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Abstract

Proteins often have multiple binding sites involved in interactions with other
molecules. The majority of currently approved drugs bind a protein’s primary
site, the major functional site in the protein. Targeting the primary site can be
challenging. Secondary site binders can allow for efficient inhibition of difficult-
to-drug protein targets and there are now multiple examples of secondary site
inhibitors in the clinic. However, the majority of known secondary sites were
discovered through serendipity and the systematic identification of ligandable
secondary sites remains challenging. This thesis integrates high throughput in
silico analysis of publicly available protein structures based on canSAR3D with
fragment screening to identify novel, ligandable and functionally relevant
secondary sites in clinically relevant protein targets. Following the analysis,
triaging of identified sites for functional relevance, clinical impact and technical
feasibility identified a short-list of four targets — p53, ESR1, PIK3CA and IDH1.
The novel secondary site in isocitrate dehydrogenase 1 (IDH1) was selected

for validation.

The tumour-promoting IDH1-R132X mutation is found in up to 80% of glioma
patients and 15% of acute myeloid leukaemia patients. Fragment screening
identified 19 fragments binding specifically to the novel secondary site in IDH1-
R132H. Following up these fragments in biochemical assays confirmed that
binding to this pocket inhibits enzyme activity. My work shows that the newly
discovered secondary pocket of IDH1-R132H is both ligandable and
functionally relevant, and that my in silico analysis can be used to identify novel

secondary sites in therapeutically relevant proteins.
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Chapter 1: Introduction

1.1 The need for new targeted therapeutics

Cancer is the second leading cause of death globally, accounting for one in six
deaths®. In the UK, 28% of patients will undergo chemotherapy as part of their
primary treatment; these cytotoxic agents are effective against any rapidly

dividing cell type, leading to serious and severe side effects.

In contrast, targeted therapies interfere specifically with a molecule, usually a
protein, shown to be critical in tumour cell survival or cancer progression’ 8.
These drugs can elicit strong response rates by exploiting vulnerabilities in
cancer cells, leading to selective killing of tumours over healthy tissues. For
example, the BCR-ABL inhibitor imatinib shows response rates of up to 80% in
chronic-phase CML patients®. Despite advances in targeted treatment of many
cancer types, there remains an unmet need for treatment of less common and
refractory cancers, and to overcome the emergence of resistance to current

therapeutics.

The identification of appropriate targets is based on extensive research into the
complex biology behind malignant transformation and identification of key
drivers of these processes. The underlying causative processes are, however,
very complicated, and vary between patients as well as tumour types. This
adds a layer of complexity to the identification of biologically compelling targets.
Multiple large-scale projects such as The Cancer Genome Atlas'® (TCGA) and

the International Cancer Genome Consortium'' (ICGC) have been established
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to collate patient-derived mutational data in order to identify recurrent
mutations, with the aim of elucidating new tumour-driving mechanisms and
potential targets for therapeutics. Multiple analyses of such datasets have
identified gene sets that are recurrently mutated and implicated in driving
malignant transformation. The expertly curated Cancer Gene Census (CGC)"
contains 574 genes with genomic alterations that promote oncogenic
transformation, and a further 145 newly identified genes with strong evidence
for their involvement in cancer. A list of 127 Significantly Mutated Genes
(SGMs) was published by Kandoth et al.’® in 2013 following analysis of 3,281
tumour samples from the TCGA. Identifying genomic and transcriptional
alterations within patient cohorts can aid in selection of targets likely to show

clinical impact.

Despite the wealth of potential therapeutic targets and the positive clinical
impact of targeted therapeutics, the development of successful oncology drugs
remains very challenging. Over 90% of drug discovery projects fail before
reaching the market, costing billions of dollars and many years of research.
Therefore, identification of targets more likely to be chemically tractable is
important for risk mitigation. However, many targets that are biologically
compelling may not be considered tractable by standard medicinal chemistry
approaches, or represent a family not yet exploited, and are therefore high-risk
targets. Recent examples of drugging novel, challenging protein targets such
as Bcl family members show the potential reward of targeting these more

challenging proteins and expanding the target space™.
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1.2 Secondary sites as therapeutic targets

The majority of currently approved targeted therapeutics bind to the major
functional, or primary, site in a protein. While targeting these primary sites has
led to development of highly successful therapeutics, there are also challenges
associated this approach. For example, the physico-chemical properties
associated with a given pocket may be unfavourable, as is the case of the
phosphate binding site in protein phosphatases'®. Some phosphatases are
clinically relevant targets, such as PHLPP which de-phosphorylates AKT
resulting in promotion of tumour growth in squamous cell carcinoma cell lines'”.
However, the primary site in PHLPP is small and highly polar to facilitate
binding to phosphate groups. Due to this, it is highly challenging to develop
primary inhibitors with acceptable bioavailability, and this class has historically
been considered undruggable, though several inhibitors targeting secondary

sites are now being developed™®.

Primary sites may also have a high affinity natural ligand, such as the
nucleotide binding site of Hsp70'® and Ras®. Inhibitors targeting these sites
require exceptionally high affinity to compete with the natural ligands. Inhibitors
targeting the Hsp70 primary site show a large drop off in potency when
characterised in cellular studies due to the high concentration of ATP in cells.
Both Hsp70?" % and Ras® have recently been successfully inhibited by

targeting secondary sites.

Protein primary sites can share high sequence or structural homology within
families, such as in kinases, which can hinder efforts to develop selectivity®* 2°.

While poly-pharmacology plays an important role in efficacy for some
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inhibitors?, including Sorafenib, which was launched as a pan-kinase inhibitor
targeting VEGFR2, VEGFR3, KIT, FLT3 and PDGFR B, off-target inhibition
can also result in toxicity and reduce the treatment window. Secondary sites, in
contrast, tend to show lower sequence and structural conservation than
primary sites, which can aid in development of selective inhibitors and reduce

off-target toxicity?* 2.

Finally, exposure of cancer cells to targeted therapeutics inevitably results in
emergence of resistance, often through mutations that abrogate the ability of
drugs to bind their target®>2*>". This can result in highly efficacious therapeutics
losing potency and their impact on patients. For example, the EGFR T790M
mutation confers resistance to front line therapeutics gefinitibb and afatinib®',
while the ABL-kinase T315] mutation confers resistance to all therapeutics
developed prior ponatinib®2. New drugs are currently continuously required to

overcome emerging resistance.

Alternative approaches to modulating challenging but functionally relevant
protein targets to allow translation into clinic include targeting functionally
relevant secondary sites, including allosteric sites. Allosteric modulators of
GPCRs (such as benzodiazapines) have been widely used for many decades

in the treatment of psychological, neurological and CNS disorders®=°. |

n
cancer therapeutics specifically, several secondary site inhibitors against
diverse and challenging targets are showing efficacy in clinical trials, with some

now approved and showing impact in patients (Table 1.1). In addition, targeting

inhibitors to a secondary site presents another opportunity to overcome
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resistance mutations, as they can also slow the development of resistance

mutations when used synergistically with inhibitors targeting the primary site®.

Despite their relevance and potential for clinical impact, identifying functionally
relevant, chemically tractable secondary sites remains challenging. The
majority of currently known sites were discovered through serendipity. Relating
inhibition at these novel sites to the functional modulation of a target within a

cellular context presents a further level of complexity.

