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SUMMARY

Receptor tyrosine kinases exhibit a variety of activa-
tion mechanisms despite highly homologous cata-
lytic domains. Such diversity arises through coupling
of extracellular ligand-binding portions with highly
variable intracellular sequences flanking the tyrosine
kinase domain and specific patterns of autophos-
phorylation sites. Here, we show that the juxtamem-
brane (JM) segment enhances RET catalytic domain
activity through Y687. This phospho-site is also
required by the JM region to rescue an otherwise
catalytically deficient RET activation-loop mutant
lacking tyrosines. Structure-function analyses identi-
fied interactions between the JM hinge, aC helix, and
an unconventional activation-loop serine phosphory-
lation site that engages the HRD motif and promotes
phospho-tyrosine conformational accessibility and
regulatory spine assembly. We demonstrate that
this phospho-S909 arises from an intrinsic RET
dual-specificity kinase activity and show that an
equivalent serine is required for RET signaling in
Drosophila. Our findings reveal dual-specificity and
allosteric components for the mechanism of RET
activation and signaling with direct implications for
drug discovery.
INTRODUCTION

Vertebrates have close to 60 receptor tyrosine kinases (RTKs)

that respond to a diverse set of extracellular polypeptide ligands

by stimulating their intrinsic tyrosine kinase function. RTKs play

key roles during embryogenesis and cellular homeostasis; they
Cell Repor
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are also crucial at the origin and progression of many types of

cancer (Lemmon and Schlessinger, 2010). Recent progress on

the structural basis for EGFR, IR, and FGFR activation has

emphasized the importance of RTK-specific or ‘‘private’’ mech-

anisms of activation for their catalytic domains involving flanking

regions and asymmetrical and symmetrical arrangements of

dimeric and higher-order oligomeric states (Bae and Schles-

singer, 2010; Cabail et al., 2015; Jura et al., 2011; Lemmon

et al., 2014). The activation mechanism operating in RET in these

terms is currently unclear.

In the current RET paradigm for ligand-dependent RET activa-

tion, autophosphorylation (autoP) of several tyrosine residues

within the cytoplasmic domain is required for cell signaling (Air-

aksinen et al., 1999; Plaza-Menacho et al., 2006). For other

RTKs, such as the IR and FGFR2, ligand-dependent stimulation

leads to kinase activation and phosphorylation of specific tyro-

sine residues, which relieve repressive cis-inhibitory interactions

to enhance catalytic activity and to promote binding of phos-

photyrosine-binding domain (PTB)- and Src homology 2 (SH2)-

domain-containing proteins to transmit downstream signals

(Chen et al., 2007; Hubbard, 1997). While the latter role for phos-

phorylation has been demonstrated for RET, its effect on cata-

lytic activation has been only recently elucidated. In vitro, phos-

phorylation of the canonical RET activation loop has little effect

on catalytic activity (Knowles et al., 2006; Plaza-Menacho

et al., 2011). Indeed, RET activation-loop tyrosines Y900 and

Y905 should not be considered activating, because they un-

dergo delayed autoP and are not catalytically required (Plaza-

Menacho et al., 2011, 2014a). A similar situation is found for

the EGFR and non-RTK ACK1 (Lougheed et al., 2004; Zhang

et al., 2006). In these cases, allosteric mechanisms have been

identified to stimulate receptor activity independent of activation

segment phosphorylation.

