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Abstract 

Background and purpose:  

This study evaluated the use of total lesion glycolysis (TLG) determined by different automatic segmentation 

algorithms, for early response monitoring in non-small cell lung cancer (NSCLC) patients during concomitant 

chemoradiotherapy. 

Materials and Methods: 

Twenty-seven patients with locally advanced NSCLC treated with concomitant chemoradiotherapy underwent 
18

F-

fluorodeoxyglucose (FDG) PET/CT imaging before and in the second week of treatment. Segmentation of the 

primary tumours and lymph nodes was performed using fixed threshold segmentation at (i) 40% SUVmax (T40), (ii) 

50% SUVmax (T50), (iii) relative-threshold-level (RTL), (iv) signal-to-background ratio (SBR), and (v) fuzzy locally 

adaptive Bayesian (FLAB) segmentation. Association of primary tumour TLG (TLGT), lymph node TLG (TLGLN), 

summed TLG (TLGS=TLGT+TLGLN), and relative TLG decrease (ΔTLG) with overall-survival (OS) and progression-free 

survival (PFS) was determined using univariate Cox regression models.  

Results:  

Pre-treatment TLGT was predictive for PFS and OS, irrespective of segmentation method used. Inclusion of TLGLN 

improved early response assessment, with pre-treatment TLGSmore stronglyassociated with PFS and OS than 

TLGTfor all segmentation algorithms. This was also the case for ΔTLGS, which was significantly associated with PFS 

and OS, with exception of RTL and T40. 

Conclusions: 

ΔTLGS was significantly associated with PFS and OS, except for RTL and T40. Inclusion of TLGLN improves early 

treatment response monitoring during concomitant chemoradiotherapy with FDG-PET. 
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Introduction 

Non-small cell lung (NSCLC) cancer remains a disease with a generally poor prognosis [1]. At the time of 

diagnosis, one third of patients with NSCLC presents with locally advanced non-metastatic disease [1]. 

For these patients, radiotherapy in combination with chemotherapy is the accepted standard of care. 

With the aim of improving patient outcome, combined and intensified treatment approaches are 

increasingly being investigated. However, not all patients equally benefit from these treatment 

approaches and rational selection of available treatment options in a personalized medicine framework 

is required[2]. 

Positron emission tomography (PET) in combination with X-ray computed tomography (CT) with the 

glucose analogue 18F-fluorodeoxyglucose (FDG) has proven to be a valuable tool to personalize 

treatment for this patient group[2]. Firstly, incorporation of FDG-PET images into the radiotherapy 

planning algorithm improves definition of gross tumour volume (GTV)[3-5] and might facilitate the 

concept of selective nodal irradiation[6]. Secondly, it has been shown that FDG-PET can identify areas 

that are at risk of local relapse[7, 8], permitting to use the concept of molecular imaging-based dose 

painting[9]. Thirdly, several studies emphasize the ability of FDG-PET to monitor therapy response at an 

early treatment stage using quantitative PET indices [10-14]. Early response monitoring during 

treatment can facilitate clinical decision-making and improve patient management through avoidance of 

unnecessary side effects and costs of ineffective treatment.  

However, employing the concept of FDG-PET-guided treatment decisions requires robust and 

standardized methods to derive these quantitative indices from PET images. Particularly, the strong 

dependence of most image-derived response indices on quantification of these volumes emphasizes the 

need for standardized and consistent determination of lesion volume in PET images. In this regard, there 

has been a widespread interest in the development for automated segmentation algorithms for PET. 
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Over the years, there has been a rapid growth of segmentation algorithms for PET reported in literature 

[15], a  eve t hi h is also referred to as yapetism  yet a other PET seg e tatio  ethod  [16]. 

Difficulties encountered by these algorithms for automatic lesion segmentation in PET images are local 

contrast variations due to heterogeneous FDG uptake in the lesion, adjacent FDG-avid anatomy and 

lymph nodes, and relatively high noise content of PET images, often rendering the task of automatic 

lesion delineation challenging [15]. This becomes even more difficult when automatic segmentation has 

to be performed on low contrast interim and end-of-treatment PET images, where radiotracer uptake 

can be considerably reduced due to therapy effects. However, up until this day there is no standardized 

method for automatically determining lesion volume on PET images and many studies consider different 

segmentation algorithms for this purpose [17, 18]. The purpose of this study was to evaluate this clinical 

applicability and performance of several established segmentation algorithms for generating plausible 

segmentation volumes that can be applied specifically to predict therapy response during treatment for 

patients with locally advanced stage IIIA or IIIB NSCLC treated with concomitant chemoradiotherapy. 

