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ABSTRACT 

Background: In addition to the established association between general obesity and breast 

cancer risk, central obesity and circulating fasting insulin and glucose have been linked to the 

development of this common malignancy. Findings from previous studies, however, have been 

inconsistent, and the nature of the associations is unclear. 

Methods: We conducted Mendelian randomization analyses to evaluate the association of 

breast cancer risk, using genetic instruments, with fasting insulin, fasting glucose, 2-hour 

glucose, body mass index (BMI), and BMI-adjusted waist-hip-ratio (WHRadj BMI). We first 

confirmed the association of these instruments with type 2 diabetes risk in a large diabetes 

genome-wide association study consortium. We then investigated their associations with breast 

cancer risk using individual-level data obtained from 98 842 cases and 83 464 controls of 

European descent in the Breast Cancer Association Consortium.  

Results: All sets of instruments were associated with risk of type 2 diabetes. Associations with 

breast cancer risk were found for genetically predicted fasting insulin [odds ratio (OR)=1.71 per 

standard deviation (SD) increase, 95% CI=1.26-2.31, p=5.09×10-4], 2-hour glucose (OR=1.80 

per SD increase, 95% CI=1.30-2.49, p=4.02×10-4), BMI (OR=0.70 per 5-unit increase, 95% 

CI=0.65-0.76, p=5.05×10-19), and WHRadj BMI (OR=0.85, 95% CI=0.79-0.91, p=9.22×10-6). 

Stratified analyses showed that genetically predicted fasting insulin was more closely related to 

risk of ER-positive cancer, while the associations with instruments of 2-hour glucose, BMI, and 

WHRadj BMI were consistent regardless of age, menopausal status, estrogen receptor status, and 

family history of breast cancer.  

Conclusions: We confirmed the previously reported inverse association of genetically predicted 

BMI with breast cancer risk and showed a positive association of genetically predicted fasting 

insulin and 2-hour glucose, and an inverse association of WHRadj BMI with breast cancer risk. Our 
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study suggests that genetically determined obesity and glucose/insulin-related traits have an 

important role in the etiology of breast cancer.  

Key words: breast cancer; insulin; glucose; obesity; genetics; Mendelian randomization 

analysis 

 

Key messages 

 Mendelian randomization studies eliminate potential influence of reverse causation on study 

results and are less susceptible to bias and confounding than conventional observational 

studies. We utilized this approach to evaluate the association of obesity and glucose/insulin-

related traits with breast cancer risk using the data of a large consortium.  

 

 We found genetically predicted fasting insulin and 2-hour glucose levels were positively 

associated with breast cancer risk, while genetically predicted body mass index and waist-

hip-ratio with adjustment of BMI were inversely associated with the risk.  

 

 Our study has uncovered complex inter-relations of genetics, obesity and breast cancer risk 

and provided novel findings regarding roles of circulating glucose and insulin in the risk of 

this common cancer.   
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Introduction 

 

 General and central obesity have been linked to breast cancer risk in previous studies. 

1,2 Body mass index (BMI) and waist-hip-ratio (WHR) are commonly used to measure general 

and central obesity, respectively. Obesity, particularly central obesity, is a major risk factor for 

insulin resistance and type 2 diabetes, which are often characterized by elevated fasting insulin 

and glucose as well as impaired glucose tolerance (usually measured by blood glucose level 2 

hours after oral glucose challenge). 3 Previous studies have linked fasting insulin and glucose 

levels to increased risks of multiple cancers. 4–6 Proposed mechanisms for these associations 

include cancer-promoting effects mediated by insulin and insulin-like growth factor (IGF) 

signaling pathways. 7 However, the relationship between these biomarkers and breast cancer 

remains controversial and findings from epidemiological studies are inconsistent. 8,9 Concerns 

regarding the validity of these observational study findings include potential selection biases, 

reverse causation, confounding effects, small sample size, and differences in assays used to 

measure the biomarkers of interest. 

