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Abstract	

Mismatch	 repair	 deficient	 (dMMR)	 gastro-oesophageal	 adenocarcinomas	 (GOAs)	 show	
better	outcomes	than	their	MMR-proficient	counterparts	and	high	 immunotherapy	sensitivity.	The	
hypermutator-phenotype	 of	 dMMR	 tumours	 theoretically	 enables	 high	 evolvability	 but	 their	
evolution	 has	 not	 been	 investigated.	 We	 apply	 multi-region	 exome	 sequencing	 (MSeq)	 to	 four	
treatment-naïve	dMMR	GOAs.	This	reveals	extreme	intratumour	heterogeneity	(ITH),	exceeding	ITH	
in	other	 cancer	 types	>20-fold,	 but	 also	 long	phylogenetic	 trunks	which	may	explain	 the	exquisite	
immunotherapy	sensitivity	of	dMMR	tumours.	Subclonal	driver	mutations	are	common	and	parallel	
evolution	occurs	 in	RAS,	PIK3CA,	SWI/SNF-complex	genes	and	in	 immune	evasion	regulators.	MSeq	
data	and	evolution	analysis	of	single	region-data	from	64	MSI	GOAs	show	that	chromosome	8	gains	
are	early	genetic	events	and	 that	 the	hypermutator-phenotype	 remains	active	during	progression.	
MSeq	may	be	necessary	 for	biomarker	development	 in	 these	heterogeneous	 cancers.	 Comparison	
with	 other	 MSeq-analysed	 tumour	 types	 reveals	 mutation	 rates	 and	 their	 timing	 to	 determine	
phylogenetic	tree	morphologies.		
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Introduction	

Gastro-oesophageal	 adenocarcinomas	 (GOAs)	 are	one	of	 the	 commonest	 causes	of	 cancer	
mortality	 worldwide1.	 Microsatellite	 instable	 (MSI)	 and	 DNA	 mismatch	 repair	 deficient	 (dMMR)	
cancers	are	a	distinct	subtype	of	GOAs	with	a	prevalence	of	up	to	~20%	in	the	stomach	and	gastro-
oesophageal	 junction2-4.	 dMMR	 results	 from	genetic	 inactivation	of	MLH1,	MSH2,	MSH6,	PMS2	 or	
methylation	 of	MLH1.	 These	 tumours	 are	 characterized	 by	 a	 hypermutator-phenotype	 leading	 to	
high	mutation	loads	and	a	large	fraction	of	small	insertions	and	deletions	(indels),	predominantly	in	
homopolymer	and	dinucleotide	repeats.	dMMR	GOAs	have	distinct	clinical	characteristics	compared	
to	 their	 MMR-proficient	 counterparts,	 including	 lower	 TNM-stage	 at	 presentation	 and	 better	
survival3.	This	has	been	attributed	to	a	large	number	of	mutation-encoded	neoantigens	which	enable	
recognition	 by	 the	 adaptive	 immune	 system.	 Consistent	 with	 the	 notion	 of	 high	 immunogenicity,	
dMMR	cancers	are	among	the	tumour	types	most	sensitive	to	checkpoint-inhibiting	immunotherapy	
(85.7%	response	 rate	 in	 small	 series)5,6.	However,	not	all	 tumours	 respond	 to	 immunotherapy	and	
some	acquire	resistance	after	 initial	benefit.	Chemotherapy	and	anti-angiogenic	drugs	are	the	only	
other	 systemic	 treatment	 options	 for	 dMMR	GOAs	 and	 the	 identification	 of	 novel	 therapeutics	 is	
important	to	improve	outcomes.	

Genetic	 intratumour	 heterogeneity	 (ITH)	 and	 ongoing	 cancer	 evolution	 have	 been	
demonstrated	in	multiple	cancer	types7.	The	ability	to	evolve	is	thought	to	foster	cancer	progression,	
drug	 resistance	 and	 poor	 outcomes8.	 High	mutation	 rates	 may	 fuel	 evolvability	 by	 generating	 an	
abundance	 of	 novel	 phenotypes	 which	 selection	 can	 act	 upon9.	 A	 pan-cancer	 study	 indeed	
demonstrated	large	numbers	of	subclonal	mutations	within	single	tumour	regions	of	MSI	cancers10.	
However,	 it	 has	 not	 been	 investigated	 in	 dMMR	GOAs	whether	 the	MSI	 hypermutator-phenotype	
remains	 active	 during	 progression,	 how	 this	 impacts	 ITH	 and	 phylogenetic	 trees,	 and	 whether	
subclonal	 driver	mutations	 evolve.	 Our	 previous	 work	 in	 kidney	 cancer	 for	 example	 showed	 that	
most	driver	mutations	are	 located	 in	 subclones11.	 Subclonal	driver	mutations	are	poor	 therapeutic	
targets	 as	 co-existing	wild-type	 subclones	 remain	 untargeted12.	 They	 furthermore	 hinder	 effective	
biomarker	development	as	the	analysis	of	single	tumour	regions	incompletely	profiles	the	genomic	
landscape	 of	 the	 entire	 tumour.	 Large-scale	 sequencing	 analyses	 of	 MSI	 GOAs	 identified	 TP53,	
RNF43,	ARID1A,	PIK3CA,	KRAS	and	PTEN,	as	the	most	frequently	altered	driver	genes13.	Mutations	in	
antigen	 presentation	 (MHC,	 B2M)2	 and	 interferon	 signalling	 pathway	 (JAK1/2)14,15	 genes	 also	
frequently	 occur	 in	 MSI	 tumours	 and	 they	 have	 been	 suggested	 to	 enable	 immune	 evasion2.	
However	whether	they	are	truncal	or	subclonal	within	individual	tumours	is	unknown.	

Multi-region	 exome	 sequencing	 (MSeq)	 reconstructs	 cancer	 evolution	 by	 comparing	
mutational	 profiles	 from	 spatially	 separated	 tumour	 regions.	 MSeq	 found	 that	 mutations	 often	
appear	to	be	present	in	all	cancer	cells	(i.e.	clonal)	in	a	single	tumour	region	even	if	they	are	absent	
from	 other	 regions	 of	 the	 same	 tumour11,16.	 Spatial	 constraints	 in	 solid	 tumours	 that	 preclude	
intermixing	 of	 evolving	 subclones	 likely	 explains	 this	 ‘illusion	 of	 clonality’	 phenomenon	 when	
heterogeneity	 is	 only	 investigated	 in	 a	 single	 sample	 per	 tumour17,18.	 We	 apply	 MSeq	 to	 four	
surgically	 resected	 GOAs	 showing	 dMMR	 on	 immunohistochemistry	 and	 combine	 this	 with	
subclonality	analysis	of	single	tumour	biopsies	from	64	MSI	GOAs	sequenced	by	The	Cancer	Genome	
Atlas	(TCGA)2	to	assess	ITH	and	the	evolution	of	these	tumours.	
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RESULTS	

Samples	

Seven	 primary	 tumour	 regions	 from	 each	 of	 four	GOAs	 (Fig.	 1A)	were	 subjected	 to	MSeq	
with	a	target	depth	>200x	(Supplementary	Data	1).	Two	lymph	node	metastases	were	included	from	
each	of	 two	cases.	TNM-stage	was	assessed	but	no	other	clinical	 information	was	available	as	 the	
samples	 had	 to	 be	 anonymised	 to	 comply	 with	 local	 ethics	 and	 research	 legislation.	 Absence	 of	
MLH1	 and	 PMS2	 staining	 and	 positive	 staining	 for	 MSH2	 and	 MSH6	 (Fig.	 1B),	 indicated	MLH1	
deficiency.	No	known	Lynch	syndrome	mutations	in	MLH1,	MSH2/6	or	PMS2	were	identified	in	DNA	
from	non-malignant	tissue,	confirming	that	these	were	sporadic	dMMR	tumours.	

Mutational	intratumour	heterogeneity	

1518	 to	 4148	 (median:	 1814)	 non-silent	mutations	were	 identified	 per	 case	 (Fig.	 1C).	 The	
high	 mutation	 burden	 and	 the	 large	 fraction	 of	 indels	 (20-34%)	 were	 consistent	 with	 a	 MSI-
phenotype2.	 The	 number	 of	 ubiquitous	 non-silent	 mutations	 that	 were	 detected	 across	 all	
sequenced	regions	per	tumour	ranged	from	329	to	1006	(median:	702).	This	exceeded	the	number	
of	 ubiquitous	 non-silent	 mutations	 reported	 for	 clear	 cell	 renal	 cell	 carcinomas	 (ccRCC,	 median:	
28)11,	and	even	for	 lung	cancers	(median:	137)16	and	melanomas	(median:	436)19	which	are	among	
the	most	 highly	mutated	 cancer	 types20	 (Fig.	 1D).	 The	 difference	 was	 significant	 between	 dMMR	
GOA	and	lung	and	ccRCC	but	not	for	melanomas.	MSeq-identified	ubiquitous	mutations	are	likely	to	
define	 the	mutations	 that	were	present	 in	 the	 founding	 cell	of	each	 tumour	before	diversification	
into	subclones	occurred11.	These	high	numbers	hence	 reveal	 that	 the	dMMR-phenotype	was	 likely	
acquired	in	the	precancerous	cell	lineage	considerably	earlier	than	malignant	transformation	of	the	
founding	cell.	Malignant	transformation	shortly	after	dMMR	acquisition	which	was	then	followed	by	
selective	sweeps	 is	an	alternative	explanation.	Yet,	 it	appears	unlikely	 that	 this	would	have	 left	no	
trace	of	the	early	subclones	in	any	tumour.		

A	median	of	1194	mutations	were	only	detectable	 in	some	but	not	 in	all	analysed	 tumour	
regions	per	case	and	hence	heterogeneous.	This	significantly	exceeded	the	heterogeneous	mutation	
burden	detected	by	MSeq	in	ccRCC11	by	24-fold,	 in	 lung	cancer16	by	40-fold,	and	in	melanoma19	by	
32-fold	(Fig.	1D).	Importantly,	the	median	mutation	load	per	region	in	these	MSeq	series	was	similar	
to	those	reported	by	the	TCGA	for	the	respective	cancer	type	(Fig.	1E),	suggesting	that	these	small	
series	are	reasonably	representative	of	each	tumour	type.	Thus,	dMMR	tumours	are	characterized	
by	extreme	ITH	compared	to	other	cancer	types.	

