.3282 

VEGFC -0.1643 0.4374 -0.2474 -0.4165 

SMO 0.3166 -0.136 0.2099 -0.4367 

NUPR1 0.3869 -0.3347 0.43 -0.3711 

PMEPA1 0.3344 -0.3983 0.4272 -0.1472 

SLC7A8 0.0439 0.3496 -0.4165 -0.3356 

SH3BP4 0.2141 -0.4081 0.2954 0.2178 

SMOC2 0.2505 -0.3794 0.3959 -0.0229 

ARRDC4 -0.053 0.3601 -0.3912 -0.2415 

BTC -0.1347 0.3799 -0.3153 -0.2524 

TGIF1 0.2655 -0.2955 0.3788 -0.2105 

SSX2IP -0.0643 0.3003 -0.3327 -0.1628 

PDGFC 0.3183 -0.2814 0.3275 -0.2602 

TM4SF1 0.1945 -0.27 0.3088 -0.0739 

SMARCA1 -0.0349 0.2789 -0.3038 -0.1953 

TMEM181 0.1668 -0.2359 0.0081 0.257 
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Appendix 3.3 Supplementary Table 3.3 RM Cohort FFPE Sample Details 

 

Sample ID Original conc (ng/µL) Source of Tissue Date of Sample 78 Gene Assay Subtype 
1242 P 5.76 Biopsy (pancreas) 21/05/2014 Completed Intermediate 
1068 5.92 Biopsy (pancreas) 17/06/2005 Failed QC   
1225 7.46 Biopsy  (pancreas) 28/06/2013 Completed MLP-1 
1181 35.2 Biopsy  (pancreas) 01/03/2011 Completed Insulinoma-like 
1025 50.2 Resection 28/07/2007 Completed Intermediate 
1141 104 Resection 18/03/2009 Completed Intermediate 
1161 104 Resection 03/07/2010 Completed Insulinoma-like 
1148 140 Resection 25/01/2010 Failed QC   
1078 212 Resection 25/10/2004 Completed Insulinoma-like 
1279 220 Resection 04/06/2007 Completed MLP-1 
1138 316 Resection 06/02/2013 Completed Insulinoma-like 
1024 348 Resection 21/05/2008 Completed Intermediate 
1185 400 Resection 27/04/2011 Completed Insulinoma-like 
1137 480 Resection 12/03/2008 Completed Insulinoma-like 
1242 M Out of range Biopsy (sub hepatic mass) 21/05/2014     
1272 Out of range Biopsy (liver) 30/09/2005     
1285 Out of range Biopsy (liver) 15/01/2008     
1315 Out of range Biopsy (liver) 20/08/2010     
1174 Out of range Biopsy (liver) 02/09/2010     
1188 Out of range Biopsy (liver) 05/07/2011     
1196 Out of range Biopsy (liver) 21/12/2011     
1139 P Out of range Biopsy (pancreas) 09/03/2012     
1139 M Out of range Biopsy (liver) 09/03/2012     
1053 Out of range Biopsy (liver) 29/09/2005     
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Sample ID Original conc (ng/µL) Source of Tissue Date of Sample 78 Gene Assay Subtype 
1258 Out of range Biopsy (peritoneum) 27/05/2011     
1033 Out of range Biopsy (pancreas) 08/05/2007     
1169 Out of range Biopsy (liver) 26/08/2010     
1226 Out of range Biopsy (liver) 17/07/2013     
1235 Out of range Biopsy (spleen) 10/02/2014     
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Appendix 3.4 SEQTOR study Translational Project documents. 

 

ANNEX VI: SEQTOR SUB-STUDY 

PanNETassigner Molecular Subtypes Assay 

Version 1.0, 7th August 2018 

Sponsors:  Laboratory of Systems and Precision Cancer Medicine 

Division of Molecular Pathology 

The Institute of Cancer Research 

 

Institut Català d´Oncologia. 

Institut d'Investigació Biomèdica de Bellvitge (IDIBELL). 