Mendelian randomization analysis has been used to evaluate potential causal 

relationships between exposures and the disease. 10,11 Genetic variants are used as 

instrumental variables in the analysis. Random assortment of alleles at the time of gamete 

formation results in a random assignment of exposures that are related to an allele (or a set of 

alleles). Thus, Mendelian randomization analyses may reduce potential biases that would afflict 

conventional observational studies. In the current study, we performed Mendelian randomization 

analyses to assess associations of obesity (i.e. BMI and WHR) and glucose/insulin-related traits 

(i.e. fasting glucose, 2-hour glucose, and fasting insulin) with breast cancer risk using data from 

the Breast Cancer Association Consortium (BCAC).  
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Methods  

 

Study Population 

Included in this analysis are 182 306 participants of European ancestry whose samples 

were genotyped using custom Illumina iSelect genotyping arrays, OncoArray (56 762 cases and 

43 207 controls) or iCOGS array (42 080 cases and 40 257 controls). Institutional review boards 

of all involved institutes approved the studies. Selected characteristics of the two datasets are 

presented in Supplementary Table 1. Details of the genotyping protocols in the BCAC are 

described elsewhere (iCOGS: http://ccge.medschl.cam.ac.uk/research/consortia/icogs/; 

OncoArray: https://epi.grants.cancer.gov/oncoarray/). 12,13 Genotyping data were imputed using 

the program IMPUTE2 14 with the 1000 Genomes Project Phase III integrated variant set as the 

reference panel. SNPs with low imputation quality (imputation r2 < 0.5) were excluded. Top 

principal components (PCs) were included as covariates in regression analysis to address 

potential population substructure (iCOGS: top eight PCs; OncoArray: top 15 PCs). 

 

Selection of SNPs associated with glucose/insulin-related traits  

In December 2016, we searched the National Human Genome Research Institute-

European Bioinformatics Institute Catalog of Published Genome-Wide Association Studies and 

the literature for SNPs associated with the following traits: levels of 2-hour glucose (2hrGlu), 

fasting glucose (FG), fasting insulin (FI), BMI, and waist-hip-ratio with adjustment of BMI 

(WHRadj BMI). 
15–19 SNPs associated with any of these traits at the genome-wide significance 

level (p<5×10-8) in populations of European ancestry were included. For each GWAS-identified 

locus, a representative SNP with the lowest p value in the original GWAS publication was 

selected (linkage disequilibrium r2<0.1, based on 1000 Genome Phase III CEU data).  

http://ccge.medschl.cam.ac.uk/research/consortia/icogs/
https://epi.grants.cancer.gov/oncoarray/
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Construction of instrumental variables 

Weighted polygenic scores for each trait (ie. wPRS-2hrGlu, wPRS-FG, wPRS-FI, wPRS-

BMI, and wPRS-WHRadj BMI) were constructed followed the formula: wPRS = ∑ 𝛽𝑖,𝐺𝑋 ∗ 𝑆𝑁𝑃𝑖𝑖 , 

where βi, GX is the beta coefficient of the i th SNP for the trait of interest from the published 

GWAS (Supplementary Table 2). SNPi is the imputed dosage of the effect allele in BCAC data 

(range: 0 to 2). To reduce potential pleiotropic effects, we excluded BMI and WHRadj BMI -

associated SNPs from instruments of 2hrGlu, fasting glucose and insulin (r2<0.8), and vice 

versa. The pleiotropic SNPs associated with more than one trait were presented in 

Supplementary Table 2. The F-statistic was taken to indicate whether an instrumental variable is 

well-powered for Mendelian randomization analysis with 10 being a commonly used threshold. 