High	mutation	 and	 neoantigen	 loads	 are	 associated	 with	 immunotherapy	 benefit.	 Recent	
data	suggested	more	specifically	that	a	high	burden	of	clonal	mutations/neoantigens	is	important	for	
immunotherapy	success21,22.	Applying	the	NetMHC	algorithm	predicted	1120	to	3052	strong	class	 I	
MHC	binding	neoantigens	per	tumour	(Supplementary	Fig.	1).	Between	215	and	926	of	these	were	
clonal.	This	is	higher	than	clonal	neoantigen	loads	reported	for	most	lung	cancers	or	melanomas23.	It	
is	 conceivable	 that	 this	 high	 clonal	 neoantigen	 burden	 explains	 the	 immunotherapy	 sensitivity	 of	
dMMR	tumours21.	
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Mutational	signatures	reveal	processes	driving	evolution	

We	 next	 investigated	 mutational	 signatures	 by	 counting	 the	 number	 of	 all	 possible	 base	
substitution	 in	 their	 trinucleotide	 contexts	 (Supplementary	 Fig.	 2)	 and	 assigning	 these	 to	 30	
mutational	signatures20	(Fig.	1F).	The	COSMIC	mutational	signatures	6	and	15	are	characteristic	for	
MSI	cancers	and	these	were	abundant	among	ubiquitous	and	heterogeneous	mutations.	Signature	1	
mutations	reflect	the	spontaneous	deamination	of	methylated	cytosine,	a	mutational	process	active	
in	most	normal	tissues.	Signature	1	was	detected	in	17-52%	(219-449	mutations	in	absolute	number)	
of	ubiquitous	mutations.	A	fraction	of	these	were	likely	acquired	in	the	normal	cells	over	the	lifetime	
of	 these	 patients.	 However,	 based	 on	 the	 estimated	mutation	 rate	 in	 normal	 gastro-oesophageal	
epithelium,	only	0.5-1	signature	1	mutations	would	be	expected	to	accumulate	per	lifeyear24-26.	It	is	
hence	likely	that	the	dMMR-phenotype	also	contributes	to	the	generation	of	signature	1	mutations.	
This	is	further	supported	by	9-10%	of	the	subclonal	mutations	in	Tumours	1-3	and	36%	in	Tumour	4	
showing	signature	1	and	consistent	with	a	recently	suggested	role	of	the	MMR-system	in	the	repair	
of	 deamination	 defects27.	 10.5%	 of	 the	 ubiquitous	 mutations	 in	 Tumour	 3	 showed	 signature	 14	
which	 has	 been	 described	 in	 dMMR	 cancers	 that	 are	 also	 POLE	 or	 POLD1	 mutant29.	 Tumour	 3	
harboured	a	POLD1	mutation	but	 this	was	 subclonal	 and	 could	not	explain	 the	presence	of	 clonal	
signature	 14	 mutations.	 The	 absence	 of	 signature	 14	 from	 subclonal	 mutations	 furthermore	
suggested	 that	 this	 is	 a	 passenger	 mutation.	 No	 other	 mutational	 signatures	 contributed	
substantially	 to	 the	 heterogeneous	mutations,	 confirming	 that	 the	MSI-phenotype	 remains	 active	
during	 cancer	 progression	 and	 is	 the	 primary	 mechanism	 generating	 these	 large	 numbers	 of	
subclonal	mutations.		

The	evolution	of	copy	number	aberrations	

DNA	copy	number	aberration	(CNA)	profiles	revealed	near-diploid	profiles	across	all	regions	
of	 Tumour	 2	 and	 3	 (Fig.	 2A	 and	 Supplementary	 Fig.	 3).	 Tumour	 4	 showed	 highly	 aberrant	 near-
tetraploid	profiles	in	all	regions.	A	high	number	of	mutations	were	present	on	all	copies	of	the	major	
allele	 of	 most	 gained	 chromosomes	 (Fig.	 2B),	 indicating	 that	 whole	 genome	 duplication	 and	
chromosomal	instability	(CIN)	had	occurred	late	on	the	trunk	of	the	phylogenetic	tree	 in	Tumour	4.	
CIN	was	 confirmed	 by	 the	wGII-index	 that	measures	 the	 proportion	 of	 all	 chromsomes	with	 copy	
number	 states	 that	 differ	 from	 the	 ploidy	 of	 a	 sample	 and	where	 values	 above	 0.2	 support	 the	
presence	of	CIN28	(Fig.	2A).	Near-diploid	and	near-triploid	CNA	profiles	were	found	in	distinct	regions	
of	Tumour	1.	Together	with	an	increase	in	wGII	from	~0.2	in	the	near-diploid	regions	to	>0.5	in	near-
triploid	 regions	 and	 the	 occurrence	 of	 new	 CNAs	 in	 individual	 tumour	 regions,	 this	 revealed	 the	
acquisition	of	subclonal	CIN	during	cancer	progression.	All	 four	 lymph	node	metastases	were	near-
diploid	 with	 wGII	 values	 ≤0.2,	 demonstrating	 that	 CIN,	 which	 has	 been	 associated	 with	 tumour	
aggressiveness	in	several	cancer	types	including	GOA29,	is	not	required	for	metastasis	formation.	

We	next	 investigated	which	 specific	CNAs	were	ubiquitous/clonal	and	had	hence	occurred	
early	 in	 the	 evolution	 of	 these	 dMMR	 tumours	 (Fig.	 2C	 and	 Supplementary	 Fig.	 3).	 Ubiquitous	
Chr17p,	Chr18	and	Chr22	loss	of	heterozygosity	(LOH)	were	each	present	in	two	tumours.	Ubiquitous	
LOH	 of	 Chr3p,	 Chr5q	 and	 Chr17p	 encompassed	 tumour	 suppressor	 genes	 which	 are	 recurrently	
mutated	in	dMMR	GOAs2	(MLH1,	APC	and	TP53).	Among	the	small	number	of	ubiquitous	gains,	only	
Chr8q	and	Chr20q	were	gained	 in	more	than	one	tumour.	To	further	time	the	acquisition	of	 these	
recurrent	truncal	CNAs,	we	mapped	ubiquitous	mutations	onto	the	allele-specific	CNA	profiles.	Copy	



6	
	

number	gains	that	occurred	early	can	be	identified	if	the	majority	of	mutations	in	that	region	have	a	
mutation	copy	number23	which	is	lower	than	that	of	the	gained	allele.	The	Chr8	gain	in	Tumour	2	and	
the	Chr8q	gain	in	Tumour	4	(Fig.	2D),	but	not	Chr20	gains	(Fig.	2E),	showed	a	near	complete	absence	
of	mutations	on	all	copies	of	the	gained	allele	and	were	hence	acquired	on	the	phylogenetic	trunk	
before	or	soon	after	the	MSI-phenotype.	Thus,	Chr8q	gains,	which	are	the	commonest	CNAs	in	MSI	
GOAs2,	can	be	among	the	earliest	genetic	aberrations	in	these	tumours.	

Reconstruction	of	tumour	phylogenies		

We	 next	 deconvoluted	 the	 subclonal	 composition	 of	 individual	 regions	 and	 reconstructed	
the	phylogenetic	tree	for	each	tumour	(Fig.	3).	Similar	to	MSeq	analyses	of	other	tumour	types11,16,19,	
this	revealed	branched	evolution.	Comparison	of	the	phylogenetic	trees	with	the	mutation	heatmaps	
showed	 some	 phylogenetic	 conflicts.	 Inspection	 of	 the	 CNA	 status	 of	 the	mutated	 DNA	 positions	
showed	that	most	conflicts	could	be	explained	by	losses	of	chromosome	copies	in	individual	regions	
(marked	in	green	in	Fig.	1C	and	Supplementary	Fig.	4).	Thus,	subclones	can	lose	a	small	proportion	of	
mutations	during	cancer	evolution.		

Phylogenetically	 closely	 related	 clones	 were	 usually	 located	 in	 close	 physical	 proximity	
(Supplementary	 Fig.	 5),	 indicating	 that	 cell	motility	 is	 limited	 and	 that	 these	 tumours	 evolve	 in	 a	
spatially	ordered	fashion.	Importantly,	each	of	the	two	lymph	node	metastases	analysed	in	Tumours	
2	 and	 3	 had	 evolved	 from	 distinct	 subclones	 rather	 than	 being	 seeded	 by	 the	 same	 subclone	 or	
sequentially	from	one	node	to	the	other	(Fig.	3).	Dissemination	hence	propagated	subclonal	diversity	
from	 the	 primary	 tumour	 to	metastatic	 sites.	 In	 addition,	 subclonal	mutations,	 defined	 as	 private	
mutations	estimated	to	be	present	in	≤70%	of	the	cancer	cells	of	a	sample,	were	detectable	within	
three	metastatic	sites	with	good	cancer	cell	content	(Supplementary	Table	1).	Subclonal	mutations	
within	 lymph	nodes	were	 again	predominated	by	 the	MSI-specific	mutational	 signatures	 6	 and	15	
(Supplementary	Table	2).	Thus,	the	dMMR-phenotype	continues	to	generate	ITH	in	metastases.	

Identification	of	truncal	drivers	

We	next	assessed	 the	evolution	of	putative	driver	mutations	and	of	 corresponding	LOH	of	
tumour	suppressor	genes	and	mapped	them	onto	the	phylogenetic	trees	(Fig.	3	and	Supplementary	
Data	2).	A	frameshift	mutation	and	LOH	of	MLH1	occurred	on	the	trunk	of	Tumour	1,	consistent	with	
biallelic	 MLH1	 loss.	 No	 genetic	 aberrations	 of	MLH1	 were	 detectable	 in	 Tumours	 2-4	 but	 qPCR	
confirmed	 hypermethylation	 of	 the	 MLH1	 promoter	 as	 the	 cause	 for	 dMMR	 in	 these	 cases	
(Supplementary	 Fig.	 6)30.	 Tumours	 2-4	 furthermore	 harboured	 a	 truncal	 frameshift	 mutation	 in	
MSH6.	 Mutations	 in	 the	 histone	 methyltransferase	 and	 tumour	 suppressor	 gene	 PRDM2,	 one	 in	
combination	with	LOH	of	the	second	allele	were	also	truncal	in	all	four	cases	and	truncal	frameshift	
mutations	of	the	TGFβ signalling	regulator	ACVR2A	were	detected	in	three	cancers.	Both	genes	have	
been	suggested	as	likely	drivers	in	MSI	GOAs13.		

