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Abstract

High-throughput genomic data from cancers uncovered high intra and inter-tumour

heterogeneity and subclonal architecture of cancer cell populations. If we consider

cells as asexually reproducing individuals, we can apply evolutionary theory to

cancer, as all three building blocks of evolutionary dynamics - replication, selection,

and mutation - are also the defining characters of cancer development. Studying

cancer evolution in humans is imperative to predict the course of the disease and

develop better therapeutic strategies.

Currently, there is a lack of mathematical and computational models that describe

the effects of clonal selection in cancer data for growing populations. One of the

reasons being that selection depends on many factors, such as fitness, context, and

spatial constraints. In this thesis, we developed a stochastic simulation model of

spatial tumour growth from which we can generate the genomic data we expect

under different conditions and sampling methods. The model enabled us to monitor

the effects of sampling bias on cancer genomic data as well as the effects of spatial

constraints on tumour growth dynamics.

In the second part of the thesis, we also tried to study the links between genetics

and epigenetics that influence cancer formation and progression. We developed

methods to test our hypothesis that different mutational processes (giving rise to

distinct mutational signatures) are active in epigenetically different regions of the

genome, and a model that infers times of different chromatin aberration events.

Overall, this thesis shows the importance of coupling mathematical and computa-

tional modelling with experiments to gain a better understanding of cancer initiation

and progression and consequently achieve better clinical performance.
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Chapter 1

Introduction

1.1 Biology basics

1.1.1 Cancer biology

Cancer is a term for diseases mainly characterised by out-of-control cell growth.

Cells obey a set of rules in order for organisms to function normally. Sometimes,

due to damages to the cells’ genetic material that produce mutations, or due to

various environmental factors that affect cells’ epigenetic features, cells start to be-

have abnormally. Abnormal cells can grow out of control forming tumours. There

are two types of tumours – benign and malignant. A benign tumour cannot invade

neighbouring tissues and thus does not spread to other parts of the body (or metas-

tasize). Whereas a malignant tumour spreads to other parts of the body (sometimes

to very distant parts through the lymphatic system or bloodstream) and becomes

cancerous.

The reasons why cells escape their control mechanisms and start rapid prolifera-

tion are various. One example is viruses that can alter cells’ proliferation properties.

Discovery of the papillomavirus and its role in causing cervical cancer [1] lead to

13
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the development of vaccination (and later won a Nobel prize in medicine). Another

example is a study that found a statistical correlation between Burkitt’s lymphoma

and the Epstein-Barr virus, where the viruses caused to trigger mutations in specific

oncogenes [2, 3]. This discovery formed the current view that cancer is a genetic

disease mainly caused by mutational hits in different cancer-initiating genes. Usu-

ally, several mutational hits are necessary within a cell to start abnormal behaviour

and lead to cancer progression. These discoveries established the multi-stage the-

ory of carcinogenesis, which assumes that mutations accumulate within cells and

eventually provide a fitness advantage to those cells [4].

Through multi-stage theory, several important discoveries have been made. One

such is an observation where one mutation in a single gene was sufficient to cause

retinoblastoma, but since the mutation is recessive (i.e. genes can be expressed in

offspring only when inherited from both parents), thus both copies of the gene (also

called alleles) needed to have the mutations for cancer initiation. Such recessive

genes are referred to as tumour suppressor genes, with one such prominent gene

being p53 that is mutated in almost half of all human cancers [5, 6]. Genes, where a

single mutational hit is sufficient to change cells’ proliferation properties, are called

oncogenes. One such oncogene is the BCR-ABL translocation of the 9th and 22nd

chromosome in hematopoietic stem cells. Although a single mutated gene is, in

most cases, not sufficient to initiate cancer, rather multiple mutated oncogenes are

necessary. The exact number is determined by tissue and cancer type.

1.1.2 Cancer genomics and epigenomics

Cancer has long been assumed to be a disease primarily routed in genetics. As

described in the previous section, a series of disruptions to the cellular mechanisms

need to take place for cancer to develop and progress. Such aberrations affect cellu-

lar proliferation, immortality, angiogenesis, cell death, invasion, and metastasis [7].
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Besides, this sequence of disruptions needs to be thoroughly encoded so that onco-

genic events accumulate and establish clonal lineages. We know that the nucleotide

sequence is the basic level of genetic information. And changes in genetic informa-

tion, also called genetic mutations such as single nucleotide variations, copy number

alterations, insertions, deletions and recombinations, create sources for phenotypic

variations.

Advances in molecular profiling approaches gave birth to a whole new field called

cancer epigenomics that studies the role of epigenetics in cancer development [8, 9].

Studies began to find another crucial and complementary role in cancer initiation

and progression to be the various processes that are involved in gene regulations (i.e.

epigenetics). Epigenetic patterns of gene regulation and functionality can be herita-

ble from one cell to the other but do not affect the sequence of the genome. Through

epigenetics, scientists started to understand the mechanisms of how identical geno-

types give rise to different phenotypes even when subject to the same environmental

stimulus.

Epigenetic modifications can consist of methylation or acetylation changes or

chromatin modifications. These epigenetic variations persist through multiple cell

divisions and thus mark a powerful effect on cells phenotype. It has only recently

been discovered and recognised the important role of mutations in epigenetic reg-

ulatory mechanisms and the variety of alterations to the epigenome in cancer cells

[10].

The advances in the next-generation sequencing (NGS) technologies brought sig-

nificant insights in understanding cancer development both on the genomic and

epigenomic level. It is becoming easier and cheaper to generate massive amounts of

NGS data that allow scientists to study the diverse variations present in individual

patients. For cancer research, being able to sequence samples from tumour tissues as

well as normal (germline DNA) and compare the patterns, has been crucial for un-
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derstanding the somatic variants that initiate and regulate cancer development. In

cancer we often use different genomic analysis [11], such as whole-exome sequencing

(WES) that identifies mutations in coding regions of DNA, whole-genome sequencing

(WGS) that studies patterns in non-coding DNA regions, transcriptome sequencing

(RNA-seq) that tries to reconstruct gene expression patterns. All these technologies

lead to the current understanding of how genetic and epigenetic mechanisms act co-

operatively and have shared influence when it comes to acquiring different hallmarks

of cancer initiation and development [7].
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1.2 Evolutionary biology

“Nothing in cancer makes sense

except in the light of evolution”

- Mel Greaves

1.2.1 Molecular evolution

The field of molecular evolution studies how gene sequences change and evolve over

time [12]. It uses the principles of evolutionary biology and population genetics to

explain patterns of these changes. In this chapter, I will briefly introduce some of the

main topics and concepts in molecular evolution, such as mutation, allele frequency,

different models of evolution and how evolutionary forces influence genomic and

phenotypic changes.

As in most scientific disciplines, the main goal of molecular evolution is to infer

process from patterns. Such processes can be either evolution of individual organisms

deduced from the changes of DNA (Deoxyribonucleic acid), or the processes of

molecular evolution inferred directly from DNA variations. DNA is a molecule

composed of two chains of sequences formed by four nucleotides (cytosine - C,

guanine - G, adenine - C or thymine - T) that create a spiral known as the double

helix [13]. The genetic instructions for growth, reproduction, development and

functioning for all organisms are written through these chains of nucleotides.

For the genetic instructions to be activated, first DNA needs to be transcribed

into RNA, which is also a chain of nucleic acids. Transcription is then followed

by RNA translation into proteins (Figure 1.1). During translation, specific chains
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Figure 1.1: DNA transcription into RNA that is then translated to form proteins. (Figure
source wikipedia)

of amino acids are formed, that fold into distinct proteins and perform different

functions in the cell. DNA triplets, also known as codons, code for Amino acids.

There are 43 = 64 possible combinations of the 4 nucleotides, minus 3 that are

stop codons that do not code for any amino acid, so 61 different codons in total

that code for 20 different amino acids. Hence, there are some codons that code for

the same amino acid. Different codons coding for the same amino acid are called

synonymous codons.

DNA regions that code for proteins – genes, are usually split into exons, that are

expressed during transcription, and introns, that are spliced out during messenger

RNA formation. In addition, genes have regulatory regions like enhancers and

promoters, that instruct time and position of DNA transcription into RNA for

protein synthesis. The information system that governs the process of translation

to form amino acids from the sequences of RNA, is called the universal genetic

code. Although, this code is not completely universal as the mitochondrial genome

uses codons in different ways; for instance, some stop codons code for amino acids

in the mitochondrial DNA.

A somatic change in DNA sequence due to either a mistake during DNA copy-

ing or response to different environmental factors (cigarette smoking or exposure

to ultraviolet light) is called a mutation. There are four different kinds of genetic

variations: nucleotide insertion, deletion, inversion and substitution to another nu-
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cleotide. Some mutations are harmful as they change the code so that proteins are

no longer generated or have a modified harmful property. Others might have a posi-

tive effect and help the organism adapt to a changing environment. Most mutations

are not harmful nor positive, but neutral – they don’t cause any functional change

of the genetic code. When a single nucleotide variation occurs in a protein-coding

gene and creates a synonymous codon, this is referred as a synonymous muta-

tion or silent substitution, whereas if it creates a nonsynonymous codon then it’s

called nonsynonymous mutation. The ones that result in termination codons are

referred to as nonsense mutations.

With molecular evolution, we can understand the sequence of processes that

are initiated by mutants in the population using principles of evolutionary biology

and population genetics. Population genetics studies frequency dynamics of

gene polymorphic sites over time. A gene locus can have different variants due

to mutations passed on to the offspring. These variants at a given locus are termed

alleles. In a diploid population, there are only two alleles. When both alleles

are the same, the alleles are homozygous, and heterozygous otherwise. Allele

frequencies of given mutations change over time. At the extremes, they either get

lost in the population or reach fixation.

The rate of population divergence is governed by an underlying mutation rate,

generation time steps and evolutionary forces such as competition between alleles,

positive and negative selective pressures, the fitness of species with a given allele,

genetic drift and population size. If a fitness of an individual carrying a certain

allele is high, or in other words, an allele is fit in the population, it will be subject

to positive selection. On the other hand, when an allele is less fit, it will be subject

to negative selection. Sometimes, heterozygosity can be more advantageous feature

over being homozygous. When heterozygosity is advantageous and maintained, this

creates polymorphism and is termed balancing selection.
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Fitness of an allele is determined by the organism’s phenotype. Selective pres-

sures often act on nonsynonymous substitutions of the coding regions. Synonymous

mutations are mostly considered to be neutral. However, synonymous substitutions

might not always be neutral, as some of the synonymous alterations of amino acids

can cause changes in RNA secondary structure.

Another important concept from population genetics is the effective popula-

tion size, that is defined as idealised population size (usually smaller than the real

population size) with the assumption of perfect random mating and same gene fre-

quency dynamics as of the real population under the study. There are deterministic

and stochastic forces that coupled with the effective population size, influence the

rate of fixation of a mutation.

If the effective population size is infinitely large and there are only deterministic

evolutionary forces, then the changes in allele frequency will be determined only

by the reproductive fitness of the variant in a given environment together with the

constraints of the environment. In this context, only natural selection (survival

and the reproductive difference between species due to their phenotypic differences)

determines the changes in gene frequencies. In such cases, the exact gene frequencies

can be predicted if fitness and environmental conditions are known. On the other

hand, when the effective population size is small, random events, such as genetic

drift (a given gene variant frequency change due to a random sampling of the

organisms for the next generation) play the primary role in gene frequency dynamics.

In reality, evolution is never either deterministic or stochastic; it is rather the

combination of both and depending on a given population size and selective forces,

the interplay between natural selection and genetic drift influences the evolution of

gene frequency. Although genetic mutations are random, they can influence fitness

advantage of an allele, get selected by positive selective forces and eventually get

fixed in the population sooner than it would under neutral evolution (assuming the
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effective population size is large enough). Similarly, if a random genetic mutation

results in an adaptive fitness disadvantage of an allele, it will experience negative

selective pressures but can still get fixed in the population due to random genetic

drift. The fixation of such a mutation will need more generations than under neutral

conditions. In general, nonsynonymous mutations are subject to selective forces as

they cause phenotypic changes of an organism, whereas synonymous mutations being

neutral, can get fixed in the population due to random genetic drift only.

In “On the origin of species”, Darwin introduced the main factors that dictate

evolution. These are: environmental constraints, inheritable variations of traits

that shaped the fitness of individuals, competitions between organisms and natural

selection. After rediscovering Mendelian laws, it became clear that random genetic

mutations are the main sources of variation and that natural selection was acting

upon it and this way driving the evolution. As discussed above, mutations that result

in an advantageous or disadvantageous trait for a given environment will get fixed or

eliminated from the population, respectively. Also, changes in the environment can

cause changes in the phenotypic traits of neutral mutations. Such model is referred

to as adaptive evolution model; individuals with higher fitness advantage increase

in frequency and become more adapted to the environment.

In 1968, Motoo Kimura introduced the neutral theory of molecular evolu-

tion, that states that despite positive selection being central to adaptation, the

majority of mutations were not positively selected but rather neutral or negatively

selected[14]. His main argument was that effective population size is very small

compared to the magnitude of selective forces; hence, positive selection, although

having the primary influence in shaping the genome of species, occurs rarely. Also,

organisms are already so well adapted to the environment, that most of the nonsyn-

onymous substitutions are deleterious and constantly removed from the population.

Hence, fixation of a variation is mostly dictated by random genetic drift and thus
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stochasticity plays the dominant role in evolution.

Kimura introduced a very simple description of the process of molecular evolution;

if u is a mutation rate per gene per generation and N is the population size, then

the number of new mutations per generation in a diploid population is 2Nu. The

probability of a new mutation in a population with 2N genes is 1/2N (which can

be also called the probability of fixation). The rate of substitution K is then

2Nu ∗ (1/2N) = u. That is, the neutral rate of molecular evolution is equal to

the rate of neutral mutation. This equation implies that genes, with different

mutation rates or under selection, will have different rates of molecular evolution.

This observation led to the prediction that the synonymous sites will evolve faster

than nonsynonymous sites due to different functional constraints accompanying the

later.

Different rates of substitutions have indeed been observed between different lin-

eages of species[15]. The causes of these differences have not yet been fully under-

stood, but this is studied under the molecular clock hypothesis. The molecular

clock hypothesis is a consequence of the neutral model in a sense that if most muta-

tions are neutral, then the majority of variation should have a clock-like behaviour.

The hypothesis states that there is a positive linear relationship between the time of

two species divergence and the amount of genetic divergence between them. The fact

that evolution rates differ as discussed above, implies that there might be several

molecular clocks that tick in parallel and at different rates.

The relationship between adaptive evolution and neutral evolution can be illus-

trated by fitness landscape plots (Figure 1.2), where x and y coordinates represent

genetic variation and height indicates the fitness of an individual. Species will be

driven towards fitness peaks by adaptive evolution by selecting the individuals with

the advantageous mutations for the given environmental conditions. The paths to-

wards the peaks will be determined by the slope of the fitness peaks in the given
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Figure 1.2: Fitness landscape where x and y coordinates represent genetic variation and
height indicates to the fitness of an individual. Populations can take different paths when
climbing up the adaptive peaks depending on the slope of the fitness. (Figure source The
Phylogenetic Handbook [16])

environment, the effective population size and random genetic drift. Once the fitness

peak is reached, neutral evolution will take over and mutations will get fixed only

due to random genetic drift. The sharpness of fitness peaks determines the variation

in the population; less sharp, more variation. However, environmental changes can

alter the fitness landscape and activate back the adaptive evolutionary forces [16].

1.2.2 Cancer as an evolutionary process

Evolution is the gradual change of genetic characteristics of biological populations,

which states that all species on earth share a common ancestor from whom they all

descend and evolved over a long period of time. In other words, evolution places all

life forms on an evolutionary tree, where the tree root is the common ancestor of all

species and branches indicate speciation [6]. The recent technological advances in

extracting data from multilayer biological processes (DNA, RNA, Proteins) uncov-

ered high intra and inter-tumour genetic heterogeneity and subclonal architecture of

cancer cell populations. Hierarchical subclonal cell arrangements resemble the evo-

lutionary trees first introduced by Charles Darwin in 1837 [17] (Figure 1.3). If we
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Figure 1.3: Subclonal branching architecture of cancer and Darwin’s branching evolu-
tionary tree of speciation. (Figure source M. Greaves and C. Maley 2012 [17])

consider cancer cells as asexually reproducing individuals we can apply evolutionary

theory to cancer, as all three building blocks of evolutionary dynamics - replication,

selection, and mutation - are also the defining characters of cancer development

[17, 18].

At the core of studying cancer development as an evolutionary process is the

paradigm of molecular evolution, which as we introduced in the previous section,

studies evolutionary dynamics at the DNA sequence level via linking Mendelian Ge-

netics to Darwin’s theory of natural selection and adaptation [19]. One of the key

technologies from molecular evolution that makes it possible to observe spatial and

temporal patterns of cancer development is genomic sequencing. Next generation se-

quencing technologies allow us to study cancer as an evolutionary process by tracing

the stepwise accumulation of somatic mutations followed by sequential Darwinian

selection [17].

Somatic mutations in cancer evolution are classified as drivers and passengers.

Driver mutations cause cells to acquire advantageous phenotypes i.e. positive (Dar-
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winian) selection (for instance proliferate more than other cells, or avoid cell death

and increase survival) while passenger mutations are largely neutral - they don’t

affect the cell phenotype, but they can hitchhike with the driver mutation and thus

increase in relative frequency in the population. A subset of cells that are driven to

a higher relative frequency than expected under normal conditions by a driver muta-

tion will also drag along all the previously acquired neutral i.e. passenger mutations.

Usually, driver events are rare as it takes a significant amount of cell divisions and

random mutations before a tumour suppressor gene is mutated (because the size of

the coding DNA region is orders of magnitude smaller than the rest of the genome).

In [20], passenger and driver mutations are compared to a train driver and passen-

gers; the metaphor being that as GPS of the passengers in a train enables us to

follow the location of the train, similarly, passenger somatic mutations let us trace

the driver mutation. Passenger mutations are more abundant and hence more easily

detectable, whereas, it needs considerable bioinformatic and statistical tools to de-

tect driver mutations (as it is not very easy to detect phenotypic modifications at the

cellular level). As such, passenger mutations are very important to study tumour

cell population dynamics. This observation dates back in population genetics when

Maynard Smith [21] termed the neutral passenger mutations hitchhiking mutations

and highlighted their importance for studying gradual population changes.

Different subpopulations of cells in cancer are termed clones which is a parallel

concept to sub-species from evolutionary biology. Providing a rigorous definition of

a clone in cancer evolution is more challenging than in evolutionary biology. The

main characteristic that discriminates between different species is their phenotype,

which is relatively easier to measure than in cancer. In cancer evolution fully linking

cancer genotype to its phenotype remains a challenging task as changes in genotype

and phenotype at the cellular level do not often occur in a synchronous fashion, and

their relationship is obscure and counterintuitive [12].
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Throughout the thesis when using the term “clone” or “subclone” of a cancer cell

population, I will be referring to the definition presented in [20]; where a clone is

defined as “a group of cells with the same phenotype, which has expressed that

phenotype consistently since their most recent common ancestor”. Although it is

hard to precisely measure phenotypic invariance over time, this definition is still

providing a more rigorous explanation of the concept, as it specifies the common

ancestor unifying the cells subgroup.

Studying the changes in relative frequencies of cancer cell subpopulations over

time allows understanding the dynamics of cancer clone evolution. As discussed

above, there are three main evolutionary processes that drive these dynamics: mu-

tations, genetic drift and selection. Mutations and genetic drift are stochastic events,

while selection is not random. Different combinations of these processes create differ-

ent modes of cancer clone evolution dynamics such as branching, linear, punctuated,

neutral evolution and natural selection.

When a specific lineage acquires fitness (proliferative and/or surviving) advantage

as a response to some microenvironmental changes in order to adapt to the changing

new environment, Darwinian positive (or adaptive) selection is said to be at play.

Positive selection is one of the main forces of driving tumour progression [22]. Evo-

lutionary forces can also act so that the lineages with decreased relative frequency

get removed from the population. This is called negative or purifying selection and

also contributes to progression, by, for example, removing potent neo-antigens [23].