20 Variance explained (%) and F statistics were calculated following the formulae:  ∑ 2 ∗𝑖 𝛽𝑖,𝐺𝑋
2 ∗

𝑓𝑒𝑓𝑓𝑒𝑐𝑡 𝑎𝑙𝑙𝑒𝑙𝑒 ∗
(1−𝑓𝑒𝑓𝑓𝑒𝑐𝑡 𝑎𝑙𝑙𝑒𝑙𝑒)

𝑣𝑎𝑟(𝑋)
∗ 100 and R2 *(n-1-k)/(1-R2)/k, respectively, where R2 is percentage 

of variance explained by used SNPs; f is the frequency of the effect allele reported by GWAS for 

the trait; var(X) is the variance of trait, see below; n is the sample size of BCAC data; and k is 

the number of SNPs used in the instrument. 21 

For 2-hour glucose, fasting glucose and insulin, βi, GX were further transformed to 

represent 1 standard deviation (SD) increase with the unit in the original GWAS (2-hour glucose: 

1 SD= 2 mmol/L, variance= 4; fasting glucose: 1 SD= 0.65 mmol/L, variance= 0.42; fasting 

insulin: 1 SD= 0.60 ln[pmol/L], variance= 0.36) 17,22 by the formula: βi ,SD =βi, GX [2*f (SNPi)(1-f 

(SNPi)]^0.5/SD. wPRS-BMI and wPRS-WHRadj BMI represented the adjusted 1-SD increase of 

transformed BMI and WHRadj BMI as the original GWAS performed the inverse normal 

transformation for both phenotypes. 18,19,23 We further scaled wPRS-BMI to be equivalent to 5 

units of BMI by performing a linear regression among controls in our dataset: observed BMI ~ 



8 
 

wPRS-BMI+error. Then we calculated the transformed BMI as BMIwPRS=β0 + β1* (wPRS-BMI), 

where β0 and β1 are slope and coefficient from the linear regression model mentioned above.  

 

Statistical analysis 

Given an established association between impaired glucose/insulin traits and type 2 

diabetes, an association between constructed instruments and risk of type 2 diabetes are 

expected. We utilized summary statistics from the DIAbetes Genetics Replication And Meta-

analysis (DIAGRAM) Consortium and conducted an Mendelian randomization analysis of our 

traits using the inverse-variance-weighted two-sample method 10,24. The Mendelian 

randomization estimate and standard error were calculated as ∑ 𝛽𝑖,𝐺𝑋𝑖 ∗ 𝛽𝑖,𝐺𝑌 ∗ 𝜎𝑖,𝐺𝑌
−2 /(∑ 𝛽𝑖,𝐺𝑋

2
𝑖 ∗

𝜎𝑖,𝐺𝑌
−2 ) and 1/(∑ 𝛽𝑖,𝐺𝑋

2
𝑖 ∗ 𝜎𝑖,𝐺𝑌

−2 )0.5, respectively. GY represents the association between a SNP 

and type 2 diabetes risk, thus βi, GY and σi, GY are beta coefficient and standard error, respectively. 

The p value was based on Student’s t distribution, where the degrees of freedom were 

determined by the number of SNPs included in the instrument for the trait of interest. We 

calculated Pearson’s correlations between each pair of wPRSs in the control data before and 

after removal of pleiotropic SNPs. Egger’s regression, as described in Bowden et al, 25 was 

performed to detect potential pleiotropy of our instruments. We also included all instruments in 

the same model to evaluate possible independent associations of each instrument with breast 

cancer risk.  

Associations of wPRSs with breast cancer risk were evaluated separately in the iCOGs 

and OncoArray datasets by treating these scores as continuous variables. A logistic regression 

was performed with age at interview/diagnosis, study site/country, and PCs as covariates. The 

results were then combined using meta-analyses in METAL with a fixed-effects model. 26 We 

performed additional analyses adjusting for certain known breast cancer risk factors listed in 
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Supplementary Table 1. Finally, we conducted sub-analyses by estrogen receptor (ER) status, 

age at interview/diagnosis (<50 versus ≥50), menopausal status at interview/breast cancer 

diagnosis, and family history of breast cancer. All statistical analyses were conducted using R 

statistical software (version 3.1.2). 

