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A B S T R A C T

Sarcomas are a rare group of mesenchymal cancers comprising over 70 different histological subtypes. For the
majority of these diseases, the molecular understanding of the basis of their initiation and progression remains
unclear. As such, limited clinical progress in prognosis or therapeutic regimens have been made over the past few
decades. Proteomics techniques are being increasingly utilised in the field of sarcoma research. Proteomic re-
search efforts have thus far focused on histological subtype characterisation for the improvement of biological
understanding, as well as for the identification of candidate diagnostic, predictive, and prognostic biomarkers for
use in clinic. However, the field itself is in its infancy, and none of these proteomic research findings have been
translated into the clinic. In this review, we provide a brief overview of the proteomic strategies that have been
employed in sarcoma research. We evaluate key proteomic studies concerning several rare and ultra-rare sar-
coma subtypes including, gastrointestinal stromal tumours, osteosarcoma, liposarcoma, leiomyosarcoma, ma-
lignant rhabdoid tumours, Ewing sarcoma, myxofibrosarcoma, and alveolar soft part sarcoma. Consequently, we
illustrate how routine implementation of proteomics within sarcoma research, integration of proteomics with
other molecular profiling data, and incorporation of proteomics into clinical trial studies has the potential to
propel the biological and clinical understanding of this group of complex rare cancers moving forward.

1. Background

Soft tissue (STSs) and primary bone sarcomas are a group of cancers
originating from the malignant transformation of multipotent me-
senchymal stem cells. Sarcomas are rare accounting for less than 1% of
all adult cancer diagnoses made annually with primary malignant bone
tumours making up approximately 10% of all sarcoma diagnoses (1,2).
Despite this common cell of origin, sarcomas represent a heterogeneous
group of cancers, with over 70 different histological subtypes char-
acterised by diverse pathologies and genetic aberrations. This biological
heterogeneity is reflected clinically by notable variation in the natural
history of different sarcoma subtypes and variable patterns of response
to therapy (3). Accordingly, soft tissue and bone sarcoma diagnoses can
range from indolent and curable neoplasms to highly lethal tumours
with aggressive, metastatic and recurrent clinical phenotypes. The
mainstay of treatment of curative intent for localised sarcomas is en-bloc
surgical excision. However, in cases whereby anatomical considerations
make surgical excision unfeasible, and in the presence of metastases,
systemic chemotherapy or radiotherapy becomes necessary. Although
the primary bone malignancies Ewing sarcoma (ES) and osteosarcoma
are regarded as chemosensitive, many STS subtypes display intrinsic

resistance to these current systemic regimens (4–6). Moreover, identi-
fication of efficacious novel therapeutics is hampered by the rarity of
sarcomas, as well a “one size fits all” approach, which historically has
led to the recruitment of heterogeneous patient cohorts with multiple
sarcoma subtypes into clinical trials (7). Despite recent promising
clinical trials in targeted therapies in select STS subtypes, such as ce-
diranib in alveolar soft part sarcoma (ASPS), there remains an in-
complete understanding of the underlying molecular drivers for the
majority of sarcoma subtypes, and how these influence treatment re-
sponses (8). As such, sarcomas are diseases of unmet need both in terms
of inadequate biological understanding and lack of effective therapies
across all subtypes.

Since the completion of the human genome project, our under-
standing of the genetic basis driving cancer development has greatly
improved. In comparison, the human cancer proteome has remained
largely unexplored, and proteomic studies are few in number relative to
the abundance of genomic studies (9). This genomic-proteomic dis-
crepancy is acutely apparent in sarcomas, where proteomic studies have
focused mainly on the most common subtypes, and few studies can be
considered truly comprehensive. The lack of sarcoma proteomic studies
can largely be attributed to disease rarity; where an inherent lack of
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sample availability as well as low interest by pharmaceutical companies
for drug development has restricted progress. Despite these limitations,
the potential for proteomic exploration of rare diseases should not be
underestimated. Proteomic techniques employed for the assessment of
other cancers types have provided complementary and contrasting data
to their genomic counterparts. This has helped drive developments in
the molecular understanding of disease, for example identifying pro-
teomic subtypes associated with cancer behaviour, such as proliferation
and invasion, and generating more robust biomarkers when utilising
genomic, epigenomic and proteomic features, relative to biomarkers
comprising a single data type (10–13). Further to dissecting the mole-
cular pathology of sarcomas, proteomics also holds promise with re-
spect to biomarker discovery and new therapeutic target identification;
both of which are notably absent in the sarcoma field. Proteomic stu-
dies aimed at identifying candidate biomarkers often reveal valuable
protein identifiers for diagnosis, patient stratification, prognosis and
prediction of clinical course. As a result, these studies allow for im-
proved disease monitoring, and in turn, permit informed clinical deci-
sions to be made; driving more favourable clinical outcomes. Moreover,
proteins are the targets for a vast majority of therapeutics, and thus
identification of key proteins or protein modifications mediating sar-
coma progression, metastasis, and resistance to current treatments, can
reveal new avenues for therapy. Aside from direct clinical benefit, given
the functional role of proteins in regulating physiological and patho-
logical processes, proteomics provides critical biological insight to im-
prove our understanding of disease aetiology and progression (14).
Such improvements in the basic biological understanding of disease will
ultimately provide a solid foundation for accelerating new advances in
these rare cancers (Fig. 1).

Herein, we present a comprehensive review of proteomic

approaches employed within sarcoma research, and establish the cur-
rent status of proteomics in both rare and ultra rare sarcoma subtypes.
Further to this, we provide an outlook for the future of sarcoma pro-
teomics, highlighting current limitations within the field, and present
solutions for how these challenges may be overcome to facilitate rapid
adoption by the research community.

2. Overview of proteomic strategies

Proteomics describes the study of entire protein complement in a
system of interest; be it individual cellular components, or an entire
organism. Proteomics is not limited to the study of protein abundance,
but also involves analysis of protein regulation and activity. This in-
cludes, but is not limited to, the detection of protein isoforms, post-
translational modifications, and protein-protein interactions. Integrated
analysis of protein status in these multiple contexts provides un-
paralleled insight into the dynamic proteome. A number of different
approaches, each with specific advantages and disadvantages, have
been developed for use in cancer research. These can broadly be clas-
sified into non-mass spectrometry (MS)- and MS-based strategies
(Table 1).

2.1. Non-mass spectrometry-based proteomic approaches

The non-MS proteomic approaches employed in sarcoma research
are near exclusively microarray-based methods, most commonly, re-
verse-phase protein microarrays (RPPAs). RPPAs require immobilisa-
tion of tumour lysates onto a microarray surface, followed by probing
with an antibody targeting a protein under investigation to quantita-
tively assess said protein levels across hundreds of samples

Fig. 1. The potential benefit of using proteomic approaches in sarcoma research. Different branches of proteomics (blue) offer insights into various aspects of
sarcoma development, driving clinical advances (orange) as well as offering future avenues (yellow) which are yet to be explored.
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simultaneously (15). The converse strategy, known as antibody arrays
can also be performed. This approach involves the immobilisation of a
panel of antibodies against a range of protein targets and subsequent
probing with lysate from a tissue sample of interest to simultaneously
evaluate the levels of multiple proteins in one specimen. Microarrays
are inherently high-throughput, and allow for rapid and cost-effective
proteomic profiling. Critically, they require minimal amounts of input
material, and are thus attractive for use in ultra-rare sarcoma subtypes
for which limited sample material is available. Although non-MS based
methods have provided, and continue to provide, valuable biological
and clinical insights into sarcomas, their dependence on antibodies has
its limitations. For one, antibodies are not readily available for all
proteins, nor are all those available truly specific to the target protein
(16). As a result, achieving a proteome depth beyond several hundred
proteins using microarray strategies is unachievable. Further to this, a
priori knowledge of the protein(s) of interest is required, and thus such
approaches cannot be utilised for a truly unbiased, discovery-based
proteomic assessment.

2.2. Mass spectrometry-based proteomic approaches

In this section, we provide a brief description of the MS strategies
commonly used in sarcoma proteomic studies that have been reported
thus far. A detailed discussion of the fundamentals of MS is beyond the
scope of this review, but readers are directed to excellent reviews on
this topic (17,18). In contrast to non-MS-based approaches, MS-based
methods are unbiased and provide more sensitive and accurate identi-
fication of proteins. As a result, MS-derived proteomic profiles are far
more comprehensive in depth of proteome coverage. However, major
limitations persist in the use of MS methods. Most notably, these ap-
proaches are also notoriously low throughput and despite advance-
ments in multiplexed isobaric labelling techniques, MS analysis is un-
likely to achieve the sample throughput currently available with
microarray strategies.