Universitat de Barcelona (UB) 

  

Team Leader/Principal Investigator 
Anguraj Sadanandam 
Laboratory of Systems and Precision Cancer Medicine 
Division of Molecular Pathology 
The Institute of Cancer Research  
anguraj.sadanandam@icr.ac.uk  
 
Clinical Research Fellow 
Kate Young 
GI and Lymphoma Research Unit 
Royal Marsden Hospital  
Kate.young@rmh.nhs.uk 
 

Funding 

Funding is available for the first 40 samples from Anguraj Sadanandam’s 
laboratory at the Institute of Cancer Research. An application to an international 
funding organisation for the remaining samples is planned following this pilot 
study. 

Scientific Background 

Our lab previously defined three molecular subtypes in sporadic Pancreatic 
Neuroendocrine tumours (PanNETs) based on an integrated analysis of gene 
expression (221 genes), microRNA (30 miRs) and mutations (targeted mutational 
profiles of MEN1, DAXX/ATRX, TSC2, PTEN and ATM), collectively named the 
PanNETassigner signature51. The existence of three such subtypes was supported 
by Scarpa et al. who reported three similar transcriptomic subtypes using RNA-
sequencing29. 

The three PanNETassigner subtypes, Metastasis-like-primary (MLP), Insulinoma-
like and Intermediate, each have specific biology and clinical features as described 
in the figure below.  
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Figure 1. PanNETassigner Molecular Subtypes 

 

Grade 1/2 PanNETs are heterogeneous, associated with all three molecular 
subtypes, whereas Grade 3 tumours are predominantly associated with the MLP 
subtype. These observations suggest that subtyping using the PanNETassigner 
signature may facilitate patient stratification, potentially being able to select those 
Grade 1/2 patients falling into the MLP subtype, whose disease may behave more 
aggressively than would be expected according to grade alone.  

Indeed, as we presented at ENETS 2018, the PanNETassigner subtypes are 
prognostic211, with the MLP subtype being an independent predictor for a poor 
prognosis. As yet the predictive value of this assay has not been assessed.  

Based on our multi-omics PanNETassigner signature we have now developed a 
robust reproducible low cost PanNETassigner assay using the NanoStringTM 
platform to take forward to the clinic. Expression signatures have been used 
extensively in other tumour types, particularly breast cancer. The Prosigna test 
measures risk of recurrence122 and the breast cancer Genomic Grade Index 
predicts response to chemotherapy and separates subtypes of breast cancer123. 
The Breast Cancer Index (BCI) stratifies breast cancer patients into three risk 
groups and provides an assessment of tumour recurrence124. A similar index for 
GEP-NETs, to improve patient prognostication and classification and potentially to 
predict treatment response would be highly clinically relevant. The tissue and 
matched patient data from the SEQTOR study provide an opportunity to test the 
predictive value of the PanNETassigner assay for patients undergoing treatment 
with chemotherapy and everolimus. 
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Hypothesis 

The PanNETassigner molecular subtypes may be used to predict response to 
treatment with everolimus or streptozocin/5FU (STZ/5FU) chemotherapy in 
patients with grade 1 or 2 PanNETs. 

Study Design 

Schema 

 

Primary Objective 

To determine progression free survival according to PanNETassigner molecular 
subtype for first line treatment with STZ-5FU or everolimus 

Secondary Objectives 

To determine progression free survival according to PanNETassigner molecular 
subtype for second line treatment with STZ-5FU or everolimus 

To determine response rate according to PanNETassigner molecular subtype for 
first/ second line treatment with STZ-5FU or everolimus 

Exploratory Objectives 

Where tissue quantity and quality allows, to investigate further potential predictive 
or prognostic biomarkers using additional techniques including other high 
throughput genomic analyses and/or microarray  
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Methods 

Samples 
The PanNETassigner Molecular Subtypes Assay will be performed on the samples 
sent to Dr Aldo Scarpa (Annex IV: Tumor Block analysis sub-study of SEQTOR). 
Patients must have given their informed and written consent to donate their 
samples for this sub-study.  

Nucleic Acid Extraction and quality/quantity assessment 

Following histopathologist assessment, selected tissue sections/slides will 
undergo deparaffinization, macrodissection and processing (RecoverAllTM Total 
Nucleic Acid Isolation Kit AM1975 protocol). Quality and quantity of extracted RNA 
will be assessed using NanoDrop-2000 Spectrophotometer and Agilent RNA-6000 
Bioanalyzer systems respectively.  