One	 tumour	 showed	 a	 disrupting	 mutation	 and	 LOH	 of	 ARID1B	 and	 two	 tumours	 each	
harboured	 two	 truncal	 mutations	 in	 ARID1A,	 which	 are	 all	 members	 of	 the	 SWI/SNF-chromatin-
modifying	complex.	We	could	not	formally	demonstrate	that	the	two	mutations	affected	both	alleles	
of	 the	 ARID1A	 tumour	 suppressor	 gene	 but	 biallelic	 inactivation	 is	 likely	 as	 all	 mutations	 were	
disrupting	in	nature,	suggesting	evolutionary	selection	for	inactivating	events.	A	frameshift	mutation	
and	LOH	of	PBRM1,	a	further	SWI/SNF-complex	member,	co-occurred	with	biallelic	ARID1B	 loss	on	
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the	 trunk	 of	 Tumour	 1.	 This	 emphasizes	 an	 important	 role	 for	 SWI/SNF-complex	 aberrations	 in	
dMMR	GOA	development.	

Truncal	mutations	in	TP53	were	found	in	three	tumours.	Tumours	1	and	4	also	showed	LOH,	
leading	to	biallelic	TP53	inactivation.	These	specific	cancers	had	undergone	genome	duplication	and	
acquired	 CIN,	 consistent	 with	 a	 permissive	 role	 of	 TP53	 loss	 for	 CIN31.	 Moreover,	 both	 showed	
truncal	 Chr18q	 loss	which	 promotes	 CIN	 in	 colorectal	 cancer32.	TP53	 inactivation	 and	 Chr18q	 loss	
may	 hence	 predispose	 tumours	 to	 subsequently	 evolve	 CIN.	 Frameshift	 mutations	 of	 RNF43,	 a	
negative	 regulator	of	 the	APC/β-catenin-pathway	that	 frequently	acquires	heterozygous	mutations	
in	 MSI	 tumours33,	 were	 present	 in	 three	 tumours.	 The	 tumour	 without	 an	 RNF43	 mutation	
harboured	two	truncal	mutations	in	the	APC	tumour	suppressor	gene	as	an	alternative	mechanism	
of	 β-catenin	 activation.	 Together,	 aberrations	 in	 TP53,	 the	 SWI/SNF-complex,	 PRDM2,	 dMMR-,	
APC/β-catenin	signalling-	and	TGFβ	signalling-genes	each	occurred	on	the	phylogenetic	trunks	of	at	
least	two	cases.	

Parallel	evolution	

Assessing	heterogeneous	driver	mutations	revealed	striking	examples	of	parallel	evolution,	a	
strong	 signal	 that	 these	 evolved	 through	 Darwinian	 selection7,17,34,35:	 Tumour	 2	 acquired	 five	
subclonal	mutations	 in	SMARCA4,	encoding	a	catalytic	subunit	of	the	SWI/SNF-complex.	These	had	
occurred	in	addition	to	two	truncal	mutations	(M274fs,	K1071fs)	in	ARID1A.	A	third	ARID1A	mutation	
was	subclonal	and	affected	recurrently	mutated	amino	acids	 (AA163-164del)	 located	proximally	 to	
the	 truncal	 frameshift	mutations.	 This	may	 be	 functionally	 relevant	 if	ARID1A	 had	 retained	 some	
residual	 activity	 despite	 the	more	 distal	 mutations.	 Parallel	 evolution	 of	 five	 subclonal	 SMARCA4	
mutations	in	this	tumour	with	truncal	ARID1A	mutations	suggests	that	SWI/SNF-complex	aberrations	
are	not	only	important	for	carcinogenesis	but	that	progressive	inactivation	may	contribute	to	cancer	
progression.	

A	PIK3CA	 hotspot	mutation	 (H1047R)	was	 detected	 in	 P1	 and	 Y1	 but	 also	 in	 the	 distantly	
related	subclone	AL	in	Tumour	2.	Copy	number	changes	that	could	explain	a	loss	of	this	mutation	in	
subclones	 with	 wild-type	 PIK3CA	 were	 absent	 (Supplementary	 Fig.	 3).	 The	 most	 parsimonious	
explanation	 for	 this	 phylogenetic	 conflict	 is	 that	 the	 same	mutation	 independently	 evolved	 twice,	
once	 in	 AL	 and	 once	 in	 the	 ancestor	 cell	 of	 P1	 and	 Y1.	 Intuitively	 this	may	 appear	 unlikely,	 but	 a	
tumour	of	this	diameter	contains	>10x109	cancer	cells9	that	have	undergone	approximately	the	same	
number	of	cell	divisions	to	grow	to	this	size	 from	the	founding	cell.	 It	 is	conceivable	that	two	cells	
independently	 acquire	 the	 same	mutation	 in	 some	 tumours	 of	 this	 size.	With	 one	 further	PIK3CA	
hotspot	 mutation	 in	 region	 E	 (Y1021C),	 this	 identified	 three	 PIK3CA	 parallel	 evolution	 events	 in	
Tumour	2.		

Mutations	 in	 the	 SWI/SNF-complex	members	 SMARCA4	 and	ARID1A	 were	 present	 on	 the	
trunk	of	Tumour	3.	Additional	 SWI/SNF	mutations,	one	 in	ARID2	 and	one	 in	SMARCA4,	 evolved	 in	
subclones,	the	latter	potentially	complementing	monoallelic	SMARCA4	 loss	on	the	trunk	to	biallelic	
inactivation	 in	 the	 subclone.	 Further	 parallel	 evolution	 was	 apparent	 in	 Tumour	 3	 based	 on	 the	
acquisition	of	KRAS	(G13D)	and	NRAS	(G12C)	oncogenic	mutations	in	distinct	subclones.	Two	hotspot	
PIK3CA	mutations	(E418K,	Y1021H)	sequentially	occurred	in	one	clade	of	Tumour	3.		
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The	 tumour	 suppressor	 gene	 PRDM2	 harboured	 frameshift	 mutations	 on	 the	 trunks	 of	
Tumours	 2	 and	 3	 and	 a	 second	 frameshift	 mutation	 was	 acquired	 in	 subclones	 of	 each	 tumour,	
potentially	 leading	 to	 biallelic	 inactivation.	 Subclonal	 inactivating	 mutations	 of	 the	 cell	 cycle	
regulator	and	DNA	damage	repair	genes	CHEK2,	ATR	and	BLM	occurred	in	Tumour	3.	Together	with	
truncal	 LOH	 of	 CHEK2,	 both	 alleles	 of	 this	 gene	 were	 inactivated.	 Heterozygous	 BLM	 and	 ATR	
mutations	may	be	functionally	relevant	as	both	genes	show	haploinsufficiency36,37.		

Given	the	high	burden	of	mutations	caused	by	dMMR,	 it	 is	possible	that	several	mutations	
which	 we	 classified	 as	 likely	 drivers	 are	 passengers	 without	 significant	 fitness	 effects.	 However,	
parallel	evolution	and	the	strong	functional	evidence	for	driver	status	of	the	identified	KRAS,	NRAS	
and	 PIK3CA	 mutations	 and	 of	 inactivating	 mutations	 in	 SWI/SNF-complex	 members	 in	 cancer38	
support	the	functional	relevance	of	these	specific	aberrations.	

The	evolution	of	immune	evasion	drivers	

Tumour	2	harboured	a	truncal	JAK2	frameshift	mutation.	In	addition,	a	subclonal	JAK2	splice-
site	mutation	evolved	 in	one	clade	and	a	 frameshift	mutation	 in	 region	AE.	Another	 subclone	had	
acquired	a	JAK1	frameshift	mutation	but	no	evidence	for	biallelic	inactivation	was	found.	A	subclonal	
frameshift	 mutation	 was	 present	 in	 HLA-A*02:01	 (Supplementary	 Data	 3).	 	 Assessing	 the	
neoantigens	 binding	 to	 this	 HLA	 allotype	 revealed	 that	 this	 could	 lead	 to	 a	 12%	 reduction	 in	 the	
number	of	neoantigens	presented	by	these	subclones	(Supplementary	Fig.	7).	One	clade	in	Tumour	2	
furthermore	 acquired	 two	 disrupting	 mutations	 in	 B2M.	 Inspecting	 short	 read	 sequencing	 data	
confirmed	that	these	were	not	located	on	the	same	allele	but	conferred	biallelic	inactivation	which	
abrogates	MHC	Class	I	antigen	presentation	(Supplementary	Fig.	8).		

LOH	 of	B2M	 was	 present	 on	 the	 trunk	 in	 Tumour	 3	 and	 a	B2M	 frameshift	mutation	 was	
acquired	in	a	subclone,	also	establishing	biallelic	B2M	loss.	Although	several	primary	tumour	regions	
in	 Tumours	2	 and	3	 showed	biallelic	B2M	 inactivation	 this	was	not	propagated	 to	 any	of	 the	 four	
lymph	node	metastases	 (Fig.	 3).	 The	 lymph	node	metastasis	 AE	 in	 Tumour	 3	 acquired	 a	missense	
mutation	 in	 HLA-B*40:02	 (Supplementary	 Data	 3)	 with	 unknown	 functional	 impact.	 If	 this	 HLA-
B*40:02	 mutation	 compromised	 antigen	 presentation,	 12%	 of	 neoantigens	 could	 no	 longer	 be	
presented.	 In	 contrast	 to	 lung	 cancers	 which	 are	 frequently	 chromosomally	 unstable	 and	 acquire	
subclonal	LOH	of	HLA	genes	as	immune	evasion	mechanisms39,	no	such	LOH	events	were	identified	
(Supplementary	Data	3).	

To	 investigate	 why	 immune	 evasion	 drivers	 only	 evolved	 in	 2/4	 tumours,	 we	 assessed	
cytotoxic	 CD8+	 T-cell	 infiltrates	 by	 immunostaining.	 The	 two	 tumours	 with	 evidence	 of	 immune	
evasion	events,	which	also	had	the	highest	truncal	and	subclonal	mutation	burdens,	showed	higher	
T-cell	infiltrates	than	the	other	two	cases	(Fig.	4).	dMMR	GOAs	with	high	immunogenicity	and	T-cell	
infiltrates	may	hence	be	particularly	prone	to	subclonal	immunoediting.		