Clinical proteomics often involves the study of complex biological
samples, and therefore to improve proteome coverage prior to MS
analysis, fractionation of peptides post protein digestion is frequently
performed. Common methods for such peptide fractionation include
reverse-phase liquid chromatography, isoelectric focusing, strong ca-
tion exchange, and high pH fractionation, the advantages and dis-
advantages of which have been discussed at length elsewhere (19,20).
Fractionation can also be performed prior to protein digestion, often by
polyacrylamide gel electrophoresis (PAGE), and is commonly used for
STS proteome assessment by two-dimensional difference electrophor-
esis (2D-DIGE). Samples for 2D-DIGE analysis are labelled with ex-
citable fluorescent dyes and separated using PAGE across two dimen-
sions. Gel scanning at each dye-specific wavelength reveals differential
protein spots between samples, which are subsequently digested ‘in-
gel’, retrieved, and identified by MS (21).

Post sample fractionation, two main types of MS are utilised: elec-
trospray ionisation (ESI), or matrix-assisted laser desorption/ionisation
(MALDI). Irrespective of method of ionisation, protein identification is
then performed by analysis and interpretation of the resultant mass
spectrum generated. Further to achieving high confidence protein
identification using ESI- or MALDI-MS, accurate quantitation is also
central to successful proteomic experiments. Several approaches have
been established to achieve this, however label-free quantitation and
isobaric labelling have been most frequently employed in sarcoma
proteomic studies. In isobaric labelling, the two major variants used
are, isobaric tags for relative and absolute quantitation (iTRAQ) and
tandem mass tagging (TMT) wherein samples are labelled with iso-
topically differing tags, pooled and then run in the mass spectrometer.
Upon fragmentation-induced tag cleavage, reporter ions are generated
in the mass spectrum and used for peptide and protein quantitation
(22,23).

The variety of proteomic methods currently available allows for

proteome assessment in many different sample types, be it cell line-
derived material, frozen tissue or archival formalin-fixed paraffin-em-
bedded (FFPE) tissue. Given the biological, chemical, and physical
differences in these distinct sample types, it is no surprise that some
proteomic approaches are better suited for the assessment of specific
sample types over others. This is reflected in the current status of
proteomic research where almost all MS studies in sarcoma to date have
been performed on either frozen tissue or cell line-derived material.
This can in part be explained by the ease of protein extraction from both
frozen tissue and cell lines. In contrast, protein retrieval from FFPE
tissue for MS analysis is challenging due to the presence of both paraffin
and formalin-induced crosslinks which hinders effective proteomic
characterisation. Reflective of these challenges, FFPE tissue is currently
most routinely used for immunohistochemistry (IHC) assessment to
provide spatial resolution of specific protein analytes to complement
comprehensive proteomic screens rather than for MS analysis itself.

3. Current status of proteomic research in sarcomas

3.1. Osteosarocoma

Osteosarcomas are derived from primitive bone-forming mesench-
ymal stem cells, and are the most common primary malignant bone
tumours. Osteosarcomas have an approximately equal gender dis-
tribution but a bimodal age distribution, with incidence peaks before
the age of 24 and after the age of 60 years, and an incidence of around
4.2 cases per million of the population per year in these age groups
(24). Histologically, conventional osteosarcoma is characterised by
spindle to polyhedral cells, containing pleomorphic and hyperchro-
matic nuclei. Osteosarcoma cells are engaged in the production of ex-
tracellular matrix, with osteoid production directly from tumour cells a
prerequisite for diagnosis. Further detail on the histological variants of
osteosarcoma is beyond the scope of this review but has been covered in
detail elsewhere (25). Molecular analysis has revealed that osteo-
sarcomas are genomically unstable with complex karyotypes char-
acterised by chromosomal instability and high levels of structural var-
iants and copy number changes (26). Furthermore in paediatric
osteosarcoma, single-nucleotide variants exhibited kataegis, a pattern
of localized hypermutation, with recurrent mutations most frequently
observed in the tumour protein p53 (TP53) gene, and also in retino-
blastoma protein-1 (RB1), alpha thalassemia/mental retardation syn-
drome X-linked chromatin remodeler (ATRX), and discs large MAGUK
scaffold protein-2 (DLG2) (27). Survival following osteosarcoma im-
proved considerably from a five-year OS rate of 19.3% in the 1950s to
around 60% in the 1980s, attributable to advances in multi-agent sys-
temic chemotherapy (28,29). However, over the past three decades
although the rate of limb salvage versus amputation has improved,
likely due to improved surgical techniques, implant designs and disease
awareness, the rate of OS at 5 years has plateaued.

Several therapeutic avenues are available to osteosarcoma patients,
including chemotherapy. However, patient response to treatment varies
greatly and there currently exists no method for predicting patient re-
sponse. Two studies have addressed the lack of biomarkers for therapy
response by assessing chemonaïve tumour tissue using proteomic stra-
tegies. Kikuta et al. used 2D-DIGE to identify biomarkers of response to
chemotherapy with ifosamide (IFO), doxorubicin, and cisplatin (CDDP)
(30). 6 tumour biopsy samples from patients with a poor pathological
response to chemotherapy (defined as< 90% necrotic tissue) and 6
tumour biopsy samples from patients with a good response (GR; defined
as> 90% necrotic tissue) were profiled. Thirty eight differentially ex-
pressed proteins were identified, including peroxiredoxin 2 (PRDX2), a
protein that was found to be highly expressed in those with a poor
response. The observed association of PRDX2 in those with a poor re-
sponse was subsequently confirmed by western blot in an independent
cohort of 4 further osteosarcoma cases. In another study, Kubota et al.
compared poor and favourable responders to identify predictors of
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response to chemotherapy with methotrexate (MTX), doxorubicin, and
CDDP (31). Using 2D-DIGE to interrogate the proteomes of pre-treat-
ment tissue from 6 poor responders and 7 GRs, the authors revealed 27
proteins whose expression significantly differed between responder
groups. Consistent with the previous study by Kikuta et al., PRDX2 was
similarly found to be upregulated in those with a poor response. To
further investigate the impact of PRDX2 expression on cell response to
MTX, doxorubicin, and CDDP, cell viability assays were performed
using the MNNG/HOS, MG63, and 143B osteosarcoma cell lines. These
experiments found that cell viability in all cell lines to be significantly
lower when PRDX2 was silenced by RNAi. Moreover, in PRDX2
knockdown cells, functional assays revealed a reduction in cell pro-
liferation, invasion, and migration, as characterised by growth, inva-
sion and wound healing assays respectively. Collectively, these two
studies present PRDX2 expression as a candidate predictive biomarker
for patient stratification to chemotherapy and may represent a causa-
tive driver of more aggressive disease in osteosarcoma.

In addition to the proteomic investigation of osteosarcoma for bio-
marker discovery, global proteome profiling has been employed to
better understand osteosarcoma oncogenesis and reveal novel ther-
apeutic targets. Chaiyawat et al. profiled the proteomes of tumour
tissue from 4 chemonaïve patients by 2D-DIGE (32). Comparison with
normal soft tissue callus highlighted 29 proteins as significantly upre-
gulated in osteosarcoma, which were ontologically enriched for meta-
bolic processes, biological regulation, and protein binding activity.
Subsequent integration of ontology and network analysis revealed en-
richment of the unfolded protein response (UPR) components, in-
cluding 78 kDa glucose-regulated protein (GRP78) endoplasmin
(GRP94), calreticulin (ERp60) and prelamin-A/C. Validation of these
candidate proteins was undertaken by western blot in 6 primary os-
teosarcoma cell lines. In line with proteomics data, upregulation of
GRP78, GRP94 and prelamin-A/C in osteosarcoma cells, compared to
primary osteoblastic cells, was observed. Further to this, tissue from an
independent cohort of 9 osteosarcoma patients was assessed for UPR
protein expression by western blot, and integrated with disease stage.
Of the 9 patients, three had stage IIB disease and had a good response to
chemotherapy (tumour necrosis> 90%), three were stage IIB and had a
poor response (tumour necrosis< 90%), and three had stage III (me-
tastatic) disease. Comparison with normal soft callus and integration of
clinical staging revealed GRP94 upregulation in osteosarcoma irre-
spective of status. ERp60 upregulation was observed in stage II disease
compared to normal soft callus, and GRP78 was found to be upregu-
lated in poor responders, compared to GRs. Taken together, these
findings suggest therapeutic targeting of the UPR pathway may be a
viable approach for osteosarcoma management and targeting compo-
nents of the UPR may prove beneficial to patients refractory to con-
ventional chemotherapy.

