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Abstracts 

Cancers originate from somatic cells in the human body that have accumulated genetic 

alterations. These mutations modify the phenotype of the cells, allowing them to escape the 

homeostatic regulation that maintains normal cell number. Viewed through the lens of 

evolutionary biology, the transformation of normal cells into malignant cells is evolution in 

action. Evolution continues throughout cancer growth, progression, treatment resistance, and 

disease relapse, driven by adaptation to changes in the cancer’s environment, and intratumor 

heterogeneity is an inevitable  consequence of this evolutionary process. Genomics provides a 

powerful means to characterize tumor evolution, enabling quantitative measurement of evolving 

clones across space and time. In this review, we discuss concepts and approaches to quantify and 

measure this evolutionary process in cancer using genomics. 

 

 



 2 

CLONAL EVOLUTION IN CANCER 

Abnormal cell growth and survival are the root proximal cause of cancer. Each time a cell 

divides, the DNA in the cell is copied and passed on to daughter cells. While this process is 

relatively accurate, the fidelity is not perfect. Because somatic cells reproduce asexually, any 

mutations that arise during DNA replication and are not repaired are passed on to the daughter 

cells and all subsequent descendants. Given a conservative estimate of the base-pair mutation 

rate of 10-9 and a human genome consisting of approximately 3 ´ 109 base pairs, it is likely that 

every cell division will introduce new mutations into the daughter cells. Furthermore, tumors are 

often subject to genomic instability, either through increased point mutation rates due to 

defective DNA repair processes (17) or through chromosomal instability (8). Billions of cell 

divisions coupled with imperfect DNA copying makes intratumor heterogeneity inevitable. 

The advent of high-throughput genomics and its application to cancer has validated cancer 

progression as an evolutionary process, that is likely to be driven by (sometimes complex) 

genetic alterations (103), and intratumor heterogeneity is pervasive (74). More specifically, 

tumors can harbor many thousands of point mutations (62) and in many cases can be highly 

aneuploid (44), and intratumor heterogeneity is present for both types of mutations, meaning that 

every cell in a tumor is likely to be genetically distinct from the others. This incredible diversity 

and genomic complexity are now beginning to be understood in terms of evolutionary principles. 

In this review we discuss approaches to quantify evolutionary dynamics in human cancers. It 

is our hypothesis that such quantitative measurement will enable more accurate prediction of the 

future course of the disease, and concomitantly facilitate the design of improved treatment 

strategies. Such an approach has already shown promise in some cancer types, Maley et al (68a) 

have shown that diversity is a prognostic biomarker in the pre-malignant disease Barrett’s 

oesophagus. This has been validated in subsequent studies (71a) and a pan cancer analysis along 

similar lines also showed that diversity of the clonal composition of tumors was prognostic (6a). 

In non-small-cell lung cancer, heterogeneity of copy number alterations (but not single 

nucleotide variants) has also been demonstrated to correlate with patient outcome (49). Similarly 

in prostate cancers, the percentage of the genome altered has also been shown to be clinically 

predictive (35a). These results make sense from an evolutionary perspective, diversity can be 

thought of as measuring the “evolvability”, i.e. the capacity of the population to adapt to its 

environment, and thus the more “evolvable” lesions will have worse prognosis. Quantitative 
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measurements of the fitness of subpopulations of cells within a tumor has also been shown to 

correlate with the efficacy of immunotherapy (65b). These studies all demonstrate that applying 

evolutionary principles to improve patient stratification is promising. Our belief is that precise 

quantification of the different components of the evolutionary system will provide greater 

predictive power and accuracy. 

COMPONENTS OF THE EVOLUTIONARY SYSTEM 

Like every evolutionary system, clonal evolution in cancer is shaped by the fundamental 

evolutionary forces: (stochastic) mutation, (stochastic) genetic drift, and (arguably deterministic) 

selection (65a). Mutation is a stochastic process that introduces new variation into the 

population. Genetic drift describes the stochastic changes in clone size due to random effects that 

lead to cancer cell growth or death. Selection, on the other hand, is in principle deterministic: A 

combination of genotype and phenotype that is adapted to a particular environment will always 

be expected to grow (110). We acknowledge that stochastic effects also affect the growth of a 

new lineage when it is small, but once the population of the lineage is large enough to overcome 

the genetic drift barrier, the expansion of the lineage becomes predictable (the switch from 

stochastic to deterministic behavior for a positively selected lineage occurs when the population 

size N of the lineage is greater than the inverse of the selection benefit s that the lineage 

experiences, e.g., 1/s) (33), as also shown experimentally in yeast (65). 

The growing field of cancer evolution interrogates the relative and combined contributions of 

these evolutionary components. Large sequencing studies such as the Cancer Genome Atlas have 

uncovered many recurrent so-called driver mutations (mutations that lead to a positively selected 

phenotype and therefore expansion of the clone of cells carrying the driver mutation) across 

cancer types (3). These types of analysis particularly highlight the importance of clonal selection 

in cancer development. The mutation rate itself has also received considerable attention. The 

mutation burden varies considerably across cancers (63), suggesting large differences in the 

underlying mutation rate between individual tumors and tumor types. The realization that 

different mutational processes (a combined term for the interrelated processes of mutagenesis 

and defective DNA repair), such as damage from UV light or defective mismatch repair, each 

leave distinctive (i.e. nonrandom) patterns of mutation across the genome has been instructive in 
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mapping genetic mutations to underlying biological process (3). On the other hand, the role of 

stochastic drift in shaping tumor evolution has been largely neglected. 