The predictive value of total lesion glycolysis (TLG), as determined by these different algorithms, for 

early response assessment during concomitant chemoradiotherapy was evaluated. 

 

Materials and methods 

Patients 

A total of 27 patients with newly diagnosed NSCLC stage IIIA or stage IIIB were prospectively included in 

this study, as described before [10]. Patients were treated with concomitant radiotherapy and 

chemotherapy. This study was approved by the institutional review board (IRB) of the Radboud 

university medical center. Written informed consent was obtained from every patient. Patient 

characteristics are summarized in Table 1.  
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Treatment and follow-up 

Intensity modulated radiotherapy (IMRT) was performed (10 MV photons), consisting of 33 fractions of 

2 Gy (5 fractions a week for 6 week and 3 days) resulting in a total dose of 66 Gy on the primary tumor 

and affected lymph nodes (i.e. pathologically proven or FDG-avid lymph nodes). Chemotherapy 

consisted of two cycles of cisplatin 50 mg/m2 intravenously (day 1, 8, 22, and 29) and etoposide 100 

mg/m2 intravenously (day 1-3, and day 22-24). Median overall treatment time was 45 days (range 43-48 

days). Patients with progressive disease during follow-up received palliative treatment. Follow-up during 

and after treatment consisted of clinical examination at regular intervals. When residual or recurrent 

disease was suspected, chest X-ray and chest CT-scans were performed. For each patient, sequential 

FDG-PET/CT imaging was performed before and during treatment. The pre-treatment scan was obtained 

before treatment (median 11 days, range 1-28 days) while interim FDG-PET imaging was performed in 

the second week during concomitant treatment (median 14 days, range 13-16 days), always before the 

second cycle of chemotherapy after 20 Gy radiotherapy. According to the treatment protocol all 

patients started with radiotherapy at the first day of the first cycle of chemotherapy, i.e. no neo-

adjuvant treatment was applied. 

Patient preparation and FDG PET imaging 

Imaging was performed using a hybrid Biograph Duo PET/CT scanner (Siemens Medical Solution, 

Knoxville, TN, USA). The PET scanner was accredited by the Research 4 Life (EARL) initiative for 

quantitative FDG-PET/CT studies [19]. Before image acquisition, patients fasted for at least six hours and 

blood glucose levels were lower than 8.2 mmol·L-1 in all patients. The amount of activity administered to 

the patie t as adjusted to the patie t s eight a d as .  MB ·kg-1. Details regarding the PET 

acquisition protocol are summarized in table 1.For the purpose of attenuation correction and 
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anatomical reference, a low dose (LD) CT scan was acquired with a reference tube current time product 

of 40 mA·s. LDCT scans were acquired during timed unforced expiration breath-hold. Modulation of X-

ray tube current was performed using CARE Dose 4D. Reconstruction of PET images was performed with 

a 2D ordered subset expectation maximization (2DOSEM) algorithm using a matrix size of 128×128, 4 

iterations and 16 subsets. Post reconstruction filtering was performed using a three-dimensional 

Gaussian filter kernel with a full width half maximum of 5 mm.  

Image segmentation 

The primary tumour and FDG positive lymph nodes were delineated on the pre-treatment and interim 

PET images. Firstly, delineation was performed using a fixed threshold region growing segmentation at 

40% (T40) and 50% (T50) of the maximum standardized uptake value (SUVmax) value. Furthermore, 

adaptive threshold algorithms were used for image segmentation. These included the iterative relative-

threshold-level (RTL)[20]  and signal-to-background ratio (SBR)[21]  approach. For the SBR method, the 

background for segmentation of the primary tumour was defined by placing a volume of interest (VOI) in 

parenchyma of the contra-lateral lung. For lymph node segmentation, the background was defined by 

placing a VOI near the aortic root in the mediastinum. The seed-point for the T40, T50, RTL, and SBR 

segmentation was the SUVmax voxel of either the primary tumour (SUVT,max) or the corresponding lymph 

nodes (SUVLN,max). The threshold-based segmentations were performed using the Inveon Research 