NanoString probe development, process and analysis (PanNETassigner 

assay) 

We have selected a panel of genes for a NanoString ElementsTM assay based on 
our PanNETassigner signature51. Oligonucleotide probe pools will be created and 
hybridized to reporter/capture Tags and these Tags will be hybridized to the RNA 
target, according to the NanoString ElementsTM manual (version 2, Sept 2016) as 
previously described 136,137. Following hybridization, samples will be purified, 
orientated and immobilised in their cartridge using the nCounter Prep Station 
before being loaded into the Digital Analyser. The molecular barcodes will be 
counted and decoded, results stored as a Reporter Code Count (RCC) file. The 
RCC file may be analysed alongside the Reporter Library File (RLF) containing 
details of the custom probes and housekeeping genes selected.  

Statistics and Analysis 

Statistics 

A minimal sample size of 40 was estimated using pilot PanNETassigner gene 
profile data from 86 PanNET samples to classify given data into four PanNET 
subtypes – MLP-1, MLP-2, insulinoma and intermediate. Since a gene is either 
differentially expressed or not, we used a method that assumes that each of these 
tests has a Bernoulli distribution. The statistical power was set at 0.8 and the false 
discovery rate at 5%. 

nSolverTM analysis 

The nSolverTM software analysis package will be used to perform QC and 
normalisation of the expression data. QC steps included assessment of assay 
metrics (field of view counts/binding density), internal CodeSet controls (6 positive, 
8 negative controls to assess variations in expression level according to 
concentration and correct background noise respectively) and principal component 
analysis to assess batch effect. Following QC steps raw data will be normalised to 
housekeeping genes selected using the geNorm algorithm within nSolverTM. 
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Assignment of Molecular Subtype and Refinement of 228 gene NanoString 

Assay 

The normalised expression data will be log2 transformed and median centred. 
PanNETassigner subtypes will be assigned using Pearson correlation. 
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SEQTOR Translational Research Proposal Lay Summary 

PanNETassigner Molecular Subtypes Assay 

Pancreatic neuroendocrine tumours (PanNETs) are a rare group of tumours and 

their behaviour is highly variable. The SEQTOR study is trying to find out the best 

order in which to give two of the commonly used treatments for PanNETs, 

streptozotocin based chemotherapy and the mTOR inhibitor, everolimus. It would 

also be very helpful to be able to predict which patients are more likely to respond 

to which treatments but as yet this is not possible. 

The aim of our study is to evaluate a new test, the PanNETassigner assay. This 

test uses molecular technologies, looking at changes in RNA seen in tumour 

samples, to divide PanNET patients into different molecular subtypes.  We will use 

the PanNETassigner assay on tumour samples to divide patients from the 

SEQTOR study into the different molecular subtypes.  

The PanNETassigner assay has been developed by Dr Sadanandam’s lab at the 

Institute for Cancer Research in Sutton (UK). If you consent to take part the 

tumour tissue you have already provided for the SEQTOR study will be sent from 

the Centre for Applied Research on Cancer in Verona (Italy) to the Institute of 

Cancer Research in Sutton (UK). It will not be possible to directly identify you from 

any information included with this sample as the samples will be anonymised.  

We will combine the molecular subtype results from the PanNETassigner assay 

test with the clinical data from the SEQTOR study to see if this test can be used to 

predict which patients are more likely to respond to which treatments. We will also 

assess if the molecular subtypes can predict how aggressively disease may 

behave and if the subtypes can predict overall prognosis. 

If successful the tests assessed in this project could be taken forward into the 

clinic and, combined with current approaches, improve the prediction of prognosis 

for PanNET patients and help guide treatment decisions. 
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Appendix 4 

Appendix 4.1 Supplementary Table 4.1 132 differentially expressed immune 

genes according to PanNETassigner subtype, classified according to 

subtype with highest expression 

 

Genes Subtype 

TNFRSF11A Insulinoma-like 
STAT2 Insulinoma-like 
THBD Insulinoma-like 
GTF3C1 Insulinoma-like 
NEFL Insulinoma-like 
ALCAM Insulinoma-like 
IFIT1 Insulinoma-like 
ENG Insulinoma-like 
TFEB Insulinoma-like 
CCND3 Insulinoma-like 
STAT4 Insulinoma-like 
MNX1 Insulinoma-like 