Despite often successful management of primary osteosarcoma,
many patients subsequently develop metastatic lesions, most commonly
in the lung. The presence of such pulmonary metastases vastly worsens
prognosis, and is the most common cause of death in osteosarcoma. The
precise molecular mechanism for the occurrence of osteosarcoma me-
tastasis however remains unclear. To identify potential drivers med-
iating metastasis, proteomic profiling by 2D-DIGE has been performed
to compare the foetal osteoblast cell line CRL11372, osteosarcoma cell
lines CRL7023, CRL7134 and CRL7140, and osteosarcoma pulmonary
metastasis cell lines CRL7585, CRL7631, and CRL7645 (33). This
yielded 13 proteins consistently upregulated and 4 consistently down-
regulated in osteosarcoma and metastatic osteosarcoma cells compared
to osteoblasts. Ingenuity pathway analysis revealed a single network
comprising 13 of the 17 proteins identified, and highlighted V-myc
myelocytomatosis viral oncogene homolog (MYC), stathmin1 (STMN1),
cathepsin D (CTSD), and TP53 as hub nodes. Of these, STMN1 and
CTSD were selected for further validation. Western blotting of CTSD
correlated with 2D-DIGE data, illustrating increased expression in os-
teosarcoma and osteosarcoma metastases. However, the reduction in

STMN1 expression in osteosarcoma cells observed by 2D-DIGE could
not be reproduced. CTSD expression was further validated by IHC in a
tumour microarray (TMA) comprising 4 normal bone tissue samples, 17
osteosarcoma samples, and 5 osteosarcoma pulmonary metastasis
samples. Through IHC scoring, CTSD expression was confirmed as in-
creased in osteosarcoma relative to normal bone, and furthermore was
significantly higher in pulmonary metastatic lesions than in primary-
site osteosarcoma. As such, CTSD expression was revealed as a con-
sistent differentiator between all three groups, and has been hypothe-
sised as a driver of osteosarcoma oncogenesis and metastasis. In addi-
tion to being a marker for metastatic lesions, therapeutic targeting of
CTSD may be a promising, novel avenue for osteosarcoma treatment
which may yield favourable responses in metastatic disease.

3.2. Ewing sarcoma

ES is the second most common primary malignancy of the bone, and
occurs in children and young adults with a peak incidence at 15 years of
age. ES has an aggressive phenotype, with a propensity for local re-
currence and early haematogenous metastases, most commonly to the
lung. Histologically, ES are composed of sheets of small round cells,
with a high nuclear to cytoplasmic ratio, little mitotic activity, and
usually contain periodic-acid-Schiff-positive granules (34). ES is a
translocation driven sarcoma; t(11,22)(q24;q12) results in the forma-
tion of the EWSR1-FLI1 proto-oncogene (FLI1) fusion gene in 85% of
cases; t(21,22)(q22;q12) in the EWSR1-ETS transcription factor ERG
(ERG) fusion gene in 10%; and the remaining 5% of cases are char-
acterised by other translocations all resulting in a fusion gene con-
taining a portion of the EWSR1 gene (35,36). The fusion proteins re-
sulting from these translocations act as aberrant transcription factors
due to retention of the N-terminal potent transcriptional regulatory
domain of EWSR1. ES oncogenesis is then driven by upregulation of
downstream target genes including nuclear receptor subfamily 0 group
B member 1 (NR0B1), GLI family zinc finger 1 (GLI1) and the forkhead
box (FOX) group of transcription factors (37). ES is both radio- and
chemo-sensitive, and its clinical management is reliant on multimodal
treatment. The current treatment paradigm involves induction che-
motherapy, surgical resection and post-operative chemotherapy with or
without radiation. The degree of tumour necrosis observed in the re-
section specimen, in response to induction chemotherapy, has been
associated with improved OS although this remains an issue for debate,
whilst post-operative radiotherapy has demonstrated a significant re-
duction in local recurrence compared to surgery alone (38,39).

The EWS-FLI1 fusion is a key driver in ES oncogenesis. As such
downstream effectors and target proteins of EWS-FLI1 are likely im-
plicated in disease pathogenesis and are thus of interest to the research
field. To identify such candidate proteins, comparative proteomic pro-
filing of the ES cell line TC-71 and an EWS-FLI1 knockdown TC-71 cell
line variant known as shEWS-FLI1 has been performed using 2D-DIGE
(40). This study identified 25 proteins as differentially upregulated in
shEWS-FLI1 cells, and 14 proteins as downregulated relative to EWS-
FLI1 expressing cells. Gene ontology of the differentially expressed
proteins showed an enrichment of DNA and RNA processing proteins in
the shEWS-FLI1 cells, which is consistent with the transcriptional role
of EWS-FLI1. Interestingly, network analysis revealed TNF Receptor
Associated Factor 6 (TRAF6), an ubiquitin ligase which activates NF-
kappa-B and JUN, as a hub node upregulated upon EWS-FLI1 knock-
down. TRAF6 expression levels were assessed further by IHC in an in-
dependent cohort of 42 ES samples, which highlighted an absence of
TRAF6 within the ES tumour cells and provided spatial resolution of
TRAF6 localisation in tumours. This analysis indicated TRAF6 as pre-
dominantly localised around inflammatory cells which implicates a
potential role of inflammation in contributing to the oncogenesis of ES.

In addition to the study of the tumour cellular proteome, others
have also shown that ES cells also have a distinct secretome (41). In a
study by Hawkins, et al., the conditioned media of 2 ES cell lines, TC32
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and CHLA10, were isolated under serum-starved conditions and pro-
filed using MS. In total, this study yielded 2336 proteins from TC32
cells and 857 from CHLA10 cells. Identified proteins were mapped to
the Human Protein Atlas and those annotated as secreted, 543 from
TC32 cells and 259 from CHLA10 cells, were classified as tumour se-
cretome components. Integration of these datasets finds that over 33%
of the TSC32 secretome was also detected in the CHLA10 secretome,
alluding to the presence of a common ES secretome identified irre-
spective of cell line differences. Considering aberrations in insulin-like
growth factor (IGF) signalling has been reported in ES, it was notable
that the common secretome included an enrichment of proteins in-
volved in insulin-like growth factor (IGF) transport (42).

Previous reports have revealed a cancer stem cell (CSC) population
within ES tumours, identifiable by expression of the cell surface re-
ceptor leucine-rich repeat-containing G-protein coupled receptor 5
(LGR5). LGR5 is a target of Wnt3a and R-spondin-1, which once bound
interacts with other Wnt receptors and triggers their internalisation and
degradation, thus potentiating Wnt/beta-catenin signalling. The addi-
tion of the Wnt3a ligand to ES cells is able to simulate the high Wnt/
beta-catenin signalling normally observed in CSCs (43). Hawkins et al.,
sought to assess the effects of supplementing Wnt3a on the ES secre-
tome. This study resulted in the identification of 33 and 16 differen-
tially expressed proteins when Wnt3a was added to TCS32 and CHLA10
respectively. Gene set enrichment analysis showed that the Wnt-de-
pendent secretome was enriched for proteins regulating extracellular
matrix (ECM) organisation and ECM-cell interactions. These include
several proteins with a known role in collagen and ECM organisation
such as Transforming Growth Factor Beta Induced (TGFBI), Matrilin 3
(MATN3), A Disintegrin and Metalloproteinase domain-containing
protein 9 (ADAM9), Matrix Metalloproteinase 19 (MMP19), and Te-
nascin C (TNC). Taken together, these data indicate that ES tumour cells
can modulate the tumour microenvironment (TME) by altering the ECM
composition in response to Wnt ligand.