Workplace (IRW) 4.1 Software (Preclinical Solutions, Siemens Medical Solutions USA, Knoxville 

Tennessee, USA). In addition to threshold-based segmentation, image segmentation was performed 

using the fuzzy locally adaptive Bayesian (FLAB) algorithm [22]. Segmentation with this algorithm is 

performed using custom in-house developed software (ImageD, LaTIM Université de Bretagne 

Occidentale, Brest, France). The number of classes for segmentation was limited to two and parameters 

were automatically determined by the software.  
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Image analysis 

The TLG of the primary tumour (TLGT), defined as the product of the mean tumour FDG uptake 

(SUVT,mean) and metabolic tumour volume (MTV), was calculated on the pre-treatment and interim PET 

images. Similarly, lymph node TLG (TLGLN) was defined as the mean uptake of the lymph nodes 

(SUVLN,mean) and the corresponding metabolic volumes of the lymph nodes. Furthermore, a summed TLG 

(TLGS=TLGT+TLGLN was calculated. Evaluation of therapy response was performed by calculating the 

fractional decrease in TLG between pre-teatment and interim PET images (ΔTLG). Segmentation 

performance of the different algorithms was evaluated through visual assessment by a nuclear medicine 

physician experienced in thoracic imaging. Segmentation failures were visually identified andwere 

defined as the propagation of segmentation into other anatomical structures, or premature termination 

of the algorithm resulting in only partial segmentation of the primary tumour and lymph nodes. Lesions 

that could not be properly segmented according to these criteria were omitted from the analysis. In 

addition, similarity between MTVs obtained with different segmentation algorithms  was quantified by 

calculating the spatial overlap using a generalization of the Jaccard index (JI), as described in equation 1. 

 

                                         

 

Here the numerator           denotes the intersection between segmented volumes (in this 

study, five in total), while the denominator           represents the union of the segmented 

volumes. Perfect spatial overlap is indicated by a value for the JI of 1.0, whilst a value of 0 indicates no 

spatial overlap of the volumes. 
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Clinical outcome and statistical analysis 

Statistical analysis was performed using SPSS Statistics 20 (IBM, Armonk, New York, USA) and GraphPad 

Prism, version 4.0c (GraphPad Software Inc, La Jolla, California, USA). Patient outcome data for time to 

progression was defined as the interval between the start of treatment and the date of documented 

disease progression as confirmed by imaging or biopsy. If a patient was progression free at the closeout-

date (January, 2015), time to progression was censored to that date. PFS was measured from the date of 

treatment start to the date of documented disease progression. Similarly, if patients were still alive at 

the closeout-date, patients were censored for OS. The predictive value of pre-treatment TLG and ΔTLG 

were determined for different segmentation algorithms using univariate Cox regression models. 

Correlation between the MTVs and TLGs of different segmentation algorithms was calculated using 

Spearman rank correlation. Statistical significance was defined for p<0.05. 

 

Results 

 

The median follow-up time for this patient population was 23.4 months (range 3.5 – 61.9). During 

follow-up eighteen patients died, all related to cancer progression. Three patients were lost during 

follow-up. A total of twenty patients developed recurrent disease during follow-up; seven patients 

developed progression of local disease, while metastases were seen in 13 patients. Median time to 

disease progression was 21 months. PFS after study-baseline at 1 year was 63% (17 out of 27).  

 

Of the 27 patients, 25 had a visible primary tumour. For the other two patients, there was no 

radiological evidence for a primary tumour (i.e. cT0). The smallest pre-treatment MTVs were obtained 

when segmentation was performed with the T50 segmentation algorithm (24.7 ± 30.8 mL), compared to 
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T40 (34.8 ± 39.1 mL), SBR (38.7 ± 42.4 mL) RTL (30.7 ± 34.0 mL). Segmentation with FLAB resulted in the 

largest MTVs (42.3 ± 42.1 mL). Interim PET MTVs showed similar trends with the smallest MTV for the 

T50 (20.8 ± 32.6 mL) method, followed by T40 (31.6 ± 44.6 mL), RTL (26.8 ± 37.0 mL), SBR (36.2 ± 50.2 

mL) and FLAB (37.6 ± 48.2 mL).  For the pre-treatment PET images, excellent correlation was found 

between delineation methods for MTV (range ρ . 7 – 1.0, p < 0.0005), TLGT (range ρ . 5 – 1.0, p < 

0.0005) and SUVmean (range ρ . 8 – 1.0, p < 0.0005). Similarly, for in-treatment PET images, an 

excellent correlation was found between delineation methods for MTV (range ρ . 3 – 1.0, p < 0.0005), 

TLGT (range ρ . 4 – 1.0, p < 0.0005) and SUVmean (range ρ . 4 – 1.0, p < 0.0005). 

