
Supplementary Material and Methods 
 

Sample preparation for NGS 

 

DNA samples were isolated using commercially available kits following manufacturer’s 

instructions. In brief, whole peripheral blood was centrifuged to separate plasma and buffy 

coat fractions; DNA was isolated from the buffy coats using the DNeasy kit (Qiagen) while 

cell-free circulating tumor DNA was isolated from plasma using the QIAamp Circulating 

Nucleic Acid kit (Qiagen) DNA from fresh frozen specimens was extracted from thirty 10um 

cryosections using the AllPrep Qiagen kit. For every FFPE specimen, ten 5-10um sections 

were stained with nuclear fast red and scored by a pathologist. Manual needle micro-

dissection was performed on the stained sections to separate distinct tumour areas highlighted 

by the pathologist and to isolate surrounding healthy tissue. DNA was further extracted using 

either the QuickDNA FFPE kit (Zymo) or the QiaAmp DNA FFPE tissue kit (Qiagen). 
 

Bioinformatics Analysis 

 

Purity estimation: purity estimates were calculated using histopathology scoring, the VAF of 

a potential clonal diploid mutation (PCDM) in the WES variants and estimated using ASCAT 

(1). Table S2 presents the purity estimates for all of the three approaches. 

 

Copy number analysis: tumour sample copy number log2 ratios (LRR) and B-allele 

frequencies (BAF) were calculated using PureCN (2). LRRs were normalised using the 

global median and outliers smoothed using CGHcall (3). Mirrored BAFs (mBAF) (4) of 

heterozygous loci were segmented using piecewise constant fitting (PCF) (5). A two-

component Gaussian mixture model was fitted to the BAF values of each segment utilising 

mixtools version 1.0.4 (6) to estimate the major allele distribution in each segment. However, 

if the segment BAF values were considered to be drawn from a normal distribution expected 

in allelic balance (BAF=0.5), the segment was considered balanced (Kolmogorov–Smirnov 

test, p>=0.05). The major allele BAF and LRR of each segment was used as input for 

ASCAT to estimate tumour purity and ploidy, limiting the minimum purity of the solution to 

the lower 95% binomial confidence limit (Wilson method) of a PCDM purity adjusted for a 

tetraploid solution. Ploidy range was restricted in tumours manually assessed to have a high 

ploidy state, and purity and ploidy was preset if a solution was not obtained, parameter ranges 

are provided in Table S2. Solution purity and ploidy were used to estimate copy number 

alteration (CNA) clonality of each segment using the Battenberg methodology (7), for 

segments considered subclonal, the copy number state with the highest prevalence was taken. 

Copy number calls are provided as Supplementary Data. 

WGS data from Patients 3 and 4 were analysed for CNAs using Sequenza (8). 

 

Identification and validation of somatic variants: adapter trimming was performed with 

Skewer v0.1.126 (9) with minimum read length after trimming 35 and mean quality value 

before trimming of 10. Trimmed reads were aligned to the full human reference genome hg19 

with Burrows-Wheeler Aligner (BWA) v0.7.12 (10). PCR duplicates were marked using 

Picard tools. Joint mutation calling between multiple samples from the same patient was 

performed per patient using a combination of Platypus v0.8.1 (11) with biased prior (‘source’ 

option) for mutations called by Mutect2 (12) on single tumour-normal pairs. This allowed us 

to exploit the sensitivity of Mutect2 with the joint calling capability of Platypus. The 



following filtering criteria were used to call somatic variants in WES samples: i) only 

variants with Platypus filter PASS, alleleBias, Q20, QD, SC and HapScore were kept, ii) 

minimum coverage and genotype quality of 10 was required iii) variants in segmental 

duplicated regions and centromeric regions were removed, iv) minimum of 3 reads covering 

the variant in at least one of the tumour samples per patient were considered, v) 0 number of 

reads covering the variant in the germline sample, and vi) genotype of the 0/0 in the germline 

sample. Only somatic alterations and indels with a Variant Allele Frequency (VAF) >5% 

were considered. Somatic variants were annotated both with CAVA (13) and VEP (14). 