3.3. Gastrointestinal Stromal Tumours

Gastrointestinal stromal tumours (GISTs) are the most common
mesenchymal tumours of the gastrointestinal tract, occurring anywhere
from oesophagus to rectum, with the stomach being the most common
location (60% of GIST) followed by the small intestine (25%) (44). They
tend to occur in the elderly with a peak incidence in the seventh decade
of life, and are slightly more common in males (45). Histologically,
GISTs demonstrate a broad spectrum of morphology, ranging from a
bland spindle cell proliferation to highly cellular epithelioid tumours
with nuclear pleomorphism (46). Oncogenic mutations in GIST have
been well described, and it is now established that 75% of GISTs har-
bour a gain of function mutation in the KIT proto-oncogene (KIT) gene.
KIT is a member of the type III receptor tyrosine kinase family, and the
mutated gene leads to ligand-independent activation and subsequent
stimulation of downstream intra-cellular signalling pathways (47). It
has also been demonstrated that KIT mutational status has prognostic
significance, with exon 9 mutations having a higher risk of progression
relative to exon 11 mutations, whilst exon 11 deletions have a higher
rate of relapse relative to other types of exon 11 mutations (48). Aside
from KIT mutations, a further 10% of GISTs harbour mutations in the
platelet derived growth factor receptor alpha (PDGFRA) gene. PDGFRA
is also a member of the type III receptor tyrosine kinase family, and
again mutation leads to constitutive activation of the receptor trig-
gering downstream intracellular signalling pathways. Finally, 15% of
patients with GISTs do not have a detectable mutation in either KIT or
PDGFRA. These tumours are a genomically heterogeneous group with a
variety of genetic anomalies previously reported, including mutations
in B-Raf proto-oncogene (BRAF), succinate dehydrogenase (SDH) and
neurofibromin 1 (NF1), however they do demonstrate phosphorylated
KIT although the mechanisms behind this are unclear (49–51). The
understanding of the mutations driving GIST led to trials of the tyrosine

kinase inhibitor imatinib mesylate (IM) for patients with GIST. Initially
developed as a treatment for chronic myeloid leukaemia due to its ac-
tivity against the fusion protein breakpoint cluster region-Abelson
murine leukaemia (BCR-ABL), the structural similarity between ABL
and KIT led to pre-clinical and subsequent clinical trials confirming IM
activity in GIST (52). IM has consequently transformed the manage-
ment of advanced GIST, with a rate of overall survival (OS) at 5 years of
over 60% for patients treated with IM versus 35% for conventional
chemotherapy (53,54). In this section of the review, we will assess the
role proteomics has played in stratifying patients most likely to respond
to IM and other tyrosine kinase inhibitors, as well as exploring me-
chanisms for primary and acquired drug resistance.

The anatomical location of GIST lesions is frequently indicative of
clinical course. Protein signatures mapped to anatomically distinct
GISTs could provide a basis for dissecting location-specific molecular
profiles, thus improving the understanding of disease initiation and
progression. Comparative proteomic profiling by ESI-MS/MS was per-
formed on 4 surgically resected stomach GISTs, of which 2 were KIT/
PDGFRA wild type and 2 harboured KIT mutations, and 4 surgically
resected small intestine GISTs, all possessing KIT mutations (55). This
analysis revealed 54 proteins that significantly differ in expression be-
tween these 2 anatomical locations. Of these proteins, 29 were reported
as upregulated in the intestinal lesions, and 25 as upregulated in the
stomach. In parallel, transcriptomic analysis of an expanded cohort was
performed and the resultant data integrated with proteomics data to
reveal 18 proteins that were concordant with gene expression levels. Of
note, the tumour suppressor protein, promyelocytic leukemia (PML),
was identified as expressed at significantly lower levels in intestinal
GIST. Low PML expression in intestinal tumours was further validated
by immunohistochemistry (IHC) on an independent cohort of 156 GIST
cases (15 intestinal, 128 stomach, and 13 other), which identified all
intestinal GIST cases as PML negative. Subsequent integration of vali-
dation cohort IHC data with clinical data found a higher 5-year recur-
rence-free survival rate in cases detected as PML positive (91.7%; sto-
mach and other GIST cases) than those detected as PML negative
(60.1%; intestinal and other GIST cases).

Identification of biomarkers predictive of high relapse risk in GIST
will improve disease monitoring and clinical management. To discover
new predictive biomarkers of GIST relapse, Suehara et al. used 2D-DIGE
to profile surgically resected GIST tumours from 8 patients who de-
veloped metastatic lesions within 1 year post-surgery (P-GIST) and 9
patients with no evidence of metastasis 2 years post-surgery (G-GIST)
(56). A single P-GIST case and 3 G-GIST cases were KIT wildtype, whilst
the remainder of the cohort possessed a KIT mutation. This analysis
revealed 25 proteins that differed significantly in expression between
the P-GIST and G-GIST groups. Of note, the expression of the potassium
channel tetramerization domain containing 12 (pfetin) protein, ob-
served to be significantly higher in the G-GIST group, was assessed
further by the investigators. IHC analysis of pfetin in an expanded and
independent cohort of 210 GIST samples was performed to validate the
initial proteomic analysis. Positive pfetin expression in this cohort was
shown to correlate with several pathological features indicative of a
poorer prognosis such as increased tumour size, increased mitotic
index, and an increased degree of differentiation. Pfetin expression was
statistically associated with risk classification, however this significance
was attributable to low-risk (G-GIST) cases only. A pfetin negative
classification was reported in 91% of low risk cases, however only 50%
of high risk cases were pfetin positive. Thus, as a predictor for disease
relapse, the utility of pfetin expression can only be seen in identifying
patients at low risk. Several independent studies have since also re-
ported pfetin association with a favourable prognosis in GIST (57–60).

Further to this, the same sample cohort of 8 P-GIST and 9 G-GIST
cases was reassessed by Kikuta et al. (61). As before, 25 proteins that
were found to be significantly different between the P-GIST and G-GIST
groups. DDX39, an ATP-dependent RNA helicase was shown to be up-
regulated in the P-GIST cohort and selected for further validation. IHC
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analysis on an independent cohort of 72 GIST samples confirmed the
initial association observed between DDX39 and prognosis. Within the
IHC validation cohort, samples were categorised as DDX39 strong or
weak. DDX39 strong cases showed consistently higher probability of
shorter survival, when compared to DDX39 weak cases, suggesting that
high DDX39 expression is a predictor for high metastatic potential and,
by extension, poor clinical outcome. Despite studies highlighting both
DDX39 and pfetin expression as predictive of GIST recurrence, their
utility in the clinic is yet to be realised. Further assessment in the
prospective setting is required but these studies illustrate the potential
of proteomics to identify biomarkers for risk stratification to identify
high-risk patients likely to benefit from adjuvant therapy.

Further to the identification of DDX39 and pfetin as candidate dri-
vers of disease relapse in GIST, protein phosphatases have also been
hypothesised as critical modulators of tumour recurrence. Recently, a
comprehensive and quantitative proteomic profiling of 13 GIST speci-
mens with matched normal tissue was performed (62). The cohort as-
sessed comprised samples of varied recurrence-risk subgroups; three
low, 5 intermediate, and 5 high as determined by National Institute of
Health consensus criteria. This study found that proteins enriched for
the spliceosome pathway were upregulated in tumour samples com-
pared to normal tissue. Conversely, proteins enriched in metabolic
pathways were observed to be downregulated in tumour samples.
Further to this, comparison between the different risk subgroups
highlighted 131 proteins as significantly differentially expressed, of
which, high expression levels of protein-tyrosine phosphatase 1B
(PTPN1) showed proportionally higher association with lower risk
cases. Validation by IHC on an expanded cohort of 131 GIST cases
subsequently confirmed this observation. Integration with clinical data
indicated that high PTPN1 was associated with increased disease-free
survival.

Although the introduction of IM has helped transform patient out-
comes in GIST, resistance develops in the majority of patients within 2
years of treatment, largely through the acquisition of secondary re-
sistance mutations in KIT and PDGFRA (63–68). In a number of studies,
proteomics has been employed to better understand the mechanistic
basis of how IM elicits its therapeutic effects and to shed further light on
how resistance to IM develops in GIST. Da Riva et al. undertook a
proteomic analysis in GIST tissue specimens to identify mechanisms
determining response to IM (69). Comparisons were performed on 1
untreated GIST case (KIT mutation present), 7 treated cases responsive
to IM (all possessing a KIT mutation) and 8 non-responsive cases (1 KIT
wild-type, 5 harbouring a KIT mutation and 2 a PDGFRA mutation).
Using MALDI-MS, the authors showed that there was a significant in-
creased expression of stem cell growth factor (SCGF) in cases that were
responsive to IM. IHC assessment of the same cases showed that high
SCGF expression was restricted to the stromal compartment, supporting
previous observations of SCGF secretion from dendritic cells in the
stromal compartment (70). Taken together, the findings from this study
suggests that the immune microenvironment may be a critical mediator
of IM response in GIST.