Darwinian	selection	over	time	

	 The	 ratio	of	non-synonymous	mutations	 to	 synonymous	mutations	 (dN/dS-ratio)	has	been	
used	 to	estimate	positive	and	negative	 selection	 in	 cancer40.	dMMR	 tumours	have	high	 clonal	but	
also	 subclonal	 mutation	 burdens	 and	 we	 reasoned	 that	 this	 may	 enable	 applying	 these	 ratios	 to	
evaluate	how	selection	changes	from	truncal	mutations	to	subclones.	dN/dS-ratios	were	close	to	1	
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for	 the	 truncal	 mutations	 of	 all	 cases	 (0.95-1.06),	 indicating	 that	 the	 majority	 of	 mutations	 are	
neither	under	positive	nor	under	negative	selection.	However,	the	dN/dS-ratios	increased	to	1.16	in	
Tumour	 1	 and	 1.31	 in	 Tumour	 2	 for	 private	 mutations,	 indicating	 positive	 selection	 (Fig.	 5	 and	
Supplementary	Table	3).	Together	with	the	 identification	of	parallel	evolution	 in	Tumours	2	and	3,	
this	suggests	 that	 these	tumours	are	under	selection	pressure	and	adaptive	mutations	continue	to	
evolve.	The	dN/dS<1	in	the	shared	mutations	of	Tumour	4	may	be	a	sign	of	negative	selection	during	
early	evolution.	Our	results	show	that	MSeq	allows	to	dissect	the	temporal	dynamics	of	selection	in	
dMMR	tumours	and	this	can	be	used	to	reveal	what	genetic	alterations	are	selected	for	or	against	in	
larger	series.		

Multi-region	vs.	single-region	heterogeneity	analysis		

Our	 next	 aim	 was	 to	 gain	 further	 insights	 into	 the	 evolution	 of	 dMMR	 GOAs	 by	
deconvolution	of	clonal	and	subclonal	mutations	in	single	samples	from	the	TCGA	GOA	dataset2.		

We	first	used	our	MSeq	dataset	 to	assess	which	 information	can	be	robustly	generated	by	
single	 sample	 deconvolution	 and	 which	 ones	 are	 more	 likely	 to	 be	 gained	 by	 MSeq.	 The	 total	
mutation	load	in	a	single	sample	exceeded	the	MSeq-determined	ubiquitous/truncal	mutation	load	
by	an	average	of	73%	across	 the	 four	 tumours	 (Fig.	 6A).	 Following	bioinformatic	deconvolution	of	
regional	 mutations	 into	 clonal	 and	 subclonal,	 the	 average	 clonal	 mutation	 burden	 determined	 in	
single	 samples	 still	 exceeded	 the	 number	 of	mutations	 identified	 as	 ubiquitous	 by	MSeq	 by	 34%.	
Moreover,	 the	 number	 of	mutations	 identified	 as	 clonal	 in	 a	 single	 region	 varied	 highly	 between	
samples	from	the	same	tumour.	This	could	not	be	attributed	to	different	cancer	cell	contents	as	no	
correlation	was	observed	(Supplementary	Fig.	9).		

We	 furthermore	 assessed	 whether	 the	 parallel	 evolution	 mutations,	 that	 have	 a	 high	
probability	of	being	actual	drivers	and	were	found	to	be	subclonal	by	MSeq	analysis,	could	also	have	
been	accurately	 identified	as	 subclonal	by	single-region	analysis.	Only	40%	of	B2M	mutations	 that	
were	subclonal	based	on	MSeq	were	accurately	identified	as	subclonal	in	individual	regions	whereas	
60%	appeared	clonal	(Fig.	6B-C).	This	illusion	of	clonality	in	single	sample	analysis	also	affected	40%	
of	 JAK2	 mutations,	 76.2%	 of	 SMARCA4	 mutations,	 66.7%	 of	RAS	 mutations	 and	 35.7%	 of	 PIK3CA	
mutations.	Overall,	59.0%	of	 these	 likely	driver	mutations	appeared	clonal	 in	single-region	analysis	
despite	 clear	 subclonal	 status	based	on	MSeq.	 This	 supports	 the	 conclusion	 from	MSeq	 studies	 in	
other	 tumour	 types,	 that	 single-region	 analysis	 overestimates	 the	 clonal	 dominance	 of	 driver	
mutations11,16.		

We	 next	 analysed	 64	 MSI	 GOAs	 cancers	 from	 TCGA.	 All	 samples	 harboured	 subclonal	
mutations	but	only	a	median	of	21.3%	of	mutations	were	subclonal	(Fig.	6D)	compared	to	a	median	
of	60.1%	in	MSeq	data.	We	then	assessed	the	clonality	of	mutations	 in	driver	genes	which	we	had	
found	to	be	either	predominantly	clonal	or	subclonal	by	MSeq.	The	highest	frequency	of	subclonal	
mutations	was	 found	 in	ARID2	 and	SMARCA4	whereas	ACVR2A	was	 almost	 always	 clonal	 in	 TCGA	
data	 (Fig.	 6E),	 consistent	 with	 MSeq	 data	 where	 these	 occurred	 late	 and	 early,	 respectively.	
Mutations	in	the	remaining	driver	genes	were	predominantly	clonal	in	TCGA	data,	but	in	light	of	our	
MSeq	data	this	is	likely	limited	by	the	overestimation	of	clonal	status	in	single-region	analysis.		

Only	2/64	TCGA	cases	showed	parallel	evolution	of	two	subclonal	SMARC4	mutations,	each,	
and	two	subclonal	PIK3CA	mutations	evolved	in	one	case.	No	parallel	evolution	of	driver	mutations	
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in	 RAS	 or	 immune	 evasion	 regulators	 was	 identified.	 Together	 with	 the	 detection	 of	 parallel	
evolution	in	spatially	distinct	tumour	regions	by	MSeq,	this	illustrates	the	limitation	to	identify	such	
events	by	single	sample	analysis.	Two	independent	disrupting	mutations	in	ARID1A	were	found	to	be	
clonal	 in	 each	 of	 16/64	 tumours	 (25%)	 and	 only	 four	 tumours	 had	 one	 clonal	 and	 one	 subclonal	
inactivating	event.	This	confirms	frequent	biallelic	inactivation.	

Clonal	 and	 subclonal	 mutations	 in	 TCGA	 samples	 were	 dominated	 by	 the	 MSI-specific	
mutational	signatures	6	and	15	(Fig.	6F-G),	confirming	our	MSeq	results.	44.0%	of	clonal	mutations	
displayed	 signature	 1	 and	 although	 this	 significantly	 decreased	 among	 subclonal	 mutations,	 it	
remained	 the	 second	 most	 abundant	 mutation	 signature.	 Together	 with	 a	 significant	 increase	 in	
signature	15	among	subclonal	mutations,	this	supports	the	change	in	mutational	processes	between	
early	progression	and	subclonal	diversification	as	seen	in	the	MSeq	dataset.	Timing	of	copy	number	
changes	in	the	TCGA	dataset	supported	that	chromosome	8	gains	had	been	acquired	before	or	early	
after	the	MSI-phenotype	in	~60%	of	cases	(Fig.	6H	and	Supplementary	Fig.	10).		

Mutational	mechansism	and	their	timing	influence	phylogenies	

To	 investigate	 how	 mutational	 processes	 and	 their	 timing	 influence	 phylogenetic	 tree	
morphologies,	 we	 represented	 dMMR	 GOAs,	 melanomas19,	 lung16	 and	 renal	 cancers11	 as	 a	 single	
phylogenetic	 tree	with	 a	 branching	 structure	 similar	 to	 those	 revealed	 by	MSeq	 and	by	 using	 the	
average	 number	 of	 ubiquitous	 and	 heterogeneous	mutations	 (Fig.	 1D)	 to	 scale	 trunk	 and	 branch	
sizes	 (Fig.	 7).	 This	 revealed	 that	 dMMR	 leads	 to	 long	 trunks	 even	 exceeding	 the	 trunk	 size	 of	
carcinogen	 induced	cancers	 (UV	 light	 in	melanomas,	 cigarette	 smoke	 in	 lung	 cancer).	Additionally,	
dMMR	 tumours	 showed	prominent	branches,	whilst	branch	 lengths	 in	 lung	 cancer	and	melanoma	
were	similarly	short	as	in	ccRCC11;	a	consequence	of	the	limited	impact	of	the	initiating	carcinogens	
during	 cancer	 progression16,19.	 These	 associations	 show	 that	 mutation	 rates	 and	 their	 temporal	
activity	are	major	factors	determining	phylogenetic	tree	shapes	and	sizes.	
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Discussion	

With	recent	success	rates	of	cancer-immunotherapy,	understanding	the	genetic	landscapes	
of	immunotherapy-sensitive	tumour	types	and	how	these	influence	treatment	sensitivity	are	major	
needs.	 dMMR	 cancers	 are	 among	 the	 most	 sensitive	 solid	 tumours	 to	 checkpoint-inhibiting	
immunotherapies5,6	but	their	genetic	evolution,	clonal	mutation	burden	and	ITH	remained	unknown.	
Our	 series	 of	 four	 treatment-naïve	 dMMR	GOAs	 revealed	 strikingly	 high	 clonal	mutation	 burdens.	
This	may	explain	the	exquisite	sensitivity	of	these	cancers	to	immunotherapy	as	recent	data	showed	
that	a	high	 clonal	mutation	burden	 is	 a	better	predictor	of	 immunotherapy	 success	 than	 the	 total	
mutation	 burden21.	 The	 presence	 of	 mutational	 ITH	 has	 furthermore	 been	 suggested	 to	 impair	
effective	 immunotherapy	 in	 lung	 cancer	 and	 other	 malignancies21,22.	 Extremely	 high	 numbers	 of	
heterogeneous	mutations	were	found	in	all	four	dMMR	GOAs	and	these	significantly	exceeded	those	
in	 other	 cancer	 types	 analysed	 by	 MSeq.	 Although	 the	 analysed	 tumours	 were	 not	 treated	 with	
immunotherapy,	 these	 results	 and	 the	 overall	 high	 response	 rate	 of	 dMMR	 GOAs	 suggests	 that	
extreme	 ITH	 is	 unlikely	 to	 fundamentally	 preclude	 immunotherapy	 efficacy	 in	 tumours	 with	
abundant	 clonal	 mutations.	 This	 warrants	 MSeq	 analyses	 of	 MSI	 GOAs	 that	 were	 treated	 with	
checkpoint-inhibitors	in	order	to	assess	whether	these	hypotheses	can	be	validated	in	the	clinic.		