While positive selection is rare, random mutations and genetic drift occur contin-

uously over the lifetime of an organism. As they do not affect cells’ phenotype, are

regarded as neutral. When there are no selective forces acting on the population and

most variations are neutral or negatively selected, such a dynamic is called neutral

evolution [24]. Sometimes, when a positively selected cancer clone sweeps through

the population, there is only one clone dominating the population, it will give rise
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to another flow of neutral evolution until the next selective forces come into play.

Studying cancer development as an evolutionary process allows to better design

treatment to potentially slow down and control its progression [17]. There has

already been observed links to understanding cancer’s evolutionary dynamics and

its potential to patient clinical outcomes; clonal diversity of tumour cell population

was correlated with tumour progression across many cancer types [25, 26, 27, 28, 29].

Tumours that show patterns of punctuated evolution were characterised to have less

heterogenous driver mutations and more homogenous cell populations, and these

tumours were prone to proliferate faster and seed metastases, and had worse clinical

outcomes compared to the cases with more clonal diversity and subclonal aneuploidy

as the later grew slowly and showed low gradual rate of driver mutation accumulation

[30, 31, 32, 33]. There have also been studies that showed how the temporal order

of mutation accumulation is associated with different clinical outcomes [33, 34, 35].

Cancers characterised by punctuated evolution, are the trickiest to treat as it is hard

to detect such early events with strong metastatic potential, cases often referred to as

“born to be bad”. As shown by [36], preclinical models were able to detect metastatic

dissemination before the malignancy was histologically identified. Studies have also

shown how understanding the dynamics of treatment resistance, as a response to

the selective forces caused by therapy interventions, can help preventing or delaying

it [37, 38, 39]. As such, understanding cancer evolution dynamics promises to lead

to better strategies for treatment intervention.



28 1.3. Mathematical/Computational modelling

1.3 Mathematical/Computational modelling

“All models are wrong, but some are useful”

- George E. P. Box

Mathematical and computational models have been developed to describe com-

plex systems using mathematics and simulations. When a model for a system is

created, one can study the various elements of it, such as the interaction between

its elements and eventually predict a probable outcome or the development of sys-

tem dynamics. Modelling has been extensively used in cancer research as well, as it

allows to quantify chemical and physical interactions during tumour initiation and

development [40, 41]. When experimental procedures are accompanied by theoreti-

cal modelling, a better understanding of cancer clonal dynamics and microenviron-

mental factors can be achieved. Mathematical/computational models for cancer are

usually classified as being deterministic versus stochastic and discrete versus con-

tinuous. In deterministic models, when initial conditions do not change, the general

end state of the process also stays unchanged, whereas in stochastic models, there

is randomness incorporated into the model and hence even with a fixed set of initial

parameters, the end state will differ still. Discrete models treat cells as discrete en-

tities and study their behaviour and interaction and tumour microsystem at the cell

resolution, while continuous models consider concentrations of different cell types

and study overall tumour morphology and distribution of nutrients, ignoring the

roles of individual cell influences to the environment. In this section, I will briefly

introduce agent-based modelling (an example of a discrete model) and the concept of

stochastic simulations, followed by a very powerful technique in statistical modelling

- Bayesian inference.
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1.3.1 Differential equations

Physical quantities that change dynamically can be modelled by differential equa-

tions. A differential equation is a mathematical equation where the unknown vari-

able is a function to be solved for. The equation describes a relation between the

unknown function (for instance a physical quantity) to its derivatives (that usually

represent the rates of change in the quantity). As such relations between a physical

quantity and its rate of change is prevalent in many disciplines, differential equations

are broadly used in various fields, such as physics, biology, engineering or economics.

While inventing the field of calculus, Newton and Leibniz were the first who

introduced the use of differential equations. The following three primary types of

differential equations were listed in [42] by Newton:

∂y
∂x

= f (x),
∂y
∂x

= f (x,y), x1
∂y
∂x1

+ x2
∂y
∂x2

= y (1.1)

where he discusses the ways for solving these equations by infinite series and also

the non-uniqueness of the solutions. Currently, there are several types of differential

equations such as ordinal vs partial, linear vs non-linear, homogeneous vs inhomo-

geneous. Each type has its definition and properties of the equation that helps in

choosing an approach for a solution to a problem that one intends to model as a

differential equation system.

Differential equations are handy at describing how some dynamic systems or

quantities change, although their usefulness depends on whether they can be solved

or not. Unlike, for instance, algebraic equations, solving differential equations is a

more difficult task as the solutions are not always obvious. It is sometimes unclear

whether a given solution is unique or the equations can be at all solvable for a given

system.

Differential equations can be used to model tumour progression, invasion and re-
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sponse to therapeutic interventions. One basic and prominent model is the Malthu-

sian law [43], that models tumour growths not at the individual cell level, but as

a tumour cell population dynamics over time. When there is no treatment, the

population tends to increase continuously, and when it gets large, individual cell

contributions become negligible compared to the entire population. Hence, the pop-

ulation increase, if approximated, can be treated as continuous and a differentiable

function of time. If x(t) is a population size at time t, the tumour growth differential

equation can be written as follows:

∂x
∂ t

= Kx, K > 0. (1.2)

Given the conditions K > 0 and x(t0) = x0, the equation has the following solution:

x = x0eK(t−t0) (1.3)

which is the equation for exponential growth.

The Bernoulli equation can give a more realistic representation of tumour growth:

∂x
∂ t

= αx−βx2, α > 0,β > 0 (1.4)

The βx2 additional term is to minimise tumour expansion as time passes or to

model therapy interventions such as radiation therapy or chemotherapy that have

the exponential (quadratic) effect on individual cells. When β is very small compared

to α , αx predominates and the tumour grows very rapidly – exponentially – for that

time period. However, as the tumour cell population grows like diffusion, the βx2

term becomes more dominant at a later time, and tumour growth rate starts to

decrease. Tumour population growth dynamics modelled by equation (1.4) is called

the logistic law of tumour growth.

Both of the above-described equations are examples of ordinal differential equa-
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tions (ODE), i.e. they have one unknown function of one variable only. Cancer

growth can also be modelled using partial differential equations (PDE). These kinds

of models incorporate a different type of cell interactions or spatial constraints during

tumour expansion. Experiments have shown that when a tumour grows by diffusion

only, after some time, it reaches a dormant state [44]. At the early stages of tumour

progression when the tumour cell population size is small, there are more nutrients

available to tumour cells through diffusion, and hence almost all cells proliferate.

While after some time when a tumour reaches a certain size for a given environ-

ment, it will create a scarcity for nutrients (especially in the centre of the tumour

mass where it is harder for nutrients to reach the cells). Near the centre, cells will no

longer proliferate and die, and thus only the cells on the tumour surface will carry

on division and eventually tumour will grow only on its boundary.

Another example of the use of differential equations in tumour growth models

are the deterministic models of well-mixed tumour cell populations. In well-mixed

populations, stochastic effects are neglected and mean behaviour of the tumour’s

evolutionary process are modelled deterministically. One example of this approach

is the following replicator equation [45] for describing frequencies of different geno-

types:

∂xi

∂ t
= xi( fi(x)−ϕ(x)), i = 1, ...,n (1.5)

where xi is the frequency of the genotype i and fi = fi(x1, ...,xn) denotes fitness which

is a function of all other genotypes, and ϕ(x) = ∑ j f j(x)(x j) is the average fitness

of the population [45]. When fitness is constant over time fi(x) = fi, the replicator

equation (1.5) is called the selection equation. In this scenario, the genotype with

the highest fitness reaches fixation while all other genotypes go extinct (also termed

survival of the fittest by [6]). The selection equation can be further extended to
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account for mutation:

∂xi

∂ t
= ∑

j
x j( f j p ji−ϕ(x)xi), i = 1, ...,n (1.6)

where p ji is the probability of a mutation from type j to type i. Using the equation

one can predict the threshold mutation rate beyond which the genetic information

is modified to the extent that the population can no longer be maintained [46, 47].

Differential equations cannot be applied to describe complex system dynamics

that incorporate different levels of stochasticity. Besides, it is impossible to integrate

the spatial dynamics and constraints of a system studied in space. Hence, we decided

to develop a stochastic simulation model of cancer growth using the lattice-based

modelling approach described below in the following sections.

1.3.2 Cellular automata

A cellular automaton is a lattice-based discrete model that consists of a grid of cells

where each cell has a finite number of states. The grid can have any finite dimension.

The model starts by defining a grid and placing cells on it with their predefined

states. The set of surrounding cells for a given cell is called a cell neighbourhood.

In a new generation, a new state is assigned to each cell simultaneously according

to some fixed rule (usually described by a mathematical function). The cell state

update depends on the cell’s current state as well as its neighbourhood cell states.

There are also models [48, 49] where cell states do not update simultaneously, but

rather one by one either stochastically (stochastic cellular automaton) or again with

some fixed but different rules per cell that are applied to each cell individually and

asynchronously (asynchronous cellular automaton).

Cellular automaton models have been broadly used in cancer research [50]. One

main advantage of cellular automata for cancer growth models is their ability to
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model the fate of each cell individually and explicitly. Although for cancer, usually,

a large ensemble of cells need to be simulated and can become computationally very

expensive.

Using cellular automata one can model patterns and effects of cancer cell migra-

tion as well. For example, in [51] they simulated Moran’s process on 1D and 2D

grids and found that migration can stimulate a mutant cell’s ability to invade an

existing clone and take over the population. Their model also showed that the mi-

gratory phenotype tends to be selected for a large-scale cell death that can explain

how chemotherapy provides a selection mechanism for highly invasive and migratory

cancer cells.

More complex 3D models of tumour progression have also been introduced [52],

that account for different vascular processes, blood flow, angiogenesis, nutrient and

growth factor distribution, as well as cell movement and interaction between normal

and tumour cells. The models like this can provide a means to study the spatiotem-

poral evolution of a tumour and its response to therapy.

1.3.3 Agent-based models

Agent-based models discretise a system into autonomous decision-making units

called agents. There are a predefined set of rules that each agent follows and based

on these rules and the surrounding environmental conditions, including competitions

with other agents, makes a next step decision. The defining characteristic of agent-

based modelling is the repetitive competitive interplay between the agents that are

modelled using computational methods that study the dynamics of the system which

is often impossible to model using mathematical formulas [53]. A very basic agent-

based model can provide powerful insights into a complex system dynamics that it

was designed to mimic.

One of the most effective features of agent-based models is the ability to cap-
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ture the emergent phenomenon of a system. Reducing a system to its constituent

parts is not always straightforward, as there are interactions between entities that

lead to complex emergent patterns. Describing such individual-based behaviour and

relationship is difficult with differential equations as they tend to miss important

fluctuations. Also, agent behaviour can get so complex, that the differential equa-

tions describing it, will, in turn, get exponentially complex and intractable. Another

main feature is that it is very simple to add stochasticity to the model. A desired

source of randomness can be applied to the agent’s behaviour at a desired time

and location, in opposite to when random noise is applied to an aggregate differen-

tial equation. And one final benefit of agent-based models is that they are easy to

programme and tune the model agent rules and attributes.

There are lattice-based or lattice-free instances of agent-based models. In lattice-

based models, agents move on a spatially discretised grids (cellular automata is

one such model that will be described into more details in chapter 2), while in

lattice-free models, agent velocity and location are modelled by continuous variables

that respond to the environmental forces. Agent-based modelling is widely used in

cancer research as it captures well spatial effects of tumour growth dynamics and

heterogeneity [54]. It has also been applied to model dynamics of different cancer

types, such as melanoma [55], breast [56], colorectal [57], lung [58] [59], liver [60]

and metastases [61].

1.3.4 Bayesian statistics

In 1763, Thomas Bayes, by introducing his “Bayes Theorem”, established the second

most widely used inference technique and reasoning in the field of statistics [62]. He

essentially changed the approach and philosophy regarding statistical inference. In

frequentist statistics, probabilities are the frequencies of random events that one

can calculate after running repeated trials of an event for a long period of time [63].
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Whereas for Bayesian thinkers, probabilities are beliefs that are not fixed and can

be updated after new data is gathered. Also, while a frequentist statistician would

try to remove as much uncertainty as possible by producing as accurate estimate

as possible, a Bayesian statistician, on the other hand, would, in contrast, keep the

uncertainty and refine it by updating his beliefs after seeing a new data generated

as a new evidence.

Bayes Theorem derives a probability of an event by updating a prior knowledge

of the event with a conditional probability of the event given the data:

p(θ |y) = p(y|θ)p(θ)/p(y) (1.7)

The conditional probability p(y|θ) is called the likelihood function and it is the

probability of seeing the newly generated data with a given parameter set θ . p(θ) is

a prior knowledge/belief about the parameter and p(y) - the probability of generating

the data. p(θ |y) is the posterior (updated prior) probability about the event. There

are different methods to derive and calculate the likelihood function using either

analytical methods or resampling techniques that are computationally intensive.

While the frequentist approach suffers from sample size as the calculation of

p-values and confidence intervals heavily depend on the number of performed or

repeated experiments, the main criticism towards the Bayesian approach is regarding

its use of an arbitrary prior when there is no prior knowledge about the system. Also,

Bayesian inference techniques require a lot of computation but with the advent of

computer power and development of new algorithms like Markov Chain Monte Carlo,

Bayesian methods have started to get more popularity and are more broadly used

than in the previous century when the field of statistical inference was dominated

by the frequentist approach [64, 65].

We applied the Approximate Bayesian Computation (ABC) inference method to

infer our stochastic simulation model parameters.
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1.4 Thesis objectives

After the introduction and background presented here in Chapter 1, the remaining

thesis consists of four other chapters. In Chapter 2, I first discuss the subclonal

architecture of cancer and methods to trace selection in cancer evolution. Then

introduce my initial approach of using phylogenetic tree analysis on tumour samples

to measure selection. And finally, I present our study on how spatial constraints of

a growing tumour impact our ability to infer cancer evolutionary dynamics.

Another important topic in cancer research is understanding the interlaced pro-

cesses of genetics and epigenetics that are governing cancer cell behaviour. It has

been shown that there are patterns of single base-pair substitutions within genomic

binding sites that have been seen across all cancer types [66]. Motivated by this

study and also by the work of Alexandrov et al. of mutational signatures in cancer

[67], we decided to examine the distribution of different mutation types across epige-

nomic regions of breast cancer and measure the strength of associations between the

two. I present this study and results in Chapter 3.

Chapter 4 is also on studying the link between the genetics and epigenetics of

cancer but through the chromatin this time. Chromatin aberrations, such as changes

in DNA methylation, histone modifications or distorted nucleosome remodelling,

have been observed to be one of the sources of tumorigenesis. The time point

estimates of different chromatin region modifications can be associated with external

non-stochastic environmental factors and appropriate measures taken against further

development of the disease. Here, I introduce the method I developed to estimate

times to chromatin aberration events and the current limitations of its applicability

due to the scarcity of the required relevant data.

I conclude my thesis with Chapter 5 which gives the overall discussion of the work

presented in this thesis, summarises the main results and suggests future directions.
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Measuring clonal selection

2.1 Introduction

Cancer is an evolutionary process fuelled by genomic instability and intra-tumour

heterogeneity (ITH) [17]. ITH leads to therapy resistance, arguably the biggest

problem in cancer treatment today [68]. Recently, seminal studies have attempted

to quantify ITH by either looking at subclonal mutations in deep sequencing data

from single bulk samples [69, 70], or by taking multiple samples of the same tumour,

the so-called multi-region sequencing approach (reviewed in [71]). Phylogenetic

approaches are then used to reconstruct the ancestral history of cancer cell lineages

[72]. However, one important difference between phylogenetic analyses in cancer and

classical phylogenetic analyses of species is that each cancer sample is not a single

individual, but a mixture of different cancer cell subpopulations and non-cancer cells

[73].

The problem is usually tackled by performing subclonal deconvolution of the

samples to separate the different subpopulations [69, 74]. However, these approaches

do not account for the spatiotemporal dynamics that generated the data. To study

the evolutionary dynamics of individual tumours, mathematical and computational

37
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models of evolutionary processes are widely employed [40, 41, 75, 76]. Many of

these models are rooted in theoretical population genetics, a field that quantifies the

evolution of alleles in populations and that is central to the modern evolutionary

synthesis [77]. More recently, spatial models have also been used [78, 79, 80, 81, 82,

83, 84, 85, 86, 87]. However, seldom have mathematical and computational models of

cancer evolution been directly connected to next-generation sequencing data from

human tumours. Recent works have shown that combining theoretical modelling

and cancer genomic data allows for measurement of fundamental properties of the

tumour evolutionary process in vivo, such as mutation rates and strength and onset

of subclonal selection events [86, 88, 89].

In this chapter, I will first discuss the subclonal architecture of cancer and meth-

ods to trace selection in cancer evolution. I will then introduce our initial approach

of using phylogenetic tree analysis on tumour samples to measure selection. Finally,

I will present our study on how spatial constraints of a growing tumour impact our

ability to infer cancer evolutionary dynamics (which has been published in PLoS

Comput Biol.). We combine explicit spatial evolutionary modelling with a synthetic

generation of multi-region bulk and single-cell data, thus providing a generative

framework in which we know the evolutionary trajectories of all cells in a tumour

and can examine the genomic patterns that emerge from the sampling experiment.

We show that spatial constraints, stochastic spatial growth and sampling biases can

have unexpected effects that confound both the interpretation and inference of the

perceived evolutionary dynamics from cancer sequencing data. We also present a

statistical inference framework that begins to account for some of these confounding

factors and recover aspects of the cancer evolutionary dynamics from various types

of multi-region sequencing data as well as single-cell data.
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2.2 Subclonal architecture of cancer

2.2.1 Clone frequency distribution to trace selection

In chapter 1 we introduced three different forces that drive cancer evolution: muta-

tion, genetic drift and selection. Even though mutation and genetic drift are purely

random processes and selection is not, the latter generates the most complex pat-

terns. There is still a lack of quantitative analytical models for selection in contrast

to mutation and drift that have been modelled using Poisson and Markov processes,

respectively. Currently, there are three main approaches for detecting selection that

are based on clone frequency, patterns of mutational processes or phylogenetic tree

analysis.

Clone frequency-based methods study the Variant Allele Frequency (VAF) dis-

tribution to detect an overrepresentation of a lineage compared to the expectations

under neutral evolution. This approach has been motivated by the discoveries that

the shape of the VAF distribution under neutral conditions and in a well-mixed

population can be estimated analytically. Specifically, the distribution of m( f ) -

number of mutations per allele frequency – follows 1/ f 2 [88, 90, 91, 92, 93]. If clonal

evolution is under selective restraints, the frequencies of the driver and hitchhiking

mutations will increase and hence the VAF distribution will deviate from neutral

dynamics. As such neutral evolution can be treated as a null model against which

selection could be tested and identified [94].

Detecting deviations from the neutral null model, however, suffers from a lack of

power [89]. It is very hard to detect weak selection as it causes only slight changes

in the VAF distribution and hence under the limited sequencing depth, selected

subclones will likely get undetected, especially if they arise late during the tumour

progression [89, 95]. Spatial constraints and sampling limitations also play a major
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role in identifying selection.

Another approach to detecting clones whose frequencies vary disproportionally

compared to the background population is analysing longitudinal samples per in-

dividual/tumour instance [96]. Longitudinal sampling would also help tackle the

scenarios when a selected subclone sweeps through the population and reaches fixa-

tion after which the tumour evolution dynamics will revert back to neutral. However,

collecting multiple samples over time has significant technical and ethical issues; tak-

ing a sample from a patient might be very important from the scientific point of view

but unnecessary medically. Although, given the fast-paced development of the next

generation sequencing technologies and associated price drop, analysing circulating

cell-free DNA might be able to address the problem [97].

2.2.2 Intratumoral genetic heterogeneity and neutral evo-

lution

Mutations cause genotypic and phenotypic variation, and consequently increase

heterogeneity. Selection and genetic drift, on the other hand, make clones increase

or decrease in relative frequency (some clones might go extinct while others get fixed

in the population) and thus they reduce heterogeneity.

Unlike selection, which is a non-random process and has a larger effect in modify-

ing lineage frequency, drift is an inherently random process. A lineage might produce

more offspring than others just by a random chance when selecting individuals for

the next proliferation step and thus increase in relative frequency. This effect will be

stronger in a small population, while in a large population it will cause insignificant

changes that might not be noticeable [98].