The modulation of cellular kinome activity in response to c-KIT
inhibition by IM has been interrogated by MS. Using ITRAQ labelling
and immunoenrichment of phosphotyrosine peptides in the IM sensitive
cell line GIST-T1, Takahashi et al. employed phosphoproteomics to
evaluate changes in tyrosine phosphorylation levels upon IM treatment
(71). The authors showed that 11 proteins increased tyrosine phos-
phorylation levels after 72 hours of IM treatment. Two kinases, focal
adhesion kinase (FAK) and FYN, were selected for further assessment
for their contribution to IM sensitivity. Upon genetic suppression of
FAK and FYN expression by RNA interference (RNAi), GIST-T1 cells
displayed increased drug sensitivity to IM. To further investigate the
impact of these proteins on drug resistance, GIST-T1 IM resistant cells
were derived from a resistant clone that arose during long-term culture
of GIST-T1 cells in the presence of IM. Inhibition of FAK phosphor-
ylation using the selective inhibitor TAG372 in these GIST-T1 IM

resistant cells triggered apoptotic cell death. The study by Takahashi
et al. highlights that pharmacological inhibition of FAK and FYN ac-
tivity may be candidate salvage therapy approaches for overcoming
resistance to IM in GIST. Nagata et al. performed a comprehensive
serine, threonine and tyrosine phosphoproteomic profiling of the IM
sensitive and KIT activated GIST882 cell line using MS (72). For com-
parative analysis, IM resistant GIST882 variant cells (GIST882-R) that
had acquired drug resistance by long-term dose escalation treatment
with IM were used. The matched pair of cell lines were subjected to
phosphoproteomic profiling in the presence and absence of IM. This
analysis revealed that the phosphorylation of KIT, and another tyrosine
kinase, the epidermal growth factor receptor (EGFR) were significantly
upregulated in IM resistant cells. Moreover, signalling molecules
downstream of both kinases, such as ERK1/2 and JNK2 were also ob-
served to have upregulated phosphorylation levels, alluding to aug-
mented signalling through both the KIT and EGFR signalling axes.
Treatment of GIST882 resistant cells with the EGFR inhibitor, gefitinib,
sensitised the cells to IM, demonstrating that upregulation of EGFR
signalling plays a role in the development and maintenance of IM re-
sistance.

In addition to profiling the phosphoproteome of GIST882 cells,
proteomic profiling of its secretome has also been undertaken in a se-
parate study by Berglund et al. (73). LC-MS/MS analysis of condition
media from these cells identified 375 proteins under serum-starvation
conditions and 555 proteins when glucose was added to the tissue
culture media. To probe the impact of KIT kinase activity on secretome
composition, GIST882 cells were subjected to treatment with IM.
Comparative assessment of the secretomes of IM-treated and untreated
cells revealed ontological enrichment for proteins involved in the reg-
ulation of protein translation and transcription as well as protein
components regulating exosome release in the IM treated cells. More-
over, interrogation of exosome databases revealed that the vast ma-
jority of secretome-identified proteins in IM treated cells were of exo-
somal origin. Subsequently, Atay et al. assessed the composition of GIST
derived exosomes (GDEs) of GIST882 cells and GIST-T1 cells by LC-MS/
MS (74). This study revealed exosomes to be rich in KIT protein ex-
pression and IM response proteins such as Sprouty homolog 4 (SPRY4)
and surfeit 4 (SURF4). The exosomal expression of KIT, and several
other proteins identified by MS including hypoxia-inducible factor 1-
alpha (HIF1-α) and signal transducer and activator of transcription 1
(STAT1) were then validated in patients. Immunoblotting of patient-
derived GDEs isolated from plasma samples confirmed that, consistent
with the in vitro data, KIT, HIF1-α and STAT1 were localised in patient
exosomes. These studies suggest that monitoring for the expression of
selected proteins in circulating exosomes could serve as liquid biopsies
for rapid evaluation of tumour response and relapse in GIST patients
undergoing treatment with IM.

Taken together, these studies demonstrate that proteomics has uti-
lity in GIST including identification of new prognostic risk classifiers,
mechanisms of IM response and resistance; and circulating biomarkers
for evaluation of therapy response and relapse.

3.4. Liposarcoma

Liposarcoma (LPS) is a common adult STS subtype, accounting for
approximately 20% of all diagnoses (75). They originate from malig-
nantly transformed adipocyte progenitor cells, and are further sub-
divided into distinct histological and biological subtypes (76). The most
common LPS subtypes comprise well-differentiated (WDLPS) and ded-
ifferentiated liposarcoma (DDLPS), while the rarer subtypes are myxoid
liposarcoma (MLPS) and pleomorphic liposarcoma (PLPS). WDLPS and
DDLPS tend to arise in the retroperitoneum, with delayed symptoms
leading to large size at presentation. Histologically, WDLPS closely re-
semble mature adipose tissue with fibrous septa and variable nuclear
atypia, whilst DDLPS is more akin to an undifferentiated or spindle cell
sarcoma (77). Although DDLPS can occur de novo, it is typically
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identified as a non-adipocytic sarcoma in proximity to WDLPS and re-
presents progression from pure WDLPS to the higher-grade malignancy.
Clinically, WDLPS presents as a locally aggressive neoplasm without
metastatic potential, whilst DDLPS has a more aggressive phenotype
with a greater propensity for local recurrence and metastases. Despite
the variability in clinical behaviour, both WDLPS and DDLPS share si-
milar genetic aberrations displaying a 12q21-15 amplicon creating a
ring twelfth chromosome which includes the MDM2 proto-oncogene
(MDM2) and cyclin dependant kinase 4 (CDK4) cell cycle oncogenes
(78). The different clinical phenotypes has been explained through
analysis of paired WD and DDLPS tissue in which the DDLPS samples
contained higher numbers of the aforementioned chromosome 12 am-
plifications, as well as higher numbers of somatic copy number varia-
tions and fusion transcripts (79).

MLPS tend to arise in the deep soft tissue of the extremities with a
peak incidence in the fourth and fifth decades of life. Histologically,
MLPS demonstrates a mix of uniform oval shaped cells and ring cell
lipoblasts on a background of myxoid stroma, with a higher proportion
of ring cells correlated with a worse prognosis (80). Unlike WD/DDLPS,
MLPS is a translocation driven sarcoma and is characterised by the
recurrent translocations t(12,16)(q13;p11), and less commonly t(12,22)
(q13;q12), which fuse FUS RNA binding protein (FUS) or EWS binding
protein-1 (EWSR1), respectively, to DNA damage inducible transcript-3
(DDIT3) on chromosome 12. These novel transcription factors inhibit
adipocytic differentiation (81).

PLPS represents the least common LPS subtype, but the most clini-
cally aggressive with local recurrence or distance metastases occurring
in around 40% of cases (82). Typically occurring in the limbs in those
over 50 years of age, PLPS is histologically characterised by variable
numbers of pleomorphic lipoblasts on a background of a high-grade
pleomorphic sarcoma (83). Given the relative scarcity of PLPS, mole-
cular studies of this subtype are sparse; however, reports suggest a
complex karyotype including unpredictable gains and deletions, al-
though deletion of 13q14.2-q14.3, a region including the known tu-
mour suppressor RB1, has been observed in 60% of PLPS (84).

Early detection in cancer has been shown to result in vastly im-
proved clinical outcomes (85). One approach to improve rates of early
disease detection is in the monitoring of circulating tumour biomarkers
detectable through routine blood sampling. Platelets have previously
been shown as a potential reservoir for tumour biomarkers (86). In
particular, platelets have been noted to specifically sequester angio-
genic factors, many of which are involved in pathways known to be
upregulated in LPS. In a study by Cervi et al., surface-enhanced laser
desorption/ionisation MS, a variant of MALDI MS, was performed for
platelet and plasma proteomic profiling in MLPS xenograft mouse
models (87). Of note, platelet factor 4 (PF4), a pro-angiogenic protein,
was found in the platelets of mice bearing LPS tumours at 120 days
post-implantation and not in non-tumour-bearing mice. Further to
sustained and elevated PF4 levels observed at day 120, PF4 was also
significantly increased at day 19, where mice bore only microscopic,
non-palpable, and non-angiogenic tumours. This study highlights PF4
as a promising candidate early disease biomarker, potentially detect-
able in patients harbouring tumours which would likely go undetected
with current imaging modalities.