 

Results 

 

Approximately 90% of cases included in this study were diagnosed at age 40 or above. 

A total of 278 SNPs were selected to construct the instruments, for which the number of SNPs 

for each trait ranged from 4 to 166 (Table 1). The variance of each trait explained by its 

associated variants ranged from 0.23% for 2-hour glucose to 2.89% for BMI (Table 1). (Table 1 

here) 

Using data from DIAGRAM, we demonstrated that all genetic instruments were 

associated with risk of type 2 diabetes in the direction that would be expected (Table 2). The 

strongest association was observed for the genetic instrument for fasting glucose (OR=6.37, 

p=5.77×10-16 and OR=4.32, p=1.12×10-11 before and after the exclusion of pleiotropic SNPs, 

respectively). (Table 2 here) 

We observed associations of breast cancer risk with genetically predicted 2-hour 

glucose, BMI, and WHRadj BMI prior to the removal of pleiotropic SNPs (Table 3). Removing 

pleiotropic SNPs did not appreciably change the associations. A one-SD increase in genetically 

predicted 2-hour glucose levels was associated with an 80% increased risk of breast cancer 

(OR=1.80, 95% CI=1.30-2.49, p=4.02×10-4). An inverse association was observed for both 

genetically predicted BMI and WHRadj BMI (per 5 units of BMI increase: OR=0.70, 95% CI=0.66-

0.77, p=5.05×10-19; per unit increase of genetic risk score for WHRadj BMI: OR=0.85, 95% CI= 

0.79-0.91, p=9.22×10-6). The association of breast cancer risk with genetically predicted fasting 
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insulin became significant after excluding pleiotropic SNPs (OR=1.71, 95% CI= 1.26-2.31, 

p=5.09×10-4). No association was observed for genetically predicted fasting glucose. Results of 

iCOGS and OncoArray were shown separately in Supplementary Table 3. (Table 3 here) 

 Genetically predicted fasting insulin was correlated with both genetically predicted 2-

hour glucose and WHRadj BMI (Supplementary Table 4). Exclusion of pleiotropic SNPs attenuated 

these correlations. Mutual adjustment of all instruments did not materially change the observed 

associations with breast cancer risk described above (Supplementary Table 5). We evaluated 

the associations of genetically predicted obesity and glucose/insulin-related traits with traditional 

risk factors for breast cancer and found that genetically predicted fasting insulin and WHRadj BMI 

were associated with BMI in controls. Further, genetically predicted BMI were correlated with 

age at menarche, age at first live birth, and breast feeding history (Supplementary Table 6). 

Adjusting for these covariates did not materially change the observed associations of genetically 

predicted fasting insulin, BMI, and WHRadjBMI with breast cancer risk (Supplementary Table 7). 

Finally, using Egger’s regression, we found that the intercept in the model was noticeable for 

genetically predicted 2-hour glucose, BMI, and WHRadj BMI, indicating a strong pleiotropic effect 

for these instruments (p<0.005 for β0, Supplementary Table 8). 25 No apparent pleiotropy was 

found for genetically predicted fasting insulin. The Mendelian randomization estimates from 

Egger’s regression remained significant after accounting for detected pleiotropy for genetically 

predicted BMI and WHRadj BMI (Supplementary Table 8).  

Stratified analysis was performed by age, menopausal status, ER status, and family 

history of breast cancer. Genetically predicted 2-hour glucose, BMI, and WHRadj BMI were 

consistently associated with breast cancer across all strata (Figure 1-A, C, D, P het>0.05, 

exclusion of pleiotropic SNPs). The results of stratified analysis are shown for other sets of 

instrumental variables in Supplementary Figures 1 (inclusion of pleiotropic SNPs) and 2 (fasting 

glucose, exclusion of pleiotropic SNPs).  