Drug Clinical Stage Target

Trametinib ¥’ Approved for Braf V600E Mek1; adjacent to
melanoma primary site

Ivosidenib 38 3 Approved for Induced allosteric

relapsed/refractory AML with pocket above active site
IDH1-R132X mutation

Ispinesib *° Stage Il Eg5; locks conformation
Asciminib*! Phase Il for CML and Ph+ AML | BCR-Abl1 myristoyl
pocket

Table 1.1: Secondary site inhibitors under development or with FDA approval

1.3 Target Evaluation

Given the cost of drug discovery project failure, selecting projects with reduced
risk is an important aspect of drug discovery. Target evaluation assesses the
biological, technical and competitive risks associated with a given target*® **.
Biological risk assesses the likelihood of a potent inhibitor having clinical
impact, through identification of a suitable patient population, evidence for anti-

cancer effect and knowledge of potential resistance mechanisms, amongst

other considerations. The competitive risk assesses the competitive landscape,
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as well as the unique selling point of a drug or target, and the potential for

collaboration.

Technical risk assesses the likelihood of developing a potent molecule against
the given target. This not only includes the availability of chemical tools and in
vivo animal models, but also the presence of enabling technologies such as
biophysical and biochemical assays, and structural biology. A significant aspect
of technical risk is the druggability of the given target. This assesses whether
there is a site in the protein that is considered to be ligandable, and if binding of
a small molecule to that site will affect the protein function and lead to
therapeutic benefit. In well-established drug targets, where second and third
generation inhibitors are under development to mitigate resistance, the
druggability of a given site is already well established. In addition, proteins from
privileged families, such as kinases, are generally considered to be ligandable

and present less of a risk.

When considering novel targets and secondary sites, the ligandability may be
unknown. In these instances, computational predictors of ligandability and
druggability can be used to assess the likelihood of both developing a potent
molecule against the target, as well as the potent molecule having an impact

on cellular viability.
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1.4 Computational predictions of druggability

Prioritisation of druggable targets can reduce attrition during the drug discovery
process* **. Druggability refers to the likelihood of finding bioavailable small
molecules that bind to the given target and subsequently impact both the target
function and the disease state. This can be split into two aspects: the
ligandability of the target - the likelihood of identifying a small, drug-like
molecule that binds with high affinity; and the functional relevance - the
likelihood of small molecule binding resulting in modulation of both protein
function and the disease state. Ligandability of a protein target is necessary but
not sufficient for druggability using small molecule approaches. The majority of
currently available ligandability predictors can be split into three groups:

precedence; chemical; and structural predictors.

Precedence is the most straightforward predictor and is based solely on
knowledge of previously drugged protein targets. For example, protein kinases
are one of the most extensively pursued class of cancer therapeutic targets*
% and their primary, ATP-binding sites are generally considered to be
ligandable. Further, kinases are involved in many cancer-driving pathways, and
inhibiting these enzymes will often have impact on cellular viability*’. Pursuing

targets from families with high precedence may lower the risk associated with

the target, but also limits the proteomic space that can be explored.

Ligand-based or chemical druggability assesses compounds tested against the
target and its homologues for their bioactivity, molecular weight, tractability for
medicinal chemistry elaboration and ligand efficiency*® *°. Proteins that have,

or have close homologues with, ligands with good physicochemical properties
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and high efficacy are considered ligandable. This approach requires chemical
matter to have been tested against either the target or a close homologue. This

information is not available for many proteins.

Structure-based ligandability predictors utilise the 3D structures of proteins to
identify pockets that may be chemically tractable®®. There are many tools
available to do this, including canSAR3D*, which uses a variety of physical
and chemical properties associated with each identified pocket to predict its
ligandability. Its use is limited to proteins with experimentally determined

structures, or with close homologues whose structures have been solved.

Both ligand- and structure-based predictors focus only on the chemical
tractability of a given target, without considering the impact of small molecule
binding on either the function of the protein target or on the cell. While a small
molecule competing with the endogenous ligand for binding to the primary site
will have clear impact on protein function, this may not translate to into a
change in phenotype. Network druggability describes the likelihood that
modulation of a protein will cause modulation of the disease state given its
position in the interactome®'. Genuine anti-cancer targets show a higher
degree of connectivity within the network, with more first neighbours, and are
part of larger communities than either non-drug targets or targets of drugs in
different therapeutic areas. In contrast to the other three, network druggability
does not directly predict the likelihood of developing an inhibitor: a protein

target can have high network connectivity but lack a ligandable site.
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1.5 Fragment-based lead discovery

A fragment-screening hit rate can also predict ligandability (Figure 1.1)*2, and
can be used in combination with computational predictors to evaluate targets.
Fragments are low molecular weight molecules, typically less than 300 Da with
fewer than 12 heavy atoms. Fragment-based lead discovery (FBLD) involves
screening a relatively small number of fragments, hundreds to thousands, to
identify protein binders. Despite the complex geometry of protein surfaces,
ligands bind selectivity to very specific locations, termed hot spots®. Protein
targets with such a hot spot often yield high affinity, non-covalent drugs,
regardless of the affinity of the initial hits. Fragment screening approaches
have been successfully used to identify hit matter in known and putative

secondary sites?® %35
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Figure 1.1: Relationship between fragment screening hit rate and subsequent development of high affinity
ligand. Data from Hajduk et al. 2005 31,83, plot made in Graphpad Prism
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Molecules that obey Lipinski’'s Rule of Five are considered drug-like. Estimation
of drug-like chemical space suggests that it may consist of 10°° to 10%°

%% Based on public databases such as PubChem®,

compounds
ChemSpider™ ®® and ChEBML'® amongst others, it is estimated that only 108
compounds have been synthesized, representing a tiny proportion of the
available space. Even the largest screening libraries using molecules of this
mass covers very little of the potential space. When considering fragments, the
possible chemical space is estimated to consist of approximately 10°
molecules. A library of a thousand molecules this size would cover a far greater
proportion than covered by using larger molecules. The use of fragments also

allows a more efficient sampling of chemical space than using more drug-like

molecules, leading to an increased hit rate.

Screening Technique

10mM 1mM 100uM 10uM 1uM 100nM 10nM 1nM
Affinity

Figure 1.2: Affinity range of various screening techniques. Adapted from Hubbard et al. 201 12561,

In addition, using fragments also reduces the molecular complexity — the

number of interactions, both favourable and unfavourable, a molecule can have
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with its protein target®?. With a lower molecular complexity, fragments are less
likely to possess an interaction that would abrogate its ability to bind a protein
target. Identified fragment binders tend to make few, but higher quality
interactions that act as a starting point for medicinal chemistry. Due to the low
molecular weight of fragments, the affinity of initial hits is often in the high
micomolar to low millimolar range. Sensitive biophysical techniques are
o

required to detect binding events (Figure 1.2)°". Fragments can then be

elaborated into larger, more potent hit and lead compounds.

1.6 Aims

The aim of this project is to investigate how computational analysis can be
combined with fragment screening to identify novel, ligandable secondary sites.

It can be split into two individual aims:

1. Adaptation of canSAR3D to identify novel, ligandable secondary
sites
Various structure-based ligandability predictors are available. | used the
ICR’s predictor, canSAR3D, as it had been used to analyse all
structures currently available in the PDB. This provides a large quantity
of data on which to train and then test the predictor. The pocket
properties used to predict ligandability within the canSAR3D pipeline
were systematically analysed to identify those which are important for
ligandability without biasing for primary sites. This included a
retrospective validation using known secondary sites as well as the
identification of novel secondary sites. Following identification of novel

sites, the pockets were triaged for functional relevance using literature
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evidence as well as patient-derived mutations and sequence
conservation.