Potential drivers such as PIK3CA, TP53, CTCF, ARID1A, FOXA1 were also reviewed 

manually using the Integrated Genomics Viewer (IGV) (15). Fig S2 shows the distribution of 

mutations in the WES samples. The same analysis was used for the analysis of WGS samples 

(pat. 3 and pat. 4). In total, 807 variants were selected from the WES samples for targeted 

sequencing. SNV calling on the targeted capture samples was performed using Platypus in 

genotyping mode. Somatic SNVs with minimum genotype quality of 10, minimum coverage 

of 300 and identified by a minimum of 10 reads were considered for further analysis.  

Somatic mutations that failed the validation in all samples per patient were removed 

otherwise VAF is indicated as NA in the failed sample. All validated variants (SNVs and 

indels) were used for the rest of the analysis.  Indels were removed from ctDNA analysis to 

avoid calling false positives because of the low allele frequency variants in ctDNA.  Variant 

allele frequencies of TES and WES data are available from Tables S3 and S5. 

 

Driver genes: the complete set of SNVs was compared to a list of known potential driver 

genes in breast cancer. This list included genes found previous studies (16-19) and breast 

cancer driven genes found in COSMIC Cancer Gene Census(20) (downloaded 27/02/2017). 

 

Cancer cell fraction estimation: for each variant the local total copy number state, VAF and 

sample purity was used to estimate cancer cell fraction(21). ASCAT purity was taken unless 

the purity was equal to 100%, in which case the PCDM purity estimate was used. The 

number of alleles mutated was assumed to be 1 to avoid overcalling subclonality. Cancer cell 

fractions for TES and WES data are available from Tables S4 and S6. 

 

Mutational Signature analysis: Signatures of mutational processes were analysed with 

deconstructSigs (22) using the Wellcome Trust Sanger Institute mutational signatures 

framework (23). Mutational signatures were estimated in three groups per patient using i) 

clonal mutations, ii) private to the primary mutations iii) private to lymph node mutations 

initially for the WES samples and then, to validate for the WGS samples (pat.3 and pat.4). 

Differences in mutational signature analyses between WES and WGS samples were minimal, 

showing that number of mutations in WES samples were sufficient to identify the major 

mutational signatures. Lastly, analysis was repeated using the full list of mutations from all 

patients to show the overall trend in the three subgroups. 

 

Phylogenetic reconstruction: validated indels and variants from the targeted sequencing (Fig. 

2) were used for phylogenetic reconstruction with PAUP* maximum-parsimony (24) by 

binarising the CCF values to produce tables indicating the presence/absence of each mutation 

in each sample. To account for the potential for trees to be confounded by subclones or clonal 

mixing, we considered trees constructed from mutations both with CCF>0.1 (all mutations, 

Fig. 3 trees) and with CCF>0.8 (clonal mutations only, Fig. S6 trees). Excluding the tree 

constructed from TES sequencing for Patient 7 and those trees comprising only two non-

normal samples, trees were determined by an enumeration and evaluation of all possible 

trees. For the Patient 7 TES sequencing tree an exhaustive search is infeasible owing to the 



large number of samples and a heuristic search was used with the stepwise addition option to 

obtain the starting trees for branch swapping and 500 replications were performed. For all 

trees, the normal tissue (blood) sample was designated as the outgroup. Bootstrap analysis 

was carried out to assess the support of the phylogenetic tree nodes with 10000 replicates for 

each tree (Fig. S5). The same analysis was also applied to the variants from the WES samples 

(Fig. S5). For patients with only two samples, trees were drawn manually with the trunk and 

branch length to be proportional to the number of clonal and private mutations of each of the 

two samples respectively.  