The field of population genetics provides a quantitative framework with which to study 

evolution and has proved useful for understanding organismal evolution (66). It is perhaps the 

area of biology that has made the most use of mathematical theories, and for good reason. The 

difficulty in conducting experiments over evolutionary timescales necessitates theoretical 

approaches to explain patterns of genetic diversity within populations. Population genetics 

models provide a framework to explore the distinct evolutionary components of mutation, drift, 

and selection in a principled way. Since cancers also evolve, population genetics theory can also 

be applied to cancer, albeit with some adaptations necessary to represent the differences between 

organismal and somatic cell evolution (47). We discuss applications of population genetics 

theory in cancer in this review. 

Classifying Tumor Evolution 
There have been many efforts to categorize cancer evolution into one of several models (or 

modes), with the important aim of finding similarities in the evolutionary trajectories of different 

cancers so that experience in the treatment of one cancer that evolves according to a particular 

mode can guide treatment of similar cancers (68). Frequently discussed models of cancer 

evolution include neutral, punctuated, branched, and linear (25). Below, we discuss each of these 

terms. 

Linear evolution describes the process where successively fitter mutants arise and sweep to 

fixation, replacing less fit lineages. While such selective sweeps do occur in cancers, the 

inevitable ongoing mutations mean that cancers always contains genetic heterogeneity. Thus, a 

sweep of a driver mutation should not be conflated with causing genetic homogeneity, and 

indeed, all cancer evolution is therefore in some sense branched. Nevertheless, the term branched 

evolution is typically used to describe the scenario where multiple subclones, each with selective 

growth advantages and effectively a distinct phenotype, co-occur within the tumor (39). Neutral 

evolution is the converse situation, wherein all subclonal lineages have equal fitness, and so is a 

description of what happens in the absence of selection. Neutral evolution and branched 

evolution are thus distinct —one describing the scenario where there are no differences in fitness 

between lineages (selective coefficient of each subclone s = 0), and the other describing 

differential fitness between some lineages (s > 0 for at least one subclone). The term effectively-
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neutral can also be useful, denoting the situation where selection is weak and does not cause a 

detectable deviation from neutral evolutionary dynamics (104). It is important to appreciate 

however, that even in the case where evolutionary dynamics within a tumor are entirely neutral, 

the prior accumulation of driver events that led to tumor initiation must be driven by selection 

and adaptation (101). 

Punctuation can be thought of as a catastrophic event that induces a radical change in 

phenotype, typically followed by strong selection for that phenotype (7, 23). The punctuated 

event can be the result of gradual evolution of a single isolated lineage that suddenly emerges 

following the evolution of the radical phenotype; this is the analogue of punctuated equilibrium, 

proposed by Stephen Jay Gould in the context of species evolution. In cancer genomes, there can 

also be large sudden changes in the genome in a single catastrophic event. These changes include 

chromothripsis (the shattering and reassembly of a chromosome arm) (56), chromoplexy (the 

interleaving of genetic material from multiple chromosomes, potentially in a single event) (100), 

genome doubling (13), and kataegis (localized hypermutation resulting in many single-base-pair 

changes) (81). 

We argue that classifying cancer evolution into these apparently distinct models or modes is 

an illusion in many respects. After all, evolution itself is fundamentally a single process: Natural 

selection of competing lineages does not intermittently stop and start, but is rather always 

ongoing. How the evolutionary process appears at a single time point depends on how and when 

the tumor is sampled as well as the resolution of the assay. For example, if a tumor is sampled 

right after a clone has swept, then the evolution would appear to be linear, but if it is sampled 

just before the fixation event, then the evolution would appear to be branched (Figure 1). 

Furthermore, how the samples are taken in space could also lead to the appearance of linear (if 

only the sweeping clone is sampled), branched (if the sweeping clone and residual tumor 

population is sampled), or neutral evolution (if only the clone, or residual population, is sampled) 

(Figure 1). Spatially biased sampling and limited genetic resolution can also mean that some 

clones are missed and others overrepresented in the samples. 

<COMP: PLEASE INSERT FIGURE 1 HERE> 

Figure 1 Many modes of evolution can be seen through the history of an individual tumor. This 
tumor goes through distinct phases that can be characterized by many different modes. 



 6 

Instead, we suggest that a useful approach is to think about the relative contributions of the 

different evolutionary components (mutation, drift, and selection) to the observed evolutionary 

dynamics. Specifically, this would mean measuring the mutation rate (separately for different 

types of mutations) and the distribution of fitness effects of these mutations (potentially also 

taking into the account the current microenvironment) and elucidating the relative importance of 

stochastic effects (e.g., the prevalence of drift). Together, these measures could provide an 

evolutionary index for cancer development (68). As a prelude to a discussion of approaches to 

quantify these aspects of cancer evolution, we first discuss the different evolutionary forces and 

their peculiarities in cancer. 

Selection 

The population genetics definition of selection is the increase in frequency of a particular 

genotype in the population due to the increased fitness of that genotype. Classically, fitness is 

defined as more surviving offspring per capita per generation. In tumors, fitness can be 

intuitively understood as the net growth rate of lineages relative to other lineages. Despite this 

simple framing, from a mechanistic point of view, the causes of selection can vary widely and 

are likely to be variable across time and space. 