2. Fragment screening to investigate the ligandability of the
secondary site
Following selection of a target, fragment-screening approaches were
used to identify molecules binding to the novel secondary site. Using
fragment screening rather than a high-throughput screen of larger
molecules may increase the likelihood of finding molecules that target
the secondary site, and gives an overall assessment of the ligandability.
Identified hit matter was then used to investigate the functional
relevance of the secondary site through inhibition studies, which would

represent the first step to confirming the druggability of the site.

1.7 Strategy

The strategy used to meet these aims, is shown in Figure 1.3. The structure-
based ligandability predictor canSAR3D was adapted to identify ligandable
secondary sites as described in Chapter 2. These novel sites were triaged for
technical feasibility and functional relevance, and four targets were shortlisted:
p53, ESR1, PIK3CA and IDH1-R132H. While all four were clinically relevant,
technically feasible targets, | selected the novel secondary site in IDH1-R132H
as an initial target as a functional hypothesis could be developed. Fragment
screening was then used to investigate the ligandability of the novel secondary
site. Chapter 3 describes the establishment of enabling technologies for two
fragment screening approaches, and Chapter 4 discusses the results of these

fragment screens.
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Strategy

Random
sampling

Chapter 2
Apply profile to all other identified pockets < -
Y
Y
Shortlist sites in p53. ESR1, PIK3CA and IDH1
A 4
L— - Site in IDH1-R132H selected
Y
Chapter 3

Protein production Thermal shift assays Crystallography

e

Y

Figure 1.3: Strategy used to identify a novel ligandable secondary site in a cancer-associated protein.
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After identification of hit matter targeting the novel secondary site, a
biochemical assay was used to investigate the functional relevance of the

secondary site, as described in Chapter 5.

1.8 Isocitrate dehydrogenase

Isocitrate dehydrogenase (IDH) exists in three isoforms in humans. IDH3 is a
heterotetramer that uses NAD" to catalyse the conversion of isocitrate to a-
ketoglutarate (aKG) as part of the citric acid cycle. IDH1 and IDH2 are
homodimers that use NADP* as a reducing agent to catalyse the same
reaction. IDH2 is predominately localised to the mitochondria, while IDH1
localises to mostly to the cytoplasm. Wild type IDH1 (IDH1-WT) is the primary
source of NADPH in most tissues, especially the brain, and is therefore
involved in the mitigation of oxidation damage through the regeneration of

glutathione®.

1.8.1 IDH1 structure

IDH1 structures have been solved using X-ray crystallography. Each monomer
is formed of a large, small and clasp domain (Figure 1.4). The large domain
adopts a typical Rossmann fold, often associated with nucleotide bindinge“,
while the small domain forms an a/f sandwich. The two domains are
connected by a B-sheet that forms the base of primary site. The dimer is held
together by the clasp domains, consisting of two, two-stranded anti-parallel 3-
strands that interlock to form two, four-stranded anti-parallel 3-sheets stacking
on top of each other. In the inactive, co-factor bound conformation, the primary
site is in an open conformation, with the regulatory segment, residues 271-286,

forming a flexible loop stabilised by hydrogen bonding between Ser94 and
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Asp279, and between His132 and Asp275. In all but one PDB structures (PDB
1T09), the electron density for this region is too weak to be modelled. With
binding of the substrate and catalytic Mg?*, the small and clasp domains move
relative to the large domain. The previously unstructured regulatory segment
adopts an a-helix across the dimer interface, stabilised by magnesium. The

primary site is formed of residues from both chains, allowing catalysis to occur.

regulatory
segement

Substrate

Figure 1.4: Structure of IDH1. A) IDH1 dimer, with the large domain of one monomer coloured in blue, the
small domain in light blue, and the clasp domain in cyan. The second monomer is coloured grey for
clarity. B) Binding of catalytic metal and substrate causes a large conformational change from the inactive
(cyan) to active (tan) conformation. The small and clasp domains move relative to the large domain, with
the regulatory segment adopting an a-helical conformation. Monomer shown for clarity. C) The formation
of the primary site involves residues form both chains. Figures made in Chimera®
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1.8.2 IDH1 as a cancer therapeutic target

In IDH1-WT glioblastoma, IDH1-WT expression is up-regulated, resulting in
increased production of NADPH, leading to the reduction of reactive oxygen
species (ROS)%®. Knock-out of IDH1-WT in glioblastoma cells results in
increased sensitivity to radiation-induced senescence, and increased

responses to fractionated radiotherapy in murine xenograft models®’.

Heterozygous missense mutations in IDH1 are identified in up to 80% of glioma
patients and 15% of AML patients, with an arginine to histidine substitution at
residue 132 (IDH1-R132H) the most frequently observed®®. Other substitutions
at this position are observed with greater frequencies in other solid tumours,
such as choloangiocarcinoma, prostate cancer and colorectal cancer (Figure
1.5). In addition, somatic mosaic mutations in IDH1 are known to cause both
Ollier's Disease and Maffucci Syndrome, both characterised by multiple
cartilaginous tumours®®. IDH1-R132H mutations can sensitise cells to oxidative
stress and PARP inhibition, which can be reversed upon treatment with IDH1-
R132H inhibitors’® ". The presence of IDH1-R132X mutations is favourable for
patients with glioblastoma’, but is associated with decreased survival for

patients with AML"2.

Mutations at position 132 results in the loss of wild type IDH1 activity, and
causes neomorphic conversion of aKG to D-2-hydroxyglutarate (2HG), using

t"*. Under normal conditions, 2HG levels in cells

NADPH as a reducing agen
are maintained by endogenous D-2-hydroxyglutarate dehydrogenase
(D2HGDH), which catalyses the reverse reaction, converting 2HG back to

aKG". The neomorphic activity of IDH1 mutants causes the accumulation of
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2HG; elevated 2HG levels can be detected in the serum of patients with IDH1

mutant AML and glioma®.

2HG is structurally similar to aKG and can competitively inhibit many aKG-
dependent dioxygenases, including JmjC histone demethylases’’, prolyl
hydroxylases’® and 5-methylcytosine hydroxylases’®, as well as alkylated DNA
repair protiens®. This leads to global changes in both histone and DNA
methylation patterns’” ®' and the accumulation of DNA damage’". Production
of 2HG by IDH1-R132H is sufficient to promote leukemogenesis, which can be

reversed with inhibition of the IDH1-R132H%.
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Figure 1.5: IDH1 mutations common in cancer. A) Distribution of mutations across IDH1. The vast
maijority of mutations are localised to arginine 132. B) Missense mutations are most frequently identified in
Low Grade Glioma, but are also found in other tumour types at lower freqsuencies. Mutational data from
TCGA:https://www.cancer.gov/tcga, visualisation adapted from cBioPortal® *" &,
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Although IDH1-R132H mutations are almost always heterozygous, which is
common for oncogenic mutations®, patients with homozygous IDH1-R132H
mutations have also been reported®. This indicates that loss of IDH1-WT is not
lethal to the cell, which may be due to the presence of IDH2-WT. Although they
have different subcellular localisations, IDH1-WT and IDH2-WT catalyse the
same reaction. The IDH2-R172X and IDH2-R140X mutations are analogous to
IDH1-R132X, resulting in the production of 2HG®® and tumorogenesis. IDH1-
WT and IDH2-WT may have functional redundancy that allows cells to survive
complete loss of IDH1-WT activity. This is supported by the mutual exclusivity

of IDH1 and IDH2 mutations®’.