 

Genes Subtype 

BID Intermediate 
TNFRSF1A Intermediate 
ITGA2 Intermediate 
CD55 Intermediate 
TNFSF10 Intermediate 
LAMP2 Intermediate 
IL18R1 Intermediate 
VEGFC Intermediate 
CD63 Intermediate 
C8B Intermediate 
CEACAM1 Intermediate 
CD46 Intermediate 
IL13RA2 Intermediate 
MRC1 Intermediate 
CD164 Intermediate 
CCL13 Intermediate 
S100A7 Intermediate 
CCL26 Intermediate 
ARG1 Intermediate 
IL6R Intermediate 
CLU Intermediate 
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Genes Subtype 

SPP1 MLP-1 
CXCR4 MLP-1 
PDGFC MLP-1 
LIF MLP-1 
FCGR1A MLP-1 
ADA MLP-1 
TLR3 MLP-1 
KIT MLP-1 
LY96 MLP-1 
LAG3 MLP-1 
TNFSF13B MLP-1 
COL3A1 MLP-1 
CDK1 MLP-1 
IFI16 MLP-1 
ENTPD1 MLP-1 
CCRL2 MLP-1 
PSMB9 MLP-1 
CASP1 MLP-1 
PBK MLP-1 
MAP4K2 MLP-1 
CTSS MLP-1 
ISG15 MLP-1 
C1QA MLP-1 
NCF4 MLP-1 
THBS1 MLP-1 
IL8 MLP-1 
ANXA1 MLP-1 
TLR2 MLP-1 
DUSP6 MLP-1 
TREM2 MLP-1 
PSMB8 MLP-1 
FCER1G MLP-1 
TREM1 MLP-1 
FAS MLP-1 
CCL5 MLP-1 
FN1 MLP-1 
CASP10 MLP-1 
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Genes Subtype 

CCR7 MLP-1 
POU2AF1 MLP-1 
PTPRC MLP-1 
APOE MLP-1 
IL2RB MLP-1 
CFI MLP-1 
CTAG1B MLP-1 
MSR1 MLP-1 
BLNK MLP-1 
TLR7 MLP-1 
PYCARD MLP-1 
CCR5 MLP-1 
IL18 MLP-1 
PDCD1LG2 MLP-1 
PPARG MLP-1 
HLA-DPA1 MLP-1 
TLR4 MLP-1 
C1QB MLP-1 
TRAF6 MLP-1 
MCAM MLP-1 
CD53 MLP-1 
RIPK2 MLP-1 
GATA3 MLP-1 
PSMB10 MLP-1 
PDGFRB MLP-1 
CD274 MLP-1 
ITGA5 MLP-1 
IL10RA MLP-1 
CD58 MLP-1 
LCK MLP-1 
IFIT2 MLP-1 
CEACAM6 MLP-1 
MAP3K1 MLP-1 
DPP4 MLP-1 
IFNAR1 MLP-1 
DUSP4 MLP-1 
CLEC4A MLP-1 
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Genes Subtype 

HSD11B1 MLP-2 
C1S MLP-2 
C1R MLP-2 
CCL19 MLP-2 
NFATC2 MLP-2 
INPP5D MLP-2 
CXCL10 MLP-2 
LTK MLP-2 
IL15RA MLP-2 
F12 MLP-2 
IL13RA1 MLP-2 
ST6GAL1 MLP-2 
TXNIP MLP-2 
C4BPA MLP-2 
IL12A MLP-2 
ITK MLP-2 
MPPED1 MLP-2 
C8A MLP-2 
ICAM4 MLP-2 
C8G MLP-2 
PVR MLP-2 
C9 MLP-2 
CCL15 MLP-2 
NOD2 MLP-2 
CYLD MLP-2 
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Appendix 4.2 Supplementary Table 4.2 GSEA Report for MLP-1 using C7 

Gene Sets 

 