11 
 

 

Discussion 

In this large study we found that genetically predicted obesity, 2-hour glucose and 

fasting insulin were associated with breast cancer risk. Measured BMI has been well 

established to be positively associated with breast cancer risk in postmenopausal women but 

inversely related to the risk in premenopausal women. Results from epidemiologic studies 

investigating the association of breast cancer risk with WHR, fasting insulin and glucose have 

been inconsistent. Traditional epidemiological studies are prone to biases, including 

confounding, selection biases, recall biases and reverse causality. Mendelian randomization 

analyses take advantage of the random assignment of genetic alleles during gamete formation 

to minimize the biases commonly encountered in traditional epidemiological studies. When an 

instrumental variables are not associated with any potential confounders and are not linked to 

the outcome via any alternative pathway, Mendelian randomization analysis using such 

instrumental variables resemble randomized clinical trials and thus could provide strong results 

for causal inference for the exposure of interest .10  

We found that the risk of breast cancer increased approximately 70% for each SD 

increase of genetically predicted fasting insulin levels. Previous epidemiological studies were 

unable to reach a conclusion regarding the association between fasting insulin and breast 

cancer risk. A meta-analysis reported a null association for fasting insulin. 8 However, the I2, an 

indicator of heterogeneity across studies, was considerable. Our results provide strong evidence 

to support a positive association. Insulin is an important growth factor with cancer-promoting 

features such as stimulating cell mitosis and migration and inhibiting apoptosis. Its mitogenic 

effects involve the activation of Ras and the mitogen-activated protein kinase pathway, 27 of 

which the role in cancer development have been recognized. 28 Further, insulin may inhibit the 

production of sex hormone binding globulin and lead to elevated bioavailable estrogen levels. 29 



12 
 

It also has been shown that knockdown of insulin and IGF-1 receptors inhibits hormone 

dependent growth of ER(+) breast cancer cells. 30 It may explain the association of fasting 

insulin with ER(+) breast cancer observed in this study.  

Previous epidemiological studies have suggested that fasting glucose may be a risk 

factor for breast cancer, but few have assessed 2-hour glucose levels, as the latter is difficult to 

investigate in large prospective cohort studies. Overall, a meta-analysis of prospective studies 

showed no strong evidence to support an association of fasting glucose levels and risk of breast 

cancer in nondiabetic women. 9 In the current study, we found a positive association with breast 

cancer for genetically predicted 2-hour glucose levels but not for fasting glucose. Although 

fasting glucose and 2-hour glucose are closely correlated, 31 they represent different biological 

processes. The genetically determined fasting glucose levels primarily reflect the glycogenolysis 

activity in liver and hepatic insulin sensitivity. 32 On the other hand, the levels of post-challenge 

glucose are mainly determined by the amount and pace of insulin released into blood stream in 

response to the challenge as well as by the glucose uptake in skeletal muscle cells (in other 

words, it primarily reflects beta cell function and skeletal muscle insulin sensitivity 33). The 

reasons why genetically predicted 2-hour glucose is associated with increased risk of breast 

cancer but not fasting glucose are not clear. One animal study has provided evidence that 

transgenic mice with inactivated insulin and IGF-1 receptors in skeletal muscles (impaired 

skeletal muscle insulin sensitivity) can lead to hyperinsulinemia and an accelerated 

development of breast cancer. 34 Since genetically predicted 2-hour glucose is correlated with 

instruments for other traits, we cannot completely rule out the possibility that the association of 

2-hour glucose may be mediated by other insulin-related traits; even these traits were carefully 

adjusted and having pleiotropic SNPs excluded in our analyses. 