In patients with heterozygous IDH1-R132X mutations, approximately 50% of
the IDH1 population in vivo will be as part of an IDH1-WT/IDH1-R132H
heterodimer, assuming equivalent expression levels and non-discriminatory
dimer formation. As IDH1-WT converts isocitrate to aKG in the heterodimer, the
local concentration of aKG by the IDH1-R132H primary site is increased. In
vitro studies of the IDH1-WT/R132H heterodimers show an increased
production of 2HG in comparison to both the WT/WT and R132H/R132H
homodimers®. Further, glioblastoma patients with homozygous IDH1-R132H
mutations have approximately 14-fold lower mean 2HG in comparison to the
patients bearing heterozygous IDH1-R132H mutations®. The increased local
concentration of aKG in close proximately to the IDH1-R132H primary site
within WT/R132H heterodimers may decrease the efficacy of aKG-competitive

inhibitors.
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Both IDH1-R132H and IDH1-WT are clinically relevant therapeutic targets.
While current inhibitors show selectivity for IDH1-R132H over IDH1-WT, the
impact of targeting both IDH1-WT and IDH1-R132H is unknown. The IDH1-
R132H inhibitor ivosidenib®® from Agios was granted FDA approval for
treatment of refractory AML in July 2018. Although this compound is showing
impact in patients, the first resistance mutation, S280F was also reported in
July 2018%, showing the need for new targeted therapeutics. As the mutated
residue is not located in the novel pocket, targeting the novel site may
overcome resistance mutations and offer an alternative approach to inhibiting

this clinically important protein.
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Chapter 2: In silico identification of ligandable sites

2.1 Introduction

Target ligandability refers to the likelihood of binding a small molecule to the
site. Structure-based ligandability predictors are widely used for prioritisation of
pockets during early stage evaluation of clinically relevant protein targets®.
They generally have three components — a pocket identification method, a

training set of pockets with known outcomes, and a discriminating function.

2.1.1 Pocket identification methods

Multiple computational tools exist that identify pockets in protein structures.
These can be grouped into energy-based and geometry-based methods.
Energy-based methods, such as Q-SiteFinder®', calculate the interaction
energy between the protein and a probe. Ligand-binding sites are predicted as
regions of protein with clusters of favourable interaction sites®. Geometry-
based methods include sphere-based methods such as SURFNET®.
SURFNET places a sphere between two atoms, touching each one. If atoms
from any neighbouring residue intrude into the sphere, then the sphere size is
reduced until no atoms intrude. If the resulting sphere is less than a certain
volume, it is rejected. This is repeated for all pairs of atoms. Pockets are
defined as clusters of spheres and are reported as a surface contour in three
dimensions. After pockets have been identified, a range of properties can be
calculated. The properties that are calculated vary between different predictors,
but tend to include geometric, physical and chemical properties such as

volume, enclosure, and hydrophobicity of identified pocket.
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2.1.2 Training predictors

Predictors are used to classify datasets according to a desired feature.
Development of a predictor requires a positive training set formed of examples
that have the desired feature and a negative training set formed of examples
that do not have the desired feature. These sets are used to develop a decision

rule that can then be applied to a new dataset — the test set.

In this context, the desired feature is ligandability. The positive training set is
formed of pockets experimentally shown to be ligandable, although the pockets
included varies between different predictors. The positive training set may be
redundant, including multiple examples of the same pocket, or non-redundant
and include only one example of the ligandable pocket. The negative training

94 or simply

set may be formed of pockets considered to be ‘less druggable
pockets not in the positive training set. The two training sets of pockets and
their associated properties are then used to build ligandability predictors, often
through different machine learning approaches. For example PockDrugs® uses
linear discriminant analysis while canSAR3D*’ uses a decision tree. The

success of these predictors is benchmarked against a pre-defined set of

pockets which were not used for training®.

Pocket volume is invariably found to be a primary determinant of ligandability.
The majority of examples of druggable pockets are primary sites, which tend to
be the largest and most geometrically complex pocket in the protein®”. This
leads to an implicit bias for the largest site being predicted as the most

ligandable.
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2.1.3 canSAR3D structure-based ligandability predictor

The canSARS3D pipeline analyses all publically available protein structures. Up
to ten pockets are identified in each separated chain in each PDB structure by
SURFNET®, and 25 properties are calculated for each. These properties cover
geometric features such as pocket volume and enclosure, as well as chemical

properties such as the ratio of hydrophobic and polar residues in the pocket.

The pocket definition is subsequently refined based on sequence conservation
by the PickPocket algorithm. A multiple sequence alignment using the target
protein sequence is calculated by ClustalW®®. Each residue in the sequence is
given a score, which is calculated as the sum of the pair-wise residue similarity
scores between the sequences and weighted for evolutionary distance

between the sequences® "%

. Each sphere in the initial Surfnet cavity is
subsequently given a score by summing the conservation scores of all residues
in the protein with a weighting function that drops off rapidly with distance, such
that close residues intruding on the sphere are given a higher weight. The
origin of the refined pocket is calculated by selection of the sphere in the
original pocket with the highest score. The scores of the surrounding spheres
are also weighted by their distance from the origin sphere and compared to a
minimum allowed score of 0.4, with spheres scoring higher than this included in
the pocket. The overall pocket conservation score is likewise reported as a sum
of the individual sphere scores weighted for distance from the origin. Weighting
of the score by distance helps to maintain the ‘pocket-like’ nature of each

identified pocket instead of allowing connection of multiple pockets through

narrow channels.
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Following calculation of the refined pocket, the properties are recalculated and
reported alongside the conservation score. A decision tree machine-learning
algorithm from ChEMBL Strudel' " 192 is then used to predict ligandability
based on these properties, trained on a large and diverse set of known
druggable sites. As with other predictors, pocket volume is a strong predictor of
ligandability due to the inherent bias in the training set, but canSAR3D can

overcome this bias in some instances.

Comparison of the pocket properties before and after refinement by PickPocket
shows that primary sites show a large change in the pocket definition (Figure
2.1). In contrast, secondary sites tend to show much less refinement as the
PickPocket algorithm cannot find a sufficient number of conserved residues in
the secondary site to refine the pocket. This may be due to lower levels of
sequence conservation in secondary site, or due to the smaller initial size of the

secondary sites resulting in too few conserved residues being identified.