When some lineages show proliferative advantage or increased survival rate, then

they are said to be driven by selective forces. When there is no such functional

variation, then the population is said to be functionally homogeneous. In a func-
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tionally homogeneous population, one might think that there is only one clone as the

population is phenotypically stable. But the population can never be genotypically

stable as mutations and genetic drift does occur constantly and thus they increase

genetic variation and create heterogeneity. Such a scenario of population dynamics

is called neutral evolution - functionally population is homogeneous while geneti-

cally heterogeneous [20]. Under such a scenario, the maximal genetic heterogeneity

is created as there is no selection to remove variation. However, there is one peril to

this case; sometimes environmental conditions can change so that a neutral genetic

variation becomes functional and causes selection of some lineages. This observa-

tion, first made by Luria and Delbruck in 1943 in their famous experiment where

they observed pre-existing resistance in bacteria [91], initiated the thinking that all

variations are pre-existing at the origin.

Patients usually have different patterns of treatment response because each indi-

vidual patient is unique with regard to their genome, microbiome, lifestyle, environ-

ment, disease history and exposure to drugs. When it comes to cancer, response to

treatment gets even more complex to predict, as heterogeneity has been observed

to be present not only between tumours but also between different subclones of the

same tumour cell population [99]. Intra-tumour genetic heterogeneity and changes

in the tumour microenvironment have been discovered to have a high impact on

treatment response and disease progression [68, 100]. Measuring degrees of het-

erogeneity from experiments and clinical trials is difficult, more so the dynamics

of spatial heterogeneity and as such computational modelling approaches are more

broadly used to address the challenge. In the following sections, we will present such

a computational approach that models spatial heterogeneity.
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2.3 Phylogenetic analysis in cancer

2.3.1 Phylogenetic trees in species vs tumour evolution

Cancer cells divide and accumulate mutations. Phylogenetic analysis in cancer

treats the clonal subpopulations as independent taxa and tries to apply different

methods of phylogenetic tree reconstruction to infer the tumour cell phylogeny. The

evolutionary history of cancer subclonal arrangements can then be used to test

different hypotheses about cancer evolution [101]. However, even though cancer is

an evolutionary process [17], some of the evolutionary characteristics are different in

cancer versus species, especially when it comes to applying the same phylogenetic

reasoning to cancer as to species.

There are four main areas aspects of which differ between cancer and species.

These are types of aberrations, mutation rates, selection intensity and the level of

heterogeneity [72]. Cancer evolution is often characterised with hypermutability

(chromosomal instability, microsatellite instability, elevated point mutations, copy

number variations, kataegis, chromothripsis, chromoplexy), plus mechanisms of hy-

permutability vary over time and between tumours which is not characteristic to

species evolution.

The idea of constructing tumour phylogeny was first suggested by Tsao et al.

[102] and then originally implemented by Desper et al. [103]. Following a decade

of collaboration between evolutionary and computational biologists and many more

implementations of similar analysis, lead to the establishment of the field called

tumour phylogenetics. There are various methods used in inferring tumour phylo-

genies that differ by the type of data used (SNV vs CNV vs DNA methylation etc),

type of study design (cross-patient, multi-region bulk sampling within one patient or

single-cell sampling) and types of mathematical models applied. Most mathematical
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and computational models for tumour tree inference have been adapted from species

phylogenetics, such as maximum parsimony [104], distance based [105], maximum

likelihood [106] or Bayesian probabilistic modelling approaches [12, 107, 108]. New

methods have also been developed that account for the different characteristics of

tumour versus species evolution [109, 110, 111, 112].

2.3.2 Bulk vs single-cell sequencing phylogenetic trees

Some studies collect multiple bulk samples per patient and perform phylogenetic

tree inference to reconstruct the evolutionary history of a single tumour. Similarly,

single-cell based studies infer evolutionary dynamics also within one tumour but

using cell-to-cell variations.

When multiple bulk samples are sequenced from a single patient, they consist

of a mixture of several cell lineages [104, 113, 114]. This is usually tackled by first

reconstructing the subclonal architecture from the bulk samples, known as subclonal

deconvolution, and then performing phylogenetic inference on the inferred subclones

[115]. Tools developed for clonal deconvolution are SciClone [116], PyClone [117] and

Clomial [118]. If subclonal deconvolution is not performed prior to tree inference,

the estimated trees would resemble clustering of tumour bulk samples rather than

its evolutionary history.

The development of single-cell tumour phylogenetics precedes single cell sequenc-

ing and was based on more limited profiling of single cells using microsatellite [119]

of FISH [120] markers. For the first time single-cell sequencing to tumour phy-

logenetics was introduced by Navin et al. [105] and since then it became one of

the prominent fields in cancer research. Since single-cell sequencing provides the

means to infer genotypes of individual cells, it can provide a significant advance-

ment in inferring tumour evolution (more so as subclonal deconvolution of tumour

cell populations from bulk biopsies remains to be computationally challenging still).



44 2.3. Phylogenetic analysis in cancer

However, techniques for single-cell sequencing are being improved; there are chal-

lenges to be overcome related to cell isolation, genome amplification to be scaled to

whole-genome or whole-exome assays and high levels of allelic dropout [105, 121].

2.3.3 Tree balance indexes

As a preliminary analysis, we decided to apply tumour phylogenetic tree analysis

for detecting selection using tree topology and branch length distributions.

One of the most used and well-studied measures of tree topology is balance index,

which is a degree of similarity among the numbers of descendants that internal nodes

produce per lineage [122]. A well-balanced tree represents a neutral, while a less

balanced one - a selective tumour growth phylogeny. In our analysis we tested three

different balance indexes [123]: (1) Sackin (sum of the depths of tree leaves), (2)

Colles (sum of the net number of descendants of children nodes for all tree nodes)

and (3) TCI (total cophenetic index - sum of the depths of the least common ancestor

nodes for each tree node pairs):

S(T ) =
n

∑
i=1

δT (i) (2.1)

C(T ) = ∑
υ∈Vint(T )

balT (υ) (2.2)

Φ(T ) = ∑
a≤i< j≤n

δT (LCAT (i, j)) (2.3)

where δT (υ) is the depth of a node υ in a phylogenetic tree T , which is the length

(in number of arcs) of the unique path from the root r to υ ; balT (υ) is the balance

value of υ and is equal to |KT (υ1)−KT (υ2)|, where K is the number of descendants

for a node and υ1,2 are the children nodes of the node υ ; LCAT (υ1,υ2) is the lowest

common ancestor of a pair of nodes υ1, υ2 meaning that it is the unique common
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ancestor of them that is a descendant of every other common ancestors of the nodes.

We computed the normalized versions for each balance index under two stochastic

models of evolutionary tree growth - the Yule and the uniform models. In addition to

the balance indices, we also calculated the mean branching time - the distances from

each node to the tips averaged over all nodes, and the pairwise distances between

the branch lengths for the pairs of nodes and tips separately (indicating for patterns

of clustering if present). We compare these balance indexes for simulated neutral

versus selective tumour single-cell sample trees in section 2.6 (Figure 2.21) using our

simulation model, which is also introduced in the following sections.

2.3.4 Statistical methods on phylogenetic trees

Considering that the occurrence of a mutation per cell division can be modelled as a

random event, we can apply several other statistical methods to detect selection

on a phylogenetic tree. Namely, at a given time point t, if a clone divides at

a rate λ , the accumulated mutations should follow the Poisson distribution with

rate µλ t. Another clone with a different µ or λ , will have accumulated mutations

with a different mean. To identify these differences, we employed the following two

statistical methods of Poisson mean comparison: CAT [124] and Changepoint [125].

CAT is a permutation-based test that detects the differences between the unbalanced

group means of the Poisson distributed random variables, whereas Changepoint

identifies the differences in the rates of a non-homogeneous Poisson process.

Computational Approach Test - CAT

Let Xi1, ...,Xini ∼ Poisson(γi) where Xi j are the counts belonging to the i-th group

and coming from the j-th sample, i = 1, ..., I, j = 1, ...,N and γi is the Poisson rate

parameter of the i-th group. Since the distribution of the sums of independent
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Poisson random variables is still Poisson we have that Yi = ∑
ni
j=1 Xi j ∼ Poisson(niγi)

where ni is the number of observations in the i-th group. Then the null hypothesis

can be specified as follows: H0 : niγi = n jγ j for all i 6= j i, j = 1, I while the alternative:

HA : niγi 6= n jγ j for at least one pair of i 6= j, i, j = 1, I.

The CAT procedure specifies the null hypothesis in the following way: H0 : η = 0

versus HA : η > 0, where η can be chosen from any suitable scalar measure; for our

analysis we chose η = ∑
k
i=2 (
√

γi−
√

γ1Ai)
2 and η = ∑

k
i=2 |
√

γi−
√

γ1Ai| (k = number

of groups, Ai i-th alternative hypothesis), as was justified by the authors to be the

most appropriate measures for Poisson distributed data in the paper [124].

The following are the steps of the CAT algorithm:

STEP 1: η̂ML = ∑
k
i=2 (

√
γ̂i(ML)−

√
γ̂1(ML)Ai)

2 MLE estimate of η is calculated,

where γ̂i = Yi/ni is an MLE estimate of γi

STEP 2: Under the null hypothesis that γi = γ1Ai ∀i, i = 2, I the restricted MLE

of γ1 is calculated through the corresponding log-likelihood function for γ1: L =

−γ1(∑
I
i=1 niAi)+ ∑

I
i=1Yiln(γ1niAi)+C

From which the restricted MLE of γi is obtained: γ1(RML) = ∑
I
i=1 Yi

∑
I
i=1 niAi

STEP 3: Yi ∼ Poisson(ni ˆγ1(RML)) data is generated for i = 1, ..., I a desirably large

number of times, say - M and at each data generation step

ηm = ∑
I
i=2 (

√
γ̂

(m)
i(ML)

−
√

γ̂
(m)
1(ML)

Ai)
2 is calculated, where γ

(m)
i(ML)

is obtained from the

simulated data in the m-th replication, 1 6 m 6 M

STEP 4: p-value for testing H0 : η = 0 vs HA : η > 0 is defined by:

pCAT = ∑
M
m=1 I[ ˆη(m) > ˆη(ML)]/M, where I[.] is the indicator function.
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Changepoint - CPT

Let y = (y1, ...,yn) be the sequence of ordered data; Changepoint analysis aims

to detect a time τ such that the sequences (y1, ...,yτ) and (yτ+1, ...,yn) have differ-

ent statistical properties. There could be only one such a changepoint τ or multiple

changepoints τ1, ...,τm, and therefore there exist different single and multiple change-

point detection algorithms.

Single changepoint detection is performed as hypothesis testing, where H0 : m =

0 and H1 : m = 1 via likelihood ratio test statistic. Under the null hypothesis

the maximum log-likelihood is Log(p(y1:n|θ̂)) where θ̂ is MLE of parameters and

p() is the probability density function of the data, while under the alternative

hypothesis the maximum log-likelihood for a given changepoint τ1 is the ML(τ1) =

log(p(y1:τ1|θ̂1))+ log(p(yτ1+1 : n|θ̂2)). The test statistic then is as follows:

λ = 2[maxτ1ML(τ1)−Log(p(y1:n|θ̂))] (2.4)

Choosing the appropriate value for a threshold C, so that the test rejects the null

hypothesis if the λ > C, is still an open research question. Currently, there are

several penalty methods such as Asymptotic penalty which is equivalent to p-values,

AIC, BIC, MBIC that can be specified to reach the decision on rejecting the null

hypothesis or not [126].

For the multiple changepoints, there are several, optimization based methods,

that try to find the maximum of ML(τ1:m) over all possible combinations of τ1:m.

Three main algorithms that solve the optimization problem are used widely: bi-

nary segmentation, segment neighbourhood and pruned exact linear time (PELT)

[125]. For our analyses, we applied PELT that incorporates dynamic programming

techniques to obtain the optimal segmentation for m changepoints by reusing the

information that calculated for m−1 changepoints and considering BIC (Bayesian
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Information Criteria) penalty values obtained at each step.

2.3.5 Coalescent theory and common ancestor

Phylogenetic methods however do not fully account for the inherent randomness

of evolution because the true genealogy of samples is not known. The coalescent

theory models the past evolutionary forces on current genetic variation stochasti-

cally, assuming genealogy is random [127]. It traces back the Most Recent Common

Ancestor (MRCA) of all tree nodes and uses only the individuals that are ancestral

to the sample rather than keeping track of the entire population, and thus, is more

computationally efficient than the phylogenetic methods [127]. One of the most im-

portant targets of modelling MRCA features is time i.e. given a set of nodes on a

tree how much further backward does one need to go to encounter all present nodes’

most recent common ancestor - the Time to the MRCA or TMRCA. We considered

that estimating the TMRCA of subclones on a phylogenetic tree would be interest-

ing as cells within a clone should have a more recent common ancestor than cells

from two different clones, and hence selective subclones could be identified. In the

following, I describe the technical procedure of deriving the posterior distribution

for coalescent times for a growing population size.

Let Wj be the time when the sample has j distinct ancestors, j = 2, ...,n, then Wj

has exponential distribution with parameter j( j− 1)/2. Two important quantities

associated with each phylogenetic tree are the height and the length of the tree

denoted by Tn and Ln respectively Tn = ∑
n
j=2Wj and Ln = ∑

n
j=2 jWj

In the coalescent theory the times at which mutations occur are modelled by a

Poisson process of a constant rate θ/2. Thus, for a given tree length Ln the number

of mutations Sn on the tree follows the Poisson distribution: P(Sn = k|Ln = l) =

Pois(k,θ l/2).

The posterior distribution of Tn is then modelled as the prior distribution of Tn
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multiplied by the probability of observing data D conditional on a given time Tn = t:

fTn(t|D) ∝ fTn(t)P(D|Tn = t) (2.5)

And replacing D by the observed values of Sn gives us the exact form for the

posterior:

fTn(t|Sn = k) ∝

∫
∞

0
fTnLn(t, l)Pois(k, lθ/2)dl (2.6)

where fTnLn(t, l) is the joint probability density function of Tn and Ln under the

coalescent theory. The evaluation of fTn(t|Sn = k) from (2.6) can be performed by

stochastic simulation using rejection sampling algorithm [128].

We modified the standard coalescent simulation algorithm, as it assumes fixed

population size, which is not the case for cancer cell populations. We scaled the

generation time by the population size τ = 1
2N also referred as coalescent time. Now

let N(t) be the population size as a function of t, then the amount of coalescent

time traversed in going from generation i to i + 1 is 1
2N(i) , and from 1 to t - g(τ) =

∑
t
i=1

1
2N(i) . Given that g(τ) is a strictly increasing function, we can easily convert

it and calculate the number of generations τ = g−1(t) corresponding to τ units of

coalescent times. For our simulations I used exponential growth - N(t) = N0eβ t and

derived the mapping from the coalescent times to the generation numbers:

g−1(t) = log [
log(a− t)

j!
2( j−2)!

eβ s

β

+ 1]
1
β

(2.7)

Thus, by the aforementioned simulation procedure, we can estimate the time of

onset of subclonal cell populations for an exponentially growing population struc-

ture.
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2.3.6 Detecting selection from phylogenetic trees

In the attempt of measuring subclone evolution on phylogenetic trees, we applied

the CAT, CPT and modified TMRCA methods introduced above. The tree branch

lengths are proportional to the number of mutations detected during the time passed

since the two nodes diverged. The particular aim of our study is to investigate

whether there is a fixed mutation rate for the whole tree or there are small sub-trees

or groups of branches that have different rate parameters.

Branches that connect the root node to each leaf (outer) node were modelled as

independent groups to identify subgroups within these groups. As the numbers of

mutations from these branches are Poisson random variables, and the sum of the

independent Poisson variables are still Poisson distributed, we model every leaf on

a tree as a Poisson random variable with a rate parameter given by the sum of

the component branch rates. Thus, the statistical reformulation of our study is to

assess multiple comparison methods of Poisson means with limited sample size and

unbalanced data, for which we used CAT.

We also modelled the number of mutations on a phylogenetic tree as a non-

homogeneous Poisson process and estimated the times (referred as change points)

when the rate parameter of the stochastic process changes. By detecting change

points, we identify the subclones of a tree that have different mutation rates.

If there is a subgroup detected, either by CAT or CPT analyses, we split the

trees into the detected subclones and estimate TMRCA for each subtree. Figure 2.1

shows an example of a real data tree (data source: [129] where they performed multi-

region genome and exome sequencing of benign and malignant colorectal tumours)

that visually looks balanced while both methods, CAT and CPT confirm that there

is no significant sub-grouping present on the tree. In Figure 2.2 we can see an

instance of an unbalanced tree, where CPT identified three major subgroups. As

expected, the estimated MRCAs for each three subgroups differ considerably (Figure
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2.3).

We found these methods are limited when applied to real data due to the limited

amount of sampling. For this reason, we decided to take a different approach for

measuring selection and developed a stochastic simulation model which is introduced

and discussed in the subsequent sections.

Figure 2.1: Balanced tree - an example of a real data phylogenetic tree that is inferred
to be balanced both from CAT and CPT methods. (a) - maximum parsimony phylogenetic
tree of C277 colon cancer patient; on the tips of the tree are the sample names, while
the numbers in the green circles represent the accumulated mutations for the relevant
nodes. (b) - C277 tree leaves ordered by the number of mutations; the horizontal red line
represents the estimated overall group mean = 34.5 for all the leaves, indicating there was
no changepoint/subgrouping detected within the leaves by CPT analysis. The p-value
from the CAT analysis is 0.3258, which verifies the CPT result.
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Figure 2.2: Unbalanced tree - an example of a real data phylogenetic tree that is
inferred to be unbalanced both from CAT and CPT methods. (a) - maximum parsimony
phylogenetic tree of set2 colon cancer patient; on the tips of the tree are the sample
names, while the numbers in the green circles represent the accumulated mutations per
node. (b) - set2 tree leaves ordered by the number of mutations; the three horizontal
red lines represent the estimated means 597.5, 2046.5 and 2648.7 of the three subgroups
detected by CPT analysis. CAT returned the p-value << .000001 validating the CPT
results.

Figure 2.3: MRCA estimations - MCMC simulations of the MRCA distributions
for three detected subtrees of the phylogenetic tree from Figure 2.2. Subtree (1) with
leaves: set02-7 and set02-4 and estimated mean MRCA = 1.689, subtree (2) with leaves
set02-3, set02-2 and set02-1 and estimated mean MRCA = 2.497, and subtree (3) with
leaves set02-5 and set02-6 and estimated mean MRCA = 0.966. The estimated summary
statistics differ significantly among all three subgroups.
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2.4 Stochastic models of tumour expansion

(published in PLoS Comput Biol. 2019)

2.4.1 Stochastic birth-death processes

A stochastic process is a sequence of random variables that are defined on a common

probability space and describe the evolution of some complex system. There are

different types of stochastic processes with the most famous and widely used in many

areas being Markov processes. The fundamental property of the Markov process is

that conditional on the history of the system, the probabilistic state of the future

does not depend on the past, but only on the present state of the system.

A branching process is a Markov process that models population dynamics where

individuals in generation n produce a random number of offspring for generation

n+1. In other words, it studies how population individuals reproduce and die inde-

pendently but according to a specific probability distribution. There are many types

of branching processes – discrete vs continuous time, single type vs multitype, popu-

lation size dependent or independent, and have various applications from population

biology and phylogenetics to cancer evolution studies [130, 131, 132, 133].

In 1960, Kendal, who in the famous Luria-Delbruck experiment allowed cells

to grow as a birth-death stochastic process [134], established the stochastic Luria-

Delbruck model, that since then has become the foundational approach for math-

ematically understanding cancer evolution. Kendal’s stochastic birth-death model

and its many extensions have been applied to study drug resistance [135, 136, 137],

driver mutations[138, 139] and metastases[140, 141, 142].

The differential equation of the stochastic birth-death process assuming that in

the time interval (t, t + δ t) an individual gives birth with probability bδ t and dies

with dδ t, is as follows:
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∂N0(t)
∂ t

= ∂N1(t) (2.8)

∂Nn(t)
∂ t

= b(n−1)Nn−1(t)− (b + d)nNn(t)+ d(n + 1)Nn+1(t), n > 1

where Nn is the population size at generation n. The solution of the equation is

derived in [143] and is given by:

N0 = α, Nn = (1−α)(1−β )β
n−1, n > 1 (2.9)

where

α =
d(e(b−d)t−1)

be(b−d)t−d
, β =

b(e(b−d)t−1)

be(b−d)t−d
(2.10)

Given this probability distribution, we can calculate the mean and variance of

the population size at time t:

µN = e(b−d)t , σ
2
N =

b + d
b−d

e(b−d)t(e(b−d)t−1) (2.11)

We can see that the standard deviation is of the orders of e(b−d)t indicating large

expected variation in population size that makes it harder to infer the parameters

of the system that depends on the population size. We will see an implementation

of this process in our stochastic simulation model and the effects of small simulated

population size on the inference we later performed.