LPS biomarker proteomic studies have also been undertaken to
identify predictors of dedifferentiation in well-differentiated lipogenic
tumours. Atypical lipotamous tumour (ALT) is one example of a well
differentiated benign tumour which can dedifferentiate and develop
into an aggressive malignancy. Currently, anatomical site is the only
known predictor for dedifferentiation and there is no reliable molecular
predictor available. Identification of such biomarkers may enable pa-
tient stratification for those at risk for dedifferentiation, and conse-
quently highlight a subgroup of patients most likely to benefit from
more frequent monitoring or potential trials of adjuvant therapy. With
this in mind, McClain et al. sought to identify biomarkers predictive of
dedifferentiation by comparison of ALT and DDLPS tumours through

IHC and 2D-DIGE (88). No significant differentially expressed proteins
were identified between the two tumour types, however 6 proteins were
found to be differentially expressed in the WDLPS component regions of
DDLPS compared to ALT, including selenium binding protein 1 (SE-
LENBP1). Using IHC in an independent cohort of 30 ALT and 28 DDLPS
cases, SELENBP1 was confirmed to be expressed at significantly lower
levels in WDLPS areas compared to ALT. The role of SELEBP1 under
physiological conditions is not fully understood, however it has pre-
viously been shown to have a reduced expression in carcinomas, and by
extension has been hypothesised to mediate tumour suppressive effects
in cancer (89,90). Taken together, the study by McClain et al., re-
inforces the potential role of SELENBP1 as a candidate tumour sup-
pressor for driving dedifferentiation of mesenchymal tumours such as
LPS.

These proof-of-principle studies demonstrate the promise of pro-
teomics in furthering our knowledge about LPS, in particular potential
molecular drivers of early tumour angiogenesis and dedifferentiation.
However much work remains to be done in order to delineate the
biological roles of these proteins and translate these findings into robust
clinical applications.

3.5. Leiomyosarcoma

Leiomyosarcoma (LMS) account for approximately 10-20% of adult
STS diagnoses, and display features consistent with smooth muscle
differentiation, histologically showing blunt-ended spindle cells with
eosinophilic cytoplasm. LMS are typically observed in middle-aged and
older adults and usually occur in the smooth muscle wall of a blood
vessel or tubular digestive organ, whilst uterine LMS (uLMS) are often
considered a separate entity and occur in the myometrium. Both LMS
and uLMS have complex karyotypes with no consistent genetic aber-
rations at the chromosomal level identified. Despite this complex
genomic landscape, published literature has identified more frequent
losses involving the tumour suppressor genes RB1 at the 10q position
and phosphatase and tensin homolog (PTEN) at 13q (91). Furthermore,
whole-exome sequencing analysis of cohorts of LMS and uLMS have
confirmed a heterogeneous genomic landscape, but with frequent copy
number variation and common alterations in the tumour suppressor
genes RB1, TP53, PTEN and cadherin-1 (CDH1) (92). The Cancer
Genome Atlas consortium undertook whole genome sequencing, DNA
methylation, messenger RNA and microRNA analysis of 206 STS spe-
cimens, including 80 LMS cases, of which 53 were soft tissue LMS and
27 uLMS (93). They reported soft tissue LMS and uLMS to be more
similar to each other compared to other STS subtypes, however they
identified distinct methylation and mRNA expression profiles between
the two LMS groups, with non-uterine LMS displaying a more promi-
nent HIF1α signalling signature compared to uLMS which showed a
higher DNA damage response signature.

Transcriptomic studies have revealed three molecular subtypes of
LMS; 1 with an mRNA signature mapping mainly to uLMS, and 2 other
subtypes of mixed anatomical origins (93–95). Although integrative
proteogenomic studies in other cancer types often note a lack of mRNA-
protein correlation at the individual protein level, independent pro-
teomic profiling analysis of LMS tumours has also alluded to the pre-
sence of three LMS subtypes (96,97). A study by Kirik et al. of 38 LMS
cases and 16 undifferentiated pleomorphic sarcoma (UPS) cases ana-
lysed by 2D-DIGE, revealed three LMS proteomic subgroups, as well as
a fourth UPS-enriched subgroup (96). To provide further in-depth
comprehensive analysis of the tumour proteome, 5 samples from each
of the identified subgroups were subjected to quantitative analysis by
TMT-based ESI-MS/MS. Consequently, 778 proteins were quantified (in
at least 1 sample), and the levels of three proteins, VINC, COL6A3, and
MYH11 were identified to be capable of discriminating between the 4
groups. These findings demonstrate the utility of proteomics in not only
improving the molecular understanding of disease pathophysiology but
also in dissecting molecular heterogeneity within and between STS
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subtypes.
In addition to the profiling of tumour samples, proteomic analysis

has also been performed on the uLMS sarcoma cell line MES-SA, with
the aim of identifying the molecular factors contributing to the devel-
opment of resistance to first-line doxorubicin-based chemotherapy.
Using 2D-DIGE and MALDI MS, quantitative proteomic profiling was
conducted on MES-SA cells treated with doxorubicin (98). This analysis
revealed a subset of 87 proteins with altered expression upon short-
term acute treatment with doxorubicin. Further to this, to explore ac-
quisition of long-term resistance to doxorubicin, May et al. performed
2D-DIGE and MALDI MS on the doxorubicin resistant MES-SA/DxR cell
line, generated by long-term dose escalation treatement of MES-SA with
doxorubicin (99). In this study, 208 proteins were found to be differ-
entially expressed between the two cell lines. Gene ontology assessment
highlighted pathways associated with metabolism as upregulated in
MES-SA/DxR cells. Conversely, proteins related to cell proliferation,
gene regulation, and signal transduction were downregulated. Taken
together, proteomic profiling of both acute doxorubicin treatment and
acquired doxorubicin resistance illustrate a proteomic landscape for
how drug resistance develops; from early exposure to doxorubicin to
the establishment of a stable doxorubicin resistant cell population.
These studies provide a useful resource for the mining of therapeutic
targets to tackle doxorubicin resistance in STS, which remains a fun-
damental unmet clinical need (100,101).

The phenomenon of epithelial-mesenchymal transition (EMT), and
conversely mesenchymal-epithelial transition (MET), describe global
cellular changes pertaining to cell lineage, and have both been studied
extensively across malignancies of epithelial origin (102–105). These
phenotypic alterations may result in the development of a more ag-
gressive tumour and thus contribute to an unfavourable prognosis
(106). There is accumulating evidence for the presence of EMT/MET
within sarcomas, however the biological basis and clinical relevance,
particularly that of EMT remain controversial and largely unclear
(107). Yang et al. performed a comprehensive transcriptomic and
proteomic assessment of 31 LMS and 38 GIST surgical resection samples
and revealed a potential role for MET in LMS (108). Using RPPA and
transcriptomic whole genome microarray analysis, overexpression of
the epithelial marker, E-cadherin, and a concordant reduction in ex-
pression of the E-cadherin repressor, Slug, was observed in a subset of
LMS patients. Moreover, high E-cadherin expression and low Slug ex-
pression was correlated with an improved OS indicating that these
proteins may serve as prognostic markers for LMS. As validation of the
proteomic data, IHC analysis was performed on the initial cohort, and
confirmed that E-cadherin expression correlated with improved OS.
Bioinformatic assessment of transcriptomic data also validated this
observation, identifying an epithelial gene expression signature in LMS.
To assess the functional role MET in LMS, genetic knockdown by RNAi
of Slug in the LMS cell line, SK-LMS-1, showed a significant increase in
E-Cadherin expression, and a reduction in mesenchymal marker ex-
pression (vimetin and N-cadherin). A concomitant reduction in tumour
cell proliferation and migration was also observed. Subsequent genetic
rescue of Slug by re-expression of the protein rescued these phenotypes,
and thus provided mechanistic evidence for Slug-mediated MET in LMS.
Increased expression of E-cadherin, and its association with patient
survival was not observed in the GIST specimens analysed, reinforcing
the distinct biology inherent within different STS histological subtypes.

3.6. Malignant rhabdoid tumours

Malignant rhabdoid tumours (MRT), known as atypical teratoid/
rhabdoid tumours (AT/RT) when occurring in the central nervous
system, are rare and highly aggressive tumours occurring mainly in soft
tissues, the kidneys or the brain and typically affecting the paediatric
population. They are prone to early metastases, and irrespective of lo-
calisation of the primary tumour have a dismal 5-year OS rate of 27-
33% (109,110). Histologically, MRTs are characterised by cells with

typical rhabdoid morphology including eccentric nuclei, prominent
nucleoli, and eosinophilic cytoplasm and inclusions. Cytogenetic and
molecular analyses identified a deletion on the long arm of chromo-
some 22 (22q11.2), with subsequent studies demonstrating a loss-of-
function exonic mutation in the SWI/SNF related, matrix associated,
actin dependant regulator of chromatin, subfamily b, member 1
(SMARCB1) tumour suppressor gene (111). Treatment of MRTs and
AT/RTs is multi-modal, with combination chemotherapy, radiotherapy
and surgery all having a role in the management of these patients.
However, even with intensive therapeutic regimens, the survival out-
comes are poor, and is noted to be significantly worse in patients di-
agnosed before the age of 3 years (112).