Predicting the presence of ligandable secondary sites is challenging due to the
lack of examples of druggable secondary sites. Pocket identification methods
are capable of identifying secondary sites in protein structures, but they are
often considered less ligandable and subsequently deprioritised due to their
smaller size in comparison to the primary sites. Consequently, structure-based
ligandability predictors often perform very well when benchmarking with
datasets formed of primary sites. The tendency to prioritise the largest pocket
in the protein as the most ligandable leads to limited success detecting

secondary sites.
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Figure 2.1: Primary and secondary sites are refined differently by the PickPocket algorithm as part of the
canSAR3D pipeline. A) ABL (PDB 3PYY) and associated primary (blue) and secondary (pink) sites as
defined by Surfnet. B) Pockets following refinement by PickPocket. C) Primary sites show much greater
refinement by PickPocket than secondary sites. Using the PickPocket associated properties may
therefore increase the bias for primary site-like pockets. Figures made in Chimera®®

A large-scale analysis of crystallographic fragment screening data reported by
Ludlow et al.®® compared the distribution of physical and chemical properties
between fragment-bound primary and secondary sites. They found that while
the primary sites were in general larger than the secondary sites, the
distributions of other pocket properties, such as number of polar contacts and
atom mobility, were similar. This supports the assumption that properties
important for ligandability, excluding volume, are conserved regardless of
Therefore, structure-

whether the pocket is a primary or a secondary site.

based ligandability predictors based on primary sites may accurately predict
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secondary site ligandability, if the tendency to prioritise the largest pocket as

the most ligandable can be overcome.

This chapter describes the adaptation of canSAR3D in order to identify novel
ligandable secondary sites in cancer-associated proteins. | used canSAR3D
rather than other available predictors as it has precedence for identifying
secondary sites. Furthermore, all structures in the PDB were analysed, with up
to ten pockets identified and analysed per chain, yielding a wealth of data upon
which to train the predictor. The new predictor was then used it to identify
ligandable secondary sites, which were triaged for biological deregulation,
experimental feasibility and clinical relevance, leading to the selection of a
novel site in IDH1-R132H as an initial target for experimental investigation

(Figure 2.2).
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Figure 2.2: Flowchart out-lining the approach to identify novel, ligandable and functionally relevant
secondary sites in cancer-associated proteins.
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2.2 Results

2.2.1 Defining the training sets

At the time of analysis, more than 30,000 crystal structures of 5795 human
proteins had been deposited in the PDB. This covers approximately 30% of the
proteome as defined by Swiss-Prot'®. As | was interested in targeting human
proteins implicated in human cancers, | only considered human proteins. From
the available structures, a total of 528,441 pockets were defined and had their
properties calculated by the canSAR3D pipeline. | decided to use the
SURFNET pocket definitions and associated properties to prevent any

additional biasing towards primary sites (Section 2.1.3).

Positive and negative training sets were defined in order to identify which of the
underlying pocket properties are important for secondary site ligandability.
Ideally, the positive training set would have been formed of validated,
druggable secondary sites, but there remain too few examples of these to build
a robust training set. Based on the assumption that properties important for
ligandability will be consistent whether a primary or secondary site is targeted, |
formed the positive training set of 2,025 ligandable pockets. This included the
catalytic sites of kinases and the ligand-binding sites of nuclear receptors, both
of which are considered to be highly ligandable despite challenges in achieving
target selectivity. | also included the binding sites of FDA-approved drugs from
all species (Figure 2.3). In many cases, there were multiple examples of the
same pocket with different ligands bound. For example, a kinase structure may
be solved with ATP or approved drug bound to the primary site. Using different

crystal structures for the same target can show variations for the calculated
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ligandability, which can be attributed to flexibility in the protein'®

. Including
multiple structures with different ligands and in different ligandable
conformations gives a more robust representation of the ligandable pocket.

These structures formed the redundant positive training set.

A) Kinase ATP-binding sites B) Nuclear receptor ligand-binding sites [e) FDA-approved drug targets

Figure 2.3: Examples of pockets included in the training set. A) ATP-bound kinase sites such as PDK1,
PDB 4XX9; B) Ligand binding sites in nuclear receptors such as the testosterone binding site in the
androgen receptor, PDB 2AMA; C) binding sites of FDA-approved drugs, such as Doxepin binding site in
the histamine receptor aH1, PDB 3RZE. Figures made in Chimera®

In addition, | chose not to enrich the positive training set with the few known
examples of ligandable secondary sites. If there were a true difference in
pocket properties between primary and secondary sites, the number of
secondary sites included in the training set would be too small for the statistical
analysis to identify these as a separate population. Importantly, retaining the
secondary sites in the test set allows them to be treated as internal controls for

validation of the predictor.

After defining the positive training set, 526,416 pockets with associated
properties remained which formed the background set. The majority of these

have unknown ligandability. Due to the size discrepancy between the positive
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and background sets, | formed the negative training set by randomly sampling

from the background set.

2.2.2 Statistical considerations for developing the secondary site
ligandability predictor
Using druggable primary sites to form the positive training set requires the
assumption that the properties important for ligandability are the same
regardless of which site on the protein is being targeted. However, training the
predictor on primary sites leads to an inherent bias for the largest and most
geometrically complex pocket in the protein. Properties that show a statistically
significant difference because they are important for ligandability must be de-
convoluted from those showing significant differences due to the training set

bias.

The positive training set is formed of 2,025 pockets. The negative training was
randomly sampled from the background set. The population distributions for
these sets are unknown: they cannot be guaranteed to be normal (Gaussian). |
therefore used two statistical tests, Welch’s t-test and Kolmogorov-Smirnov
(KS) test, to identify the pocket properties that showed a statistically significant

difference between the positive and negative training sets.

2.2.2.1 Bootstrapped Welch'’s t-test
Welch’s t-test is a two-sample location test under the null hypothesis that the
two population means are equal but the population variances are different. It is

a variation of the more commonly used Student’s t-test that is more reliable
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when populations have unequal sample sizes and/or unequal variances, as is

likely the case with these datasets.

T-tests assume the normality of the underlying distribution, which is unknown
for these populations. Bootstrapping can help to overcome a non-parametric
distribution based on the central limit theorem. Samples are taken from both
the positive and negative training sets and a Welch’s t-test is performed; both
the sample mean and the p-value are recorded, and the sample is replaced. A
total of 100,000 samples were taken and replaced, with the aggregate p-value
reported as the proportion of the time the null hypothesis could not be rejected

based on a significance cut-off of p < 0.05.

2.2.2.2 Kolmogorov-Smirnov test

A KS statistic quantifies the distance between the empirical distribution of two
samples, in this case the positive and negative training sets, under the null
hypothesis that the two samples are drawn from the same empirical
distribution. A KS test indicates whether the two samples are likely to be
different. Unlike the Welch’s T-test, it does not assume that the data is derived
from a parametric distribution, and therefore can be used even where the data
doesn’t tend towards a normal distribution. The test was bootstrapped 100,000
times, with sample replacement, and the p-value and sample means recorded.
The aggregate p-value was reported as the proportion of the time the null

hypothesis could not be rejected based on a significance cut-off of p < 0.05.

Good correlation was observed between the two statistical tests, with eight

properties identified as showing a statistically significant difference between the
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positive and negative training sets (Table 2.1, Appendix 8.1.2). These are:
Inverse Andrew’s Energy, Pocket Volume, Buried Vertices Ratio, GAP, Volume
Ratio, Accessible Vertices Ratio, PCA X and PCA Y. A description of these

properties can be found in Table 2.1.

Both Welch'’s t-test and the KS test identify which properties show a statistically
significant difference, but do not define thresholds to separate the populations.

| used a Roc test to define these thresholds.

2.2.2.3 Roc tests

Receiver operator characteristic (Roc) curves are non-parametric tests that
calculate how well a given diagnostic can predict the binary classification as the
threshold is varied. In this case, the diagnostic is the pocket property, and the
classification is the ligandability. The area under the curve when the true
positive fraction is plotted against the false positive fraction (AUC) is used to
measure the accuracy of the prediction. This test was bootstrapped 10,000
times with sample replacement. Fewer bootstraps were used than previously
due to the increase in processing power demand. An AUC of 80% was
selected as a cut-off for significance. There was good correlation between the
properties identified as showing a statistically significant difference between
positive and negative training sets between the different statistical test (Table

2.2, Appendix 8.1.2).