 

In situ genomic profiling 

 

CISH data generation: CISH on a FFPE tissue was performed using BaseScope
TM

 for 

PIK3CA mutation profiling and RNAscope


 for APOBEC expression according to 

manufacturer’s guidelines provided by Advanced Cell Diagnostics (ACD Bio, Newark, CA). 

Four μm sections were prepared and incubated at 60
0
C for 1 hour before xylene and ethanol 

treatment for deparaffinisation and rehydration. Following this, endogenous peroxidase was 

blocked using Pretreat 1 (hydrogen peroxidase) for 10 minutes at RT. Antigen retrieval was 

performed using Pretreat 2 for 15 minutes at 100
0
C and Pretreat 3 (protease) was applied for 

30 minutes at 40
0
C in a HybEZ

TM
 oven. Distilled water was used to rinse slides between each 

Pretreat. Next, BaseSope
TM

 probes (PIK3CA Wild Type and PIK3CA H1047R Mutation) 

were provided by ACD Bio. APOBEC3A and APOBEC3B  RNAscope
 

probes were custom 

designed and purchased from ACD Bio. Probes were hybridised for 2 hours at 40
0
C in 

HybEZ
TM

 oven. Signal amplification steps were performed using AMP reagents (ACD Bio) 

in the following order: AMP0 is at 40
0
C for 30 minutes, AMP1 is at 40

0
C for 15 minutes, 

AMP2 is at 40
0
C for 30 minutes, AMP3 is at 40

0
C for 30 minutes, AMP4 is at 40

0
C for 15 

minutes, AMP5 is at RT for 30 minutes and AMP6 is at RT for 15 minutes. Wash buffer was 

used two times in between each AMP reagents. Finally, slides were incubated with fast red 

and counterstained with Gill’s haematoxylin.  
 

CISH image analysis and signal quantification: in order to identify regions of over- or under-

expression, detection was performed across the entire slide. Chromogen spots are commonly 

under 5 microns in size, and thus will only be visible in visual fields with sufficiently high 

resolution. For this reason, detection was performed on slide images with a pixel resolution 

of 0.22μm/pixel, comparable to a 20× optical magnification. Each whole slide image (WSI) 

was divided into 2048×2048 blocks and chromogen spot detection was performed on each 

block individually. Results from each block were then combined to produce the complete set 

of detections for the WSI. Detections that occurred outside of regions identified as tumour 

were not of interest in this work and were excluded from further analysis. 

The intensity of the chromogen staining was extracted from the image using the 

matrix-based colour deconvolution approach introduced by Ruifrok and Johnston (25). The 

haematoxylin-chromogen stain matrix, M, given below, was determined empirically by 

sampling 500 pixels of each stain. 

M = [ 

0.741 0.607 0.286 ] 
0.463 0.784 0.414 

0.027 -0.174 0.300 



It is common for the extracted chromogen intensity channel to contain variable background 

noise, and thus the signal was enhanced by the use of a Laplacian of Gaussian (LoG) filter 

(26). For a visual field with a resolution of 0.22μm/pixel, we recommend a LoG filter with σ 

= 5. The LoG filtered stain channel was thresholded to isolate the chromogen spots, each 

connected component above the threshold is considered a separate detection. For this work, a 

threshold of 0.007 was chosen.  

 

To eliminate many common types of false detection, the pixel region defined by each 

connected component of the thresholded image was checked against the following criteria: 

 Mean saturation > 0.2 

 Mean luminance > 0.2 

 Mean background channel intensity > 0.8 

Detections failing to meet each criterion were excluded from the final result. 

 

Spot density was calculated for sections marked with APOBEC3A or APOBEC3B. The spot 

density of a single detection was computed over a circular region, with a radius r = 

429.44μm, centred on the detection. Thus, for a spot, s, the density, D(s), was calculated as: 

 

D(s) = N(s) 
             πr2 

 

where N(s) is the number of spots within the circular region surrounding s. The density for 

the section was computed as the mean of individual spot densities. 