Quantitative and visual analysis of the MTVs obtained with different segmentation algorithms revealed 

that the MTVs were highly similar regarding shape and spatial overlap. Furthermore, the algorithms 

revealed a similar trend in SUVT,mean and MTV change between pre-treatment and interim FDG-PET 

(supplementary data). The T50 volumes were always completely enveloped by the other volumes. The 

generalized JI for all MTVs on the pre-treatment and interim PET was 0.58 ± 0.13 (range 0.31 – 0.78) and 

0.53 ± 0.16 (range 0.20 – 0.86). When the T50 volumes were omitted from the analysis, the mean JI for 

pre-treatment and interim PET volumes was 0.74±0.12 (range 0.46 – 0.89) and 0.71 ± 0.14 (range 0.47 – 

0.96). In tumours with heterogeneous FDG uptake, the T50 algorithm yielded contours that were more 

erratic and sensitive to discontinuities within the tumour, while FLAB, SBR, RTL, and T40 algorithms 

would segment patches with FDG-uptake continuously throughout the entire lesion, giving an improved 

representation of the total volume with FDG-uptake.  

In the pre-treatment PET images, FLAB segmentation resulted in one segmentation failure of the 

primary tumour in one patient due to small size and low contrast. In this patient, all segmentation 

methods failed to segment the primary tumour in the interim PET images. Furthermore, the T40, T50, 

RTL, and SBR methods failed to segment the primary tumour in an additional patient that was 

presenting with a large lesion with extended growth into the central mediastinum on interim PET 
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images. The FLAB algorithm could segment the primary tumour in this patient and did not show 

uncontrolled propagation of segmentation into the mediastinal background. 

Of the 27 patients, 18 patients had FDG positive lymph nodes on the pre-treatment PET images. Given 

the smaller volumes and in general lower contrast of mediastinal and hilar lymph nodes, there were 

considerably more segmentation failures when performing automatic segmentation of lymph nodes. 

The T40 and RTL algorithms failed to segment 14 and 17 of the 41 lymph nodes on the pre-treatment 

PET images, respectively. The number of segmentation failures for the T50 and FLAB algorithms in the 

pre-treatment PET images was 9 and 8, respectively. The SBR algorithm had the fewest segmentation 

failures, with only 6 lymph nodes segmentation failures in the pre-treatment PET images. 

Reduction of lymph node contrast owing to therapy effects on the interim PET images resulted in more 

segmentation failures for the T40, T50, RTL and FLAB algorithms. Of the 41 lymph nodes in the interim 

PET, there were 24 segmentation failures for the T40 and RTL algorithms. For the T50 and FLAB method, 

12 and 14 lymph node segmentation failures occurred in the interim PET, respectively. Similar to the 

pre-treatment PET, the SBR algorithm had the fewest segmentation failures, with 5 segmentation 

failures. Failure of lymph node segmentation was usually due to uncontrolled propagation of the 

segmentation algorithm in the mediastinal background or primary tumour. Figure 1 depicts the TLGS on 

pre-treatment and interim PET images in box whisker plots. 

Pre-treatment SUVT,max, interim SUVT,max, and relative decrease in SUVT,max of the primary tumour was 

not significantly predictive for PFS and OS. Similarly, pre-treatment SUVT,mean, interim SUVT,mean, and 

relative decrease in SUVT,mean of the primary tumour was not significantly predictive for PFS and OS in 

this cohort. However, pre-treatment TLGT was significantly associated with PFS and OS for all 

segmentation methods. The ΔTLGT was significantly predictive with PFS for all methods except for FLAB. 

Furthermore, ΔTLGT was significantly associated with OS for the T50 and SBR methods. Hazard ratios 
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(HRs) and corresponding 95% confidence interval (CI) of  TLGT and ΔTLGT in the univariate Cox regression 

analysis for PFS and OS are summarized in table 2. 