Roc tests automatically report the best threshold, dependent on the pre-defined
method. The R package used, pRoc'®, has two alternative methods for

identifying the ‘best’ threshold. Youdon’s statistic maximises the distance from
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the line of no discrimination, while the closest top left considers the optimal
threshold to be the closest to perfect specificity and sensitivity - the point on the
curve closest to the top-left of the plot. Both of these can be weighted
dependent on the relative cost of false negative to false positive classification.
For the purpose of triaging and experimental follow-up, a false positive is far
more detrimental than a false negative, so | selected the closest top left method
to favour specificity. Table 2.2 shows the thresholds calculated for the eight

properties.

2.2.2.4 Defining the ligandability profile

The statistical analyses identified eight SURFNET properties that were
statistically significant across at least two of the three statistical tests. While the
majority of these properties are well-accepted descriptors of ligandability, such
as pocket volume and enclosure'®, the inverse Andrew’s energy is a new
descriptor. Andrew’s energy is a theoretical maximum binding energy of a
given small molecule if it's shape is complementary to the binding site'®’. It is
based on the average binding energy of common functional groups as
calculated by Andrews’s et al'®®. The inverse Andrew’s energy therefore is the
theoretical binding energy achievable for a pocket if all of its side chains are
involved in productive interactions with a small molecule partner, and is unique
to the canSAR3D predictor. Whilst both PCA Y and PCA X, the lengths of the
X- and Y-axis of the pocket, show statistically significant differences between
positive and negative training sets, they are directly related to the pocket

volume, and so were not used to define the ligandability profile.
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Property

Definition

Threshold

Inverse Andrew’s
Energy

Andrew’s energy is a theoretical maximum
binding energy of a given small molecule if each
chemical moiety is involved in productive binding
with its target'”’. The inverse Andrew’s energy
therefore is the theoretical binding energy of a
pocket if all of its side chains are involved in
productive interactions with a small molecule
partner.

2910

Pocket Volume

The pocket volume is the calculated volume of the
pocket based on the SURFNET sphere-rolling
model in A%.

=750

Buried Vertices
Ratio

The property refers to how enclosed the pocket is;
it is calculated using a series of points within the
pocket from which projecting rays of fixed length
are projected. The reported ratio is the proportion
of points that have a large majority of rays
contacting protein. It is significantly impacted by
the size and shape of the pocket; for example, a
small pocket would be calculated to have a
greater enclosure than a large pocket of the same
depth, as there would be fewer points in the
centre of the pocket contacting only solvent.

GAP

Combined score of size and geometric complexity
of a pocket. The GAP=1 pocket is the largest and
most complex.

Volume ratio

Comparison of the volume of the pocket of
interest in comparison to the largest and most
geometrically complex pocket.

Accessible
Vertices Ratio

This property refers to how open the pocket is; it
is calculated in a similar way to Buried Vertices
Ratio but considers rays that contact solvent.

<13.8

This refers to the length of the principal Y-axis of
the pocket. It is therefore linked to the pocket

pocket. It is therefore linked to the pocket volume.

PCAY volume. It is not derived from a principal i
component analysis.
PCA 7 It refers to the length of the principal Z-axis of the i

Table 2.1: Pocket properties identified as being statistically significant and the thresholds used. PCA Y
and PCA Z were not used for the profile due their link with the pocket volume.
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To ensure that the remaining pocket properties had not been identified through
chance, | repeated the statistical tests with randomisation of positive and
negative training sets. None of the identified properties showed a statistically

significant difference between the randomised sets (Table 2.2)

The ligandability profile was defined using the statistically significant properties

and the thresholds provided by the Roc test as shown in Table 2.1.

Welch's T-test P-value KS test P-value ROC test AUC %

Property Real Randomised Real Randomised Real Randomised
Acpessible 9x10° 0.95 9.1x10° 0.97 80.4 49.6
Andrew's Energy 1.4x107 0.96 0 0.97 88.9 51.0
Buried Vertices 0 0.95 0 0.97 91.7 50.5
GAP 1.8x10™ 0.95 8.9x107 0.99 81.4 50.5
Pocket Volume | 5.9x107 0.96 1.2x10° 0.97 81.6 49.5
Volume Ratio 2.8x10 0.95 0 0.97 81.0 49.8

Table 2.2: Summary of statistics of properties identified as showing statistically significant differences
between the training and background set, and their associated randomised trial.

2.2.2.5 Use of p-values for significance testing

The p-value is the probability that upon repetition of the experiment, the same
or a more extreme result would be reported - how likely is it that this result
would be seen if the Null Hypothesis were true. The standard significance cut
off of p < 0.05 means that if the Null Hypothesis were true, then these results or

a more extreme result would be expected less than 5% of the time.

The p-value has become controversial over recent years'®®""?. In this case, p-
values are used in combination with AUC to identify properties that may be
important in ligandability. Both the p-values and the AUCs are supported by

randomisation of the test and training sets. Further, the prediction can be
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validated both by the use of known, ligandable secondary sites contained in the

test set, and through experimental validation of a novel target.

2.2.3 ldentifying ligandable secondary sites

The ligandability profile defined through the statistical analysis was then used
to identify ligandable secondary sites from within the background set of
526,416 pockets. The predictor identified 6,712 ligandable pockets in 1,391
proteins. In some instances, the same pocket was identified in multiple
structures of the protein, while in others multiple pockets were identified in the
same protein. Of these, 16 were known and validated ligandable secondary
sites (Table 2.3). Overall, the inclusion of multiple known examples gives

confidence in the predictor.

2.2.4 Triaging pockets for target selection

2.2.4.1 Prioritisation of cancer-associated proteins

In order to restrict the targets to cancer-associated protein, | used the 564
targets from Cancer Gene Census (CGC)'"® from COSMIC' and the 127
Significantly Mutated Genes (SMGs) from Kandoth et al.”>. The CGC is an
expert-curated database of proteins with mutations that are known to drive
carcinogenesis, while the SMGs were identified through a large-scale analysis
of TCGA. Across the two sets, 621 cancer-associated proteins were identified,
with 80 found in both the CGC and as an SMG. Pockets identified in these
cancer-associated proteins were retained. This step excluded most of the
identified pockets, leaving only 696 pockets from 103 proteins, 10% and 7% of