 

The procedure for the detection of lymphocytes follows a similar principal to that of spot 

detection. The intensity of the Haematoxylin stain is extracted from the image using stain 

matrix M. A LoG filter is then applied to reduce background noise. For a visual field with a 

resolution of 0.22μm/pixel, we recommend a LoG filter with σ = 10. The LoG filtered 

Haematoxylin channel is thresholded to isolate individual nuclei, each connected component 

above the threshold is considered a separate detection. A threshold of 0.001 was chosen for 

this experiment. This process produces the initial set of detected cells. In order to exclude 

other cell types, the following criteria are applied: 

 

 Mean saturation > 0.2 

 0.2 < Mean luminance < 0.4 

 Detection eccentricity < 0.7 

 

Only detections meeting all criteria are selected as lymphocytes. 



 

 

 

Supplementary Figures and Tables 
 

 
Figure S1. Proportion of clonal and subclonal variants identified by whole exome 

sequencing. Clonal variants are defined as mutations exhibiting CCF>0.5 in each of the 

patient samples. 73.5% of all mutations identified were subclonal. We note that for tumours 

with very low mutational burden, like 5 and 10, the number of clonal mutations is very small, 

although all samples do share similar copy number profiles, as illustrated in Figure 2B. 

 

Figure S1



 
Figure S2. Mutation cancer cell fractions from whole-exome sequencing. 

Heatmaps indicate cancer cell fractions of mutations in all whole-exome sequencing samples 

per patient. Putative drivers are annotated at the left of each heatmap. 

 

(attached separately due to size) 

Figure S3. Log-R-ratios and B-allele-frequency values. 

Log-R-ratios (left) and B-Allele-Frequency (BAF-right) values for each whole exome 

sequencing samples estimated by PureCN. ASCAT estimated purity and ploidy is shown on 

the top of each graph. 

 



 
Figure S4. Bootstrap values for targeted sequencing phylogenetic trees. Bootstrap values 

of phylogenetic trees reconstructed with maximum parsimony for each patient from 

mutations validated with TES. 

 



 
Figure S5. Phylogenetic trees reconstructed from WES data. 

Phylogenetic trees reconstructed with maximum parsimony for each patient from the whole-

exome sequencing samples with the corresponding bootstrapping values at each branch. The 

tree topologies were recapitulated using targeted sequencing (Fig. 3A), confirming that early 

divergence was not due to sampling bias. 

 



 
Figure S6. Phylogenetic trees reconstructed from TES data using only clonal mutations 

in each sample (CCF>80%). 

Phylogenetic trees reconstructed with maximum parsimony for each patient from the targeted 

sequencing samples by selecting CCF>80% to assess confounding factors of subclones 

within samples. All trees recapitulate targeted sequencing trees in Fig. 3A. 

 



 
Figure S7. Measure of phylogenetic divergence. The level of phylogenetic divergence 

quantified using the Node Cophenetic Distance confirmed the high level of divergence in the 

divergent cases, both for TES as well as WES data. 

 

(attached separately due to size) 

Figure S8. CCF comparisons between multiple tumour samples. CCF comparisons, 

points coloured in red are present in a CNA segment called as subclonal in at least one 

tumour sample. 

 

Table S1: Clinical information.  
 

Table S2: Purity and ploidy estimates per sample. Three estimations of purity per samples 

are included: (1) purity estimation by pathologist review; (2) purity estimation using a 

PCDM; (3) purity and ploidy estimates derived from ASCAT. Additionally, purity and ploidy 

parameter limits for ASCAT are also provided. 

 

Table S3: Targeted sequencing mutations variant allele frequencies used to calculate 

cancer cell fractions.  
 

Table S4: Targeted sequencing mutations cancer cell fractions used in Figure 2A and 

4A.  
 

Table S5: Whole-exome sequencing mutations variant allele frequencies used to 

calculate cancer cell fractions.  
 



 

Table S6: Whole-exome sequencing mutations cancer cell fractions used in Figure S2.  
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