2.4.2 The Gillespie algorithm

To model complex cell dynamics often methods from stochastic chemical reactions

are applied. One such approach is the Gillespie algorithm which is the base algorithm
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of our simulation model too and hence we will briefly describe the algorithm here

first and its one variant of implementation that we applied for our model.

To describe the cell population dynamics in a hierarchically organised tissue, one

needs to address the following question:

� If we assume that proliferation event is discretised, so that there is only one

proliferating cell at a given time, and also there are different cell types in the

population, which cell should proliferate next and what time does the system

need to wait for this next proliferation event?

Let’s assume we have n cell types and there are Xi(t) cells of type i at time t, i ∈

(1, ...,n). Given some initial conditions X(t0) = x0, the goal then will be to estimate

stochastic trajectories of the state space vector X(t) = (X1(t), ...,Xn(t)). Let’s also

assume that we have M possible reaction types R1, ...,RM (different mutation or

proliferation pathways) in the system. Then the key question for modelling the

system will be translated into estimating the probability of the next reaction type

being j, j ∈ (1, ...,M) and taking place within the time interval of (t + τ, t + τ + dτ).

Let’s denote this probability by P(τ, j)dτ and by r j the number of distinct reaction

combinations for reaction R j at time t. Then if one follows the argumentation in

[144, 145] one can easily derive the exact expression for the reaction probability

density function:

P(τ, j) = r jc j exp [
M

∑
l=1

rlslτ] (2.12)

where c j is the rate parameter of the reaction r j.

Having this probability function, one can construct an exact stochastic simulation

of the system. There are multiple ways for doing so, one of them being the method

of first moments [145], that we applied for our model here. The simulation workflow

of the method of the first moments is as simple as first drawing ξ1, ...,ξM uniform
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random numbers from the interval [0,1] to construct M time intervals for the M

reaction types:

τ j =
1

r jc j
ln

1
ξ j

(2.13)

and then determining the cell and the reaction type to occur next by choosing the

smallest τk from k ∈ (1, ...,n). The simulation step ends by incrementing the system

flow time with this smallest chosen time interval.

2.4.3 Simulating tumour evolution

Here we develop and analyse a stochastic spatial cellular automaton model of tumour

growth that incorporates cell division, cell death, random mutations and clonal

selection. Each tumour simulation starts with a single “transformed” cell in the

centre of either a 2D or a 3D lattice, and we model the resulting expansion of this

first cancer cell. All events, such as cell proliferation, death, mutation and selection

are modelled according to a Gillespie algorithm [146] the detailed derivation of

one implementation of which is described in the preceding section above. In our

model we account for different spatial constraints that are parameterised within

our simulation. In order for a cell to divide, a new empty space for its progeny is

required within the 8 neighbouring cells if we consider a 2D grid with Von Neumann

neighbourhood. If no empty space is present, a cell can generate a new space by

pushing neighbouring cells outwards (choosing a random direction of the push). In

this scenario, the growth is “homogeneous” and all cells in the neoplasm can divide

(Figure 2.4 A,B). Because all cells in the tumour can divide, this scenario leads to an

overall exponential expansion (Figure 2.5 A,B). At some point during the simulation

(Figure 2.4 A-D), within the original tumour population (blue cells), we introduce

a new mutant (a new subclone – red cells) which may or may not have a selective
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advantage. In the case of a neutral subclone (no selective advantage), the mutant

cells divide exactly as all the other cells (Figure 2.4 A). We note that in this case,

colouring a new subclone in red at a certain point during neutral growth is arbitrary,

and equivalent to the marking of a lineage by a random neutral (passenger) mutation.

In the case where the subclone has a fitness advantage, the mutant will, on average,

grow more rapidly compared to the parental background clone, thus increasing in

relative proportion over time (Figure 2.4 B and 2.5 B).
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Figure 2.4: A spatial tumour growth model that simulates sequencing data.
In our model we introduce a mutant at a given time t (blue = background clone; red =
mutant subclone; shade is proportional to the number of generations the cell has gone
through). (A) The new mutant subclone can have no fitness advantage (mutation is a
passenger), giving rise to a neutrally growing neoplasm, or (B) have a fitness advantage
s > 0 with respect to the background population (mutation is a driver), giving rise to
differential selection in the tumour population. In addition, cells accumulate unique
passenger mutations during each cell division. (C) In some tumours, it is likely that only
cells close to the tumour border are able to proliferate due to the abundance of resources
and space. We simulate this in our model as boundary driven growth, which gives rise to
complex radial patterns. (D) When boundary driven growth is combined with selection,
spatial effect can either amplify the growth of the new subclone, as in this exemplary case,
or even decrease the effects of selection if the subclone, by chance, gets imprisoned behind
the growing front. (E) In our simulation we also model the raising and spread of point
mutations in the genome of cancer cells (all passengers and, when subclone is selective,
one additional driver). We can simulate the sampling of punch biopsies (squares), needle
biopsies (thin stripes) and single cells. (F) By simulating the noise and measurement errors
of next-generation sequencing, we can generate synthetic realistic variant allele frequency
distributions from the spatial simulations. (G) Single-cell data can also be simulated, in
this case clearly showing the presence of a selected subclone demonstrated by the clade of
“red” cells with a recent common ancestor.



59 2.4. Stochastic models of tumour expansion

T3 T4

T1 T2

0 10 20 30 40 0 5 10 15 20

0 5 10 0.0 2.5 5.0 7.5 10.0
0

20000

40000

60000

80000

0

20000

40000

60000

0

30000

60000

90000

120000

0

25000

50000

75000

100000

125000

Gillespie time steps

Nu
m

be
r o

f c
el

ls

Population
WT
Mutant
Total

A B

C D

Figure 2.5: Growth curves. Tumour cell population growth curves for each of the
representative cases: (A) neutral homogeneous, (B) selective homogeneous, (C) neutral
boundary driven, (D) selective boundary driven. Wild type (WT) and mutant growth
curves are plotted separately in addition to the whole population growth curves. Without
the spatial constraints of our model, the growth curves are exponential as expected. (A,
B) With the boundary driven growth the growth becomes polynomial. We can also see
for the tumours with selection (B, D) how the mutant subpopulation outcompetes wild
type cell population.

We also model “boundary driven” growth, where only cells that are sufficiently

close to the border of the tumour can proliferate. Other cells may remain “im-

prisoned” in the centre of the tumour unable to proliferate because of the lack of

empty space around them. Boundary-driven growth has been observed experimen-

tally [147, 148, 149] as well as in model systems [150]. The magnitude of this effect

is controlled in our simulation with the parameter a, which considers cell location
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and defines the probability that a cell will push neighbouring cells to create empty

spots depending on how far is the cell from the boundary (we present more details

below). Boundary driven growth leads to a polynomial expansion (Figure 2.5 C).

Importantly, in both the case of neutral mutants (Figure 2.4 C) and selected mutants

(Figure 2.4 D), the spatial distribution of mutant cells in this scenario is strongly

affected by the spatial constraints.

At each division, a cell has a certain probability to acquire additional somatic

mutations, modelled with a Poisson distribution, with mean u, in line with many

other previous models [40, 88, 89, 151, 152]. Notably, u is the average number of new

somatic mutations per division for the whole genome of a single cell. We assume

that both daughter cells can acquire mutations, that mutations are unique (infinite

site model) and we neglect back mutations (infinite allele model). Finally, the large

majority of mutations are assumed to be passengers (neutral), with a few driver

alterations allowing for subclonal fitness advantages (e.g. subclonal populations

in Figure 2.4 B,D). This is consistent with large-scale genomic sequencing studies

indicating that in any given tumour, the number of driver events is generally small,

while the number of passengers is often orders of magnitude larger [22, 151].

Importantly, our spatial model of tumour growth allows for the simulation of

tissue sampling and genomic data generation. For instance, we can simulate the

collection of punch biopsies where spatially localised chunks of tumour are collected

(Figure 2.4 E). We can also simulate needle biopsies, where a long and thin piece

of tissue is sampled (Figure 2.4 E). We can then simulate the genomic data gener-

ation process starting from the cells in the sample and the identification of somatic

mutations. For example, we can simulate the sequencing at a given coverage us-

ing Binomial sampling of the alleles, the limits of low frequency mutation detection

(e.g. minimum number of reads with a variant, minimum coverage), as well as

non-uniformity of coverage leading to over-dispersion of the variant allele frequency
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(VAF) of detected mutations. This allows generating realistic data from simulated

tumours, e.g. in the case of the simulation of a diploid tumour with one selected

subclone in Figure 2.4E, all needles and punch biopsies contained clonal mutations,

shown as a cluster of variants around VAF=0.5 (Figure 2.4 F), and in the case of

punch biopsy 1 and needle biopsy 4, also a subclonal cluster representing the growing

subclone.

Details of the simulation model

We consider tumour cells as asexually reproducing individuals that die and divide

with certain pre-defined probabilities. If b is the birth rate for each cell and d the

death rate, then the growth of the population over time t is:

N(t) = e(b−d)t (2.14)

where N(t) is the population size at time t, and b− d is the net growth rate.

At first, we assume that birth and death rates are constant over time, whereas the

overall growth rate can vary over time due to the randomness of each birth or death

event, as well as due to spatial constraints that can limit or promote cell division

over time. We model spatial constraints with the boundary proliferation parameter

a, which models the distance from the border of the tumour within which cells

are allowed to proliferate even in the absence of space (by pushing neighbouring

cells outwards). When a ∼ 1 all cells can proliferate (homogeneous growth), and

their growth is equivalent to an exponential expansion. When a∼ 0, cells can only

proliferate if they have an empty space in their neighbourhood, resulting in only

a small layer of cells at the tumour border being able to divide. In this case the

growth curve can significantly deviate from equation (2.14).

In addition to cell division, we also model mutation and selection, where the

latter can change birth and/or death rates. We model somatic mutations acquired
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by each cell after division as a Poisson random variable – Poisson(u), where u is the

mean mutation rate. Thus, after each cell division, a random set of new unique

mutations occur in each cell of the two cells resulting from the division. The

majority of these mutations are passenger mutations and hence do not affect a

cell’s phenotype. However, they enable us to trace cell lineages uniquely in the

final tumour. In addition, we also allow for driver mutation “events” that can lead

to positive selection of a subpopulation of cancer cells: a driver event conveys a

fitness advantage to that particular cell and its offspring, thus allowing the lineage

to increase in frequency. Since we ask what is the distribution of mutations across

space, rather than the expected waiting time of driver events as previously analysed

[153], we introduce a driver mutation at a fixed time in our simulations, also to make

simulations comparable and computationally efficient.

To simulate tumour growth in space with these four stochastic events – birth,

death, mutation and selection – we have used a modification of the Gillespie algo-

rithm [146].

Specifically, the simulation framework works as follows:

� Initialization: start with a 2D/3D grid with Von Neumann neighbourhood.

Place the first tumour cell in the centre of the grid. Set time t=0.

Until a cell reaches a predefined grid boundary, repeat the following steps

1. Compute the reaction propensities according to the Gillespie algorithm. Each

reaction event of birth (or death) has a functional form f (x) = kx; here x is

the number of cells of type “x” (wild-type or mutant), and k is either the birth

or death rate. The time of each event is obtained by sampling an exponential

random variable with mean given by its propensity. The next event chosen

is the one completing first (i.e., with smallest clock value, as in the so-called

next reaction method [146]). Given the event, we increment time by its clock.
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Note that these time steps do not correspond to population doubling times i.e.

generations; doubling times can be retrieved scaling time by a factor log(2).

2. If the next event is a cell division, we use a heuristic method to place the

2 daughter cells on the grid. We first replace the parent cell with the first

daughter, and search for a suitable position to place the second daughter cell.

We use a Von Neumann neighbourhood and check if any of the 8 (in 2D grid)

neighbouring spots of the parent cell is empty; if one or more are, we locate

the second cell in one of those spots at random. Otherwise, with a probabil-

ity determined by a parameter a, we push all cells along a randomly chosen

direction until we hit the grid boundary, and place the second daughter at the

nearest emptied spot. With the parameter a we can model boundary driven

growth, as it represents the fraction of the radius of the growing tumour where

cells are allowed to proliferate; that is, a = 0.2 creates a tumour periphery of

width equal to 20% of the whole tumour width in which cells are allowed to

proliferate even without empty space by pushing neighbouring cells outwards

(when a = 1, periphery width is 100%, every cell can always push and divide,

and the tumour grows exponentially). When a cell divides, we generate pas-

senger mutations by drawing a number from Poisson(u). These mutations will

be assigned to both daughter cells.

3. If the next event is cell death, we simply free the position allocated to the cell.

4. At the end of this step, we check if the clock is greater than the time of the

next scheduled driver event tdriver; if it is, we convert a single wild type (WT)

cell into a new mutant and increase its birth rate, or decrease its death rate.

This will result in mutant cells having a proliferative advantage. To quantify

the effect, we define the fitness s as: 1 + s = (bmutant−dmutant)/(bwt−dwt).
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2.4.4 Simulating cancer genomic data generation

At the end of the simulation, we can collect bulk or single-cells and simulate se-

quencing data generation. Bulk samples are spatially separated tumour chunks ‘cut

out’ from the tumour. We model two different shapes:

1. Squares, which are referred to as “punch biopsies”

2. Long thin rectangles that resemble a “needle biopsy”

A bulk sample is a set of adjacent cells from the final tumour population. Each

cell has its unique ID, a position on a grid and its list of somatic mutations. From

the sampled cells (in a bulk) joined list of mutations we can construct the Variant

Allele Frequency (VAF) distribution as in a real sequencing experiment.

To construct a VAF distribution from a simulated bulk tumour sample, we mimic

realistic next generation sequencing steps, specifically sequencing coverage and limits

of detectability of low frequency mutations. We proceed as follows:

1. We generate (dispersed) coverage values for the input mutations by sampling

a coverage from a Poisson distribution D∼ Poisson(λ = Z) with mean λ equal

to a desired sequencing depth.

2. Once we have sampled a depth value k for a mutation, we sample its frequency

(number of reads with the variant allele) with a Binomial trial. We use f ∼

Binomial(n,k) where n is the proportion of cells carrying this mutation in the

sample.

This procedure guarantees that the generated read counts reflect the proportions

of mutations in the simulated tumour. To model limits of detection of a mutation,

after resampling a mutation, we discard it if the corresponding number of reads
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containing the variant allele are less than 5 (using the fixed coverage 100, which

accounts for a∼ 0.05 minimum VAF).

We also performed single cell sequencing taking either random single cells across

the whole tumour population, or from spatially structured biopsies (mimicking bulk

tissue collection followed by single-cell isolation). We used the obtained single cells

to construct maximum parsimony phylogenetic trees. In addition to single cell se-

quencing, we also model genotyping cells with a given list of mutations, correspond-

ing to targeted sequencing of mutations found using e.g. exome or whole-genome

sequencing. To implement this, we take one of the bulk samples as reference geno-

type and check for presence of each individual mutation in a random set of 200 cells.

Similarly, we use the obtained genotyped single cells to infer phylogenetic trees and

check how much the genotyped trees differ from the single cell trees.

2.5 Effects of spatial constraints and sampling

bias

2.5.1 Spatial effects on bulk sequencing data

For each representative simulation of spatial constraints in Figure 2.4, we modelled

the sampling of 6 punch biopsies (small square regions), 2 needle biopsies (long

and thin regions), as well as hypothetically sampling the whole tumour. From each

sample, we simulated the generation of 100x depth whole-genome data. Figure 2.6

A shows the variant allele frequency (VAF) distributions of samples from the neutral

homogeneous growth case in Figure 2.4 A, with clonal mutations (truncal) in grey,

subclonal mutations exclusive to the parental background clone in light blue and

subclonal mutations within the mutant in pink. All samples show the characteristic

1/ f 2 distribution corresponding to neutral evolutionary dynamics [88], as one would
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expect theoretically [93]. The Area Under the Curve (AUC) test for neutrality[89]

(p<0.05 means neutrality is rejected) is reported on top of each VAF plot and

shows that even in the presence of a spatial structure, homogeneous (exponential)

neutral growth follows a 1/ f 2 distribution (Figure 2.6 A-i to A-iv). As we have

shown previously, it is possible to recover the mutation rate per cell doubling from

the 1/ f 2 neutral tail, which in this case without cell death was 10 mutations per

division. This was correctly recovered in all samples from Figure 2.6 A (recovered

mutation rate reported in each plot as u).
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Figure 2.6: Variant allele frequency distributions of punch and needle biopsies
from representative scenarios - (A) In the illustrative example of neutral homogeneous
growth, a neutral mutant was introduced at generation time t = 4 with a selection coeffi-
cient of s = 0 (neutral) and homogeneous growth (a = 1). The mutation rate was u = 10.
Tumour was simulated until ∼ 100K cells. From the final tumour, we sampled 6 punch
biopsies (1-6), 2 needle biopsies (7-8) and a “whole-tumour” sample, and simulated 100Ö
whole-genome sequencing data. VAF distributions of each sample are shown (i-iv). (B)
In this case, a differentially selected subclone with s = 3 was introduced at time t = 8 in a
homogeneous growth scenario (a = 1) and u = 10. Final population size was ∼ 80K cells.
In those samples where both the background and the mutant subclone were present (i and
iv), the VAF distribution showed evidence of subclonal selection, with a subclonal cluster
(purple) generated by mutations in the selected subclone that hitchhiked to high frequency
due to selection. (C) In the case of neutral boundary driven growth, a new (neutral) mu-
tant was introduced at t = 4 with s = 1 and boundary driven growth parameter a = 0.025.
Even though the tumour grew neutrally, the spatial effects of boundary driven growth
led to deviations from the neutral expected null under homogeneous growth. Moreover,
clusters in the VAF spectrum are detectable in iii, where sampling bias produced an over-
representation of a lineage that was not due to selection. (D) Boundary driven growth
with selection (mutant introduced at t = 8 with s = 2 and a = 0.025) produced even more
complex patterns of drift and sampling bias. The data represents tumour simulations in
2D space. Birth rate b = 1 in all simulations.
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In the case of homogeneous growth with subclonal selection (Figure 2.6 B), neu-

trality could be rejected based in all those samples containing a mix of the back-

ground clone and the new subclone (Figure 2.6 B-i and B-iv, see subclonal cluster in

purple). Specifically, needle 4 and punch 1 showed the expected signature of selec-

tion, with a subclonal cluster a consequence of the over-representation of passenger

mutations in the expanded clone [69, 89]. The 1/ f 2-like tail resulting from the

within-clone accumulation of passenger mutations remains in the frequency spec-

trum [89]. Specifically, in the plots in Figure 2.6 B we report the mutations that

were present in the first subclone cell in purple. Those are mutations that increased

in frequency by hitchhiking on the selected mutant. Importantly, we note that these

mutations are not exclusive to the subclone but are also found in other lineages

(e.g. in the “cousins” of the selected subclone). The same dynamics are observed if

it is the death rate to decrease, rather than the birth rate to increase (Figure 2.7

A,B). Importantly, the cell death d not only increases the rate of genetic drift, as

expected, but also the level of clonal intermixing due to the additional stochasticity

introduced by high cell replacement (Figure 2.7 C-F, examples of neutral cases).

Selection could not be detected in other spatially-distinct samples from the same

tumour when they did not contain differentially selected populations, and either cap-

tured only the background clone (blue) or only the selected mutant (red) (Figure

2.6 B-ii and B-ii). This is correct as in those samples ITH is neutral.
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Figure 2.7: Examples where selection is modelled by varying death rates
instead of birth rates, and neutral growth under high cell death. Two examples
where fitness advantage is modelled by decreasing cell death the mutant subpopulations
and increasing for the wild type. (A) Death rate of mutant subpopulation is 0.2 while
for the WT is 0.8. (B) Death rate of mutant subpopulation is 0.3 while for the WT is
0.9. (C-F) Examples of neutral growth with high cell death, which increases the level of
genetic drift (especially noticeable in (F)) as well as the level of spatial intermixing due
to stochasticity of cell replacement. Birth rate b was 1 in all simulations.