Our	study	also	provides	first	insights	into	the	clonal	origin	of	lymph	node	metastatic	disease	
in	 dMMR	 GOAs.	 Lymph	 nodes	 were	 seeded	 by	 distinct	 subclones	 in	 the	 primary	 tumours,	
propagating	 some	 of	 the	 heterogeneity	 from	 the	 primary	 tumour	 to	 metastatic	 sites.	 Subclonal	
mutation	 generation	 continued	 in	 metastases	 and	 similar	 heterogeneity	 as	 observed	 in	 primary	
tumours	should	therefore	be	expected	in	more	advanced	metastatic	disease.		

The	mutation	load	of	individual	tumour	regions	exceeded	the	number	of	truncal	mutations	
by	73%,	and	still	by	34%	following	subclonal	deconvolution.	Studies	investigating	mutation	burden	as	
immunotherapy	 biomarkers	 may	 hence	 benefit	 from	 MSeq	 to	 robustly	 and	 accurately	 estimate	
truncal	 mutation	 loads.	 Subclonal	 immune	 evasion	 drivers	 were	 identified	 in	 two	 of	 four	 cases.	
Mutations	 in	 the	 JAK1/2	 and	 inactivation	 of	 B2M	 can	 confer	 resistance	 to	 checkpoint-inhibiting	
immunotherapy15,41,42.	Although	in	MSI	colorectal	cancer	it	has	been	shown	that	most	patients	with	
B2M	 inactivation	 benefitted	 from	 immunotherapy43,	 our	 data	 suggests	 that	 B2M	 loss	 can	 be	
subclonal	and	 is	not	necessarily	propagated	to	metastases.	How	subclonal	 immune	evasion	drivers	
and	 their	 localisation	 in	 primary	 tumours	 or	 in	 metastases	 impairs	 immune	 checkpoint-inhibitor	
efficacy	in	dMMR	GOAs	should	be	investigated	by	MSeq	in	larger,	immunotherapy	treated	cohorts.		

Despite	 the	selection	pressure	 resulting	 from	the	high	 immunogenicity	of	dMMR	tumours,	
we	 found	no	evidence	of	 reversion	of	 the	hypermutator-phenotype.	 Immune	evasion	mechanisms	
which	 can	 be	 readily	 accessed	 through	 single	 mutations,	 for	 example	 in	 HLA	 genes,	 or	 through	
biallelic	B2M	 or	 JAK	mutations	may	more	 effectively	mitigate	 against	 this	 selection	 pressure	 than	
loss	 of	 the	 dMMR-phenotype	which	would	 still	 leave	 behind	 neoantigen-encoding	mutations	 that	
have	already	been	generated.	Despite	considerable	mutation	loads,	cytotoxic	T-cell	 infiltrates	were	
low	 in	 two	 tumours	 and	 we	 could	 not	 identify	 immune	 evasion	 events	 that	 explain	 this.	 This	
warrants	further	investigation	into	immune	escape	mechanisms	in	dMMR	GOAs.		

Defining	 driver	 mutations	 which	 are	 commonly	 truncal	 is	 critical	 for	 precision	 cancer	
medicine	 approaches	 as	 targeting	 of	 subclonal	 driver	 mutations	 is	 likely	 futile12.	 Several	 tumour	
suppressor	genes	were	inactivated	by	genetic	alterations	on	the	trunk	in	all	four	tumours.	However,	
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loss-of-function	of	 tumour	 suppressor	 genes	 is	usually	not	directly	 targetable.	2	of	 4	dMMR	GOAs	
harboured	 two	 inactivating	 mutations	 in	 ARID1A.	 In	 addition,	 25%	 of	 MSI	 GOAs	 from	 the	 TCGA	
dataset	showed	two	clonal	ARID1A	mutations,	further	suggesting	that	biallelic	disruption	is	common.	
However,	 given	 the	 uncertainty	 of	 clonality	 estimates	 from	 single	 region	 data,	 the	 prevalence	 of	
biallelic	 truncal	 inactivation	 will	 need	 confirmation	 by	 MSeq	 in	 larger	 series.	 ARID1A-deficiency	
sensitizes	cancer	cells	to	small	molecule	inhibitors	of	the	ATR	DNA	damage	sensor44.	Such	a	potential	
synthetic	lethal	interaction	should	be	investigated	in	dMMR	GOAs.	Additional	subclonal	mutations	in	
ARID1A	and	in	other	SWI/SNF-complex	members	evolved	during	cancer	progression,	indicating	a	role	
of	 SWI/SNF-complex	 modulation	 during	 carcinogenesis	 and	 cancer	 progression.	MSeq	 and	 single	
sample	 TCGA	 data	 analysis	 also	 showed	 that	 chromosome	 8	 gains	 are	 among	 the	 earliest	 genetic	
events	 in	 ~60%	 of	 these	 tumours.	 Further	 studies	 are	 necessary	 to	 investigate	 whether	 this	 is	
relevant	for	the	tolerance	of	the	MSI-phenotype	or	a	marker	of	aggressiveness	as	described	for	other	
cancer	types45,46.	

Comparing	 results	 from	MSeq	 analysis	 and	 single-region	 analysis	 showed	 that	MSeq	more	
accurately	 identifies	 clonal	 and	 subclonal	mutation	 loads,	 drivers	 that	 are	 acquired	 early	 vs	 those	
that	 evolve	 late	 and	 particularly	 parallel	 evolution	 events.	 It	 can	 furthermore	 avoid	 the	 illusion	 of	
clonality	 of	 driver	 mutations	 and	 overcome	 sampling	 biases	 which	 can	 lead	 to	 the	 failure	 to	
accurately	identify	subclonal	driver	mutations,	for	example	in	JAK	or	B2M,	that	have	been	suggested	
to	confer	therapy	resistance15,41,42.	MSeq	should	therefore	be	considered	for	biomarker	discovery	in	
such	 highly	 heterogeneous	 tumour	 types.	 Bulk	 sequencing	 of	 DNA	 from	 multiple	 regions	 and	
metastases	or	 ctDNA	 sequencing,	 followed	 by	 bioinformatic	 identification	 of	 clonal	mutations	 are	
alternative	 approaches	 to	 address	 the	 illusion	 of	 clonality.	MSeq	 also	 revealed	 how	 the	 genetic	
profile	of	metastatic	disease	can	differ	from	primary	tumours	and	within	different	metastatic	sites.	It	
finally	allowed	to	assess	how	selection	changes	from	truncal	to	private	mutations.	

Taken	together,	the	dMMR-phenotype	remained	active	throughout	the	evolution	of	primary	
tumours	and	 in	metastatic	sites,	generating	extreme	ITH.	We	furthermore	revealed	the	generation	
of	 multiple	 subclonal	 driver	 mutations,	 including	 remarkable	 parallel	 evolution	 of	 multiple	
functionally	 similar	 subclonal	 drivers	 and	 a	 dN/dS	 ratio	 indicating	 positive	 selection	 in	 3	 of	 4	
tumours.	 These	 results	 confirm	 a	 high	 evolvability	 of	 dMMR	 tumours.	 High	 heterogeneity	 and	
evolvability	 are	 thought	 to	 enable	 cancer	 aggressiveness	 and	 poor	 outcomes47,	 yet	 these	 data	
demonstrate	a	paradoxical	association	with	good	prognosis	in	dMMR	tumours.	dMMR	tumours	are	
unique	models	 to	 advance	 insights	 into	 cancer	 evolution	 rules	 and	 into	 the	 potential	 and	 current	
limitations	of	evolutionary	metrics	for	clinical	outcome	prediction.	
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Methods	
	
Sample	Collection	and	Preparation	

Samples	from	treatment-naïve	GOA	resection	specimens	were	routinely	paraffin	embedded	
and	fresh	frozen	at	the	University	Medical	Center	Hamburg-Eppendorf	(Germany).	The	research	use	
of	 specimens	 left	 over	 after	 the	 pathological	 diagnosis	 has	 been	 made	 is	 regulated	 through	 the	
‘Hamburger	 Krankenhausgesetz’	 (Hamburg	 Hospital	 Law)	 in	 Hamburg	 and	 consent	 and	 ethical	
approval	are	explicitly	waived	for	samples	that	are	 fully	anonymised.	Thus,	 information	about	age,	
sex	of	the	patients	and	outcome	data	 is	not	available.	The	head	of	the	Hamburg	ethics	committee	
confirmed	in	writing	that	no	further	ethics	approval	is	required	for	this	study.	

Immunohistochemistry	for	MLH1,	PMS2,	MSH2	and	MSH6	was	performed	on	20	cases	and	4	
with	dMMR	 (each	 showing	 absence	of	MLH1	and	PMS2	 staining	 in	 cancer	 cells,	 see	 Fig.	 1B)	were	
identified	 by	 a	 pathologist.	 Seven	 tumour	 regions	 representing	 the	 spatial	 extent	 of	 each	 primary	
tumour	were	selected	(surface	area	~8	x	5	mm	and	a	depth	of	~10	mm)	based	on	the	H&E	slide	and	
spatial	 location	 within	 the	 tumour	 by	 a	 pathologist.	 Two	 cases	 each	 included	 two	 lymph	 node	
metastases	(Station	1	–	2,	right	and	left	paracardial	nodes)	which	were	sufficiently	large	for	analysis.	
Where	 necessary,	 samples	 were	 macrodissected	 to	 minimize	 stromal	 contamination.	 DNA	 was	
extracted	using	the	Qiagen	AllPrep	kit	following	the	manufacturer’s	instructions.	Nucleic	acid	yields	
were	 determined	 by	 Qubit	 (Invitrogen),	 and	 the	 quality	 and	 integrity	 of	 DNA	 was	 examined	 by	
agarose	gel	electrophoresis.	DNA	from	tumour	adjacent	non-malignant	tissue	was	used	as	a	source	
of	normal	(‘germline’)	DNA.	For	this	either	oesophageal	or	gastric	wall	tissue,	embedded	as	“normal	
mucosa”	 was	 chosen	 and	 tumour	 contamination	 excluded	 by	 a	 pathologist	 based	 on	 H&E	 slides	
taken	from	levels	before	and	after	slides	for	DNA	extraction.		

	

Multiplex	Immunohistochemistry	

The	Opal	7	Tumor	Infiltrating	Lymphocyte	kit	(PerkinElmer)	was	used	to	perform	combined	
CD8	 (antibody	dilution	1:300,	Opal	570	1:150),	pan-Cytokeratin	 (antibody	dilution	1:500,	Opal	690	
1:150)	 and	 DAPI	 (counter-)	 stains	 for	 each	 region	 following	 the	 manufacturer’s	 instructions.	 In	
Tumour	2	 two	regions	had	not	enough	 tissue	 left	after	DNA	extraction.	Slides	were	scanned	using	
the	Vectra	3.0	pathology	imaging	system	(PerkinElmer)48.			