Positive selection, when subclones within a tumor grow more rapidly than others, is the 

dominant mode of selection during tumor initiation. Many of the so-called hallmarks of cancer 

result in increased proliferation, or the ability of cells to evade the homeostatic regulation of 

physiologically normal tissues (45). Sequencing of large cohorts has revealed recurrent 

mutations in certain genes (63), often suggesting large fitness effects (105). Other driver 

mutations are rarer, perhaps due to weaker selection, mutational unlikeliness, or a cancer 

requiring many small-effect drivers rather than a few (recurrent) strong drivers (20). Cancer-

associated mutations also induce clonal expansions in what appear to be physiologically normal 

tissues (69, 71). 

Treatment radically changes the selective pressures imposed by the tumor microenvironment 

and can have profound consequences. Many alterations that confer resistance likely exist in the 

tumor at the time treatment is applied. A concept that may be relevant to such dynamics is that of 

soft selective sweeps (76, 85). These sweeps occur when previously neutral mutations become 

adaptive following a change in the environment, resulting in multiple mutations with different 

genetic backgrounds simultaneously rising in frequency in the population. They are thought to be 
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an important adaptive mechanism in many evolutionary systems (96). By contrast, hard selective 

sweeps occur when mutations with large fitness advantages rapidly rise in frequency and fix in 

the population, resulting in a loss of diversity. Dynamics that fit the soft sweeps paradigm have 

been observed in cancer under treatment. For example, in colorectal cancer, KRAS mutations that 

confer treatment resistance to the targeted therapy cetuximab can rapidly rise in frequency after 

treatment is applied (28, 78). Treatment can therefore radically alter the fitness landscape of 

cancers. The ecological context within which mutations arise and how it changes over time are 

thus undoubtedly important (99), but more challenging to quantitatively measure than genetics 

(i.e. measurement of mutant allele frequencies). 

An alternative mode of selection in cancer is negative or purifying selection. Negative 

selection arises when subclones that have reduced fitness are more likely to be lost or remain at 

low frequencies within the population. This type of selection is particularly important in the 

context of how the immune system interacts with cancer cells and is critical for predicting the 

efficacy of immunotherapy (97). Mutations that induce neoantigens on the cell surface can elicit 

an immune response that may purge lineages carrying neoantigens from the population. To 

counteract this, tumors employ various mechanisms of immune escape. Immunotherapies work 

by reactivating a dormant immune response, and their effectiveness correlates with the burden of 

neoantigens (64). The degree of negative selection experienced by neoantigens remains an open 

question. A fuller understanding of the mechanisms that immune escape tumors employ is 

required to realize the full potential of immunotherapies. Relatedly, there is also some 

speculation that the average fitness of cancer cells may decrease over time due to the constant 

accrual of slightly deleterious mutations (72). 

Another curious property of selection in cancer is that, because tumors are growing 

populations, the effects of selection are less apparent (57, 101). Subclones that have fitness 

advantages may therefore never reach a high enough frequency within an overall rapidly 

growing tumor to affect the bulk clonal makeup of the tumor. In this case, the dominant clone is 

what is important for defining the biology of the tumor, as selection may not be strong enough 

(given the short timescales) to allow a new subclone to replace the dominant one. 

Mutation 
Mutation is crucial for evolution, as the diversity generated by mutational processes provides the 

substrate on which selection can act. As is the case for selection, mutation comes in different 
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flavors. The typical cancer genome is modified in radically different ways. The most 

straightforward to identify are point mutations, which are single-base-pair changes that can alter 

the protein-coding region and render it nonfunctional (e.g., tumor-suppressive mutations) or alter 

its function (e.g., oncogenic mutations). Slightly larger changes, such as insertions and deletions 

of base pairs (collectively called indels), can induce similar effects. Larger structural variations 

across the genome, including whole-genome doubling, chromosomal loss or gains, and 

translocations, are also common in different cancers (10). 

Genome doubling is a common feature of cancer evolution (~30% of cases) and is thought to 

be a driver of copy number instability (13). Copy number aberrations may act synergistically 

with point mutations to increase or decrease the dosage of particularly important genes (12). 

Furthermore, some tumors are hypermutated due to inactivating mutations in DNA repair 

pathways (17). Current gaps in our understanding include the mutation rates of different types of 

mutations (passengers, drivers, structural variation, and copy number alterations) and how the 

various kinds of genomic instability modify the baseline rate. It appears likely that the point 

mutation rate is elevated in somatic tissue compared with germline tissue (77a), but the degree to 

which it is elevated in humans is unknown. The baseline rate of copy number alterations and 

structural variants in particular has proven hard to measure. 

Neutral Drift 

Another important aspect is the evolutionary dynamics in the absence of selection, i.e., neutral 

drift processes. Understanding these processes is useful to quantify the degree of diversity that 

we would expect to see in a tumor if all cells had the same fitness. Furthermore, neutrality 

provides the natural null model for molecular evolution (116). This is crucial because it enables 

selection to be distinguished from any variation that would be expected when there is no 

selection (55). 

The peculiarities of cancer growth complicate how drift is manifested in cancer. Given that 

tumors are growing populations, modifications to classical models of drift that account for this 

are being developed (22). Furthermore, the expected frequencies of new mutations entering the 

population are also affected by the growth of tumors. For example, mutations that appear early 

during tumor growth will be present at a higher frequency than those that appear late, when the 

population is large (101). Drift will also likely be stronger during premalignant stages, when the 

population size of tumor cells is small, compared with when the tumor is clinically detectable 
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and contains billions of cells (19). High death rates can also lead to greater variability (16), but 

the death rate of cells—particularly after transformation, when the tumor is small (where drift 

effects are likely to dominate)—is unknown. 