This initial spatial analysis produced similar results to the previous studies of

well-mixed non-spatial models [88, 89]. We next investigated the effect of bound-

ary driven growth. Here, only cells close to the borders grow, leaving other cells

“imprisoned” inside the tumour mass, a pattern of gene surfing, or sometimes called

genetic draft emerges, causing radial patterns of cells growing only at the front of

the growing wave (Figure 2.6 C). This has been previously documented both the-

oretically and experimentally in bacteria [154], in mathematical models of tumour

growth [80, 81, 155], as well as in cancer model systems, where the neutral expansion

of the cancer cell population under boundary driven growth led to lineages grow-

ing just because they were “lucky” to be in the right place at the right time [149].

This has implications for the impact of the immune system during the evolution

of a tumour, which exert a negative selection pressure on the cancer cell popula-

tion through neoantigen recognition and removal [23], especially because neoantigen

recognition is clone size dependent [156]. Importantly, boundary driven growth leads

to non-exponential population dynamics [147, 148] that also impact the distribution

of mutations between the centre and the periphery of a solid neoplasm, as shown

in a case of liver cancer sampled at high resolution [157]. The accumulation of sub-

clonal mutations in a neutrally expanding tumour under boundary driven growth

is expected to follow a 1/ f 2 scaling form within most of the detectable frequency

range ( f > 5%), although at low frequency deviations are expected [154]. This is

largely driven by the increasing difference in mutational burden between the centre



71 2.5. Effects of spatial constraints and sampling bias

and the border of the tumour, which could lead to rejection of the standard neutral

expectation under exponential growth, as seen when the whole tumour is sampled

with respect to when only a localised bulk/needle biopsy is collected (Figure 2.6 C).

Because the population is no longer homogeneously distributed however, this can

lead to significant spatial bias, causing over- or under-representation of mutations in

the VAF distributions solely due to spatial effects and not because of selection. This

causes deviations from the neutral expectation of the mutant allele distributions that

risk being wrongly interpreted as the consequence of on-going subclonal selection,

as in Figure 2.6 C. In this scenario, we know that subclonal clusters (e.g. punch 6 in

Figure 2.6 C-iii) are not differentially selected subclones, but the over-representation

of alleles is solely induced by the spatial structure. Furthermore, even when we

observe distributions that appear to follow the neutral expectation (AUC p>0.05),

boundary driven growth results in much higher mutational loads than would be

expected in the well mixed case. Here our inferred mutation rates are up to 10 times

higher than the ground truth. This can be observed more explicitly in Figure 2.8,

where we sample each representative tumour from the centre towards the periphery

by taking samples along concentric circles (Figure 2.8 A) and compare the mutational

loads of the samples (Figure 2.8 B). This was indeed observed in a case of neutrally

growing liver cancer [157] and a similar phenomenon is also observed in species

evolution [158].
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Figure 2.8: Mutational load comparison for different growth cases. (A) We
sample each representative example tumours (T1 – neutral homogenous, T2 – selective
homogenous, T3 – neutral boundary driven, T4 – selective boundary driven) from the
tumour centre (bulk sample C1) towards the periphery following the concentric circles in
four directions: W – west, E – east, N – north, S – south. The bulk indexes (2W, 3W, 4W)
are proportional to the distance from the centre to the periphery. (B) We observe how
number of mutations per bulk sample increases proportionally to the distance from the
tumour centre in the case of boundary driven growth. Also, the total number of mutations
are much higher for the constrained boundary driven growth than for the homogenous
tumour due to increased cell turnover in the former case.
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Figure 2.9: Example of imprisonment. Example of selective boundary driven growth
when the driver mutant subpopulation gets trapped within the wild type population
despite being fitter than the WT clone.
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Figure 2.10: The effect of stochasticity and sampling bias on the shapes of
VAF distributions for the four representative scenarios. For each of the represen-
tative cases: (A) neutral homogeneous, (B) selective homogeneous, (C) neutral boundary
driven, (D) selective boundary driven, we simulated 100 different runs of each case keeping
the underlying parameters constant and varying only the random seed of the simulation.
For each simulated tumour, we constructed needle and punch biopsy sample VAF distri-
butions along with the whole tumour VAFs. Overall there is less variation among the
distributions for neutral (A,C) versus selective (B,D) cases. In addition, punch biopsy
VAFs scatter more than needle biopsy samples in comparison to the whole tumour VAF
distributions. (E) We separated the VAF distributions for the selective boundary driven
between cases where the new clone escaped and grew to fixation, versus escaped by not
yet fixed (signature of ongoing subclonal selection), versus imprisoned (leading to neutral
dynamics)
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Figure 2.11: Distribution of AUC based neutrality test p-values. (A) We simulate
100 different tumours for each 4 representative growth models and fit 1/ f test to their
corresponding whole tumour sample VAFs. Reported are the distributions of p-values
obtained from each test using the AUC statistics. (B) For the cases of boundary-driven
growth modes we compared tests of neutrality using the whole-tumour sample versus
punch/needle biopsies.
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Figure 2.12: Example of selection when mutant subpopulation has higher push
power instead than higher birth rate. Example of a selective exponential growth
when the mutant subpopulation has higher “push power” than the wild type population.

If we combine boundary driven growth and subclonal selection the situation is

further complicated: selective effects are now modulated by spatial constraints. In

some cases, the selected mutant emerges and remains directly at the front of tumour

growth. In this scenario the outgrowth caused by its selective advantage is ampli-

fied further just because it occurred at the growing front (Figure 2.6 D). In other

cases, the selected mutant may, by chance, remain “imprisoned” within the tumour

(assuming the mechanism of selective advantage is unable to overcome this spatial

entrapment) and stops proliferating despite its selective advantage (e.g. Figure 2.9
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4). In both these cases, further sampling biases occur. In the case of punch 5 for

example (Figure 2.6 D-iii), where the new subclone is fixed (clone fraction=100%),

there is an overrepresentation of a cluster of mutations that is only due to spa-

tial drift and not selection. These dynamics are recapitulated in larger cohorts of

simulated tumours with the same parameters (Figure 2.10). The distributions of p-

values for the AUC measurements for all simulations for different modes of growth

are illustrated in Figure 2.11 A. This figure shows that neutrality is accepted in

the majority of homogeneous cases without selection, and it is rejected in the ma-

jority of homogeneous cases with selection. In the case of boundary driven growth

things are more complicated. In Figure 2.11 B we show the AUC tests for neu-

trality applied to whole-tumour samples versus punch/needle biopsies. In the case

of neutral boundary driven growth, neutrality is accepted in the majority of cases

when we use localised punch/needle biopsies, but rejected when the whole-tumour

sample is examined. This is due to the deviation from strict neutrality caused by

boundary driven growth, that can be detected only when a large region of the tu-

mour is sampled (and hence differences between centre and periphery of the tumour

are captured). In the case of selective boundary driven growth, we observe similar

dynamics but with the ability of rejecting neutrality if differential selection of the

growing subclone is captured within the punch/needle sample. We note that under

selective boundary driven growth, the subclone often remains imprisoned, leading to

neutral-like dynamics. Similar dynamics to Figure 2.6 B are observed when positive

selection is modelled as the probability of growing in the absence of space (pushing

probability parameter a increased) rather than the increased birth rate. This leads

to dynamics dominated by the homogeneous growth of the subclone rather than

boundary growth of the background clone (Figure 2.12). Moreover, removal of the

majority of cells (99%) by treatment leads to enhancement of outgrowth of selected

clones due to competitive release (Figure 2.13 and Figure 2.14).
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Figure 2.13: Killing 99% of cell population and re-growing tumours. For each of
the representative cases: (A) neutral homogeneous, (B) selective homogeneous, (C) neutral
boundary driven, (D) selective boundary driven, we simulated procedures of removing
large cell population (here 99%) by the end of tumour growth and wait it to regrow to its
original size.

We then looked at the pairwise VAF distributions between samples. The amount

of subclonal mutations scattered through the frequency spectrum (Figure 2.15) and

the number of subclonal clusters due to sampling bias and spatial drift was signif-

icant (e.g. Figure 2.15 D). As per ground truth, only the dark purple mutations

should show a subclonal clustering pattern (e.g. Figure 2.15 B, punch 1). We found

that scattered variants were mostly due to the effect of neutral lineages spreading in
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space, and then subsampled in different ways in each tumour region. In the case of

boundary driven growth, sampling bias produces evident clusters that do not corre-

spond to differently selected subclones in the tumour. This makes the reconstruction

of the true clonal phylogeny and its evolutionary interpretation problematic.
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Figure 2.14: Growth curves through cell killing. Tumour cell population growth
curves for each of the representative cases: (A) neutral homogeneous, (B) selective homo-
geneous, (C) neutral boundary driven, (D) selective boundary driven, where by the end
of tumour growth we remove 99% of cell population and wait for the tumour to regrow to
its original size.
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Figure 2.15: Sample vs sample scatterplots of mutations. For each of the represen-
tative cases: (A) neutral homogeneous, (B) selective homogeneous, (C) neutral boundary
driven, (D) selective boundary driven, we report the scatterplots of somatic mutations
in selected samples. Clearly, the presence of passenger subclonal mutations in the neu-
tral tail of growing clones that spread in space as the tumour grows produces scattered
variants (e.g. A). Even more striking is the formation of subclonal clusters of mutations
particularly in the presence of boundary driven growth (e.g. C, D) where some lineages
are over-represented not because of differential selection, but because of sampling bias and
spatial drift.
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2.5.2 Spatial effects on single-cell sequencing data

Most of the confounding factors we have described so far result from the limita-

tions of bulk sequencing, where the genomes of many cells are convolved within

samples. Single-cell sequencing does not suffer from this particular limitation and

promises high-resolution cancer evolutionary analysis devoid of the drawbacks of

bulk sequencing [121].

To examine the effect of single cell sequencing, we simulated whole-genome se-

quencing of 10 single cells taken at random from the tumour and reconstructed their

phylogenetic relationship (Figure 2.16 A-i). For the neutral cases (Figure 2.16 A and

C), the patterns are consistent with a typical “balanced” neutral tree, wherein all

lineages contribute roughly equally to the final cell populations. In a balanced tree,

the average distance between the trunk and each leaf of the tree is similar in each

lineage. In cases with selection (Figure 2.16 B-i and D-i), the selected subclonal

lineages are over-represented on the tree (as reflected in VAF distributions), as the

red lineage is introduced at time t = 8 and would have been much smaller if it was

not selected for. Here the average distance between trunk and any leaf is different

in the background vs the new clone. The pattern is even clearer if we sample 400

single cells and performed WGS (Figure 2.16 B-ii and D-ii). We note that if we

use randomly sampled single cell sequencing and plot the site frequency spectrum

(frequency distribution of mutations within the population of sampled cells) we re-

capitulate the VAF distribution, including subclonal clusters and 1/ f 2 tails (Figure

2.17). This is because the site-frequency spectra derived from single-cell sequencing

data corresponds to a VAF distribution.
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Figure 2.16: Single-cell sequencing data from spatial tumour simulations. (A)
From each representative scenario we sampled 10 single-cells at random (i) as well as 400
single-cells at random (ii) and performed synthetic whole-genome sequencing. In both
homogeneous (A) and boundary driven growth (C), single-cell sequencing significantly
reduces the sampling bias that we found in bulk samples and the only overrepresented
lineages were due to selection (B, D). However, due to the currently high error rate of
single-cell sequencing, several studies rely on single-cell genotyping using mutations found
in bulks. We simulated this by genotyping on 400 single-cells the mutations found at
VAF>5% in needle biopsy 8 of each tumour (iii). The resulting trees are hard to interpret
in terms of the clonal phylogeny due to the bias in the selection of variants to be genotyped.
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Figure 2.17: Allele frequency distributions derived from single cell sequencing.
We construct the allele frequency distributions from sequencing the randomly sampled
400 single cells (same as in Figure 4) from the four representative tumour examples: T1
– neutral homogenous, T2 – selective homogenous, T3 – neutral boundary driven, T4 –
selective boundary driven.

However, as whole-genome mutational profiling of single cells is still difficult due

to allele dropout [111], often single-cell genotyping has to be performed instead

[159]. In this approach, a bulk sample is sequenced and all mutations in that

bulk sample are then tested in single cells for presence/absence of the mutation.

Integrating bulk sequencing with single-cell information is extremely powerful [160],

but requires careful interpretation of the results. In Figure 2.16 we show that this
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approach, although informative, can lead to very distorted phylogenetic trees where

branch lengths are heavily biased by the initial choice of mutations to be assayed,

and consequently the signature of selection vs neutrality is not readily identifiable

from these data alone.

Moreover, significant sampling bias is still apparent for single-cell sequencing

when individual cells are not sampled uniformly at random from the whole tumour,

but instead isolated in ‘clumps’ from different bulk samples. In Figure 2.18 we have

simulated the collection of 4 single cells from each of the 6 punch biopsies in Figure

2.6 (these are the same simulations used to generate Figure 2.16). The trees are

quite different from those sampled in Figure 2.16 and moreover, it is interesting to

see how the underlying patterns of growth are reflected in the mixing of cells from

different bulks. For instance, homogeneous growth leads to very high intermixing of

cells in different bulks, whereas boundary driven growth tends to spatially segregate

bulks. We have quantified the level of intermixing for different modes of growth in

all our simulation cohort, highlighting this pattern (Figure 2.19). We have observed

these patterns real data from carcinomas vs adenomas, where carcinomas were

characterised by clonal intermixing, but adenomas were not [95]. Similar patterns

of intermixing have also been found more recently using single-cell seeded organoid

sequencing [161].
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Figure 2.18: Biases of single-cell sequencing when cells are taken from spatially
separated bulk samples. Whereas taking random cells from a tumour highly reduces
sampling bias, this is often not how single cells from neoplasms are sampled. Often first
small chunks of the tumour are dissected and then single-cells are isolated from those.
(A) neutral homogeneous, (B) selective homogeneous, (C) neutral boundary driven, (D)
selective boundary driven. For each of our representative examples, we simulated this type
of sampling and show how this impacts severely on the phylogenetic tree and patterns
of clonal intermixing. In particular, single-cell sampling from bulks alters the detected
phylogenetic relationship of the cells because, since groups of cells come from spatially
segregated regions, those appear more closely related than expected by chance. This is
an important source of sampling bias that needs to be considered when analysing single-
cell phylogenies. Cells coming from the ‘red’ mutant subclone are highlighted in the red
shaded box.
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Figure 2.19: Distribution of Moran’s test effect size. We simulate 100 different
tumours for each 4 representative growth models and test intermixing of subpopulations
within each simulation lattice using Moran’s entropy-based test. Each individual test
output significant p-values indicating to high spatial correlation between tumour cell types
(mutant vs WT) and their location on tumour lattice. Although the test effect size (the
observed values of the Moran’s test statistic) differ as we can see from their distributions
per model scenario.
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2.6 Resolving spatial effects with Bayesian infer-

ence

2.6.1 Approximate Bayesian Computation

Due to the complexity captured by our spatial model of tumour growth, we do

not have explicit formulas for the stationary probabilities of the stochastic process,

and hence cannot derive a likelihood function. Thus, we have to use likelihood-free

methods to perform statistical inference on the parameters and compute posterior

distribution of the parameters θ .

Here we use Approximate Bayesian Computation (ABC) [162, 163] to infer the

parameters of our model. ABC is based on the idea of scanning a large grid of

plausible values for θ , and simulating the model many times with such parameters.

Outputs of the model are stored and compared using a predefined set of summary

statistics that are initially evaluated on real data. We can then rank sets of parame-

ters that lead to the generation of synthetic data that are close to the observed data.

We can estimate a posterior distribution p(θ |D) for the model parameters θ , using

the available data D and the prior for θ . This method is computationally intensive,

and requires running several hundred (ideally thousands or millions) simulations.

In our case we have generated ∼74 million simulations that we use to perform the

inference step.

There are different approaches to implement ABC, the simplest is rejection-

sampling. More advanced implementations such as ABC with Markov Chain Monte

Carlo (MCMC) can result in significant increases in efficiency. We implemented a

simple rejection-sampling algorithm first, and then added Monte Carlo simulation

techniques to speed up convergence. The simple ABC rejection-sampling algorithm

consists of the following steps:
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1. Sample parameter vector θ from a prior distribution p(θ).

2. Run the model with the given parameter set and generate the synthetic dataset

3. Evaluate the distance between the simulated dataset and the target data

4. If the distance is less than a desired threshold, accept the parameters.

5. Return to step 1 and repeat until N parameter values are accepted.

In this study we use uniform priors for all parameters: u ∼ Uni f orm(0,100),

s,d,a ∼Uni f orm(0,1), t ∼Uni f orm(0,15). One of the most important factors that

affect the ABC outcome is the number of simulations that one can afford to run,

and the summary statistics chosen to evaluate the distance between a target and a

simulated dataset. Summary statistics can be any quantitative measurement that

captures the information from the multidimensional data without losing too much

information. As for our distance metric, we use Euclidean and Wasserstein distances

between summary statistics for different parameters as discussed below.

The Wasserstein metric estimates distance between probability distributions by

treating each distribution as a unit amount of dirt piled up on a given metric space

and calculates the minimum cost required to convert one pile into another. If x

and y are two vectors we want to evaluate the distance of, first we calculate their

empirical distribution functions F(t) = ∑
m
i=1 wx

i I{xi 6 t} and G(t) = ∑
m
i=1 wy

i I{yi 6 t}

(for weights wx
i and wy

i we took 1/m and 1/n respectively), the Wasserstein distance

is defined by evaluating the following:

Wp(F,G) = (
∫ 1

0
|F−1(u)−G−1(u)|p)1/p (2.15)

where we took p = 1 for our analysis. We used the R package transport [164] to

implement the distance calculation.
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We used different summary statistics for each sampling scheme. For punch biopsy,

needle biopsy and whole tumour sampling – we used the VAF distribution to com-

pute our summary statistics. For the whole tumour VAFs, our ABC procedure

was similar to the one in [89]. For the bulk samples, since our model implements

multi-region sampling, we first evaluate the multivariate VAF distribution (which is

a joint probability distribution of all sampled bulk VAFs) and then calculated the

Euclidean distance between the obtained empirical probability distribution vectors:

DEuclidean(Fsim.data(VAFBulk1, ...,VAFBulkN ),Ftarget.data(VAFBulk1, ...,VAFBulkN )) (2.16)

With single cell samples, we constructed phylogenetic trees per tumour and used

different tree-based summary statistics to evaluate the distance. Since the inferred

phylogenetic tree branch length is proportional to the number of unique mutations

belonging to a node, we decided to compare the vectors of all branch lengths (be-

tween a simulated and target tumour trees) by computing the Wasserstein distance.

For the subclone introduction time tdriver, death rate d and the boundary driven

growth parameter a, we chose to compare the vectors of branching times for each

node of the phylogenetic trees.

Due to computational costs, we are limited to run the ABC framework with a

small tumour size (∼100k cells) or simulate smaller datasets per inference, both

of which can significantly affect the outcome. To therefore speed up our ABC

framework we implemented a Sequential Monte Carlo (SMC) algorithm [165] to

increase the acceptance rate of the simple ABC rejection algorithm. Our ABC-

SMC algorithm uses sequential importance sampling by running several rounds of

resampling around the accepted parameters (correlating the rounds), and gradually

decreasing the acceptance threshold while converging to the posterior distribution.

This approach significantly increases the acceptance rate of the simulated datasets
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[166].

Our implementation of the ABC-SMC algorithm is as follows:

1. Initialise the indicator to rounds r and the acceptance threshold ε

2. If r=1

2.1. Run the simple ABC rejection algorithm (described above).

2.2. Order the simulated parameters set according to their corresponding dis-

tance values.

2.3. Keep the top Q per cent of the parameters.

3. Else

3.1. Sample next particle θ = (u, t,s,d,a) from the accepted set of parameters

from round r−1 with weights Wr−1.

3.2. Perturb each sampled parameter pi using uniform perturbation kernel

K = Uni f (pi−σ , pi + σ), where σ = 1
2(max(pr−1

i )−min(pr+1
i )).