After	 low	 magnification	 scanning,	 intratumour	 regions	 of	 interest	 were	 scanned	 at	 high	
resolution	 (20x).	 Spectral	 unmixing,	 tissue	 and	 cell	 segmentation	 and	 phenotyping	 of	 CD8	 and	
Cytokeratin	 positive	 cells	were	 performed	with	 InForm	 image	 analysis	 software	 under	 pathologist	
supervision.	Five	representative	regions	of	 interests	were	chosen	and	cytotoxic	T-cells	and	tumour	
cells	 in	 cancer	 tissue	 segmented	 areas	 were	 quantified.	 From	 the	 sum	 of	 the	 five	 regions	 we	
calculated	the	ratio	of	cytotoxic	T-cells/tumour	cells	for	each	region	of	Tumours	1	-4.		

	

Whole	exome	sequencing	

Tumour	and	matched	germline	DNA	were	sequenced	by	the	NGS-Sequencing	facility	of	the	
Tumour	Profiling	Unit	at	the	Institute	of	Cancer	Research.	Exome	sequencing	libraries	were	prepared	
from	1	µg	DNA	using	the	Agilent	SureSelectXT	Human	All	Exon	v6	kit	according	to	the	manufacturer’s	
protocol.	Paired-end	sequencing	was	performed	on	the	Illumina	HiSeq	2500	or	NovaSeq	6000	with	a	
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minimum	target	depth	of	100X	in	the	adjacent	normal	samples	and	a	minimum	target	depth	of	200X	
in	tumour	regions.	

BWA-MEM	49	(v0.7.12)	was	used	to	align	the	paired-end	reads	to	the	hg19	human	reference	
genome	 to	 generate	 BAM	 format	 files.	 Picard	 Tools	 (http://picard.sourceforge.net)	 (v2.1.0)	
MarkDuplicates	was	 run	with	 duplicates	 removed.	 BAM	 files	were	 coordinate	 sorted	 and	 indexed	
with	 SAMtools	 50	 (v0.1.19).	 BAM	 files	 were	 quality	 controlled	 using	 GATK	 51	 (v3.5-0)	
DepthOfCoverage,	 Picard	 CollectAlignmentSummaryMetrics	 (v2.1.0)	 and	 fastqc	
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)	(v0.11.4).	

	

Somatic	mutation	analysis	

Single	nucleotide	variant	(SNV)	calls	were	generated	with	MuTect52	(v1.1.7)	and	VarScan2	53	
(v2.4.1)	and	mutation	calls	from	both	callers	were	combined.	MuTect	was	run	with	default	settings	
and	post-filtered	 for	 a	minimum	variant	 frequency	of	 2%.	 SNVs	generated	by	MuTect	 and	 flagged	
with	 ‘PASS’,	 ’alt_allele_in_normal’	 or	 ‘possible_contamination’	 were	 retained.	 SAMtools	 (v1.3)	
mpileup	was	run	with	minimum	mapping	quality	1	and	minimum	base	quality	20.	The	pileup	file	was	
inputted	to	VarScan2	somatic	and	run	with	a	minimum	variant	frequency	of	2%.	The	VarScan2	call	
loci	 were	 converted	 to	 BED	 format	 and	 bam-readcount	 (https://github.com/genome/bam-
readcount)	 (v0.7.4)	 run	 on	 these	 positions	with	minimum	mapping	 quality	 1.	 The	 bam-readcount	
output	allowed	the	VarScan2	calls	to	be	further	filtered	using	the	recommended	fpfilter.pl	accessory	
script54	run	on	default	settings.	Indel	calls	were	generated	using	Platypus55		(v.0.8.1)	callVariants	run	
on	default	settings.	Calls	were	filtered	based	on	the	following	FILTER	flags	-	‘GOF,	‘badReads,	‘hp10,’	
MQ’,	‘strandBias’,’	QualDepth’,’	REFCALL’.	We	then	filtered	for	somatic	indels	with	normal	genotype	
to	be	homozygous,	minimum	depth	>=	10	in	the	normal,	minimum	depth	>=20	in	the	tumour	and	>=	
5	variant	reads	in	the	tumour.		

The	 bam-readcount	 tool	 was	 run	 on	 all	 SNV	 loci	 using	 minimum	 mapping	 quality	 1	 and	
minimum	 base	 quality	 5	 to	 generate	 call	 QC	 metrics	 (e.g.	 average	 variant	 base	 quality,	 average	
variant	mapping	quality).	High	confidence	SNVs	were	identified	by	filtering	minimum	average	variant	
mapping	quality	55	and	minimum	average	variant	base	quality	35	in	called	tumour	regions	based	on	
the	 bam-readcount	 QC	metrics.	 Bam-readcount	was	 then	 run	 on	 the	 filtered	 loci	 using	minimum	
mapping	quality	10	and	minimum	base	quality	20	to	generate	allele	counts	for	the	merged	VarScan2	
and	MuTect	call	loci.		All	SNV	and	indel	calls	were	required	to	have	a	depth	of	at	least	70	across	all	
tumour	regions.	SNVs	at	positions	sequenced	to	 less	 than	20x	depth	 in	 the	matched	germline	and	
those	 which	 showed	 a	 variant	 frequency	 in	 the	 germline	 >2%	 and	 a	 variant	 count	 >2	 were	 also	
excluded.	Retained	mutation	calls	were	then	passed	through	a	cross-‘germline’	filter	that	flags	SNV	
and	 indel	calls	which	are	present	with	a	VAF	of	>=2%	in	one	of	 fourteen	normal	samples	 from	the	
same	sample	collection.	A	call	 is	rejected	if	the	variant	 is	flagged	as	present	 in	20%	or	more	of	the	
normal	 samples	 to	 remove	 common	 alignment	 artefacts	 or	 those	 arising	 recurrently	 at	 genomic	
positions	 which	 are	 difficult	 to	 sequence.	 Finally,	 we	 applied	 the	 following	 two-tiered	 filtering	
strategy	to	generate	MSeq	mutation	calls.	A	positive	call	was	made	if	at	least	one	tumour	region	had	
a	minimum	VAF	of	5%.	This	first	tier	assures	that	only	mutation	calls	which	have	a	high	probability	of	
being	real	mutations	are	selected	for	further	analysis.	For	any	of	the	mutations	that	were	called	in	
this	way,	we	 then	determined	whether	 it	was	present	or	absent	 in	 individual	 tumour	 regions.	The	
VAFs	for	a	mutation	were	looked	up	with	BAM-readcount	and	a	region	was	called	positive	if	the	VAF	
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exceeded	 2.5%.	 Similar	 two-tier	 VAF	 thresholding	 strategies	 have	 been	 employed	 in	 prior	 MSeq	
studies11,16,34.	Private	and	shared	mutations	are	defined	as	those	that	were	only	detected	in	a	single	
region	 or	 in	 some	 but	 not	 all	 tumour	 regions,	 respectively,	 using	 the	minimum	VAF	 of	 2.5%	 as	 a	
cutoff.	Variant	calls	on	chromosomes	X	and	Y	were	not	considered.	

SNV	and	indel	calls	were	annotated	using	annovar	56	(v20160201)	and	oncotator	57	(v1.8.0.0	
and	 oncotator_v1_ds_Jan262015	 database)	 with	 hg19	 build	 versions.	 The	 oncotator	
‘COSMIC_n_overlapping_mutations’	 field	 was	 used	 to	 flag	 mutations	 as	 possible	 drivers	 if	 they	
occurred	 in	 oncogenes	 and	 tumour	 suppressor	 genes	 in	 the	 online	 COSMIC	 Cancer	 Gene	 Census	
(CGC)58	or	in	driver	genes	identified	in	MSI	tumours	in	the	TCGA	STAD	publication		2.	Mutations	were	
defined	 as	 likely	 driver	 genes	 if	 they	 led	 to	 1)	 an	 amino	 acid	 alteration	 that	 had	 previously	 been	
described	 in	 the	 COSMIC	 database	 2)	 a	 disrupting	 mutation,	 including	 frameshift-,	 splice	 site-	 or	
premature	stop/nonsense-mutations	in	a	tumour	suppressor	gene	or	3)	an	amino	acid	alteration	at	a	
position	 that	 shows	 an	 alteration	 in	 the	 COSMIC	 CGC	 but	 is	 distinct	 from	 the	 change	 reported	 in	
COSMIC	if	it	was	considered	a	likely	driver	by	the	Cancer	Genome	Interpreter59.	

	

DNA	copy	number	aberration	analysis	

CNVKit60	 (v0.8.1)	was	run	 in	non-batch	mode	for	copy	number	evaluation.	Basic	target	and	
antitarget	files	were	generated	based	on	the	Agilent	SureSelectXT	Human	All	Exon	v6	kit.	Accessible	
regions	 suggested	 by	 CNVKit	 (provided	 in	 the	 source	 distribution	 as	 ‘access-5kb-
mappable.hg19.bed’)	 with	 a	 masked	 HLA	 interval	 (chr6:28866528-33775446)	 form	 the	 accessible	
loci.	A	pooled	normal	 sample	was	created	 from	all	 sequenced	germline	 samples	 in	 the	 series.	The	
copynumber61	 R62	 library	 functions	 Winsorize	 (run	 with	 ‘return.outliers’=TRUE)	 and	 pcf	 (run	 with	
‘gamma’=200)	were	used	to	 identify	outliers	and	regions	of	highly	uneven	coverage	(defined	as	an	
absolute	log	ratio	value	greater	than	0.5)	to	exclude	from	the	analysis.	

We	 identified	 high	 confidence	 SNP	 locations	 using	 bcftools	 call50	 (v1.3)	 with	 snp137	
reference	and	SnpEff	SnpSift63	 (v4.2)	 to	 filter	heterozygous	 loci	with	minimum	depth	50.	VarScan2	
was	used	to	call	 the	tumour	sample	BAMs	at	 these	 locations	to	generate	B-Allele	Frequency	 (BAF)	
data	as	 input	 for	CNVKit.	CNVKit	was	 run	with	matched	germline	samples	along	with	 the	adjusted	
access	 and	 antitarget	 files.	 For	 the	 segmentation	 step	 we	 ran	 the	 copynumber	 function	 pcf	 with	
gamma=70.	 Breakpoints	 were	 then	 fed	 into	 Sequenza64	 (v2.1.2)	 to	 calculate	 estimates	 of	
purity/ploidy	and	these	values	were	used	to	recenter	and	scale	the	LogR	profiles	in	CNVKit.	BAF	and	
LogR	profiles	were	also	manually	reviewed	by	two	researchers	to	determine	their	likely	integer	copy	
number	states.	Adjustments	were	made	in	cases	where	both	manual	reviews	identified	a	consensus	
solution	that	differed	from	the	bioinformatically	generated	integer	copy	number	profile.	