Further non-Darwinian variability may arise from spatial phenomena such as gene surfing, 

where mutations acquired on the expanding front of a population rise in frequency (in cancer, the 

expanding front could be thought of as the invasive edge), as has been demonstrated in bacteria 

and human populations (36, 84). Such processes likely occur in solid tumors as well (58), 

although a clear understanding of the mechanisms of the spatial growth of solid tumors is still 

lacking, and current data may lack power to uncover these phenomena (1). 

QUANTIFYING CANCER EVOLUTION 

Despite the many unknowns and challenges, quantifying the evolutionary components of cancer 

is becoming more realistic. Recent advances in high-throughput assays enable precise 

measurements of biological parameters in patient samples, and parallel developments in 

experimental systems allow experimentation within an evolving cancer model. Taken together, 

these advances provide exciting opportunities to produce quantitative measurements of cancer 

evolution both in model systems and in vivo across space and time. Mathematical theories are 

also necessary to extract maximal information from these data (5). Models from population 

genetics have been adapted to consider some of the peculiarities of cancer evolution (30). 

Models have also been developed to investigate diverse aspects of cancer evolution, such as the 

rate at which driver and passenger mutations accumulate (15), the likelihood of acquiring 

mutations that confer resistance (48), and the waiting time to cancer (9). A large body of theory 

is thus available or can be adapted to interpret cancer genomic studies. 

One difficulty that theoreticians face is how to fit theoretical models to what are often noisy 

data. Generative Bayesian modelling is well suited to such tasks, as aspects of the data-

generating procedure can be incorporated directly. Other Bayesian methods, such as approximate 

Bayesian computation, allow researchers to fit simulation-based models to data in a principled 

way (106). For example, sequencing introduces various sources of noise that can be modeled by 

an appropriate choice of distribution (e.g., beta-binomial for overdispersed coverage) or by 

generating synthetic data within a simulation-based framework to compare against real data. 
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Broadly, approaches to measure cancer evolution and its consequences for patient outcomes 

can be split into two groups. First, similarities and differences between cancer genomes across 

large cohorts hold valuable information. Recurrent patterns may show evidence of convergent 

evolution on particular phenotypes, while the absence of particular features can reveal signals of 

negative selection. Second, intratumor heterogeneity gives insight into the evolutionary 

dynamics of individual malignancies. 

LEVERAGING COHORT-LEVEL INFORMATION TO STUDY CANCER 
EVOLUTION 

Tens of thousands of cancers have been sequenced using next-generation sequencing technology. 

These data provide an unparalleled resource to study recurrent patterns that drive the progression 

of the disease and uncover signatures that may correlate with patient outcome. 

Driver Mutations 

Data on driver mutations are perhaps best exemplified by large cancer sequencing studies such as 

the Cancer Genome Atlas and the International Cancer Genome Consortium, which have focused 

on discovering these mutations. These studies have demonstrated that there are very few highly 

recurrent mutations and a long tail of rare driver mutations. Only a handful of mutations occur at 

appreciable frequencies across all cancer types; for example, only mutations in TP53 and 

PIK3CA occur at a frequency of greater than 10% across cancer types (51). These results 

demonstrate a large degree of heterogeneity in cancer drivers.  

Genomic changes other than point mutations also undoubtedly drive disease progression. 

Indeed, the first driver mutation to be identified was the BCR-ABL translocation in chronic 

myeloid leukemia (95). In general, however, identifying structural variation that drives the 

disease is more technically challenging because many cancers display genomic instability. 

Distinguishing changes that may modify fitness from mutations that arise due to the instability 

remains challenging due to the lack of a background structural mutation rate model. 

Mutational Signatures 
Another aspect that has also become prominent in recent years is the genomic context in which 

mutations arise. In a seminal study, Alexandrov et al. (3) found that mutations occurring in 

specific sequence contexts could be assigned to distinct signatures. Some of these signatures 
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were found across cancer types and are thought to be age related, whereas others are cancer 

specific. Examples include tobacco-specific mutational signatures in lung cancers (2) and 

mutations due to defects in DNA repair pathways. For example, C>A mutations, particularly 

when flanked by a C and A base (i.e., CCA>CAA), are enriched in tobacco smokers. Many 

signatures remain of unknown biological origin, however, suggesting the presence of unknown 

mutagens. Identifying the signatures also poses challenges, as several putatively distinct 

signatures appear similar and so are difficult to distinguish with high confidence. 

Nonetheless, mutational signatures potentially provide a window into past exposures that 

may be useful for designing preventative strategies or elucidating unknown mutagens (4). There 

is also potential to shed light on the relative contributions of mutation and selection. Certain 

mutational processes may predispose people to certain driver mutations, while other driver 

mutations may be less mutationally likely but occur frequently because of the greater increase in 

fitness conferred by the mutation. Indeed, a mathematical treatise that explored these 

relationships showed that the BRAF V600E mutation, a common driver in many cancer types, is 

unlikely to occur given its mutational context and the typical mutational signatures associated 

with BRAF-positive cancers, but it is highly selected (105). Similar approaches from other 

groups have shown complementary results (18, 86). An experimental approach using 

CRISPR/Cas9 editing on cancer cell lines was also able to deconvolve the effects of selection 

and mutations and identify the most functionally active domains in TP53 (42). A similar 

approach was applied to screen for the effects of all possible BRCA mutations (35). Such 

experimental approaches together with larger data sets may enable characterization of the fitness 

effects of single point mutations across the whole genome. 