3.3. If π(θ) > 0, keep θ ; Else go to step 3.2.

3.4. Simulate data from the model using the sampled particle θ .

3.5. Calculate distance D between the target and the simulated data.

3.6. If D < ε , keep θ ; Else go to step 3.1.

4. Calculate the weights for all accepted particles 1 6 j 6 N:

4.1. If r = 1, set W( j,r) = 1

4.2. Else W( j,r) =
π(θ( j,r))

∑
N
l=1 W(l,r−1)K(θ(l,r)|θ(l,r−1))

5. Update the threshold ε to the top Q-th percentile of the accepted particles.
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6. Repeat until ε is less than a desired convergence threshold.

Our ABC-SMC framework tries to recover all the parameters (referred as a par-

ticle in the algorithm above) at the same time. We notice that once one of the

parameters converges, the acceptance rate decreases significantly. We then decided

to fix the converged parameter at the inferred value (mode of its posterior) and re-

run the inference varying the rest of the parameters until other parameters converge,

and repeat the procedure. We found that this significantly improved the convergence

speed. For the 2D inference in Figure 2.20 we started with N = 100 simulated par-

ticles, performed r = 10 rounds with quantile Q = 0.5, leading to ∼200k simulations

for each parameter and ∼1M simulations in total. For the 3D inference in Fig-

ure 2.23, we started with N = 1000 simulated particles, performed r = 10 rounds

with quantile Q = 0.5, leading to ∼2M simulations for each parameter and ∼10M

simulations in total.

We developed an R package called CHESS (Cancer Heterogeneity with Spatial

Simulations) that implements the following three sampling strategies for the infer-

ence:

1. Bulk samples (punch or needle biopsies) - ABCSMCwithBulkSamples()

2. Single cell sample phylogenetic trees - ABCSMCwithTreeSampleBL() and

ABCSMCwithTreeSampleBT() (using Branch Lengths or Branching Times

as summary statistics)

3. Whole tumour bulk sample - ABCSMCwithWholeTumour()

Depending on the strategy, a user would need to provide real or synthetic tar-

get data in the form of tumour bulk sample VAFs (list of R data.frames where

each row should correspond to a unique mutation with the following columns: clone
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(Clone type label set to 0), alt (Number of reads with the variant), depth (Sequenc-

ing depth), id (Unique mutation ID)), an array of whole tumour sample VAFs or

single cell sampling phylogenetic trees. Alternatively, a user can provide a set of

parameters (please refer to the package documentation for the details of each input

parameter format) to simulate a synthetic target tumour to then recover these input

parameters.

The functions output a sequence of files containing sets of inferred parameters

corresponding to each SMC round (that can then be used to construct the posterior

distributions for each parameter).

2.6.2 Inferring tumour growth model parameters

The spatial effects of drift and sampling bias one can observe are remarkable and rep-

resent a major challenge for the correct subclonal reconstruction of tumours growing

in three-dimensional space. Due to the inherent complexity, analytical solutions to

this problem that take space into the account remain challenging, although some

attempts to tackle this difficult question are being undertaken [167]. Understanding

the complex impact of spatially growing cell populations on the actual genomic data

requires an approach based on computational simulations.

Here we devise a statistical inference framework, similar in spirit to what we

previously proposed for well mixed populations [89], that aims at recovering the

evolutionary parameters of each individual tumour from the type of data we have

discussed so far. We constructed a test-set of 34 synthetic tumours simulated

with different parameter values and assessed the error in recovering the parameters

used to generate these tumours after statistical inference with an Approximate

Bayesian Computation – Sampling Monte Carlo (ABC-SMC) approach [89, 162, 168,

169]. We used approximately one million simulation instances to perform parameter

inference using uniform priors. We were particularly interested in comparing the
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accuracy provided by the different spatial sampling methods in recovery evolutionary

dynamics. We studied three different sets of tumours. In the first set, we investigated

parameter recovery in tumours with homogeneous (exponential) growth, with and

without selection but with no cell death. In the second set, we added stochastic cell

death as an additional factor. In the third set, we studied cases of boundary driven

growth where we also examined our ability to recover the extent of the boundary

driven parameter a. In all three sets, we studied the differences in the ability to

recover parameter if we used a single bulk sample of the whole tumour multi-region

punch biopsies, multi-region needle biopsies or single-cell sequencing. Following the

inference of the parameters, we calculate the percentage error for each parameter as

a difference between the true parameter value and inferred parameter value (mode

of a parameter posterior distribution) scaled by the true parameter value. Then we

plot the distributions of the percentage errors for each parameter per growth model

and sampling strategy in Figure 2.20.
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Figure 2.20: Statistical inference framework to recover evolutionary param-
eters. We combined our model with a statistical inference framework (Approximate
Bayesian Computation – Sequential Monte Carlo) in order to infer the evolutionary pa-
rameters of selection and growth from the data. We tested this framework on 34 synthetic
(target) tumours for which we generated genomic data. Our of these 34 target cases, 13
were characterised by homogeneous growth with no cell death (A, Set 1), 11 were homo-
geneous but with cell death (B, Set 2), and 10 where characterised by peripheral growth
(C, Set 3), see all parameters in Table S1. We tested the ability to recovery parameters
of 4 different sampling schemes: punch samples, needle biopsies, single cell phylogenetic
trees and whole-tumour sampling (see Materials and Methods for details). We report the
percentage error of the inference (true parameter value – inferred value based on the mode
of the posterior probability) for each parameter and scenario. See prior parameter ranges
in Table S2. (D) For the homogeneous stochastic cell death scenario (Set 2), we also report
the error in recovering the death rate parameter d. (E) For the boundary driven growth
scenario we report the error in recovering boundary driven growth parameter a (Set 3).

Not surprisingly, the scenario with exponential homogeneous growth without cell

death was the one where the evolutionary parameters were the easiest to recover

because spatial constraints were limited and the number of unknown parameters
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lowest (Figure 2.20 A-C, “Set 1”). In particular, the percentage-error in recovering

the mutation rate u was particularly low, especially using single-cell sequencing

(Figure 2.20 A, “Set 1”). The mean percent error of the parameters t (Gillespie

time when a new mutant is introduced) and s (selective coefficient of the new

mutant), in the case of homogeneous growth were also within 20% and overall

agrees with our previous observations in well-mixed populations [89]. The presence

of stochastic cell death, even within a homogeneously growing tumour, introduced

significant spatial and sampling biases (spatial drift) that led to a higher error in

the recovery of the parameters (Figure 2.20 A-C, “Set 2”). Furthermore, some of

the evolutionary parameters became unidentifiable (mutation and death rate). In

this scenario, the best sampling strategies to recovery the death parameter d were

single-cell sequencing or whole-tumour sequencing, reflecting the need to collect

large population of cells for the correct estimation of this parameter (Figure 2.20

D). Boundary driven growth also introduced significant biases that led to higher

percent-error values in the recovered parameters (Figure 2.20 A-C, “Set 3”). Here,

single-cell sequencing was best in recovering the boundary driven growth parameter a

(Figure 2.20 E). See Figure 2.21 for summary statistics from the simulations in Figure

2.20. Parameter dependency in the inference of t and s combinations is reported in

Figure 2.22. We performed the same inference approach but with 3-dimensionally

growing tumours using a test set of a single simulated “target” tumour and inferred

the parameters using approximately 10 million simulated cancers and found similar

results (Figure 2.23).
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Figure 2.21: Comparing site frequency spectrum and phylogenetic tree balance
index statistics for each representative scenario and sampling strategy. (A)
Distributions of different summary statistics from single cell sampling (100x) phylogenetic
trees for the four representative cases. The balance index-based statistics (Sackin, Colless
with their different normalisation approaches – Yule, PDA) seem to have similar shapes
among all four tumour cases, while tip and node Cophenetic distance-based statistics
show different trends for neutral versus selective examples with not observable variation
between homogenous and boundary driven tumours. Branch length-based statistics give
similar results as cophenetic distances. Only one statistic, maximum node depth, tend
to have longer flat tails for boundary driven tumours compared to homogenous tumour
simulations. (B) For each of four tumour examples, we compare total number of passenger
mutations and final population sizes along with the time the simulations finish and the
final frequency of the new sub-population (introduced after a driver event).
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Figure 2.22: The effect of stochasticity on the dependence of t and s parame-
ter combinations on the VAF distribution. To explore the interdependence of the
parameter pair t and s, for their different values we simulate tumour growth while fixing
all the other parameters (2D grid size= 400, u = 10, d = 0, a = 1). We summarised the
obtained tumours by calculating either the Euclidean norm of the obtained whole tumour
VAFs (C, D) or the calculating Euclidean distance between the cumulative VAF distribu-
tions of the simulated and a chosen target tumour (in this case target tumour parameters
are t = 7, s = 3) (A, B). To reduce the effect of stochasticity we fix the random seed in (B)
and (D) and they indeed showed less scattered patterns of (A) and (C) plots respectively.
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Figure 2.23: Posterior distributions for a 3D model. ABC-SMC inference for
a selective homogenous growth simulation in 3D space. Real “target” values are
reported as dashed lines. We run this ABC framework similarly to 2D simulations, where
we recover each parameter at a time; first varying all parameters, once one is converged,
fixing it at its inferred value and rerunning the simulation varying the parameters left to
infer. Here we first recovered mutation rate, then time and selective advantage (together),
and finally death rate and aggression (together as well). Similar to 2D models, our ABC
framework with whole tumour sampling performs the best compared to other sampling
strategies.
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2.7 Discussion

It is now widely accepted that tumour growth is governed by evolutionary principles.

Thus, recovering the evolutionary histories of tumours is essential to understanding

of patient-specific tumour growth and treatment response. However, these analyses

are inevitably based on limited information due to sampling biases, noise of known

and unknown nature, lack of time resolved data amongst many others. Despite these

limitations, many approaches based on single sampling, multi-region bulk profiling,

or single cell sequencing have been developed. Information from such data is often

derived using purely statistical bioinformatics methods such as clustering analyses,

without consideration of the confounding underlying influence of the cellular me-

chanics of tumour growth. Here we explicitly investigated spatial effects on the

evolutionary interpretation of typical multi-region sequencing data of tumours. We

found that the effects of sampling bias and spatial distributions of spatially inter-

mixed cell populations critically depend on the mode of tumour growth as well as

the details of the underlying sampling and data generation procedure. Most surpris-

ingly, we could observe clusters of over-represented alleles in the VAF distribution of

some tumour samples that were indistinguishable from positively selected subclonal

populations, despite emerging solely due to the spatial distribution of cells. Such

clusters vary depending on how one samples a tumour, and would therefore cause

a major challenge for the evolutionary interpretation of cancer genomic data based

on subclonal reconstruction.

We furthermore presented a Bayesian inference framework to recover evolutionary

parameters from our spatial distributions. Evolutionary parameters such as strength

of selection or mutation rates may be important surrogate measurements of evolv-

ability, and hence linked to progression and treatment resistance, as it has been

demonstrated for the rates of chromosomal instability [25, 170]. Again, we observe
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that our ability to precisely recover certain evolutionary parameters depend on the

scenarios of tumour growth and spatial sampling strategies. However, we do believe

that although complex, the situation is far from hopeless. More involved statistical

frameworks based on first principles of tumour growth can help resolving some of

the evolutionary parameters on an individualised patient basis. Importantly, careful

spatial sampling and single-cell sequencing can mitigate some of the confounding

issues. We do acknowledge that our model has some important limitations, such as

the infinite allele assumption (which could be violated by copy number loss [111]).

Also, for computational feasibility we mostly focus on 2D spatial analyses and of a

relatively limited number of cells with respect to the billions of cells present in a

human tumour. We also acknowledge that we do not offer a closed mathematical

formulation for the distribution of alleles under spatial effects, which would be very

useful but remains a very difficult problem that can only be tackled partially (e.g.

[154]). Additionally, more realistic models of tumour growth dynamics that account

for force fields between cells [171] have been developed that could improve on the

study of spatial patterns of growth [87, 172]. For computational feasibility, espe-

cially in regards to the necessity of performing statistical inference on the data and

generate thousands of simulations, we restricted our analysis to the stochastic cel-

lular automaton model we propose here. Nevertheless, our approach highlights the

importance of spatial modelling of real data and the impact of confounding factor

in our estimate and understanding of tumour evolution.



Chapter 3

Linking mutational

signatures to the epigenome

3.1 Introduction

Not just genetic but also epigenetic alterations are involved in tumorigenesis and

cancer evolution. It is known that genetic alterations can cause epigenetic changes

(e.g. mutations in chromatin modifier genes) [173, 174, 175]. And it is also known

that the epigenetic configuration of the genome influences the accumulation of muta-

tions due to different efficiency of mismatch repair genes that act in the presence or

absence of chromatin (e.g. the associations found between chromatin structure and

the corresponding mutational load [176]). The patterns of mutation accumulation

in the genome can be studied using mutational signatures introduced by Alexandrov

et al. in [67]. Here we hypothesize that different mutational processes, giving rise

to distinct mutational signatures, are active in epigenetically different regions of the

genome. To test our hypothesis, we need an epigenetic map of the regions such

as promoters, enhancers, coding and non-coding DNA sections. Such epigenomic

102
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maps are cancer type specific. Our collaborator, Luca Magnani, and his lab have

derived such a mapping for breast cancer and hence we developed a method to test

the enrichment of mutational signatures in different epigenetic regions of the breast

cancer genome.

Breast cancer is the most common cancer type and one of the leading causes of

death for women worldwide. Oestrogen-receptor (ER) positive cells are present in

over 70% of tumours [177], making oestrogen receptor positive breast cancer the

most common subtype. Although significant progress has been achieved through

the use of hormonal therapies, less is known about its particular aetiology and

evolution. Using the data from [178], where they profiled the active regulatory

landscape of over 50 ER+ breast cancer patients using epigenetics-based assays,

we partitioned the genome into functionally distinct epigenetic regions, such as

regulatory, coding, repetitive, transcribed and not-transcribed regions. We analysed

each of these partitions in over 560 whole genomes from ER+ and ER- cancers and

identified the activity of different mutational signatures across the distinct genomic

regions, between the two cancer subtypes [179].

3.2 Epigenomic annotations

Among all breast cancer cases, around 70% contain different amounts of estrogen-

receptor (referred to as ERα-positive) cells, that play a significant role in the disease

progression. In cell lines it has been show that parallel to genetic evolution, epige-

netic changes also play a role in breast cancer progression and resistance to endocrine

therapies (ET) [180]. Several studies showed that epigenetic information can modify

gene transcription states during cell division [181, 182, 183, 184]. Epigenetic mod-

ifications can also interact with ERα associated pioneer factors and thus modify

its binding to enhancers [185, 186]. Epigenetic regulatory regions have been also
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successfully mapped and non-coding parts of DNA been annotated using epigenetic

modifications of histone proteins [187, 188].

Acetylation of lysine 27 on histone 3 (H3K27ac) has been shown to be associated

with promoters and enhancers of transcriptionally active genes [189, 190, 191]. In

[178] they profiled 55 ERα-positive breast cancer samples using H3K27ac ChIP-seq

and built the list of clinically relevant DNA regulatory regions. Regions enriched by

H3K27ac were classified into 23,976 proximal promoters and 326,719 enhancers. To

identify promoters, profiling four patients was enough, whereas for enhancers around

40 patients had to be profiled that reflects the 1:10 ratio of the identified enhancers

and promoters. The analysis was also in agreement with several studies showing

that enhancers are the main sources for cell-type-specific transcriptional differences.

In the study, they also developed a sharing index – SI to indicate the number

of patients sharing the H3K27ac signal at each specific location and annotated

enhancers and promoters as a function of this index. This index corresponds to

the level of recurrence in the cohort of a given epigenetic state. The majority of

obtained enhancers were patient-specific i.e. their SI = 1, while active promoters

had much higher values of SI. Hence, they showed that enhancers play a dominant

role in forming the epigenetic heterogeneity of ERα-positive breast cancer.

We used these annotations of breast cancer and partitioned/annotated whole

genome sequencing of breast cancer cases, the analysis of which is discussed in the

upcoming sections.

3.3 Mutational signatures

Somatic mutations that affect cell growth and division are one of the main sources

of cancer initiation and progression [192]. Defects in DNA repair mechanisms or

environmental mutagens increase the rate of somatic mutations and hence elevate
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the chance of cancer development. Different mutagenic processes cause different

molecular lesions that by themselves are activating different repair mechanisms,

and hence the whole process creates specific mutational spectra – referred to as

‘mutational signatures’ [67]. The signatures can help identify which mutagenic

processes are active in the tumour, find specific characteristics of different tumour

subtypes or even direct therapeutic interventions by being markers for therapeutic

response [193].

Mutational signature is a specific distribution of the 96 possible substitution

types (6 types of substitution x 4 types of 5’ base x 4 types of 3’ base) that occur

at a base pair in the middle of a trinucleotide. Signatures are therefore inferred by

identifying common patterns of mutations with their sequence context across many

tumours. The first signature discovery method was based on Non-Negative Matrix

Factorization (NMF) [67] (which tries to decompose the matrix of mutations (where

rows correspond to samples and columns to mutational motifs i.e. SNV triplets)

into two matrices of mutational spectra and their corresponding expression weights)

and still remains to be the most broadly used tool among other signature discovery

methods [194, 195, 196, 197]. Using the original NMF-based method and sequence

analysis of over 7000 human cancers (mostly exome sequencing) Alexandrov et al.

initially discovered 22 different mutational signatures. Then they later expanded

the analysis to over 12000 human cancers and inferred 30 distinct mutational sig-

natures (https://cancer.sanger.ac.uk/cosmic/signatures). This set of 30 signatures,

also called COSMIC signatures, has since been the most widely used set of signa-

tures. Recently, the analysis was expanded to include 23000 human tumours with

71 different cancer subtypes. This time they also included non-point mutations such

as indels and dinucleotide (tandem) mutations and inferred 49 distinct signatures

[198].

Examining signatures with their associated aetiology across different cancer types
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has revealed different mutagenic characteristics specific to different carcinogenic pro-

cesses. From the 30 distinct COSMIC signatures, around third was found to be

associated to endogenous mutagenic processes, such as the activity of the APOBEC

family of deaminases and deamination of 5-methylcytosine, defective DNA poly-

merases or defective DNA repair processes [199]. Some signatures have been associ-

ated with exposure to mutagenic agents, such as tobacco carcinogens, UV radiation,

alkylating chemotherapy drugs, aristolochic acid and aflatoxin B1 carcinogens. The

aetiology of almost half of the signatures still remains unknown. There have been

several approaches to produce mutagen-induced signatures in vitro as identifying

unknown signature aetiologies should provide better insights for understanding and

better characterising different cancer progression pathways and eventually link it to

patient clinical outcome.

3.4 Data analysis

3.4.1 Data annotation

As discussed in section 3.2 of epigenomic annotations, we partitioned the genome into

functionally distinct categories, such as regulatory, coding, repetitive, transcribed

and not-transcribed regions using the data from [178]. Figure 3.1 shows the region

size distribution for the 9 obtained epigenetic regions. As we can see, the longest

regions are non-regulatory non-coding DNA regions. Based on the SI (sharing index

from the study [178]), that was used to differentiate between recurrent epigenetic

regions across the genome and non-recurrent ones, we split the enhancer regions into

three groups and labelled as unique, shared and recurrent if their corresponding SI

number was equal to 1, was between 1 and 21, or above 21, respectively. Enhancer

and promoter region sizes are much smaller compared to the other DNA regions.

The distinctly smallest regions are the recurrent enhancers in non-coding regions.
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For our further analysis, we took into account the length of each epigenomic region

and scale the results accordingly to make sure the patterns we observed were not

mainly influenced by the different region size distribution.
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Figure 3.1: Epigenomic region size distribution. The region size distribution for
the 9 epigenomic regions plus the entire genome. The longest regions are non-regulatory
non-coding and coding DNA regions. Based on the SI (sharing index from the study [178]
that indicates to the patient count where a given enhancer was observed to be active.)
numbers we split the enhancer regions into three groups and labelled as unique, shared
and recurrent if their corresponding SI number was equal to 1, was between 1 and 21, or
above 21, respectively. Enhancer and promoter region sizes are much smaller compared
to the other DNA regions. The distinctly smallest regions are the recurrent enhancers in
non-coding regions.