	

Cancer	cell	content,	ploidy	estimation	and	wGII	

Cancer	 cell	 content	was	 estimated	using	 the	 scaling	 factor	 of	 the	 copy	number	 consensus	
solution.	Ploidy	was	estimated	as	follows,	

Ploidy = (CNAbsolute x SegmentLength) / Σ(SegmentLength)    (1) 
with	CNAbsolute	representing	the	unrounded	copy	number	estimate	and	SegmentLength	the	genomic	
length	between	segment	break	points.	
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The	weighted	genome	integrity	index	(wGII)32	is	used	to	define	chromosomal	instability	
(CIN).	We	calculated	the	percentage	of	integer	copy	number	segments	on	each	chromosome	
different	from	the	ploidy	estimate	rounded	to	the	nearest	integer	state.	The	percentages	are	then	
averaged	over	the	22	autosomal	chromsomes	to	give	the	wGII	score.	

	

Subclonality	analysis	and	phylogenetic	tree	reconstruction	

Allele	specific	copy	number	estimates65	for	SNV	and	indels	were	calculated	as	follows,	

MUTCN = VAF x (1/p) x ((p x CNAbsolute) + (2 x (1-p)))     (2) 

where	VAF	 is	 the	variant	allele	 frequency	and	p	 is	 the	estimated	 tumour	 cell	 content.	Cancer	 cell	
fraction	 (CCF)	 was	 estimated	 using	 the	 R	 package	 Palimpsest66.	 LICHeE67	 was	 applied	 to	 infer	
phylogenetic	trees	from	the	estimated	CCF	values.	The	build	algorithm	was	run	with	CCF/2	as	input,	-
maxVAFAbsent	 0,	 -minVAFPresent	 0.0001	 and	 ‘-s	 10’.	 In	 each	 case	we	 report	 the	 top	 ranked	 tree	
solution.	A	single	valid	tree	was	identified	for	Tumour	1	(error	score:	0.02),	Tumour	2	(error	score:	
0.13)	and	Tumour	4	 (error	 score:	0.06).	 LICHeE	 identified	6	valid	 trees	 for	Tumour	3	 (error	 scores:	
0.088,	 0.095,	 0.96,	 0.106,	 0.112,	 0.113).	 These	 solutions	 differed	 only	 in	 the	 positioning	 of	 the	
branch	immediately	preceding	H2	(which	could	be	positioned	at	H1	or	H3)	and	of	that	preceding	G2	
(which	could	be	positioned	at	G1)	in	Fig.	3.	The	tree	with	the	lowest	error	score	was	chosen	for	the	
analysis	 but	 selecting	 any	 of	 the	 alternative	 solutions	 would	 not	 change	 any	 of	 the	 conclusions	
presented	in	this	study.	Otherwise,	only	a	low	percentage	of	mutations	(2-7%	per	case)	could	not	be	
assigned	to	a	subclone	in	the	phylogenetic	tree	

Trees	 were	 re-drawn	 and	 branch	 lengths	 scaled	 to	 the	 number	 of	 mutations	 in	 each	
subclonal	 mutation	 cluster	 and	 likely	 driver	 mutations	 were	 mapped	 onto	 the	 trunk	 or	 the	
appropriate	 branch.	 Private	 mutations	 identified	 by	 LICHeE	 were	 split	 into	 clonal	 and	 subclonal	
mutations	using	a	CCF	threshold	of	0.7	unless	 the	algorithm	had	already	 identified	and	split	clonal	
and	subclonal	clusters.	A	short	branch	was	added	to	Tumour	2	following	a	manual	review	of	the	tree	
solution	 to	 represent	 an	 8	 mutation	 cluster	 that	 was	 too	 small	 for	 the	 algorithm	 to	 detect	 but	
contained	a	B2M	frameshift	mutation	which	was	identified	as	a	likely	driver.	

	

Mutational	signatures	

All	 SNV	 calls	 were	 loaded	 into	 R	 using	 VRanges	 (v1.28.3)	 68	 VariantAnnotation,	 given	
trinucleotide	 motifs	 using	 SomaticSignatures	 (v2.18.0)69	 mutationContext	 and	 tabulated	 using	
motifMatrix	 with	 ‘normalize’=TRUE.	 The	 somatic	 motifs	 were	 then	 compared	 with	 the	 thirty	
mutational	 signatures	established	 in	COSMIC70	V2	using	deconstructSigs	 (v1.8.0)71	whichSignatures	
by	 selecting	 ‘signature.cutoff’=0	 and	 ‘signatures.ref’=’signatures.cosmic‘	 as	 run	 parameters.	
Mutation	signatures	representing	at	 least	5%	of	mutations	 in	one	of	the	analysed	mutation	groups	
were	reported.	

	

Ratio	of	non-synonymous	to	synonymous	mutations	(dN/dS)	

We	ran	dNdScv40	 to	 generate	dN/dS	estimates	which	use	 trinucleotide	 context	dependent	
substitution	 matrices	 to	 adjust	 for	 common	 mutation	 biases.	 We	 ran	 dNdScv	 with	 the	 following	



17	
	

optional	 parameters:	 ‘outp	 =	 1’,	 ‘max_muts_per_gene_per_sample	 =	 inf’	 and	
‘max_coding_muts_per_sample	 =	 inf’.	 This	 was	 done	 separately	 for	 mutations	 shown	 as	 truncal	
(blue),	shared	(yellow)	and	private	(red	and	purple)	on	the	phylogenetic	trees	in	Fig.	3.	

	

HLA	mutations	and	LOH	calling	

Mutations	in	HLA	genes	were	predicted	using	the	program	POLYSOLVER72.	In	particular,	we	
first	predicted	patients’	HLA	types	from	germline	samples	using	the	shell_call_hla_type	script	of	the	
POLYSOVER	 suite,	with	 the	 following	parameters:	 race=Unknown,	 includeFreq=1	 and	 insertCalc=0.	
Then,	we	used	these	HLA	predictions	as	input	to	the	shell_call_hla_mutations_from_type	script	for	
predicting	HLA	mutations	 in	 tumour	samples.	Finally,	 the	shell_annotate_hla_mutations	script	was	
used	to	annotate	the	mutations	identified	in	the	previous	step.	

Loss	 of	 heterozygosity	 events	 in	 HLA	 genes	 were	 predicted	 using	 the	 program	 LOHHLA39.	
LOHHLA	requires	as	input	normal	HLA	types,	for	which	we	used	POLYSOLVER	predictions,	along	with	
ploidy	 and	 cancer	 cell	 fraction	 estimates,	 which	 were	 available	 from	 the	 calculations	 described	
above.	All	other	parameters	were	set	to	default	values.	

Neopeptides	associated	 to	 somatic	mutations	were	generated	as	decribed	 in	 73.	Note	 that	
we	 had	 to	 discard	 approximately	 1.2%	of	 somatic	mutations	 because	 of	 inconsistencies	 between	
the	variant	annotation	(this	can	be	for	either	somatic	variants	or	germline	variants	occurring	on	
the	same	transcripts	as	the	somatic	ones)	and	the	refseq_cds.txt	file	(GRCh37/hg19	Feb	2009)	we	
used	 for	 generating	 the	 neopeptides.	 We	 used	 netMHCpan4.0	 (28978689)	 to	 predict	 the	
neopeptides’	 eluted	 ligand	 likelihood	 percentile	 rank	 scores.	 For	 each	 sample,	 we	 ran	
netMHCpan4.0	 on	 all	 of	 the	 samples’	 neopeptides	 against	 all	 samples’	 HLA	 allotypes.	 As	 HLA-
presented	neopeptides	we	picked	all	core	peptides	(see	73)	with	a	percentile	rank	<	0.5%.		

	

MLH1	promoter	qPCR	

250	 ng	 tumour	 DNA,	 CpGenome	 Human	 Methylated	 DNA	 Standard	 (Millipore)	 and	
CpGenome	Human	Non-Methylated	 DNA	 Standard	 (Millipore)	were	 subject	 to	 bisufite	 conversion	
using	 the	 EZ	DNA	Methylation	Gold	 Kit	 according	 to	 the	manufacturer’s	 protocol	 (Zymo	Research	
Corp.).	 Methylight	 primers	 and	 probe	 were	 used	 to	 amplify	 the	MLH1	 CpG	 island:	 (forward)	 5’-
AGGAAGAGCGGATAGCGATTT-3’,	 (reverse)	 5’-TCTTCGTCCCTCCCTAAAACG-3’,	 (probe)	 5’-FAM-
CCCGCTACCTAAAAAAATATACGCTTACGCG-BHQ-3’74.	 qPCR	 was	 performed	 in	 a	 25	 ul	 reaction	 with	
300	nM	primers,	100	nM	probe	and	1x	TaqMan	Universal	Master	Mix	II	no	UNG	(Applied	Biosystems)	
using	the	following	program:	50	C	for	2	min,	95	C	for	10	min,	followed	by	50	cycles	at	95	C	for	15	s	
and	60	C	 for	1	min.	Samples	were	analysed	 in	duplicate	 in	96-well	plates	on	an	AB	QuantStudio	6	
Flex	RT-PCR	System.	

	

Mutation	loads	and	clonal/subclonal	drivers	in	TCGA	MSI	GOAs	

64	 GOAs	 from	 The	 Cancer	 Genome	 Atlas	 cohort2	 	 are	 classified	 as	 MSI	 in	 the	 cBIO	 web	
portal75.	 We	 downloaded	 the	 BAM	 files	 of	 these	 cases	 from	 the	 NIH	 GDC	 Legacy	 Archive76.	
Adjustments	 to	 the	 analysis	 steps	were	 necessary	 due	 to	 the	 properties	 of	 the	 TCGA	 sequencing	
data.	 A	 minimum	 variant	 frequency	 of	 5%	 was	 applied	 throughout	 the	 mutation	 calling	 and	 the	
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fpfilter.pl	parameters	‘min-ref-avrl’	and	‘min-var-avrl’	filters	were	relaxed	to	50.	The	minimum	depth	
requirement	in	the	tumour	sample	was	relaxed	to	20,	while	the	minimum	average	base	and	mapping	
quality	were	 set	 to	 20	 and	40	 respectively.	No	 adjustments	were	made	 to	 the	default	 access	 and	
antitarget	files	of	the	CNVkit	analysis	due	to	large	variations	in	the	sequencing	depths	of	the	normal	
samples	across	the	cohort.	Otherwise,	the	somatic	mutation,	copy	number	and	subclonality	analysis	
steps	were	as	described	above.	Mutational	signatures	were	run	as	before	and	those	detected	with	a	
mean	contribution	of	5%	or	more	were	further	analysed.		