 

Only TLGLN obtained with the SBR and T50 methods was significantly predictive for PFS and OS. 

Furthermore, inclusion of TLGLN improved early response assessment using PET, with pre-treatment TLGS  

more strongly associated with PFS and OS than TLGT. Figure 2 depicts differences in PFS and OS of two 

patients ith a differe t ly ph ode respo se, as refle ted y ΔTLGS. 

The differences in lymph node segmentation performance was reflected in the significance of TLGS 

measurements in the univariate analysis. The HRs and corresponding 95% CI of TLGS and ΔTLGS in the 

univariate Cox regression analysis for PFS and OS are summarized in table 3. 

 

Discussion 

In this study we showed that TLG is a robust metric to monitor therapy response in patients undergoing 

concomitant chemoradiotherapy for locally advanced NSCLC. Furthermore, inclusion of TLGLN improves 

early assessment of treatment response in this patient population. Results of this study are in line with 

available data in literature and emphasize the role of FDG-PET imaging for early response monitoring 

NSCLC [10-14]. In particular, TLG outperformed the more traditional SUVT,max and SUVT,mean for predicting 

PFS and OS. This is probably due to the fact that TLG contains information about disease load as well as 

metabolic activity of involved lesions.  

In general, all segmentation algorithms had a similar performance for segmenting the primary tumour in 

different anatomical locations. The presence of adjacent anatomical structures (e.g. lymph nodes, 

mediastinum, liver), did not result in large differences in segmentation performance. Furthermore, 

lower contrast of the interim PET images resulted in a very limited increase in the number of 

segmentation failures. Absolute differences in TLG obtained by the different segmentation methods did 
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not influence its predictive value. . Due to the limited size and lower contrast, there were considerably 

more lymph node segmentation failures. The number of lymph node segmentation failures increased in 

the interim PET images owing to further reduction in image contrast. Nevertheless, adequate lymph 

node segmentation is of importance, with TLGS having a stronger association with PFS and OS. Out of all 

the segmentation algorithms, the SBR method demonstrated the lowest number of segmentation 

failures. The number of FLAB lymph node segmentation failures could be reduced by using a supervised 

input, with an equal performance to that of the SBR method, which is in line with results from another 

study [23]. However, in view of standardizing response measurements, such a user dependency should 

be avoided and we chose only to include the results of automatic FLAB segmentation. 

Although the results emphasize that PET could be used for prediction of early treatment response in 

patients with locally advanced NSCLC treated with concomitant chemoradiotherapy, employment of 

PET-guided decisions for personalizing treatment was not explored. Particularly, the strong association 

of pre-treatment TLG with PFS and OS might merit the choice for treatment intensification in patients 

with a high pre-treatment TLG such as proposed in the PET-boost dose-escalation trial[24]. Furthermore, 

one might also consider treatment intensification when interim PET images demonstrate a limited 

decrease in TLG, for instance by dose escalation to metabolically active sub volumes the primary 

tumour[25, 26], in order to improve loco-regional tumour control. However, standardizing PET-based 

dose painting approaches is of utmost importance. This is emphasized in a study by Knudtsen et al. 

where the used PET reconstruction algorithm and choice of segmentation thresholds significantly 

influenced treatment plans incorporating these dose painting concepts [27]. Although threshold-based 

segmentation is frequently used for defining sub volumes for dose painting, stability of different 

algorithms under varying imaging conditions for this purpose has yet to be investigated. Interestingly, 

studies emphasize that there is a high stability of FDG uptake in tumour areas during the course of the 

treatment that can be identified on pre-treatment FDG-PET images[28]. Although useful, interim PET 
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imaging in a molecularly image-guided ART (IGART) setting would still be of great interest to monitor 

changes during radiotherapy [2]. Indeed, employment of IGART using FDG-PET has been shown to be of 

potential value, where the GTV is adapted according to interim FDG-PET imaging[2].Furthermore, results 

from a study conducted by Nygård et al. emphasize that FDG-PET might identify lesion-specific response 

after a single series of chemotherapy in NSCLC and could be a useful addition to guide and individualize 

radiotherapy strategy [29]. Although dose redistribution might be useful for improving loco-regional 

tumour control, systemic disease control is also an important aspect in this patient group [30]. In this 

setting, interim PET imaging might identify failure of systemic disease control at an early stage (i.e. 

detection of additional lymph node or distant metastasis), making it possible to adapt treatment 

accordingly. 