Gene Set Name 

FDR 
q-
value 

GSE3203_INFLUENZA_INF_VS_IFNB_TREATED_LN_BCELL_UP 0.007 
GSE9650_NAIVE_VS_EFF_CD8_TCELL_DN 0.007 
GSE3039_ALPHAALPHA_VS_ALPHABETA_CD8_TCELL_UP 0.008 
GSE35825_UNTREATED_VS_IFNA_STIM_MACROPHAGE_DN 0.008 
GSE3039_ALPHAALPHA_VS_ALPHABETA_CD8_TCELL_UP 0.008 
GSE35825_UNTREATED_VS_IFNA_STIM_MACROPHAGE_DN 0.008 
GSE18804_SPLEEN_MACROPHAGE_VS_COLON_TUMORAL_MACROPHAGE_UP 0.008 
GSE45739_NRAS_KO_VS_WT_UNSTIM_CD4_TCELL_UP 0.008 
GSE22935_WT_VS_MYD88_KO_MACROPHAGE_UP 0.008 
GSE14699_DELETIONAL_TOLERANCE_VS_ACTIVATED_CD8_TCELL_UP 0.008 
GSE29618_MONOCYTE_VS_PDC_UP 0.008 
GSE43955_TH0_VS_TGFB_IL6_TH17_ACT_CD4_TCELL_4H_UP 0.008 
GSE10325_CD4_TCELL_VS_MYELOID_DN 0.008 
GOLDRATH_NAIVE_VS_EFF_CD8_TCELL_DN 0.008 
GSE40685_TREG_VS_FOXP3_KO_TREG_PRECURSOR_DN 0.008 
GSE15930_STIM_VS_STIM_AND_IL-12_24H_CD8_T_CELL_UP 0.008 
GSE3982_NEUTROPHIL_VS_NKCELL_UP 0.008 
GSE6259_CD4_TCELL_VS_CD8_TCELL_UP 0.008 
GSE18804_SPLEEN_MACROPHAGE_VS_COLON_TUMORAL_MACROPHAGE_UP 0.008 
GSE45739_NRAS_KO_VS_WT_UNSTIM_CD4_TCELL_UP 0.008 
GSE22935_WT_VS_MYD88_KO_MACROPHAGE_UP 0.008 
GSE14699_DELETIONAL_TOLERANCE_VS_ACTIVATED_CD8_TCELL_UP 0.008 
GSE29618_MONOCYTE_VS_PDC_UP 0.008 
GSE43955_TH0_VS_TGFB_IL6_TH17_ACT_CD4_TCELL_4H_UP 0.008 
GSE10325_CD4_TCELL_VS_MYELOID_DN 0.008 
GOLDRATH_NAIVE_VS_EFF_CD8_TCELL_DN 0.008 
GSE40685_TREG_VS_FOXP3_KO_TREG_PRECURSOR_DN 0.008 
GSE15930_STIM_VS_STIM_AND_IL-12_24H_CD8_T_CELL_UP 0.008 
GSE3982_NEUTROPHIL_VS_NKCELL_UP 0.008 
GSE6259_CD4_TCELL_VS_CD8_TCELL_UP 0.008 
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Appendix 4.3 Supplementary Table 4.3 MMR status for RMH PanNET 

cohort (n=24) 

 
 

Pt trial 
ID 

PanNETassigner 
Subtype 

MSH2 MSH6 MLH1 PMS2 
Proficient 

or 
Deficient? 

(P/D) 

1226   (+) (+) (+) (+) P 

1078   (+) (+) (+) (+) P 

1024   (+) (+) (+) (+) P 

1137 Insulinoma (+) (-) (+) (+) D 

1138   (+) (+) (+) (+) P 

1148   (+) (+) (+) (+) P 

1161   (+) (+) (+) (+) P 

1185   (+) (+) (+) (+) P 

1235   (+) (+) (+) (+) P 

1242   (+) (+) (+) (+) P 

1242   (+) (+) (+) (+) P 

1258   (+) (+) (+) (+) P 

1272   (+) (+) (+) (+) P 

1315   (+) (+) (+) (+) P 

1025   (+) (+) (+) (+) P 

1033   (+) (+) (+) (+) P 

1068   (+) (+) (+) (+) P 

1141 Intermediate (+) (-) (+) (+) D 

1174   (+) (+) (+) (+) P 

1181   (+) (+) (+) (+) P 

1188   (+) (+) (+) (+) P 

1196   (+) (+) (+) (+) P 

1139   (+) (+) (+) (+) P 

1279   (+) (+) (+) (+) P 

 