The concept of mutational signatures has recently been extended to the analysis of copy 

number alterations (67). Particular signatures in the genomes of ovarian cancer, which is known 

to be driven by chromosomal abnormalities, correlate with patient outcome (67, 111). Extensions 

of this approach to other cancer types will shed further light on chromosomal mutational 

processes. 

dN/dS 
dN/dS—the ratio of nonsynonymous mutations to synonymous mutations normalized by the 

nonsynonymous and synonymous mutation likelihoods, respectively—is another method that can 

be used to infer selection. Originally developed for comparative genomics in species evolution, 
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dN/dS quantifies whether there are more mutations that alter amino acid sequences (which are 

potentially adaptive) than would be expected by chance. Synonymous mutations are assumed to 

be neutral and provide a measure of the baseline mutation rate. An excess of nonsynonymous 

mutations (dN/dS > 1) indicates positive selection, a deficit of nonsynonymous mutations (dN/dS 

< 1) indicates negative (stabilizing) selection, and equal rates of the two mutation types (dN/dS = 

1) implies neutral evolution. Interestingly, in cancer, studies have reported an exome-wide dN/dS 

close to 1 (70, 112), suggesting the absence of negative selection and that most mutations are 

neutral. Driver genes, such as TP53 and NOTCH1, can have dN/dS values far in excess of 1 (70). 

Zapata et al. (119) were able to find strong signals of negative selection by restricting the 

analysis to neoantigens—mutations that cause cell surface markers that can be recognized by the 

immune system. There may be complex relationships between the clonality of neoantigens and 

their recognition by the immune system (38, 65b, 73). 

In practical terms, robustly measuring dN/dS in cancer genomes is challenging, as the null 

distribution for mutations in cancer genomes is complex and varies across the genome (109), and 

calculating dN/dS therefore also requires the simultaneous inference of the local mutation rate 

(70, 112). Moreover, the theoretical basis of dN/dS in species evolution relies on many 

assumptions that are largely violated in cancer. Principal among these are the assumptions that 

evolution has occurred over timescales long enough that selection has had time to act and, 

relatedly, that dN/dS quantifies the relative rate at which mutations fix in the population. In 

cancers, intratumor heterogeneity is pervasive, so many mutations are subclonal (not fixed), 

indicating that selection has not yet had time to entirely sort the fittest clones. Moreover, 

traditional dN/dS models assume populations of a fixed size, which of course is also violated in 

cancer. Theoretical studies have shown that when some of these assumptions are violated, 

interpreting dN/dS becomes difficult (59). The full linkage of mutations in cancer genomes (e.g., 

lack of recombination) means that neutral or deleterious mutations commonly hitchhike on the 

within positively selected clones. This can lead to the masking of signals of negative and positive 

selection, as the evolutionary signal is integrated over these distinct processes. In theory, a dN/dS 

value of 1 could be the result of a combination of positively and negatively selected clones that 

combine to produce a dN/dS of 1, rather than strict neutrality (21). Furthermore, because dN/dS 

measurements in cancer are calculated by pooling together many different patients, the dN/dS 

value of the cohort can be driven by outliers, with few patients having many positively selected 
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driver mutations driving the whole signal (46, 104a). Nevertheless, dN/dS methods adapted to 

cancer, such as those recently proposed (70, 112, 119) remain powerful tools to detect selection 

in clonal evolution. 

 

INTRATUMOR HETEROGENEITY AS A WINDOW INTO CANCER EVOLUTION 

Due to the continual acquisition of genetic mutations in a growing tumor and the unavoidable 

intratumor genetic heterogeneity that results, a cancer genome—or, more accurately, the 

differences between the genomes of single cells in a cancer—contains a record of the tumor’s 

evolutionary history. Each new mutation acquired by a single cell in a cancer will be passed on 

to its daughter cells, and these mutations thus record ancestral relationships between cells 

(Figure 2a). Fundamentally, the genome of every cancer cell is an imperfect copy of another 

cancer cell that existed in the past. This simple observation—that heterogeneity emerges from 

cell divisions coupled with the occurrence of new mutations—therefore allows one to infer the 

past history of a cancer, or indeed any somatic tissue. Genomic analysis thus provides a window 

to study cancer evolution that circumvents one of the biggest issues facing the study of cancer as 

an evolutionary system: the inability to follow cancers in vivo unperturbed over time, due to 

clinical necessity and ethical issues. This provides a perspective that is different from those of 

the cohort-level approaches, as inferences can be made on a patient-by-patient basis. 

<COMP: PLEASE INSERT FIGURE 2 HERE> 

Figure 2 (a) Mutations act as labels that can track the evolutionary dynamics of cancer cell 
populations, here each different colored dot is a distinct mutation which accumulate during cell 
division (b) To uncover these dynamics, bulk sequencing pools all alleles together from the 
sample and enables measurement of the frequency of mutations in the pool. Low-frequency 
variants may be missed however, as the depth of sequencing at each locus is limited. Due to the 
alleles being pooled, information on the co-occurrence of mutations is in general lost. (c) Single-
cell sequencing potentially provides far greater resolution of cell lineages than bulk sequencing 
as each cell is individually tagged and sequenced. 