A limitation of the current study is that only a small patient cohort was considered. However, the 

advantage is that TLG measurements using different automatic segmentation algorithms showed 

consistent results, with most algorithms yielding TLG values that had a similar predictive value in this 

patient cohort. 

This study emphasizes that adequate lymph node segmentation in PET images improves assessment of 

early treatment response in NSCLC patients treated with concomitant chemoradiotherapy. In this 

regard, given the relatively ease of implementation and the high number of successful lymph node 

segmentations, SBR is the method of choice for calculation of TLG in FDG-PET images of patients with 

locally advanced NSCLC for the purpose of assessment of early treatment response. 
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 Figure legends 

 

Figure 1| Box and whisker plots of summed total lesion glycolysis (TLG) of the primary tumor and the lymph nodes 

in pre-treatment and interim 
18

F-fluorodeoxyglucose (FDG) positron emission tomography (PET) scans obtained 

with different segmentation algorithms. Bottom and top of each box are lower and upper quartiles. The horizontal 

line near middle of the box is median. Whiskers are drawn down to the 5% percentile up to the 95% percentile, 

while the outliers are indicated by a dot. T40= Fixed level threshold segmentation at 40% of the maximum 

standardized uptake value (SUVmax), T50= Fixed level threshold segmentation at 50% of SUVmax, RTL= Relative level 

thresholding, SBR= Signal-to-background segmentation, FLAB=Fuzzy locally adaptive Bayesian segmentation.  

Figure 2|Baseline (a+c) and early response monitoring (ERM) (b+d) 
18

F-fluorodeoxyglucose (FDG) positron emission 

tomography (PET) images of two non-small cell lung cancer (NSCLC) patients. The first patient (a+b) showed a good 

response to treatment on both the primary tumour and lymph nodes. Although the primary tumour of the second 

patient (c+d) showed a good response to treatment, there was a limited response considering the lymph nodes, 

with more positive lymph nodes in the ERM PET. The mean summed fractional decrease of total lesion glycolysis 

ΔTLG  of the first patie t for the differe t seg e tatio  ethods as ± %, ith a progressio  free survival 

PFS  of  o ths a d overall survival OS  of  o ths. For the se o d patie t, ea  ΔTLG as ± % ith a 

PFS and OS of 7 and 21 months, respectively. 

 



Tables and legends  

Table 1| Patients Characteristics 

Characteristics of patient population 

Male(Female) 18(9) 

Median age (range) [y] 58 (42-77) 

  

Histological type  

  

Non-small cell lung cancer (NSCLC) 60 

Squamous cell carcinoma 10 

Adenocarcinoma 14 

NSCLC not otherwise specified 3 

  

Disease stage
c
  

IIIA 520 

IIIB 7 

  

Performance-score (ECOG)  

0 19 

1 7 

  

Smoking status  

Current smoker 11 

Former smoker 16 

  

  

Lesion location  

Right upper lobe 11 

Right middle lobe 4 

Right lower lobe 2 

Left upper lobe 8 

Left lower lobe 2 

  

Pre-treatment PET acquisition  

Number of bed positions 7-8 

Administered FDG activity [MBq] 267±48 

Incubation time [min] 75±7.5 

Acquisition time per bed position [min] 4 

  

Interim PET acquisition  

Number of bed positions 4-5 

Administered FDG activity 269±49 

Incubation time 78±8.0 

Acquisition time per bed position [min] 4 

 

Data are reported as mean±standard deviation. PET=positron emission tomography, FDG=
18

F-fluorodeoxyglycose 

Table



Table 2| Hazard ratios (HRs) and 95% confidence interval (CI) of pre-treatment primary tumour total lesion 

glycolysis (TLGT  a d relative TLG de rease ΔTLGT) between pre-treatment and interim 
18

F-fluorodeoxyglucose 

(FDG) positron emission tomography (PET) in a univariate Cox regression analysis for progression-free survival 

(PFS) and overall-survival (OS).  