Initially, we analysed three different sets of breast cancer data: two whole genomes

(primary cancers - Nik-Zainal [179] and metastases - Hartwig [200]) and one whole

exome (TCGA [201]) sequencing data. Figure 3.2 shows the distributions of mu-

tational burden per base pair for the three datasets. There was no BRCA status

available for Hartwig dataset, hence we labelled it as ‘BRCAunknown’. We can see

that the mutational burdens across the 10 genomic regions are more densely dis-

tributed in Hartwig than the other two datasets. Both in Nik-Zainal and TCGA,
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there are higher mutational burdens across all regions in BRCA wild type (WT)

patients compared to BRCA mutant. In our further analysis, we will only focus on

BRCA WT patients (here we included them just for the comparison). Coding DNA

regions, all categories of enhancers in coding regions and promoters have higher

relative mutational burden compared to the non-coding both regulatory and non-

regulatory DNA regions in Nik-Zainal dataset. From the TCGA dataset, we can see

that enhancers have higher mutational burden than non-regulatory coding regions,

while the entire exome has overall much higher mutational burden than each region

separately. This could largely be due to higher rate of false positives in exome se-

quencing. To explore the mutational burden distribution in Hartwig dataset we plot

it separately from the other two datasets (Figure 3.3). Here we do not see as much

difference in the distribution of mutational burden between the regions, and overall

the ER-positive patients have higher mutational burden compared to ER-negative.
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Figure 3.2: Distributions of mutational burden across the epigenomic regions.
The distributions of mutational burden per base pair for the three datasets - Hartwig,
Nik-Zainal, TCGA. There was no BRCA status available for Hartwig dataset, hence we
labelled it as ‘BRCAunknown’. BRCAwt and BRCAmut stand for BRCA wild type and
mutant, respectivelly. The mutational burden across the 10 genomic regions are more
densely distributed in Hartwig data than the other two datasets. Both in Nik-Zainal and
TCGA, there is higher mutational burden across all regions in BRCA wild type patients
compared to BRCA mutant. Regions with the higher relative mutational burden are
promoters and enhancers in coding regions
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Figure 3.3: Distributions of mutational burden across the epigenomic regions
in Hartwig dataset. To explore the mutational burden distribution in Hartwig dataset
we plot it separately from the other two datasets (from Figure 3.2). Here we do not see as
much difference in the distribution of mutational burden between the regions, and overall
the ER-positive patients have higher mutational burden compared to ER-negative.

3.4.2 Signature activity

We run the signature activity analysis on the three breast cancer datasets using

the COSMIC set of mutational signatures. Figure 3.4 shows normalised inferred

signature weights for Hartwig, Nik-Zainal and TCGA datasets. In Hartwig dataset,

we can see that signatures 2 and 13 are over-represented in ER-positive patients. ER-

negative patients have dominantly signature 3 expressed, and also signature 2 but to
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a lesser extent compared to the ER-positive patients. The aetiology of signature 2

is defined by its association to the activity of the AID/APOBEC family of cytidine

deaminases. A similar characteristic is attributed to signature 13 but is associated

with the process of converting cytosine to uracil (one of the main four bases found

in DNA and RNA). Signature 3 is associated with failure of DNA double-strand

break repair by homologous recombination (for the full list of all known signatures

aetiologies please refer to the following link: https://cancer.sanger.ac.uk/cosmic/).

Similarly, in the Nik-Zainal data, signature 2 is overrepresented in ER-positive

patients and underrepresented in ER-negative. Although the difference is more

evident if we look by BRCA wild type and mutant subgroups, where signature 2 is

more dominant in BRCA wild type patients. Signature 3 is the dominant signature

expressed in BRCA mutant patients compared to BRCA wild type, and similar

to the Hartwig dataset, it is more prevalent in ER-negative patients than in ER-

positive. TCGA data analysis showed a slightly different trend, which makes sense

as it is a whole exome sequencing data. Here the prevalence of signature 2 has

disappeared from almost all cohorts except ER-positive BRCA mutant patients.

The most dominant signatures are number 3, 5 and 12, as well as signature 1 in ER-

negative BRCA mutant subset (the aetiologies of signatures 5 and 12 are currently

unknown).

Besides the overall signature activity patterns over the three breast cancer datasets,

we can also notice patterns of signature activity specific to each epigenomic region.

For instance, from Nik-Zainal data analysis, we can see that recurrent enhancer

regions (both transcribed and non-coding) have higher activity level of signature 2

compared to other regions. Another interesting trend is of signature 1 (the aetiol-

ogy of which is the correlation between the inferred mutational spectrum and the

age of cancer diagnosis) which is equally present in all regions except the recurrent

enhancers but in non-coding DNA only. To test the significance of these observed
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patterns, we performed jackknife resampling based statistical analysis. In the re-

maining sections, I will present the details of the analysis and discuss the obtained

results.
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Figure 3.4: Signature activity weights per epigenomic region. Signature activity
weights (normalised) per 10 epigenomic region. In Hartwig, signatures 2 and 13 are over-
represented in ER+ patients. ER- patients have dominantly signature 3 expressed, and
also signature 2 but to a lesser extent compared to the ER+ patients. In Nik-Zainal,
signature 2 is overrepresented in ER+ patients and underrepresented in ER-. Although
the difference is more evident if we look by BRCA wild type and mutant subgroups, where
signature 2 is more dominant in BRCA wild type patients. Signature 3 is more dominant in
BRCA mutant patients compared to BRCA wild type, and similar to the Hartwig dataset,
it is more prevalent in ER- patients than in ER+. In TCGA, signature 2 has disappeared
from almost all cohorts except ER+ BRCA mutant patients.

3.5 Statistical modelling

3.5.1 Population level analysis

Initially, we performed the analysis on the patient level i.e. inferred signature ac-

tivity patterns per patient individually and looked at the distribution of signature

proportions over the entire cohort. Patient-level analysis suffers from not enough

mutations per patient per region to infer mutational signatures appropriately. Hence,

we decided to perform the analysis on the aggregated number of mutations over the

entire patient cohort per dataset. Figure 3.4 presents the results of one such call

for mutational signatures over the aggregated number of mutations. To test the

significance of the observed patterns we performed bootstrapping analysis, specifi-

cally, jackknife resampling by regions and patients. Jackknife resampling by regions

means leaving out 10% of each epigenomic region and rerunning the signature calling

analysis 100 times. The jackknife patients method leaves out 10% of patients each

time and repeats the analysis. If the obtained signature weight distributions are not

very wide (i.e. each run consistently returns activity weights close to each other per

signature) and the observed patterns are maintained, then we can conclude that the

pattern should be statistically significant.

We can also randomise the annotations of the epigenomic regions themselves. That
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is, we shuffle the regions; keep their size but change the annotation and again rerun

the analysis 100 times. This allowed us to test the robustness of the signature

activity patterns we observed per region (that they are not some consistent random

noise). If after randomising the annotations and rerunning the analysis, patterns do

change and signature weight distributions become wider, then we can conclude that

the obtained signal should not be noise.

3.5.2 Jackknife resampling

As discussed in the previous section, to test the significance of the obtained results

of different signature activity patterns in different epigenomic regions, we run jack-

knife resampling analysis. For this analysis, we only focus on the whole genome

sequencing datasets – primary tumours (Nik-Zainal) and metastases (Hartwig). We

run jackknife resampling in two different ways: resampling regions and resampling

patients. Resampling regions with leaving out 10% of all regions each time and

(re)inferring the signature activity patterns per run, allows us to monitor the signif-

icance and consistency of the signal we observe after a single run. Similarly, jackknife

resampling by patients with leaving out 10% of the total cohort and rerunning the

analysis, lets us generalise the obtained results and clear the doubt if any observed

pattern is significantly affected by only a subset of patients (characterised by a high

mutational load, for instance).

As in the main signature activity analysis, we split the dataset into 4 subgroups:

BRCA WT vs BRCA mutant and ER-positive vs ER-negative (although for the

Hartwig dataset, we did not have BRCA status, and split the dataset into 2 groups

by ER status only). Here we only present ER-positive BRCA WT patient cohort

analysis as we think they showed more interesting results (although we include each

subgroup analysis - excluding BRCA mutant patients - in the appendix).

Figure 3.5 shows Nik-Zainal dataset ER-positive BRCA WT patient cohort analysis
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jackknife by regions. We excluded signatures with the activity level less than 5% in

all regions. From the figure, we can see that, now we have distributions of different

signature activity weights per one signature per region rather than a single activity

level per signature. As in the single run, the most interesting signature activity

patterns were observed for signatures 1 (age) and 2 (APOBEC); the recurrent en-

hancer regions in coding and non-coding DNA are protected from signature 1 and

enriched by signature 2. This pattern was maintained after running the jackknifing

resampling of the regions and reinferring the signatures.

Similarly, Figure 3.6 shows Nik-Zainal dataset ER-positive BRCA WT patient co-

hort analysis jackknife by patients. Again, we excluded signatures with the activity

level less than 5% in all regions and focus only on signatures 1 and 2. Jackknife by

patient analysis gave very similar results to when running jackknife by region anal-

ysis; the observed pattern is maintained when rerunning the inference and leaving

out 10% of patients per inference.

Very similar results were obtained for the Hartwig dataset as well. Figure 3.7 shows

jackknife by region and Figure 3.7 jackknife by patient resampling results. The only

difference between the Hartwig (metastases) and Nik-Zainal (primary breast cancer)

datasets, is the higher activity level of signature 2 and lower activity of signature 1

in Hartwig compared to Nik-Zainal.

Overall, the most interesting observation is the enrichment of signature 2 (aetiol-

ogy of which is the activity of the AID/APOBEC family cytidine deaminases) at

enhancers of ER-positive breast cancer. This might indicate that there is a spe-

cific interplay of the oestregon receptor and the APOBEC enzyme through which

oestrogen drives the accumulation of APOBEC-induced mutations in these cancer

types.
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Figure 3.5: Jackknife resampling by regions (BRCA-WT, ER-positive) - Nik-
Zainal. The distributions of different signature activity weights (per signature per epige-
nomic region) obtained after the jackknife resampling of regions and rerunning the signa-
ture activity analysis 100 times. As in the single run (Figure 3.4), the most interesting
signature activity patterns were observed for signatures 1 (age) and 2 (APOBEC); the
recurrent enhancer regions in coding and non-coding DNA are protected from signature
1 and enriched by signature 2. This pattern was maintained after running the jackknifing
resampling of the regions and reinterring the signatures.
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Figure 3.6: Jackknife resampling by patients (BRCA-WT, ER-positive) - Nik-
Zainal. The distributions of different signature activity weights (per signature per epige-
nomic region) obtained after the jackknife resampling of regions and rerunning the signa-
ture activity analysis 100 times. As in the single run (Figure 3.4), the most interesting
signature activity patterns were observed for signatures 1 (age) and 2 (APOBEC); the
recurrent enhancer regions in coding and non-coding DNA are protected from signature
1 and enriched by signature 2. This pattern was maintained after running the jackknifing
resampling of the regions and reinterring the signatures.
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Figure 3.7: Jackknife resampling by regions (ER-positive) - Hartwig. The
distributions of different signature activity weights (per signature per epigenomic region)
obtained after the jackknife resampling of regions and rerunning the signature activity
analysis 100 times. As in the single run (Figure 3.4), the most interesting signature activity
patterns were observed for signatures 1 (age) and 2 (APOBEC); the recurrent enhancer
regions in coding and non-coding DNA are protected from signature 1 and enriched by
signature 2. This pattern was maintained after running the jackknifing resampling of the
regions and reinterring the signatures.
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Figure 3.8: Jackknife resampling by patients (ER-positive) - Hartwig. The
distributions of different signature activity weights (per signature per epigenomic region)
obtained after the jackknife resampling of regions and rerunning the signature activity
analysis 100 times. As in the single run (Figure 3.4), the most interesting signature activity
patterns were observed for signatures 1 (age) and 2 (APOBEC); the recurrent enhancer
regions in coding and non-coding DNA are protected from signature 1 and enriched by
signature 2. This pattern was maintained after running the jackknifing resampling of the
regions and reinterring the signatures.
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3.5.3 Randomise annotations

To further test the significance of the obtained results and whether the observed

signal is not caused by the specific distribution of the epigenomic regions, we decided

to randomise the annotations. That is, we shuffled the regions keeping each region

size constant and only swapping their annotations. If the results are significant and

not a consistent noise (especially influenced by region size), after randomising the

annotations and rerunning the inference for signature activity, the obtained patterns

should disappear. This would confirm that the patterns we observed before are likely

to be indeed due to different mutational signature activities in distinct epigenetic

regions.

After rerunning the inference (100 times here as well), we saw that the observed

patterns did disappear. Figures 3.9 and 3.10 show the results of the randomised an-

notation analysis of the Nik-Zainal BRCA-wt ER-positive and Hartwig ER-positive

patient cohort datasets, respectively. From both figures, we can see that the pre-

viously observed patterns of signature activities per epigenomic region have disap-

peared. That is, we can no longer see the differences in the level of signature activity

by the epigenomic regions. For each signature, we can see a very similar level of

activity per epigenomic region. In addition, the overall distributions of different

activity levels per signature (obtained from each resampling round) are wider than

when running jackknife resampling analysis confirming the strength of the signal

obtained when not randomising the regions.
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Figure 3.9: Randomised annotation analysis (BRCA-WT, ER-positive) - Nik-
Zainal. The distributions of different signature activity weights (per signature per epige-
nomic region) obtained after randomly shuffling the regions (keeping each chunk size con-
stant) and rerunning the signature activity analysis 100 times. The previously observed
patterns of signature activity levels per epigenomic region is disappeared and the distri-
butions look wider (confirming the strength of the signal obtained when not randomising
the regions).
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Figure 3.10: Randomised annotation analysis (ER-positive) - Hartwig. The
distributions of different signature activity weights (per signature per epigenomic region)
obtained after randomly shuffling the regions (keeping each chunk size constant) and
rerunning the signature activity analysis 100 times. The previously observed patterns
of signature activity levels per epigenomic region is disappeared and the distributions look
wider (confirming the strength of the signal obtained when not randomising the regions).
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3.6 Discussion

Genotype-phenotype interaction is becoming the ever-active research area [202, 203]

thanks to the technological advances that produce data from multiple levels of

biological processes (DNA, RNA, epigenetic markers, proteomics, metabolomics).

These technological advances enabled important progress in cancer research as well.

Mainly, in understanding the significant role of epigenetic alterations that are in-

volved in tumorigenesis and cancer development. For instance, in [176] they found

how chromatin structure influences the corresponding mutational load for a given

genomic region. Also, several studies showed how mutations in chromatin modi-

fier genes can lead to epigenetic alterations. Thus, understanding the link between

cancer genetics and epigenetics using the novel technological advances and scientific

discoveries is another important step in fully understanding the process of tumour

initiation and progression.

Here we studied the associations between mutational signatures and epigenome.

Namely, we found that there are different mutational processes (that give rise to

different mutational signatures [67]) active in epigenetically distinct genomic regions.

Our collaborator, Luca Magnani, and his lab have derived an epigenetic map of the

genomic regions for breast cancer that we used to develop a method that tests the

enrichment of mutational signatures in different epigenetic regions of the breast

cancer genome. Using their annotations [178], we partitioned the genome into

functionally distinct categories, such as regulatory, coding, repetitive, transcribed

and not-transcribed DNA regions. To find the associations, we analysed three

different sets of breast cancer - two whole genomes (primary cancers and metastases)

and one whole-exome - sequencing data.

Our main finding was the enrichment of the COSMIC mutational signature 2 at

enhancers of ER-positive breast cancer patients. The proposed aetiology of the sig-
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nature 2 is the activity of the AID/APOBEC family of cytidine deaminases. This

led us to further hypothesise that there is a specific interplay of the oestrogen re-

ceptor (ER) and the APOBEC enzyme through which oestrogen drives the accumu-

lation of APOBEC-induced mutations in these cancers [204]. To validate the origin

(APOBEC) of this mutational signature and its dependence on oestrogen exposure,

Luca Magnani’s lab has developed an in vitro system. They are maintaining a series

of ER+ and ER- clones - with varying exposure to oestrogen - in a neutral evolutive

regime and have been mapping the emerging mutations at a single base-pair reso-

lution using whole-genome sequencing (WGS) at different time points. Analysis of

contributing mutational signatures for each genomic section will reveal whether the

APOBEC enzyme plays a role in the evolution of oestrogen-dependent cancers by

specifically mutating regulatory regions.



Chapter 4

Timing epigenetic changes

4.1 Introduction

We know that every human cell contains approximately two metres long DNA within

its five-micron nucleus [205]. This marvellous topological challenge is solved by hier-

archical folding of DNA fragments around histone proteins that form nucleosomes.

The nucleosomes are then tied together, like beads on a string (Figure 4.1), to form

chromatin. Through chromatin, very long DNA molecules are packaged into a com-

pact, dense shape and fit into a cell nucleus. The dense shape of the chromatin

has other important roles, such as keeping DNA strands from becoming tangled,

preventing DNA damage, regulating gene expression and DNA replication during

cell division [205].

124
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Figure 4.1: Chromatin structure. (Figure by Richard Wheeler at en.wikipedia.org
[CC BY-SA 3.0)])

Although this process of DNA packaging into the cell nucleus via chromatin forma-

tion is a remarkable way of solving the topological challenge by each human cell,

there are cases when the process gets defected. For instance, changes in DNA, his-

tone modifications or distorted nucleosome remodelling (more details are discussed

in the following section), often referred to as chromatin aberrations, can be involved

in tumorigenesis [206].

On the other hand, it has been shown that mutations in the somatic cells are not

distributed uniformly across the human genome but rather their distributions vary

(up to fivefold) depending on specific genomic regions [207]. Several studies pro-

posed that epigenomic organization of genomic regions are the main sources of how

cancer somatic mutational landscape is formed [208, 209, 210, 211]. In [176] they

compared the distribution of mutations from multiple samples of different cancer

types to cell-type-specific epigenomic characteristics and found that chromatin ac-

cessibility and modification, as well as replication timing, explain over 80% of the

variation in mutations rates depending on different cancer genomic regions. This

study showed how the epigenetic configuration of the genome influences the accu-

mulation of mutations due to different efficiency of mismatch repair genes that act

in the presence or absence of chromatin. They labelled genome regions as open or
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close depending on when the chromatin was unfolded or not, and found that there

were distinct patterns of mutation accumulation in open vs closed chromatin re-

gions. Figure 4.2 is borrowed from the paper [176] and shows the density of C to T

mutations in melanoma alongside a 100-kb window profile of melanocyte chromatin

accessibility. We can see how closed chromatin regions have a higher mutational

load compared to open chromatin regions. This might be due to the activity of

different epigenetic repair mechanisms that undo or prevent genome from mutations

in open chromatin regions.

Figure 4.2: The example of the associations found between chromatin struc-
ture and the corresponding mutational load. The density of C to T mutations
in melanoma alongside a 100-kb window profile of melanocyte chromatin accessibility
(’DNase I accessibility index’; shown in normalized, reverse scale; high values correspond
to less accessible chromatin and vice versa). Closed chromatin regions have a higher mu-
tational load compared to open chromatin regions. This might be due to the activity of
different epigenetic repair mechanisms that undo or prevent genome from mutations in
open chromatin regions (Figure source [176])

The observation above suggests different mutation rates in open vs closed chromatin,

which enables us to time chromatin somatic changes. Hence, we decided to develop a

mathematical model that would infer times of chromatin aberration events. Specif-

ically, when different chromatin aberration processes lead to disordered closing and

opening of the chromatin regions. We tried to estimate the times when a given

region was supposed to be open but remained closed or vice versa due to abnormal

chromatin behaviour.
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4.2 Chromatin organization and remodeling

As introduced above, chromatin is a complex of nucleic acids and proteins, which

condenses to form chromosomes during eukaryotic cell division. Some of its primary

functions are: first, packaging DNA into a smaller volume so that it fits in the cell

and is prevented from damage; and second, regulating gene expression and DNA

replication. Nucleosome (a complex of histone proteins) remodelling - the process

of chromatin structure modification that enables gene expression - plays a crucial

role in gene regulation. These remodelling processes (also called chromatin opening)

are performed by biochemical modifications of histones (methylation, acetylation,

phosphorylation) that alter the chromatin structure so that it is readily available

for DNA transcription factors. The nucleosome bound chromatin regions before

the remodelling takes place, are referred to as the closed chromatin regions. Differ-

ent epigenetic aberrations cause disordered opening/closing of chromatin areas and

hence affect gene expression, which results in unbalanced DNA accessibility, and

later on in cancer formation and progression [212].