Mutational inactivation of SMARCB1, a core subunit of the SWI/SNF
ATP dependent chromatin-remodelling complex, has been identified as
the molecular mechanism driving MRT and AT/RT development (113).
Previously, constitutive activation of the kinase AKT has been reported
in Smarcb1 deficient murine cells and hypothesised to contribute to
tumorigenic transformation (114). However, the mechanistic basis
driving AKT activation upon Smarcb1 loss is unclear. Accordingly,
quantitative phosphoproteomic analysis by MS has been performed to
compare a Smarcb1 deficient murine MRT tumour cell line 365, and a
Smarcb1 proficient cell line 365 transduced with a Smarcb1-containing
retroviral vector (115). This analysis identified 3655 proteins, of which
407 showed differential phosphorylation status across 616 phosphor-
ylation sites upon ectopic expression of Smarcb1. In order to assess
specific kinase involvement driving the observed phosphorylation al-
terations, kinase target enrichment of the dataset was performed.
Consistent with previous findings, targets of AKT, including Bad,
Cdc25B, and TSC2, were significantly enriched in Smarcb1-deficient
cells. A lesser enrichment of ERK1/2 and JNK1 targets was also ob-
served. Further analysis highlighted EGFR phosphorylation at Y1197,
an autophosphorylation site associated with receptor activation, and
phosphorylation of several of its downstream effectors, ERK2 (T183),
JUN (S63), and MYC (T58) upon loss of Smarcb1. Subsequently, the
signalling effects of EGFR activation in murine rhabdoid cell lines 167
and 365 was assessed by treatment with gefitinib, an EGFR-specific
inhibitor and lapatinib, a dual target EGFR/ErB2 inhibitor. AKT phos-
phorylation was reduced upon treatment with either drug, implicating
the EGFR signalling axis in the AKT activation observed in Smarcb1
deficient cells, highlighting the potential use of EGFR inhibitors in the
treatment of MRT and AT/RT.

Several tyrosine kinase inhibitors (TKIs) are approved or under in-
vestigation for the treatment and management of sarcoma. Two such
TKIs are; Pazopanib (Paz), an inhibitor of c-KIT, PDGFR, fibroblast
growth factor receptor-1 (FGFR1), and vascular endothelial growth
factor receptor (VEGFR), and Dasatinib (Das), an inhibitor of PDGFR,
BCR-ABL, and Src family kinases. Wong et al., undertook a tyrosine
phosphoproteomic MS analysis to assess the signalling profiles of the
MRT cell line A204, and their Paz-resistant (PazR), and Das-resistant
(DasR) counterparts which were generated by long-term administration
with escalating doses of each respective TKI (116). This analysis re-
vealed that the TKI-sensitive parental A204 cells displayed higher
phosphorylation of PDGFRα and FGFR1 compared to DasR and PazR
cells. Moreover, cells resistant to PDGFRα inhibition were shown to be
sensitive to FGFR1 inhibition. Dual inhibition of both PDGFRα and
FGFR1, using either a combination of FGFR1 inhibitor and Paz or Das,
or the dual inhibitor Ponatinib, increased cellular apoptosis, Thus in-
hibition of PDGFRα and FGFR1 was demonstrated as a viable method to
overcome TKI resistance. Vyse et al. built on this study to compare the
signalling pathways between A204 cells that has acquired resistance to
either Paz or Das (117). By employing global phosphoproteomic ana-
lysis in the A204 parental, PazR and DasR cells the authors showed that
a surprisingly low fraction of the phosphorylation sites quantified were
altered upon acquisition of Paz and Das resistance (6% and 9.7% re-
spectively). In PazR cells, upregulation of cytoskeletal pathway phos-
phorylation was observed. Specifically, there was significant
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upregulation of actin binding proteins, LIM domain containing proteins
and calponin homology domain (CDH) containing proteins. In contrast,
upregulated phosphorylation of the insulin receptor/insulin growth
factor 1R (IGF-1R) pathway was seen in DasR cells. This included
proteins acetyl-CoA carboxylase alpha (ACACA), A-Raf proto-oncogene
(ARAF), fatty acid synthase (FASN), insulin receptor substrate 1 (IRS1),
protein kinase CAMP dependent protein 1B/2B (PRKAR1B/2B), ribo-
somal protein S6 kinase A1/B1 (RPS6KA1/B1) and SHC-transforming
protein (SHC), all of which comprised an integrated protein-protein
interaction network that forms a large module of the insulin receptor-
signalling pathway. Supporting previous observations that Paz and Das
resistance develop via different mechanisms (116), minimal overlap is
observed between the phosphoproteomic datasets. When integrated,
only a small fraction phosphosites were upregulated (2.8%) or down-
regulated (1.9%) in both resistant cell lines. This study provided a
comprehensive view of signalling alterations acquired as a result of
drug resistance, and acts as a future guide for candidate targets for
salvage therapies to overcome drug resistance and achieve durable re-
sponses in patients.

3.7. Myxofibrosarcoma

Myxofibrosarcoma (MFS) is one of the most common STS subtypes
that affect the elderly population, with an equal sex distribution, and an
average age at diagnosis of 66 years (118). MFS typically affect the
extremities and limb girdles, with an infiltrative growth pattern which
leads to deep-seated tumours and a high risk of post-surgical local re-
currence due to borderless extension of atypical cells along vascular and
fascial planes (119). Although cytogenic analyses of MFS are scarce, it
has been shown that they harbour a high level of genomic variability,
ranging from normal karyotypes to highly complex karyotypes with
copy number variations, clonal and nonclonal aberrations (118). More
recent studies have demonstrated a non-random loss of chromosome 9,
with deletion of the methylthioadenosine phosphorylase (MTAP) and
CDKN2A/CDKN2B genes (9q21.3) associated with increased aggres-
siveness in myxofibrosarcoma (120,121). Although surgical excision
remains the mainstay of treatment, the infiltrative pattern of MFS al-
lows considerable spread beyond the gross tumour margins necessi-
tating as large a resection as possible. Even with this treatment para-
digm, local recurrences are common occurring in more than 50% of
MFS cases with the recurrent lesion frequently a higher-grade than the
primary tumour (122,123).

To probe for drivers of invasiveness in MFS and identify potential
biological mechanisms amenable to therapeutic inhibition, 2D-DIGE
has been employed to profile MFS tumours of differing intrinsic inva-
siveness (124). Invasiveness status was determined by inspection of
tumour margins by magnetic resonance imaging (MRI) assessment for a
MFS-characteristic infiltrative, tail-like pattern (122). Comparative as-
sessment of 6 invasive tumour samples versus 5 non-invasive specimens
revealed 47 proteins as differentially expressed between the two
groups. Of note, Discoidin, CUB And LCCL Domain-Containing Protein
2 (DCBLD2) was significantly upregulated within the invasive patient
subgroup. DCBLD2 has previously been associated with tumourigenic
activity in several other cancer types, and accordingly the observed
positive correlation between high DCBLD2 expression and increased
MFS invasiveness was selected for further assessment (125,126). IHC of
21 additional MFS cases confirmed the association of DCBLD2 expres-
sion with tumour invasiveness. Moreover, DCBLD2 as a predictor for an
invasive phenotype was shown by the authors to have high specificity
of 87.5%, highlighting its promise as a robust means of stratifying in-
vasion versus non-invasive lesions.

3.8. Alveolar soft part sarcoma

ASPS is an ultra-rare sarcoma subtype, accounting for around 1% of
all STS diagnoses, with a female predominance and typically occurring

in the third decade of life (127). Although indolent in its early stages,
ASPS has a preponderance for early metastasis, with 55% of cases only
diagnosed at stage IV disease with a 5-year OS of 61% compared to 87%
in those patients with localised disease (128). ASPS is characterised by
the pathognomonic unbalanced, non-reciprocal translocation t(X;17)
(p11:q25), fusing the alveolar soft part sarcoma chromosome region
candidate 1 (ASPSCR1) gene on chromosome 17 to the transcription
factor binding to IGHM enhancer 3 (TFE3) gene on the X chromosome
(129). In the ASPSCR1-TFE3 fusion there is preservation of the DNA
binding and transcriptional activation domains of TFE3, which is hy-
pothesised to be the oncogenic driver of ASPS through ubiquitous and
high-level expression of its fusion partner ASPSCR1 (130).