Cell-based studies have revealed the importance of the juxta-

membrane (JM) segment in RET-receptor-mediated signaling, in

particular Y687, a known phospho-tyrosine binding site for SHP2
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(Perrinjaquet et al., 2010). In addition, phosphorylation at RET

S696 by protein kinase A (PKA) has also been reported. Mutation

of S696 affected the ability of RET to activate the small GTPase

RAC1 and stimulate formation of cell lamellipodia (Fukuda et al.,

2002). Homozygous knockin mice carrying this mutation lacked

enteric neurons in the distal colon, resulting from a migration

defect of enteric neural crest cells (Asai et al., 2006), indicating

a physiological role for a PKA-RET functional crosstalk. How-

ever, structural andmolecular information about allostericmech-

anisms promoted by the JM region on RET kinase activity are

lacking. Taking into account that the role of the JM segment of

EGFR family members is distinct from that of typical RTKs

because it enhances, rather than inhibits, the catalytic activity

(Li et al., 2003; Thiel and Carpenter, 2007), the nature of this

coupling between the JM segment and catalytic domain for

RET has not been properly explored.

In this study, we define flanking elements and phospho-sites

required for RET catalytic domain activation and signaling. We

show that the JM segment functions to increase RET catalytic

domain activity through Y687. Structure-function analyses re-

vealed a crosstalk among the JM hinge, aC helix, and serine

phosphorylated activation loop. We demonstrate that the previ-

ously unreported S909 phospho-site arises from a dual-speci-

ficity RET kinase activity, unique among RTKs. We show that

an equivalent serine in Drosophila RET is required for signaling

in vivo. Further structural and biochemical examination revealed

an RET aC hydrophobic pocket as a potential drug-targetable

allosteric site.

RESULTS

The JMSegment IncreasesRETTyrosineKinaseActivity
To define the functional impact of the JM segment on RET tyro-

sine kinase activity, we used purified recombinant RET kinase

domain (KD; residues 705–1013) and RET KD with the JM

segment (JM-KD; residues 661–1012; see Figure 1A) and per-

formed a series of biochemical experiments. First, we measured

the enzymatic parameters of RET JM-KD and RET KD against an

exogenous peptide (Figures S1A and S1B). RET JM-KD showed

a 5-fold increased catalytic efficiency (kcat/KM constant) toward

the substrate, indicating increased RET enzymatic activity

promoted by the JM region. To support these results further,

we performed in vitro time-course autoP assays using saturating

concentrations of ATP (5 mM) and MgCl2 (10 mM) for 0–80 min

(Figures 1B, upper panel and S1D). Western blot (WB) analysis

demonstrated increased kinetics and total phosphorylation by

RET JM-KD, as indicated by levels of phospho-tyrosine 4G10

antibody. The temporal sequence of RET autoP was also evalu-

ated by label-free quantitative mass spectrometry (LFQMS)

following a previously described protocol (Plaza-Menacho

et al., 2014a). LFQMS analysis identified tyrosine residues—

Y687, Y826, Y900, and Y905—which upon RET catalytic activa-

tion were efficiently phosphorylated in a time-dependent fashion

(Figure 1B, lower panel). Signal log2 ratios of phosphorylated

peptides standardized to their non-phosphorylated counterparts

were plotted relative to a zero time point (Figures 1C and 1D).

As indicated by the kinetics of saturation, JM segment Y687

undergoes faster autoP than activation-loop Y900 and Y905.
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Furthermore, enhanced phosphorylation kinetics for Y900 and

Y905 by RET JM-KD were observed compared with RET KD. In

particular, a significant difference was observed in the kinetics of

the double-phosphorylated activation-loop peptide. Examination

of the total cumulativephosphorylation for eachsitedemonstrated

that fully phosphorylated RET JM-KD was achieved between 20

and40mincomparedwith the80–90min required forRETKD (Fig-

ure 1B). Taken together, these data demonstrated that the JM

segment increases RET catalytic activity presumably through an

allosteric means. Contrary to the EGFR (Jura et al., 2009), the

JM region did not promote the formation of RETdimers in solution

at protein concentrations used in the biochemical assays as as-

sessed by dynamic light scattering (DLS; Figure S1C). The JM

segment had no appreciable impact on the stability of RET KD

as reported by thermal shift experiments (Figure S1C). However,

the apparent affinity forATPmeasuredby isothermal titration calo-

rimetry (ITC) was affected by 2-fold (RET JM-KD Kd = 37.5 ±

3.1 mM, RET KD Kd = 64.3 ± 10 mM; Figure S1C). In line with these

results, RET JM-KD also displayed increased enzyme kinetic

parameters for ATP (Figures 1E and S1C).