Lineage Tracing 
Lineage tracing refers to the use of a heritable label (such as somatic mutations) to track clonal 

descendants over time. Coupled with theoretical models to explain the resulting clone-size 

distribution measurements and ancestral relationships, lineage tracing provides a powerful 
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method with which to study evolution and population dynamics. The concept of lineage tracing 

has also been used extensively in model systems, particularly in developmental biology and stem 

cell biology to track the progeny of particular cell types of interest (14). Advances in 

experimental techniques have been used in recent years to look at the evolutionary dynamics of 

tumors in model systems (29, 88, 110). 

Both natural and artificial labels have been used for lineage tracing in cancers and 

experimental model systems. Labeling of cell populations with fluorescent reporters has been 

used in mouse models of tumor growth, identifying stem cell populations in squamous skin 

tumors (29) and the clonal dynamics required for the formation of skin tumors (94). The same 

approach has shown that stem cell dynamics in expanding colorectal neoplasms are plastic and 

entirely driven by the environment (64a). That somatic mutations are natural labels is at the heart 

of phylogenetic principles applied to cancer. Early examples of this kind of approach used X-

chromosome inactivation as a lineage marker to demonstrate that cancers were of single-cell 

origin (34), and the now sophisticated field of cancer phylogenetics makes use of multiple types 

of mutations simultaneously to infer the evolutionary history of a tumor (98). 

High-Throughput Experimental Lineage Tracing 
Many experimental systems have been developed that rely on lineage tracing to quantify 

population dynamics. Fluorescent reporter constructs have long been used to identify putative 

stem cells and determine the statistical properties of cell fate outcomes (14, 54). Such 

experiments have also been used to quantify the fitness of oncogenic mutations during tumor 

initiation. Vermeulen et al. (110) showed that KRAS and APC mutations were two to four times 

as likely as other mutations to reach fixation in mouse colonic crypts[**AU: Edits OK? (If not, 

please clarify)**]. Experimental systems based on fluorescent reporters tend to suffer from a 

lack of resolution because only a small number of clones can be tracked over time. To 

circumvent these issues, high-throughput lineage-tracing protocols have been developed via the 

use of multiplexed DNA barcodes. These barcodes can be inserted via viral transfection into the 

genomes of single cells and provide a unique tag for each cell. Millions of clones can be traced 

simultaneously with this approach via sequencing of pools of barcoded cells (11). Barcode 

libraries are constructed such that each transfected cell carries a unique label that can be used to 

measure its size. Deep sequencing of pools of barcoded cells therefore measures the sizes of 

lineages within the population. As only a few base pairs of the genome need to be sequenced (the 
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barcodes), high-depth coverage of the barcode is employed, which results in high-resolution 

tracking of individual lineages. 

Levy et al. (65) used this approach to measure lineage sizes in serial passages of yeast cells. 

Using these data together with theoretical population genetics enabled them to quantify when 

fitter lineages emerged and the distribution of fitness effects by identifying lineages that 

increased in size faster than could be expected from stochastic neutral drift. Similar experimental 

strategies have recently been applied to cancer model systems. For example, Rogers et al. (88, 

89) measured the fitness of 11 tumor suppressor pathways by using CRISPR/Cas9 genome 

editing to introduce mutations followed by barcoding to measure tumor size in mouse models of 

lung cancer. They found that mutations in SETD2 and LKB1 had the largest fitness effect and 

resulted in the largest tumors. Lan et al. (60) used a barcoding approach in glioblastoma models 

in mice and showed that intratumor heterogeneity in glioblastoma was driven largely by the 

stochastic fate of cells in a stem cell hierarchy, while treatment-resistant clones could be 

identified via deviations from this model. More complex experimental strategies are likely to 

provide further insight; for example, barcoding potentially allows tracking of the size of 

competing lineages over time, which could be used to measure the relative fitness of subclones 

or the effects of the immune system on clonal diversity. 

Deep Sequencing 

Lineage size is the crucial piece of information that is revealed by deep sequencing studies and 

enables the population dynamics to be inferred. A useful way to summarize the information from 

a deep sequencing experiment is by plotting a histogram of the mutation frequencies. In cancer 

this is commonly referred to as the variant allele frequency distribution (or the cancer cell 

fraction distribution, after correction for tumor cellularity, ploidy, and relative copy number). In 

population genetics, this distribution is known as the site frequency spectrum, and there is a 

considerable body of work devoted to exploiting it to measure evolutionary dynamics (52). 

Different demographic models make different predictions about the shapes of these 

distributions. For example, the classic Wright–Fisher model predicts that the number of 

mutations present at a frequency f, follows a 1/f dependency (33), while a model that assumes 

exponential growth predicts a 1/f2 relationship (53), a result closely related to the Luria–Delbrück 

distribution (121). Using this exponential growth model (1/f2) as a neutral null model for cancer 

evolution, Williams et al. (114) found that approximately 30% of cancers fitted the model well. 
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Subpopulations of cells that possess fitness differences can cause deviations from the expected 

distribution under neutrality. Mutations that hitchhike on the back of any selected lineage will be 

found at the same frequency and uniquely mark the subpopulations of cells (43). These 

mutations appear as striking clusters in the variant allele frequency distributions of deeply 

sequenced tumors (82). Many tools have been developed to identify these clusters (77, 90). The 

generative model assumed by these methods (variant allele frequency distribution explained by 

multiple distinct clusters, each corresponding to a distinct clonal population) is often violated 

because many mutations appear at similar frequencies but are present in distinct lineages, a 

natural consequence of population growth (46). Taking this into account, Williams et al. (115) 

used a theoretical model to show that information encoded in these clusters enables estimation of 

the relative fitness advantages of different subclones within a tumor. Deviations from the 1/f2 

distribution may also arise due to different demographic histories; analytical results are available 

for power law or boundary driver growth under certain assumptions, where power law scaling 

for the size distribution is also expected but with different exponents (36, 80). 