 HR (95% CI) per unit change for PFS Significance level 

Pre-treatment TLGT 

T40 

T50 

RTL 

SBR 

FLAB 

 

1.002 (1.000 – 1.004) 

1.002 (1.000 – 1.004) 

1.002 (1.000 – 1.004) 

1.002 (1.000 – 1.003) 

1.002 (1.000 – 1.003) 

 

0.02* 

0.03* 

0.03* 

0.02* 

0.03* 
ΔTLGT 

T40 

T50 

RTL 

SBR 

FLAB 

 

1.02 (1.003 – 1.03)  

1.02 (1.003 – 1.03)  

1.02 (1.003 – 1.04)  

1.02 (1.004 – 1.04)  

1.02 (1.000 – 1.04) 

 

0.03* 

0.03* 

0.03* 

0.02* 

0.07 

 HR (95% CI) per unit change for OS Significance level 

Pre-treatment TLGT 

T40 

T50 

RTL 

SBR 

FLAB 

 

1.002 (1.001 – 1.004) 

1.003 (1.001 – 1.004) 

1.002 (1.001 – 1.004) 

1.002 (1.001 – 1.003) 

1.002 (1.001 – 1.003) 

 

0.004* 

0.005* 

0.004* 

0.004* 

0.006* 
ΔTLGT 

T40 

T50 

RTL 

SBR 

FLAB 

 

1.02 (1.00 – 1.03)  

1.02 (1.00 – 1.03)  

1.02 (1.00 – 1.03)  

1.02 (1.00 – 1.03)  

1.01 (0.99 – 1.03) 

 

0.05 

0.02* 

0.08 

0.04*  

0.3 
 

T40= fixed level threshold at 40% of the maximum standardized uptake voxel (SUVmax), T50= fixed level threshold 

at 50% of SUVmax, RTL=relative level thresholding, SBR=signal-to-background-ratio, FLAB=fuzzy locally adaptive 

Bayesia  seg e tatio . Statisti al sig ifi a e is i di ated y a  asterisk * . 

 

 

 

 

 

 

 

 



Table 3| Hazard ratios (HRs) and 95% confidence interval (CI) of pre-treatment summed total lesion glycolysis 

(TLGS  a d relative TLG de rease ΔTLGS) between pre-treatment and interim 
18

F-fluorodeoxyglucose (FDG) 

positron emission tomography (PET) in a univariate Cox regression analysis for progression-free survival (PFS) and 

overall-survival (OS). TLGS is the sum  of primary tumour TLG (TLGT) and lymph node TLG (TLGLN).  

 HR (95% CI) per unit change for PFS Significance level 

Pre-treatment TLGS 

T40 

T50 

RTL 

SBR 

FLAB 

 

1.003 (1.001 – 1.005) 

1.003 (1.001 – 1.005) 

1.003 (1.001 – 1.005) 

1.002 (1.001 – 1.004) 

1.002 (1.001 – 1.004) 

 

0.002* 

0.004* 

0.003* 

0.004* 

0.004* 
ΔTLG  

T40 

T50 

RTL 

SBR 

FLAB 

 

1.02 (1.00 – 1.05) 

1.03 (1.02 – 1.05)   

1.01 (1.00 – 1.02) 

1.04 (1.02 – 1.06) 

1.02 (1.00 – 1.04) 

 

0.03* 

0.001* 

0.2 

0.001* 

0.04* 

 HR (95% CI) per unit change for OS Significance level 

Pre-treatment TLGS 

T40 

T50 

RTL 

SBR 

FLAB 

 

1.003 (1.001 – 1.004) 

1.003 (1.001 – 1.005) 

1.003 (1.001 – 1.005) 

1.002 (1.001 – 1.004) 

1.002 (1.001 – 1.004) 

 

0.001* 

0.002* 

0.001* 

0.001* 

0.002* 

 
ΔTLGS 

T40 

T50 

RTL 

SBR 

FLAB 

 

1.01 (1.00 – 1.03) 

1.02 (1.00 – 1.04)   

1.00 (1.00 – 1.01) 

1.02 (1.00 – 1.04) 

1.01 (1.00 – 1.03) 

 

0.4 

0.02* 

0.9 

0.03* 

0.02* 

 

T40= fixed level threshold at 40% of the maximum standardized uptake voxel (SUVmax), T50= fixed level threshold 

at 50% of SUVmax, RTL=relative level thresholding, SBR=signal-to-background-ratio, FLAB=fuzzy locally adaptive 

Bayesia  seg e tatio . Statisti al sig ifi a e is i di ated y a  asterisk * . 
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