	

Data	availability	

The	multi-region	 exome	 sequencing	 data	 have	 been	 deposited	 in	 the	 European	 Genome-
Phenome	 archive	 under	 the	 accession	 code	 EGAS00001003434	
[https://www.ebi.ac.uk/ega/studies/EGAS00001003434].	 The	 TCGA	 gastroesophageal	 dataset	
referenced	 during	 the	 study	 is	 available	 from	 the	 NIH	 GDC	 Data	 Portal	 website	
[https://portal.gdc.cancer.gov].	All	the	other	data	supporting	the	findings	of	this	study	are	available	
within	the	article	and	its	supplementary	information	files	and	from	the	corresponding	author	upon	
reasonable	request.	A	reporting	summary	for	this	article	is	available	as	a	Supplementary	Information	
file.		
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Main	figures	and	legends	

	

Fig.	 1.	 Intratumour	 heterogeneity	 of	 somatic	mutations.	 A:	 Tumour	 size,	 location,	 TNM-stage	and	
regions	selected	for	sequencing.	The	grey	line	labelled	(Z)	marks	the	gastro-oesophageal	junction.	B:	
Immunohistochemical	staining	of	MLH1,	MSH2,	MSH6	and	PMS2.	C:	Heat	maps	showing	the	presence	
(blue)	or	absence	(grey)	of	non-silent	somatic	mutations	that	were	identified	by	MSeq	across	tumour	
regions.	 The	 table	 shows	 the	 number	 of	 heterogeneous	 (Het)	 and	 ubiquitous	 (Ub)	 mutations	
identified	in	each	tumour	and	their	percentage	of	the	total	non-silent	mutation	count	of	the	tumour.	
D:	Comparison	of	ubiquitous	and	heterogeneous	mutation	counts	across	four	different	tumour	types	
analysed	 by	 MSeq	 (dMMR	 GOA:	 mismatch	 repair	 deficient	 gastro-oesophageal	 adenocarcinoma,	
Melanoma,	 NSCLC:	 non-small	 cell	 lung	 cancer,	 ccRCC:	 clear	 cell	 renal	 cell	 carcinoma).	 The	 Mann-
Whitney	test	was	used	to	assess	significant	differences	 in	mutation	 loads	between	dMMR	GOA	and	



other	tumour	types.	E:	Median	mutation	loads	of	individual	regions	from	MSeq	datasets	compared	to	
the	median	single	sample	mutation	loads	from	the	Cancer	Genome	Atlas	KIRC,	SKCM,	STAD	and	LUAD	
cohorts.	 F:	 COSMIC	 mutational	 signature	 analysis	 of	 ubiquitous	 (Ub)	 and	 heterogeneous	 (Het)	
mutations	in	four	dMMR	GOAs.	Non-silent	and	synonymous	mutations	were	included	in	the	analysis	
and	only	signatures	which	contributed	to	≥5%	of	mutations	in	at	least	one	sample	are	shown.			

Fig.	 2.	 Intratumour	 heterogeneity	 of	 DNA	 copy	 number	 aberration.	 A:	 Genome-wide	 DNA	 copy	
number	profiles	of	each	 tumour	 region.	Profiles	 showing	chromosomal	 instability	 (CIN)	are	 labelled	
with	 a	 black	 bar	 on	 the	 right.	 B:	 Example	 of	 an	 allele	 specific	 DNA	 copy	 number	 profile	 and	
superimposed	copy	numbers	of	somatic	mutations	from	Tumour	4.	This	allows	timing	of	CIN/genome	
duplication,	demonstrating	late	acquisition,	as	large	numbers	of	mutations	are	located	on	the	major	
alleles	 for	 most	 gained	 chromosomes.	 C:	 Ubiquitous	 loss	 of	 heterozygosity	 (LOH)	 or	 copy	 number	
gains	identified	in	each	of	the	four	tumours.	Tumour	suppressor	genes	commonly	mutated	in	dMMR	
GOAs	and	which	are	 located	on	chromosomes	showing	ubiquitous	LOH	are	 labelled.	D:	Examples	of	
the	allele	specific	copy	number	and	copy	number	of	corresponding	somatic	mutations	for	Chr8	and	E:	
for	Chr20	which	showed	recurrent	ubiquitous	gains	in	our	series.		
	

	



	

Fig.	 3.	 Tumour	 phylogenetic	 trees.	 Trees	 were	 reconstructed	 from	 non-silent	 and	 synonymous	
mutations	and	trunk	and	branch	lengths	are	proportional	to	the	number	of	mutations	acquired.	Trees	
are	 rooted	at	 the	 germline	DNA	 sequence,	 determined	by	exome	 sequencing	of	DNA	 from	 tumour	
adjacent	normal	tissue.	Subclones	that	define	the	tips	of	the	tree	are	labelled	with	the	tumour	region	
in	which	they	were	identified.	Numbers	were	added	where	several	subclones	were	identified	by	the	
phylogenetic	 deconvolution	 algorithm	 within	 a	 tumour	 region,	 with	 1	 defining	 the	 largest	 intra-
regional	subclone	and	2,	3	 increasingly	smaller	subclones.	Private	mutations	were	 furthermore	split	
into	those	that	were	clonal	in	the	analysed	region	(present	in	>0.7	of	the	cancer	cell	fraction	in	that	
region)	 and	 those	 that	 were	 subclonal	 (present	 in	 ≤0.7	 of	 the	 cancer	 cell	 fraction).	 Likely	 driver	
mutations	 and	 relevant	 loss	 of	 heterozygosity	 (LOH)	 events	 were	mapped	 onto	 the	 branch	 of	 the	
trees	 where	 they	 likely	 occurred.	 Genes	 affected	 by	 more	 than	 one	 genetic	 aberration	 within	 a	
tumour	are	labelled	with	the	genetic	aberration	type	that	occurred.	Arrows	labelled	‘CIN’	indicate	the	
likely	onset	of	chromosomal	instability.		
	

	

	

	



	

Fig.	4.	CD8+	T-cells	 infiltrates	 in	dMMR	GOAs.	A.	Representative	images	of	CD8+	T-cell	 infiltrates	in	
Tumours	1-4.	Upper	row:	fluorescent	composite	IHC	image	showing	cancer	cells	and	CD8+	cytotoxic	T-
cells.	 Bottom	 row:	 Segmentation	 of	 cancer	 areas	 (grey,	 yellow	 arrow)	 and	 stroma	 (blue,	 light	 blue	
arrow)	allowed	to	only	count	the	highlighted	CD8+	T-cell	in	cancer	areas.	B.	The	ratio	of	CD8+	T-cells	
divided	by	the	number	of	cancer	cells	(Cytokeratin	positive	cells)	for	all	regions	of	Tumours	1-4.	Black	
bar:	median.	p-values	(Spearman	rank	test)	are	shown	for	significant	differences.		
	

	 	



	

	

Fig.	 5.	 Non-synonymous	 to	 synonymous	 (dN/dS)	 mutation	 ratios.	 dN/dS	 ratios	 for	 ubiquitous,	
shared	and	private	mutations,	adjusted	for	common	mutation	biases.	Error	bars	show	95%	CI’s.	The	
total	 number	 of	 synonymous	 and	 non-synonymous	 mutations	 available	 in	 each	 category	 for	 the	
analysis	are	shown	beneath	the	plot.		
	 	



	

Fig.	6.	Clonal	and	subclonal	mutation	analysis.	A:	Comparison	of	the	total	non-silent	mutation	load	
per	 region	 and	 of	 the	 clonal	mutation	 load	 per	 region	 (defined	 as	 present	 in	 a	 cancer	 cell	 fraction	
(CCF)	of	0.7	or	above)	against	the	number	of	ubiquitous	mutations	that	have	been	identified	by	MSeq.	
The	percent	difference	to	the	ubiquitous	mutation	load	is	shown.	B.	Subclonal	driver	gene	mutations	
assessed	 by	 MSeq	 in	 Tumour	 2	 and	 3.	 In	 green	 mutations	 that	 single-region	 analysis	 picks	 up	 as	
subclonal	and	 in	orange	mutations	 that	would	have	been	 falsely	assigned	as	clonal	by	single-region	
analysis.	C.	Illusion	of	clonality	(in	percent)	for	driver	gene	mutations.	D.	Mutation	load	of	TCGA	MSI	
GOA	samples,	number	of	all	mutations	in	blue	and	of	clonal	mutations	in	red.	E.	Subclonal	to	clonal	
mutation	 ratio	 for	driver	gene	mutations.	The	black	 line	 shows	 the	average	 ratio	across	all	 somatic	
mutations.	F.	Mean	percentage	of	clonal	and	subclonal	mutational	signatures	found	in	TCGA	MSI	GOA	
samples.	G.	Subclonal	and	clonal	mutational	signatures	for	64	TCGA	MSI	GOAs.	Means	and	standard	
deviation	are	shown	and	p-values	have	been	calculated	with	a	Mann-Whitney	test.	H.		Percentage	of	
the	64	TCGA	samples	that	gained	the	indicated	chromosome	arm	early,	i.e.	before	a	high	number	of	
mutations	was	acquired	through	MSI.		
	



	

	

	

Fig.	7.	Comparison	of	phylogenetic	tree	morphologies	across	four	cancer	types	analysed	by	MSeq.	
Schematics	of	branched	phylogenetic	trees	drawn	with	similar	branching	structures	to	those	directly	
observed	in	each	of	the	four	tumour	types	11,16,19.	Trees	were	scaled	so	that	trunk	and	branch	lengths	
are	proportional	to	the	average	number	of	ubiquitous	and	heterogeneous	non-silent	mutation	loads	
of	each	tumour	type	(Fig.	1C).	Phylogenetic	tree	colour	code:	blue:	truncal	mutations,	yellow:	shared	
mutations,	red:	private	mutations.		
	