Kubota et al. conducted a 2D-DIGE MS study on 12 archival ASPS
cases which revealed a subset of 145 proteins that were differentially
expressed between matched normal and tumour samples (131). Of
these proteins, Protein SET, an inhibitor of the tumour suppressor
protein phosphatase 2 (PP2A), was explored further. Overexpression of
SET in ASPS was confirmed by IHC in an expanded cohort of 15 ASPS
cases, relative to normal tissue. Moreover the involvement of SET in
tumourigenesis was investigated by genetic knockdown in the ASPS cell
line ASPS-KY. Silencing of SET resulted in reduced cell proliferation,
invasion and migration, implicating this protein as a driver of tu-
mourigenesis in ASPS. Furthermore, this observation was phenocopied
upon addition of FYN720, a PP2A activator used in the treatment of
multiple sclerosis, providing mechanistic evidence for PP2A and SET
involvement in ASPS, and highlighting the potential clinical utility of
FYN720 for the treatment of ASPS patients.

3.9. Integrative proteomics of multiple sarcoma subtypes

Beyond proteomic profiling of individual sarcoma subtypes, several
reported studies have undertaken integrative analysis of multiple his-
tological subtypes. Assessment of different subtypes enables generation
of statistically significant cohort sizes, both for discovery and validation
studies. Moreover, integrative analysis allows for similarities and dif-
ferences between subtypes to be assessed; offering a greater under-
standing of the biology of these cancers than is possible when studying
a single subtype alone. The largest integrative proteomic study to date
has been performed by The Cancer Genome Atlas Research Network
(93). Using RPPA, the expression levels of 192 proteins was assessed
across a cohort of 173 specimens, comprised of 60 LMS, 46 DDLPS, 41
UPS, 15 MFS, 6 SS, and 5 MPNST cases. Analysis of this dataset led to
the identification of 5 stable clusters of molecular groups, 1 enriched for
LMS (48 out of 53 samples were LMS), and the remaining 4 occupied by
a mixture of subtypes. Notably, the LMS enriched cluster signature
exhibited lower apoptosis pathway activity, higher PI3K/AKT pathway
activity, and higher expression of oestrogen and progesterone receptors
compared to the other 4 clusters. Further inspection of the data re-
vealed that AKT activity was enriched in non-uterine LMS cases, and
higher hormone receptor expression attributable to uLMS cases.

In another large comparative study of multiple STS subtypes, Lou
et al., utilised MALDI MS to characteris MFS, osteosarcoma, LMS and
UPS. The authors profiled 52 high grade osteosarcoma, LMS and UPS
cases, and found that proteomic profiles provided clear discrimination
between subtypes (132). The authors also demonstrated that the ex-
pression of 9 proteins, including the proteasome complex subunit 1
(PSME), was associated with poorer survival in all subtypes except
osteosarcoma. More recently, these data were complimented by meta-
bolic assessment of 10 MFS, 7 osteosarcoma, 8 LMS, and 8 UPS cases
(133). As with protein profiling, MALDI MS was employed for meta-
bolic analysis, and the resultant metabolite profiles revealed specific
signatures mapping to each subtype. When combined with clinical data,
these data highlighted inositol cyclic phosphate and carnitine as me-
tabolites correlating with poorer OS and metastasis free survival (MFS).
Both carnitine and inositol cyclic phosphate have been previously im-
plicated in tumourigenesis; the former reported in colon cancer, and
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inositol triphosphate (IP3) signalling, to which inositol cyclic phosphate
contributes, reported as aberrantly active in acute myeloid leukaemia
(134,135).

Such studies demonstrate the utility of integrative proteomics to
investigate multiple subtypes and show distinct molecular subgroups of
distinct biology within and between subtypes. Furthermore, these stu-
dies have identified the expression of several proteins and metabolites
which are indicative of disease progression. These studies demonstrate
proof-of-principle and highlight the promise of large-scale integrative
analysis of multiple sarcoma subtypes to bridge the gap in our knowl-
edge of disease etiology and pathophysiology.

4. Challenges and future perspectives

In recent years, the use of proteomics to study sarcomas has grown
to encompass several different methodologies spanning an increasing
number of histological subtypes, including several ultra-rare ones.
Despite these advances, proteomic research in sarcomas remains in its
infancy. At present proteomics has been utilised primarily for bio-
marker discovery and global profiling of sarcomas. The full potential of
proteomics however extends far beyond these applications, and holds
huge potential for accelerating sarcoma research.

The sarcoma community faces several key challenges in clinical
disease management. Curative treatments in sarcomas are rare, with
50% of patients eventually relapsing with incurable metastatic disease
following surgical resection of localised tumours (136,137). Improve-
ments have previously been hindered by a ‘one size fits all’ approach to
therapy, whereby standard chemotherapy approaches are used irre-
spective of sarcoma subtype. Due to the highly heterogeneous nature of
sarcomas, response rates to these chemotherapies varies greatly both
between and within sarcoma subtypes. Accordingly, there is an urgent
need for the development of more effective targeted therapeutic regi-
mens and biomarkers for robust patient stratification based on like-
lihood of treatment effectiveness. In addition, there is an urgent need
for additional prognostic biomarkers that predict for risk of disease
relapse following surgery in the setting of localised disease. Another key
clinical issue is the emergence of drug resistance to both chemotherapy
and targeted agents. Depending on the histological subtype, patients
can frequently experience an initial period of successful disease man-
agement. Unfortunately, treatments responses are often shortlived and
drug resistance develops. At this stage, options for disease management
are limited and disease progression often ensues.

These challenges underscore the gap in knowledge in our under-
standing of the biology underpinning sarcoma pathogenesis and
therapy response. Specifically, there are three areas of unmet need
where proteomics could play a central role in addressing. Firstly, we do
not fully understand the molecular mechanisms driving sarcoma de-
velopment and progression. Secondly, there are no validated bio-
markers or molecular signatures capable of predicting disease relapse
and treatment response, and thirdly, understanding of the mechanisms
of drug resistance is lacking. For instance, global profiling by pro-
teomics facilitates the deep annotation and characterisation of biolo-
gical pathways associated with sarcoma disease biology and drug re-
sistance which can inform subsequent functional studies in preclinical
models of disease. In addition, phosphoproteomics has particular utility
in revealing the key phosphorylation-mediated signalling nodes within
biological networks in sarcomas driven by aberrant kinase signalling
(14). Beyond the use of proteomics alone, the benefits of Omics data
integration are being realised. Large-scale multi-omics studies, such as
those performed by The Cancer Genome Atlas (TCGA) and The Clinical
Proteome Tumour Analysis Consortium (CPTAC), arguably provide the
most comprehensive picture of tumour status, and have huge potential
if expanded to large cohorts of sarcoma patients. In the era of big data,
as such datasets expand, there will be an increasing need for the use of
next generation machine learning and artificial intelligence (AI) ap-
proaches for data mining to identify multi-feature biomarkers that may

be predictive of disease susceptibility, recurrence, and prognosis. This
strategy should extend beyond just the analysis of profiling data alone,
and incorporate other clinical measures such as imaging and digital
pathology (138–144). We anticipate that such holistic data integration
approaches will undoubtedly drive new discoveries in the sarcoma field
moving forward.

An exciting future application of proteomics is in correlative sci-
ences within the context of sarcoma clinical trials, to drive the rea-
lisation of personalised molecular medicine in these diseases.
Characterising and mapping of the proteomic changes in tissue and
blood during disease progression, on treatment, upon the acquisition of
drug resistance, and at disease recurrence will provide unparalleled
insights into tumour behaviour over the clinical course of disease. Our
view is that the routine integration of proteomics into correlative sci-
ences within clinical trials will ultimately bolster our ability for the
comprehensive evaluation of disease biology in real time with future
impact in early detection and disease monitoring.

5. Conclusion

In summary, we have presented a comprehensive review of the
current status of the use of proteomics for the analysis of a range of
different sarcoma subtypes and outline potential future directions for
this exciting area of research. We fully expect that new initiatives that
integrate proteomics into multi-omic studies and clinical trials will pave
the way for rapid translation of laboratory discoveries into the clinic
and ultimately have an impact in improving clinical management and
outcomes of sarcoma patients.
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