Sequencing depth remains a major factor that limits the resolution of the data. The typical 

sequencing depth is currently approximately 100´ for whole-exome sequencing and 

approximately 40´ for whole-genome sequencing. Greater depth is required to detect small 

subclones, which may be biologically important (e.g., in the detection of rare drug-resistant 

clones). Deeper sequencing of samples as well as high-fidelity sequencing approaches to 

overcome technical noise limitations at low frequencies can allow the probing of evolutionary 

dynamics at higher resolution (93). 

Copy number aberrations can also be combined with point mutations to infer patterns of 

evolution in single bulk samples. The proportion of mutations observed on amplified 

chromosomes compared with one chromosome can be used to time the appearance of copy 

number alterations (50). This type of analysis using whole-genome sequencing in breast cancer 

indicated that chromosomal alterations accumulate steadily in this cancer type but are not some 

of the earliest events (82).  Similar analysis has been conducted pan-cancer to identify the timing 

of important events across cancer types (41), showing that biallelic loss of tumor suppressors is 

often an early event, while genomic instability increases at later stages. Again, high-depth 

sequencing is preferred because it facilitates the greater resolution necessary to be able to 

accurately map point mutations to amplified or single chromosomes. 
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Multiregion Sequencing 
A second approach to infer tumor evolution is to take multiple samples from a tumor and 

measure the (genetic) differences between samples. This approach has been used for many years. 

For example, Tsao et al. (107, 108) used genetic divergence (genetic distance between samples) 

as a summary statistic between spatially distinct regions in mismatch-repair-deficient tumors; in 

conjunction with a computational model, this approach enabled them to estimate the ages of 

adenomas (premalignant lesions) versus cancers. Perhaps surprisingly, the adenomas and 

carcinomas were of similar ages. 

Multiregion sequencing studies are now commonplace. The biggest contribution of such 

studies thus far has been demonstrating the extensiveness of intratumor heterogeneity across 

cancer types. In one prominent study, Gerlinger et al. (40) used whole-exome sequencing of 

different tumor regions to profile clear cell renal carcinomas and found a large degree of 

intratumor heterogeneity. Later studies from the same group found evidence of convergent 

evolution with distinct putative driver mutations in SETD2 on different branches of the 

phylogenetic tree (39). Further multiregion sequencing studies have shown that intratumor 

heterogeneity is pervasive across cancer types, including lung (27, 120), breast (117) (8a), 

lymphoma (83), brain (102) (102a), and colon cancers (101) (24), among others. 

Phylogenetic analysis reveals the temporal order of events and has shown that driver 

mutations are often truncal on the phylogenetic tree—that is, found ubiquitously across all 

sampled regions (87). This finding suggests that most of the important driver events are acquired 

early relative to the time patients present with symptoms of their disease. This is particularly true 

in some cancer types, such as colon and lung cancer (101, 120), while kidney cancers, for 

example, often appear to have subclonal driver mutations (39). 

Multiregion sequencing together with phylogenetic analysis has also been useful in 

determining how evolution is influenced by environmental factors (27) and elucidating the 

seeding patterns of metastasis (32, 75). Studies such as the Tracking Cancer Evolution Through 

Therapy (TRACERx) clinical trial are currently under way to determine the effects of intratumor 

heterogeneity on patient prognosis using multiregion sequencing assays in multiple cancer types 

(49) (108a). Machine learning approaches are also being developed to integrate information from 

cohorts of multiregion sequencing data to uncover repeated evolutionary trajectories (19a). 
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It is important to note that the patterns that emerge from phylogenetic analysis of tumor 

samples are subject to multiple confounding factors. First, accurately reconstructing the 

phylogenetic relationships between tumor sites remains challenging (98). Other issues include 

sampling bias, where samples may not be taken uniformly across the tumor mass and/or may 

inadvertently be confined to particular subclones, resulting in an unrepresentative sample of the 

tumor. Relatedly, the typical limited sampling (four to five samples per tumor) can result in 

misclassifying truncal mutations (113). Perhaps the biggest challenge is that bulk tumor samples 

(e.g., a biopsy consisting of hundreds of thousands to millions of cells) potentially consist of 

multiple subclones, and therefore the phylogenetic relationships should ideally be constructed 

based on the deconvolved clonal structure (6), but deconvolving bulk tumor samples into 

subclones remains technically challenging (see above). Additionally, clonal mixing in three-

dimensional tumors makes relating phylogenies to the underlying evolutionary dynamics 

difficult (104). 

Single-Cell Sequencing 

Recent advances in single-cell sequencing resolve some of the issues of studies that rely on bulk 

sequencing but also introduce new challenges (79). Single-cell sequencing potentially provides 

unparalleled resolution of tumor genetic diversity, identifying subclonal populations that would 

most likely be missed by conventional bulk sequencing (Figure 2). Single-cell sequencing thus 

provides opportunities for fine-grained analysis of cancer evolution and has the benefit of 

avoiding the need to resolve the clonal structure through complicated clustering-based 

approaches, as each cell is a pure sample by its very nature. This type of approach does, 

however, come with its own set of problems. In particular, the degree of technical noise is higher 

than that of other sequencing approaches, and issues of sampling bias remain, given that only 

100 cells of a tumor comprising billions of cells are typically sampled. 