the ligandable pockets and proteins respectively.
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Protein PDB code Ligand ID Pocket description
114 Conserved allosteric site, 14A from
Caspase-7 1SHJ NXN active site. Binding of small
molecule inactivates protease
1 6.hi 115 AMP binding site, involved in
Fructose-1,6-bisphosphatase 3IFC AMP negative feedback loop
Fructose-1,(:’o-bisphosphatasem5 2WBB RO3 As above
"7 I-domain allosteric site; binding
Integrin a-L 3M6F BJZ prevents conformational changes
required for activity
*Abl-1""® 3PYY 3YY Myrisotyl binding site
119 Pocket at interface of E2 and
E2-R1 4MDK Uo4 ubiquitin, stabilises interaction.
120 Ispinesib binding site; prevents
Eg5 4BXN 6LX conformational changes required
for activity,
121 Adjacent to IPP (substrate) binding
Farnesyl pyrophosphate synthase 5DIQ 5B9 site, at C-terminus
Farnesyl pyrophosphate synthas 122 3N3L MSO0 As above
Phosphodiesterase 4d'> 3G4l D71 itabilises binding of regulatory
omain across active site
Phosphodiesterase 4d'® 3IAD 15X As above
124 Adjacent to, but not overlapping
*Inducible T-cell Kinase (ITK) 4M14 QwWs primary site in inactive
conformation
*Inducible T-cell Kinase (ITK)'** 4M15 QWS As above
Adenylate cyclase (soIAC)125 40YA 1VE Bicarbonate binding site
. 126 Example from allosteric site
Hexokinase-3 3HM8 BG6 database
2 Target G12C mutant; binding
*K-Ras 4LUC 20G prevents communication between
switch | and Il
*K-Ras? 4LV6 20H As above
Erk5'?’ 5BYZ AWE Adjacent to primary s?te; bin‘ding
displaces P-loop into primary site
Erk5'? 478J 4RO As above
*Mek1'? 3MBL LSG Adjacent to primary site
p53'2° 5A0I RZH Bind to Y220C mutant specific
pocket
*IDH1130 1T09 _ At dimer interface, competes with

binding for catalytic cation

Table 2.3: Examples of known, ligandable secondary sites initially predicted to be ligandable by the
computational predictor. *Indicates a secondary site that was retained throughout the triaging process.
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2.2.4.2 Triaging for potential functional relevance.

For a pocket to be druggable by small molecule approaches, binding of the
small molecule must have an impact on protein function and eventually on the
disease state. Secondary sites may be associated with protein or cofactor
binding, allosteric control of the primary site, or may be non-functional. There is
currently no consensus approach for predicting functional relevance in
secondary sites. Analyses aiming to investigate this tend to be based on either
putative sites or on small datasets. With still a large number of potential targets,
the pockets were triaged based on sequence conservation and mutation
mapping from the over 10,000 patient cohort in TCGA, that were used together

as rapid indicators of functional relevance.

The work previously discussed by Ludlow et al.?® showed that the secondary
sites identified by crystallographic fragments screening showed greater
sequence conservation in comparison to the global sequence conservation
between species orthologs, but to a lesser extent than observed in primary
sites. The extent of secondary site sequence conservation is still under debate
in the field. A pocket conservation score is calculated for each pocket
automatically during the refinement of the SURFNET-identified pockets within
the canSARS3D pipeline. | used sequence conservation as a rapid indicator of
functional relevance, prioritising pockets with a sequence conservation of 70%

or greater (Appendix 8.1.4).

The Allosteric Site Database (ASD)"™" collates sites in proteins involved in the
allosteric control of protein function. Some of the entries are single residues

implicated in the allosteric control of proteins, while others are enclosed
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pockets, such as the myristoyl-binding site in Abl"*2. The ASD does not curate
for ligandability. Shen et al."*® reported an enrichment of deleterious mutations
around primary and allosteric sites in comparison to tolerated mutations. This
enrichment was not observed when considering non-functional sites. Further,
they report an enrichment of patient-derived mutations around known allosteric
sites in cancer-associated proteins in comparison to the overall mutation rate.
Work by Dr. Al-Lazikani also shows a small but statistically significant
enrichment of patient-derived mutations around allosteric sites in comparison to
primary sites (personal communication). Based on these finding, | mapped
normal tissue-matched mutations from the TCGA onto the identified pockets as

a further indicator of functional relevance.

Of the 696 pockets in 103 proteins identified in cancer-associated proteins,
only 273 pockets from 61 genes had associated mutations. For these, a
mutation enrichment score was calculated (Equation 2.1). A score of one
shows equal rate of mutation in comparison to the background protein, a score
of less than one indicates a depletion of mutations and a score of greater than

one indicates enrichment in comparison to the global.

cavity mutation rate Equation 2.1

Score = ; ;
protein mutation rate

Where . . #mutations in cavity
cavity mutation rate =

#residues in cavity

and ) ) total mutation frequency
protein mutation rate =

length of protein
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Combining the conservation score and the mutation analysis leaves 247
pockets from 56 genes, which have a sequence conservation of greater than
70% and at least one associated mutation. In some cases, identified pockets
are associated with high mutation rates due to the presence of a recurrent
variant but do not show high levels of sequence conservation. For example, the
recurrent Y220C mutation in p53 results in formation of a novel secondary site
and subsequent destabilisation of the protein structure'*. Small molecules
targeting this site stabilise the protein fold"*® — it is both ligandable and
functionally relevant. While my computational analysis predicts the pocket to be
ligandable (Table 2.3), and shows mutation enrichment due to the recurrence
of the Y220C mutation, it has low levels of sequence conservation and was

therefore not taken forward as a pocket likely to show functional relevance.

2.2.4.3 Target shortlisting

The predictor identified multiple primary sites. These were manually removed,
leaving 150 pockets in 40 proteins (Appendix 8.1.3). Of these, five were known
and validated ligandable secondary sites in cancer-associated proteins (Table

2.3, proteins marked with an *).

With 2.8% of the original 6855 pockets remaining, it then became feasible to
look at each pocket in greater detail to prioritise targets further. Prioritisation
was based on the evidence of functional relevance, reliability of the prediction,
potential clinical impact and disease association, as well as the technical

feasibility of the target.

Reliability of the prediction considers the quality of the structures predicted to

be ligandable, which was assessed using the statistics reported in the PDB as
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136 Structures where the rate of Ramachandran

calculated by MolProbity
outliers is greater than 1% in the chain of interest, or with poor fit to electron
density around the pocket of interest as shown by RSRZ value greater than 2,
as well as those with resolutions lower than 3.5 A were excluded. The
proportion of comparable structures, where the protein adopts the same
conformation, in which the pocket is predicted to be ligandable was also

considers. Recurrent predictions in high quality crystal structures may be more

reliable.

Potential for clinical impact had already been considered through application of
the CGC and SGMs, and conservation scores and mutation enrichment had
been used as a rapid indicator of potential functional relevance. However, the
mutation profile of the target is also an important consideration for drug
discovery. High mutation rates associated with a single recurrent alternation
may be indicative of biological relevance. They are also lower risk for drug
discovery as the cancer-associated, recurrent variant can be targeted and offer
potential tumour specificity. High mutation rates not associated with high
recurrence can be more challenging as there is no clear variant to target, and
resistance may emerge more rapidly. Given the lack of consensus around
predicting functional relevance around secondary sites, literature evidence of
function was used to prioritise those with more evidence of functional relevance

and disease association.

The technical feasibility of the target considers how likely reliable experimental
systems can be established in house. As structural studies will be required to

identify binding sites following fragment screening, targets with straightforward
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expression systems such E. coli and multiple high resolution crystal structures
from different groups deposited in the PDB are indicative of a more amenable
system. Further, the availability of tool compounds and published assays aids

in the development of assays.

Four novel pockets in ESR1, p53, PIKSCA and IDH1 were identified as
potential initial targets for validation. Table 2.4 shows a summary of these sites

and some of the associated considerations.