4.3 ATAC-seq data

ATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput se-

quencing) is a method for determining chromatin accessibility across the genome.

Its main elements are hyperactive mutant transposases that are used to probe open

chromatins by inserting their sequencing adapters into open regions of the genome.

Transposases are enzymes catalysing the movement of transposons to other parts in

the genome [213]. Figure 4.3, borrowed from wikipedia, shows a nice illustration of

the method workflow; at the top, we can see the tightly packed, transcriptionally in-

active (i.e. closed) chromatin and loosely packed, transcriptionally active (i.e. open)
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chromatin regions. The mutant Tn5 transposase cuts out sufficiently long DNA via

tagmentation which is a process of simultaneous fragmentation and tagging of the

accessible DNA in the open chromatin regions. The tagged DNA fragments are then

purified and amplified by PCR. Finally, they are sent for sequencing and ATAC-seq

peaks corresponding to open chromatin regions are identified.
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Figure 4.3: ATAC-seq workflow. (Figure source: cross-wiki upload from
en.wikipedia.org [CC BY-SA 4.0])
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4.4 Statistical modelling

Without loss of generality, we can set the time interval to when a given chromatin

region is open and after which it becomes closed, to be (0, T). Assuming chromatin

aberration time points can be normalised to be within the (0,1) interval, we devel-

oped a maximum likelihood estimation (MLE) framework that infers time points to

each chromatin region aberration event based on the mutational burden measured

per region. In the following sections, I describe the details of the model derivation,

followed by data analysis and model application steps to real and synthetic datasets.

4.4.1 The MLE-based model derivation

Let us say we have R chromatin regions: l1, ..., lR. Out of these R regions, say N

were observed to be undefined, and denote them as: u1, ...,uN . That leaves R−N

remaining regions to be either open or close. Say we count number of mutations

per region; so we have a sequence of R mutation counts: m1, ...,mR. Each mi is

assumed to be generated by a corresponding Poisson distribution with some λi rate.

We define three different sets of λi-s corresponding to the three types of chromatin

regions:

λo = li(T − t0)µo, i ∈ Open

λc = li(T − t0)µc, i ∈Closed

λui = li((θi− t0)µo +(T −θi)µc), i = 1,N (4.1)

where θi denotes the proportion of the time before an abberation occured in the i-th

interval. So, each λ is a product of the length of the corresponding region - li, the

mutation rate - either µo or µc assuming there are only two different mutation rates
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corresponding to open vs close regions, and the time interval of the observation -

T − t0.

Now let us derive the likelihood function for seeing the data given the set of pa-

rameters we defined. Our data are the number of mutations per chromatin region.

The probability of each mutation count can be calculated using the Poisson distri-

bution function: P(m|λ ) = λ m exp(−λ )
m! . The likelihood function for observing each mi

data point, then will simply be the product of each individual point’s probability,

assuming they are being generated independently. Let’s denote the time points cor-

responding to the undefined chromatin regions (that we aim to infer) as θi-s, where

i = 1, ...,N. Then the likelihood function will be the following:

L (m1, ...,mR|θi, ...,θN) = ∏
i∈Open

exp(−λo)
λ

mi
o

mi!
×

∏
i∈Closed

exp(−λc)
λ

mi
c

mi!
×

∏
i∈Unde f ined

exp(−λui)
λ

mi
ui

mi!
=

∏
i∈Open

exp(−li(T − t0)µo)
(liµo)mi

mi!
×

∏
i∈Closed

exp(−li(T − t0)µc)
(liµc)

mi

mi!
×

N

∏
i=1

exp(−li((θi− t0)µo +(T −θi)µc))
(li((θi− t0)µo +(T −θi)µc))

mi

mi!

(4.2)

Without loss of generality, we can set t0 = 0 and T = 1, and the likelihood function

will take the following simpler form:
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L (m1, ...,mR|θi, ...,θN) = ∏
i∈Open

exp(−liµo)
(liµo)mi

mi!
×

∏
i∈Closed

exp(−liµc)
(liµc)

mi

mi!
×

N

∏
i=1

exp(−li(θiµo +(1−θi)µc))
(li(θiµo +(1−θi)µc))

mi

mi!

(4.3)

Now we need to find the parameter values that will maximise this likelihood function.

The is an optimisation problem. To solve it, we need to first differentiate the

likelihood function with respect to the parameters, set the obtained expression to

zero, and then solve for the parameters. The function is not easy to differentiate,

so we do the common trick by taking the natural logarithm of the expression and

differentiating it instead of the actual likelihood function. This trick is accepted and

works because the natural logarithm is a monotonically increasing function. This

ensures that the maximum value of the log of the function will occur at the same

value as for the original likelihood function. Hence, our likelihood function can be

further simplified by converting it to the log-likelihood function:

L(−→m |
−→
θ ) = ∑

i∈Open
(−liµo + mi log(liµo)− log(mi!))+

∑
i∈Open

(−liµc + mi log(liµc)− log(mi!))+

N

∑
i=1

li(θiµo +(1−θi)µc)+ mi log(li(θiµo +(1−θi)µc)− log(mi!))+

N

∑
i=1

γi(1−θi)+
N

∑
i=1

γN+iθi (4.4)
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The expression above is also called the Lagrangian given we have the following

constraint for our optimisation problem: 0 ≤ θi ≤ 1, i = 1, ...,N and we added the

last term with some constants γ which is called the Lagrangian multiplier. The first

derivative of the log-likelihood function with respect to each parameter θi will then

be the following:

∂L
∂θi

=−li(µo−µc)+
mili(µo−µc)

li(θiµo +(1−θi)µc)
− γi + γN+i (4.5)

Then we apply the following Karush-Kuhn-Tucker (KKT) optimisation conditions

(KKT conditions extend the method of Lagrange Multipliers when optimisation

problems have constraints given by inequalities rather than equalities [214]): δL
δθi

= 0,

γi(1−θi) = 0, γN+iθi = 0, 0≤ θi ≤ 1 and solve for θi.

Let’s break down the conditions; consider first γi(1−θi) = 0, if:

� (1−θi) = 0 → we store θ̂i = 1

� γi = 0 → we solve the equation (4) for θ , that gives θ̂i = mi
li(µo−µc)−γN+i

− µc
µo−µc

;

Now within the current condition, let’s consider the next condition: γN+iθi = 0,

here if:

– θi = 0 → we store θ̂i = 0

– γN+i = 0 → we store θ̂i = mi−liµc
li(µo−µc)

Hence, the solution workflow above leads us to the following three possible values

for θ̂ : (1,0, mi−liµc
li(µo−µc)). The Maximum Likelihood Estimate of θ̂ will be the one of

these derived values that maximizes the likelihood function given by (4.3).
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4.5 Data analysis

4.5.1 Synthetic data analysis

Before applying our model to real data, we decided to first test it on a synthetically

generated dataset. For our model, we need to have labelled chromatin regions.

The labels are open, closed and the undefined ones. For region labelling usually

ATAC-seq data is used, but for our simulations, we will randomly split and label

the regions of a chromosome. Then, by assumption, we know that there should be

a higher mutational burden in closed chromatin regions compared to open regions.

Hence, we generate a random number of mutations per synthetic region from two

different Poisson distributions; with a higher rate for closed regions and lower for

open. Then there will be also regions that due to different chromatin aberration

events became closed when they were supposed to be open and vice versa. We call

such regions undefined and their mutational load will be between the high and low

peaks of closed and open chromatin regions, respectively. So, within a defined time

interval: (t0,T ) the pattern of mutation accumulation per chromatin region would

look like the one presented in Figure 4.4.
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Figure 4.4: Chromatin timing model illustration. An illustration of chromatin
region aberrations and their impact on mutation accumulation pattern per region. During
a given time interval (0,T ) some regions were closed (low blue peaks) and hence accu-
mulated a high number of mutations (high blue bars), and regions that were open (tall
red peaks) and accumulated low number of mutations (low red bars). Due to different
chromatin aberration events, some regions that were initially open became closed and vice
versa, and we label them as undefined chromatin regions (presented here in black).

The synthetic data, to apply the model on, would thus consist of a number of

accumulated mutations per region. As we already mentioned, we used two different

rates for the Poisson distribution to generate mutations accumulating in open and

closed chromatin regions. We aim to infer the times of those undefined regions

when they initially were open and then became closed and vice versa. For this, we

used a set of random rates for the Poisson distribution to generate the number of

mutations corresponding to each undefined region individually. We then stored these

randomly generated rates and try to infer them back using our model introduced

in the previous section. We note these times by θ -s as in the model introduction.

Figure 4.5 shows the results of inferred vs original θ values. We can see that the
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model predictions are very close to the actual values with R2 = 0.98.

Figure 4.5: Chromatin timing - synthetic data vs model predictions. The figure
shows the results of inferred vs original θ values. The model predictions are very close to
the actual values.

4.5.2 WGS and ATAC-seq data analysis

In the previous sections, we described our model and its performance on a synthetic

dataset. Here, we will show the analysis of an in-house generated real dataset and

its limitations for model applicability.

The data consist of paired WGS and ATAC-seq multiple samples per patient. First,

we tried to reproduce Figure 4.2 from [176] with our datasets. As in the figure, we

slide 5Mb window on chromosome 2 and count the number of truncal (shared across

all samples per patient) mutations (SNVs only) and sum-up ATAC-seq pileups per

window. Then we plot these measurements on the same graph to compare. We

analysed 3 colon cancer cases (one MSI and two MSS) with 5 samples per patient.

Figure 4.6 shows the results. Unfortunately, our data do not look like the one

from Polak et al. [176]. That is, we do not see the similar trend of a strong

reverse association between the mutational load and chromatin accessibility index
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per region.
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Figure 4.6: Mutational load vs ATAC-seq pileup density The figure is generated by
sliding 5Mb window on chromosome 2 and counting the number of truncal (shared across
all samples per patient) mutations (SNVs only) and summing up ATAC-seq pileups per
window. We do not see the similar trend of a reverse association between the mutational
load and chromatin accessibility index as shown in Figure 4.2 by Polak et al. in [176].

They report a significant negative correlation between the mutations per megabase

and the density of chromatin accessibility index. We tested the correlations between

the binned measurements and did not find any strong associations (Figure 4.7 shows

the scatterplots of the measurements per sample per patient). We also checked if

different window sizes would change the results; we repeated the analysis for 2Mb



137 4.5. Data analysis

and 1Mb windows, after which the obtained correlations increased but only very

slightly (we present these results in the Appendix).

As such, since we could not reproduce the associations found in Polak et al. with the

data we have, we could not use our model on data at current resolution. The nega-

tive association between chromatin regions (open vs closed) and the corresponding

mutational load is the main assumption that we build our model on.
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Figure 4.7: Mutational load vs ATAC-seq pileup scatterplots The figure is gener-
ated by sliding 5Mb window on chromosome 2 and counting the number of truncal (shared
across all samples per patient) mutations (SNVs only) and summing up ATAC-seq pileups
per window. There are significant but not strong associations found between the binned
measurements that were tested using the Pearson corrolation test (the effect size and
p-values of each test are reported on each scatterplot).

4.6 Discussion

We know that not only genetic, but epigenetic aberrations play an important role

in tumorigenesis. The work presented in this chapter has been motivated by the

studies that showed that mutations in the somatic cells are not distributed uniformly

across the human genome but rather their distributions vary depending on specific

genomic regions. Specifically, it has been observed that the epigenetic configuration

of the genome influences the accumulation of mutations due to different efficiency

of mismatch repair genes that act in the presence or absence of chromatin. In

the study [176], they labelled genome regions as open or close depending on when

the chromatin was unfolded or not, and found that there were distinct patterns of

mutation accumulation in open vs closed chromatin regions.

We decided to develop a model that would infer the timing of chromatin aberra-

tion events based on the observation above. That is, if we had chromatin regions

with the number of accumulated mutations per region, we would expect to see the

following pattern: high number of mutations in closed chromatin region and low

in open. In addition, due to different aberrations, there would be regions that ini-

tially were open and became closed or vice versa, and thus the number of mutations

would fall between expected high (for close) and expected low (for open) numbers.

We would label these regions as undefined. Based on having such a pattern of the

mutation accumulation, we developed a Maximum Likelihood Estimation model for

the times when such chromatin aberration events would occur.
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Initially, we applied our model to a synthetically generated dataset. That is, we

generated an expected pattern of mutation accumulation per chromatin region –

open, closed or undefined, using Poisson distribution. We stored the artificial times

of chromatin aberrations and inferred them back using our model. From Figure 4.5

we can see the results of the inference – high R2 values and inferred time points close

to the original synthetic data points.

Then we also tried to apply our model to a real dataset that was generated

in house and consists of paired ATAC-seq and WGS samples of colorectal cancer

patients. Unfortunately, we could not reproduce the results found in [176] with the

data we have and thus were unable to test our model on it. The main building block

assumption of our model is that we would have the reversed pattern of the mutation

accumulation per chromatin region as reported in the study.

We think the model will need to be further developed and adjusted after it is

applied to a real dataset (that reproduces the results from [176]). Timing chromatin

events is important to understand the evolutionary history of a tumour and estimate

the order of somatic changes at the epigenetic level that give rise to a tumour. This

has been done in the context of copy number alterations (e.g. [215]).



Chapter 5

Summary and outlook

In this thesis, we developed models and methods to study different patterns and

characteristics of cancer evolution by combining approaches from cancer genetics

and epigenetics. In Chapter 1, we give a brief introduction to the field, the nec-

essary background information for the reader to be able to follow the concepts

discussed throughout the thesis, and the basic tools and methods from statistical

and computational modelling that we used to develop our models.

In Chapter 2, we focus on studying spatial effects when interpreting multi-region

sequencing data to infer the tumour evolutionary dynamics. We found that the

effects of sampling bias and spatial distributions of spatially inter-mixed cell popu-

lations critically depend on the mode of tumour growth as well as the details of the

underlying sampling and data generation procedure. We could observe clusters of

over-represented alleles in the VAF distribution of some tumour samples that were

indistinguishable from positively selected subclonal populations, despite emerging

solely due to the spatial distribution of cells. Such clusters vary depending on how

one samples a tumour, and would, therefore, cause a major challenge for the evolu-

tionary interpretation of cancer genomic data based on subclonal reconstruction.

Also, in Chapter 2, we present a Bayesian inference framework to recover evo-
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lutionary parameters from our stochastic simulation model. We observed that our

ability to precisely recover certain evolutionary parameters depends on the scenarios

of tumour growth and spatial sampling strategies. We think, more involved statisti-

cal frameworks based on first principles of tumour growth can help to resolve some of

the evolutionary parameters on an individualised patient basis. Importantly, careful

spatial sampling and single-cell sequencing can mitigate some of the confounding

issues. We acknowledge that our model has some important limitations, for exam-

ple, the infinite allele assumption. Also, for computational feasibility, we mostly

focused on 2D spatial analyses and of a relatively limited number of cells with re-

spect to the billions of cells present in a human tumour. Furthermore, we do not

offer a closed mathematical formulation for the distribution of alleles under spatial

effects, which would be very useful but remains a very difficult problem that can

only be tackled partially (e.g. [154]). Furthermore, for computational feasibility,

especially in regards to the necessity of performing statistical inference on the data

and generate thousands of simulations, we restricted our analysis to the stochastic

cellular automaton model. We think our approach highlights the importance of spa-

tial modelling of real data and the impact of confounding factor in our estimate and

understanding of tumour evolution.

Future versions of the model could help to guide optimal sample collection that

would minimise the spatial biases in the data. Due to the current technical limi-

tations of these types of approaches, we are still far from direct application in the

clinic. Additional effort should also be directed towards the use of measurements

from other clinical data, such as imaging, where estimations of necrosis, for exam-

ple, can help parameterise computational models. However, we argue it remains

extremely important to understand the confounding factors and spatial biases we

expect to find in samples from which often we need to base clinical decisions on.

In Chapter 3, we studied the associations between mutational signatures and the
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epigenome. Here we hypothesize that different mutational processes (giving rise to

distinct mutational signatures) are active in epigenetically different regions of the

genome. To test our hypothesis, we used an epigenetic map of the regions such as

promoters, enhancers, coding and non-coding DNA sections of breast cancer genome

(derived by our collaborator’s lab) and developed a method that tests the enrichment

of mutational signatures in these different epigenetic regions. We found that there

are different mutational processes (that give rise to different mutational signatures

active in epigenetically distinct genomic regions.

Our main finding in Chapter 3 was the enrichment of the COSMIC mutational

signature 2 at enhancers of ER-positive breast cancer patients. The proposed ae-

tiology of the signature 2 is the activity of the AID/APOBEC family of cytidine

deaminases. This led us to further hypothesise that there is a specific interplay

of the oestrogen receptor (ER) and the APOBEC enzyme through which oestro-

gen drives the accumulation of APOBEC-induced mutations in these cancers. To

validate the origin (APOBEC) of this mutational signature and its dependence on

oestrogen exposure, Luca Magnani’s lab has developed an in vitro system. They

are maintaining a series of ER+ and ER- clones - with varying exposure to oestro-

gen - in a neutral evolutive regime and have been mapping the emerging mutations

at a single base-pair resolution using whole-genome sequencing (WGS) at differ-

ent time points. Analysis of contributing mutational signatures for each genomic

section will reveal whether the APOBEC enzyme plays a role in the evolution of

oestrogen-dependent cancers by specifically mutating regulatory regions.

In Chapter 4, we tried to develop a model that would infer times of chromatin

aberration events. Here, our work was motivated by the studies that showed that

mutations in somatic cells are not distributed uniformly across the human genome

but rather their distributions vary depending on specific genomic regions. Specifi-

cally, it has been observed that the epigenetic configuration of the genome influences



143

the accumulation of mutations due to different efficiency of mismatch repair genes

that act in the presence or absence of chromatin. Currently, we could not apply our

model to a relevant real dataset, as the one we have does not satisfy the assump-

tions for the model. The performance of the model was satisfactory when applied

to a synthetically generated dataset. The future direction of this part of the thesis

would be first generating the data that would resemble the assumptions we based our

model on, then further tune the model to make better predictions. Chromatin aber-

rations, such as changes in histone methylation, histone modifications or distorted

nucleosome remodelling, have been observed to be one of the sources of tumorigen-

esis. Timing these events is important to understand the evolutionary history of a

tumour and estimate the order of somatic changes at the epigenetic level as well.

Mathematical modelling of cancer evolution is a growing field with a fast-

expanding repertoire of models and approaches. The attention to the clinical and

biological relevance of modelling approaches is necessary to ensure these efforts do

not result in dead ends. I believe this thesis shows at least partly the importance

of coupling mathematical and computational modelling with experiments to gain a

better understanding of cancer initiation and progression, and consequently achieve

better clinical performance.
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Linking mutational

signatures to the epigenome
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A.1 Jackknife resampling by regions
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Figure A.1: Jackknife resampling by regions (BRCA-WT, ER-negative) - Nik-
Zainal.
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Figure A.2: Jackknife resampling by regions (ER-negative) - Hartwig.
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A.2 Jackknife resampling by patients
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Figure A.3: Jackknife resampling by patients (BRCA-WT, ER-negative) -
Nik-Zainal.
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Figure A.4: Jackknife resampling by patients (ER-negative) - Hartwig.
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A.3 Randomised annotations
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Figure A.5: Randomised annotations (BRCA-WT, ER-negative) - Nik-Zainal.
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Figure A.6: Randomised annotations (ER-negative) - Hartwig.
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B.1 Mutational load vs ATAC-seq pileup
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Figure B.1: Mutational load vs ATAC-seq pileup densities - 2Mb window
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Figure B.2: Mutational load vs ATAC-seq pileup densities - 1Mb window
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Publications

Paper

The following paper has been peer-reviewed and was published as

Chkhaidze K., Heide T., Werner B., Williams M.J., Huang W., Caravagna G., Gra-

ham T.A., Sottoriva A. “Spatially constrained tumour growth affects the patterns

of clonal selection and neutral drift in cancer genomic data.” PLoS Comput Biol.

15(7):e1007243 (2019).
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Conference abstract

This conference abstract has been peer-reviewed and presented at AACR 2019.

Abstract 4232: Spatially constrained tumor growth affects the patterns of clonal

selection and neutral drift in cancer genomic data.
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