Technical issues in single-cell sequencing technology arise from the low quantity of DNA 

extracted from single cells, meaning that whole-genome amplification is generally required to 

generate sufficient DNA for sequencing. This additional step introduces technical artifacts such 

as nonuniform coverage and allele dropout (26). Single-nucleotide variants are also difficult to 

accurately detect due to high technical error rates (91). For this reason, copy number profiling, 

which is more robust, is generally preferred. Sophisticated single-cell-specific algorithms have 

been developed for analyzing these data (91, 92, 100a). Recent technical advances have shown 
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that single-cell sequencing without whole-genome amplification is possible (118) and that 

pooling single cells can make single-nucleotide variant calling more robust (92). Further 

advances in this area are likely to provide exquisitely fine-grained data for evolutionary analyses. 

As methods to reduce noise continue to improve and sequencing costs continue to fall, single-

cell sequencing will no doubt become the preferred assay for evolutionary analysis of tumors. 

Single-cell sequencing studies have already demonstrated the power and advantages of this 

approach over other methodologies and revealed interesting aspects of the evolutionary process. 

Gao et al. (37) used single-cell sequencing to look at aneuploidy in triple-negative breast cancer. 

Interestingly, copy number alterations appeared to be spatially and therefore temporally stable, 

suggesting that large-scale copy number changes are perhaps rare events during tumor evolution 

in breast cancer. Single-cell sequencing will no doubt be particularly illuminating as it is applied 

to investigate chromosomal (in)stability in other tumor types. Another interesting study that 

employed single-cell sequencing investigated the temporal dynamics of cancer evolution using a 

patient-derived xenograft model (31). Interestingly, the authors found that minor clones often 

come to dominate the tumor population, suggesting that some clones acquire large fitness 

advantages, which are likely necessary to induce such large expansions. The degree to which 

small subpopulations influence evolutionary trajectories in general will be interesting to observe 

as single-cell sequencing expands in scope. 

 

From genotype to phenotype 

Elucidating the phenotypic effects that drive adaptive change is challenging from DNA 

sequencing alone, as a multitude of epigenetic and environmental factors determine whether or 

not a mutant protein is produced, and whether or not the mutant protein can play a functional role 

in the cell’s current context.  For evolutionary analysis this is a very important consideration, as, 

after all, selection acts on phenotypes rather than genotypes. To explore the mapping between 

phenotype and genotype, genomics can be augmented with other measurement modalities (multi-

omics) that measure the transcriptome, epigenome or immune cell repertoire for example. For 

example, integrative molecular analysis using the Cancer Genome Atlas dataset has explored the 

pan-cancer immune landscape (105a) and the association of the cell of origin with molecular 

features (46a) amongst other things.  Zhang et al. (120a) used a multi-omics approach combining 

whole genome sequencing, transcriptomics and immune cell receptor sequencing to demonstrate 
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that the spatial organization of the immune microenvironment influences the clonal dynamics in 

ovarian cancer. A longitudinal study in Follicular Lymphoma also uncovered immune signatures 

that correlate with patient prognosis using a combination of genetics, T cell repertoire 

sequencing and transcriptomics (6b). Genetics has also been combined with machine learning 

based image analysis, Heindle et al. (45a) demonstrated that defects in the DNA repair 

machinery of cells correlate with morphological changes in ovarian cancer cells, and that 

diversity of morphological phenotypes correlated with survival. Multi-omics approaches are also 

being extended to the single cell arena through the simultaneous measurement of genomes and 

transcriptomes from the same cell, allowing for investigation into changes in gene dosage due to 

chromosomal aneuploidies and effects of gene fusions at the single cell level (66a). These few 

studies give some insight into how a complete picture of the evolutionary dynamics, and the 

molecular mechanisms than ultimately drive them, can be elucidated from multi-omic 

measurement. Future studies combining the population genetics based approaches using 

genomics outlined in this review with assays that interrogate the phenotypic changes occurring 

during cancer evolution will provide new perspectives on cancer evolutionary dynamics. 

SUMMARY AND OUTLOOK 

Genomics, coupled with mathematical evolutionary theory, facilitates quantitative measurements 

of the evolutionary dynamics that underpin cancer development. Our opinion is that this 

quantitative dissection of the components of cancer evolution—namely, mutation, drift, and the 

many facets that lead to selection—will provide an objective way to categorize cancer evolution 

that is more robust than current broad-scale classifications into evolutionary modes. Such 

quantitative information is also inherently mechanistic, describing precisely how a cancer will 

change over time. Thus, we suggest that quantitative measurement of cancer evolution will 

provide a way to accurately forecast cancer evolution (61)—for example, to predict with 

confidence how, and how quickly, a tumor will evolve with or without treatment. For example, a 

recent study on drug resistance in colorectal cancer demonstrated that longitudinal liquid 

biopsies and mathematical modelling of tumor evolution allowed prediction of tumor recurrence 

time (53a). We suggest that the ultimate goal of measuring cancer evolution is to facilitate 

clinical decision-making, and that quantitative knowledge of the evolutionary dynamics of 

cancer development is the route to accurate prediction of disease course.  
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