All pockets in human PDB structures:
526,416 pockets from 5,795 proteins

Identify pockets predicted to be ligandable based on profile:
6,712 pockets from 1,391 proteins

Select identified pockets in cancer-
associated proteins using CGC and SMGs:
696 pockets, 103 proteins

Patient-derived mutations from TCGA and
sequence conservation as rapid
indicators of functional relevence

247 pockets, 56 proteins

Non-primary sites:
150 pockets,
40 proteins

IDH1

PIK3CA
p53

ESR1

Figure 2.4: Overview of the triaging process used to shortlist the four potential targets for experimental
investigation.

60



Protein ESR1 IDH1 TP53 PIK3CA | PIK3CG
. NUCLEAR TRANSCRIPTION
Family RECEPTOR DEHYDROGENASE FACTOR PI3/P14 KINASE
R‘Z“s’ﬁ:jﬂsn 22A 2A 25A 27A
Expression . . , Spodoptera
System E. coli E. coli E. coli frugiperda
Druggable
snapshots 50 ! L 3 24
Total
number of 193 18 162 21 89
structures
Mutation
enrichment 1.4 0.7 0.9 0.19 0.87
in the pocket
Sequence
conservation 0.96 0.93 1 0.83 0.96
in the pocket
. No literature
No literature ;
evidence. Close Li . . . evidence. S?me
. to ligand binding |terat_ure evidence: | Involved in structures of PIK3CA
Literature o potential regulatory | aggregation. show pocket
. site; not AF-2
evidence Alsc; redicted site. Changes Formed by steric occluded by His-tag.
and dru pable in AR conformation Zipper region Suggests peptide
comments andglgGR (lost between active and | required for binding function.
during mutation inactive aggregation Conserved between
ma %n ) alpha and gamma
pping isoforms

Table 2.4: Overview of shortlisted targets; number of structure was correct when the initial computational
assessment was completed, but will have since increased as more crystal structures are deposited in the
PDB. The mutation enrichment was calculated specifically considering residues forming the pocket as
described in equation 2.1. The sequence conservation is calculated as part of the canSAR3D pipeline.
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2.2.4.4 Shortlisted targets

The nuclear transcription factor p53 regulates cell cycle arrest and apoptosis in
response to DNA damage, and is tightly regulated by a network of post-
translational modifications. It is the most frequently mutated protein in human
cancer, with over 50% of tumours harbouring an inactivating mutation’.
Contact mutations either abrogate the ability of p53 to bind to DNA or change
the target-binding site, while stability mutations destabilise the protein core
causing aggregation. Further, negatively regulating proteins such as MDM2
and MDMX are overexpressed in many tumour types, leading to increased p53
ubiquitylation and inactivation, which is an important step in tumourogenesis as
it allows cancer cells to evade apoptosis. Reactivation of p53 is associated with
cell cycle arrest and the induction of apoptosis. Small molecule re-activators of
p53-Y220C have been reported to bind to the Y220C-specific cleft and induce

apoptosis'®® 138,

Two pockets in p53 were predicted to be ligandable. The first is the
aforementioned Y220C-specific pocket that has previously been targeted by
small molecular activators'®. The second is formed by the B-sheet associated
with amyloid fibre formation'®, and the N-terminal loop (Figure 2.5). The
pocket was only predicted to ligandable in one of the available 160 comparable
structures. It does not appear to depend on the presence of specific mutant. If
binding of a small molecule here could stabilise the structure, then it may be

applicable to a broad range of p53-mutant tumours.
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A)

Y220C
1 40 41 60 102 i 292 320 356 363 393

B)

Y220C-specific pocket
Bound by stabilising fragment

Figure 2.5: Overview of the novel secondary site in p53. A) Domain organisation of tumour suppressor
p53. B) Structure of p53 DNA-binding domain (PDB 1KZY) with location of predicted pocket shown as
pink transparent surface. Location of the Y220C-specific pocket bound by fragment also shown. Figure
made in Chimera

The Estrogen Receptor (ESR1) is a homodimeric steroid-hormone binding
nuclear receptor that is activated upon estrogen binding. Approximately 70% of
breast cancers are ER positive, with the receptor frequently over-expressed,
leading to uncontrolled cellular proliferation'°. Each monomer contains an N-
terminal activation function (AF)-1 domain, a DNA binding domain, and a
ligand-binding domain (LBD), which harbours both the ligand-binding site and
the activation function (AF)-2 helix'*" 2. The ESR1-LBD has been structurally
characterized (Figure 2.6), and the novel secondary site was identified in this

domain.

The predicted pocket is distinct from the ligand binding and AF-2 sites. It was

predicted to be ligandable in 50 of the available ESR1-LBD chains from the
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PDB. In addition, it was also predicted to be druggable in other NR3-family
members for which crystal structures were available. Despite this structural
conservation, this pocket does not seem to be referenced to in literature.
Although it is a highly novel target, no therapeutic hypothesis can be

developed.

1 184 185 250 3N 595

Primary (ligand-binding) site

Predicted
secondary site

Predicted
secondary site

Primary (ligand-binding) site

Figure 2.6: Overview of the novel site in ESR1. Domain organisation of ESR1; B) structure of ESR1 (PDB
1ERE) showing the location of the primary (ligand-binding) site and the predicted secondary site; C)
Rotated view of ESR1 showing the AF-2 helix. Figure made in Chimera®

PIK3CA and PIK3CG are Class | PI3-Kinases that phosphorylate PIP, to
produce PIP3;. PIP3; is involved in the recruitment of various downstream
proteins to the to the plasma membrane for activation, including Akt. Over-
activation of PI3K signalling is one of the most common events in human
cancers, and can occur through mutation of PI3Ks resulting in constitutive

activation™> 144,
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16 105 187 289 330 487 517 694 797 1068

Primary (ATP-binding) site

4 secondary site

B )

Figure 2.7: Overview of the novel site in PIK3CA.A) Domain organisation of PIKa showing location of
primary (ATP-binding) site. B) Structure of PI3Kalpha showing location of predicted site. C) Fragments
identified binding into the predicted site by Miller et al. 2017, Figures made in Chimera®

The novel secondary (Figure 2.7) site is discrete from both the primary site,
which is targeted by Copanlisib®', and the phospho-peptide binding site which
has recently been shown to be ligandable by crystallographic fragment

screening'*®

. It is a deep pocket at the interface of the helical, kinase and RBD
domains. It was predicted four times in PIK3CA during the initial analysis, and
was also predicted to be druggable in the PIK3CG isoform. This may support
potential functional relevance for this site in Class | PI3Ks, but there was no
literature to support this at the time of the analysis. During my research, a
crystallographic fragment screen against PI3Ka has identified multiple

14
t5

fragments binding into this novel predicted pocket ™, validating the ligandability

prediction.
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Isocitrate Dehydrogenase 1 (IDH1) is a homodimeric, metabolic enzyme that
catalyses the oxidative decarboxylation of isocitrate to a-ketoglutarate (aKG)
with the concomitant reduction of NADP* to NADPH. Substrate and catalytic
metal binding causes a large conformational change from the inactive, co-
factor bound conformation to the catalytically active form, with the formation of

an a-helix across the dimer interface that completes the primary site'®.

Known
allosteric site

Novel predicted
secondary site

ry site

Figure 2.8: Overall structure of the IDH1-R132H dimer showing the location of the three pockets predicted
to be ligandable. Figure made in Chimera®

Heterozygous missense mutations in IDH1 are identified in up to 80% of glioma
patients and 15% of AML patients, with an arginine to histidine substitution at
residue 132 the most commonly observed®®. This causes th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>