We reported previously that genetically predicted BMI was inversely associated with 

breast cancer risk in both pre- and post-menopausal women. 35 We have now confirmed this 
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finding with a much larger sample size and more BMI-associated SNPs. While our finding for 

pre-menopausal breast cancer is consistent with previous observational studies, the inverse 

association observed in our study between genetically predicted BMI and post-menopausal 

breast cancer risk contradict prior findings based on measured BMI. Multiple lines of evidence 

suggest that early life body size may be inversely associated with both premenopausal and 

postmenopausal breast cancer risk. 36,37 It has been speculated that reduced serum estradiol 

and progesterone levels, due to an increased frequency of anovulation, play a role. In addition, 

the association is further supported by the observation that early life fatness was inversely 

correlated with IGF-1 levels measured in later adulthood. 38 We hypothesize that genetically 

predicted BMI may be more closely correlated to early life body weight, while obesity 

determined using measured BMI later in life may be more closely related to environmental and 

lifestyle factors that are associated with breast cancer risk. Indeed, one previous study found 

that a BMI-genetic score was positively associated with weight gain before reaching middle age 

but inversely associated with weight gain after reaching middle age. 39 If the hypothesis is 

correct, our study may provide additional support for preventing weight gain later in life to 

reduce the risk of breast cancer.  

Results from previous studies regarding the association of WHR with breast cancer risk 

have been inconsistent. While several previous studies reported that measured WHR was 

associated with breast cancer risk, 40 we recently found that this association was substantially 

attenuated after adjusting for BMI using data from a large prospective cohort study conducted 

among Chinese women. 41 In the current study, we observed an inverse association between 

genetically predicted WHRadj BMI and breast cancer risk in both pre- and post-menopausal 

women. This finding was unexpected given the close association of measured WHR with type 2 

diabetes. 42 As discussed previously for the BMI findings, we hypothesize that genetically 

predicted WHRadj BMI may reflect visceral adipose tissue level in early life, while measured WHR 
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in late adulthood reflect accumulation of visceral fats later in life. Additional research is needed 

to understand the inter-relationship of genetically predicted WHR, measured WHR and breast 

cancer risk.  

We showed that genetically predicted obesity and circulating insulin and glucose levels 

were positively correlated with risk of type 2 diabetes. Epidemiologic studies have shown that a 

prior diagnosis of type 2 diabetes is related to an elevated risk of breast cancer risk, although 

the association was weak to moderate. 43 However, in a previous study, we found a null 

association between a polygenetic risk score for type 2 diabetes and breast cancer risk. 44 It is 

possible that lifestyle changes after diabetes diagnosis and/or diabetes treatment may have 

confounded this association. Given the significant association we found in this study for breast 

cancer risk with genetically predicted fasting insulin and 2-hour glucose, two factors that are 

strongly associated with type 2 diabetes risk, we suggest that type 2 diabetes may be 

associated with breast cancer risk.  

The sample size of our study is very large, providing us sufficient statistical power for 

Mendelian randomization analyses of multiple obesity and glucose/insulin-related traits with 

breast cancer risk. Our ability to perform Mendelian randomization analysis is limited by the 

genetic variants identified to date in GWAS, and the variance explained by these genetic 

variants for some traits is small. We used 10 instruments in our main analysis, which could lead 

to false-positive findings due to multiple comparisons. However, the associations reported in this 

study for 2-hour glucose, fasting insulin, BMI, and WHRadj BMI were robust, reaching the stringent 

Bonferroni corrected significance level (p<0.05/10=0.005). Pleiotropy was found for the 

associations of obesity but it is not likely that the observed associations can be primarily 

explained by pleiotropic effects. 
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In summary, this study provided new evidence that genetically predicted fasting insulin, 

2-hour glucose, BMI, and WHRadj BMI are associated with breast cancer risk in women. Further 

research into the complex association of genetics, obesity, glucose/insulin-related traits, and 

breast cancer risk will help to improve the understanding of underlying biological mechanisms 

for the associations observed in this study and provide tools to reduce breast cancer risk.  
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Figure Legend 

Figure 1. Associations of genetically predicted obesity and levels of circulating glucose 

and insulin with overall breast cancer risk: stratified analysis 

The P heterogeneity was obtained from heterogeneity test across strata.  
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