Mapping JM Elements Required for RET Catalytic
Activation
To map key residues within the RET JM region, we generated a

series of deletions and performed biochemical analyses. First,

enzymatic assays were performed using an ABL-derived pep-

tide, used previously as a good surrogate substrate for RET.

Comparison of the catalytic efficiency (kcat/KM) among the

different RET JM-KD deletions demonstrated that full-length

JM segment starting at residue 661 (JM661) was required to

achieve maximal catalytic activity (Figures 2A and 2B). Time-

course autoP assays (0–80 min) using RET phospho-specific

antibodies were performed to validate the enzymatic assays

and LFQMS data. More rapid and elevated phosphorylation

levels were observed by RET JM661 as indicated by total phos-

pho-tyrosine and phospho-specific RET Y905 and Y981 anti-

bodies, respectively (Figures 2C and S2C). In this context, the

shorter RET JM698 behaved similarly to RET KD, showing

slower kinetics. Faster Y905 and Y981 autoP was observed by

RET JM661 compared with RET JM678, and even more signifi-

cantly with RET JM698 or RET KD. These results confirmed an

increased RET catalytic activity because of the JM segment

and implicate the region between residues 661 and 697. Further

truncations targeting the transition toward the RET catalytic

core, especially residues 705–712, were evaluated in expression

analyses and in autoP assays. While the recombinant RET cata-

lytic domain starting at residue 709 was stable in solution, the

construct starting from residue 713 gave rise to an unstable pro-

tein (Figure S2A). The RET catalytic domain starting at residue

709 displayed slower kinetics of phosphorylation compared

with that beginning at residue 705 (Figure S2B).

Recombinant glutathione S-transferase (GST)-RET KD fusions

with different lengths of the JM segment were used to assess

the impact of ‘‘forced’’ dimerization on RET catalytic activity

in solution. GST-RET fusions displayed faster kinetics and

increased levels of phosphorylation than the untagged proteins

(Figures 2D and S2D). However, such enhanced kinetics were in-

dependent of the length of the JM segment. Although in principle
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Figure 1. The JM Segment Enhances RET

Catalytic Domain Activity In Vitro

(A) Alignment of selected JM sequences from

human RTKs highlighting conserved residues in

bold, serine residues in blue, and tyrosine in red.

Selected acidic side chains at an equivalent po-

sition to Y687 of RET are also shown in red.

Schematic diagram of discrete RET functional

domains together with the phospho-sites (red

spheres) analyzed in this study. White spheres

correspond to sites outside the scope of this

study. Residue numbering corresponds to human

RET9 sequence (NP_065681.1). Dashed arrow

depicts the transition from the JM segment to the

RET catalytic core. Lower panel depicts RET

constructs used in this study as indicated: RET

intracellular domain (ICD; 661–1,072), RET kinase

domain (KD; 705–1,013), and RET JM-KD variants

starting at 661, 678, and 698, respectively.

For crystallization purposes, an RET JM659-KD

(659–1,013) construct was used in this study (*).

Previously solved RET catalytic domain crystal

structures used an RET KD (705–1,013) construct.

(B) Western blot (WB) analyses of purified re-

combinant RET JM-KD and RET KD (2.5 mM)

treated with saturating concentrations of ATP

(5 mM) and MgCl2 (10 mM) for 0–80 min using the

indicated antibody. Total amount of protein was

assessed by Coomassie blue staining (upper

panel). Lower panel shows a global time-depen-

dent analysis by LFQMS (showing accumulative

phosphorylation for each site) of the same sam-

ples. Data are representative of multiple inde-

pendent experiments (n): n > 6 for WB and n = 3 for

LFQMS.

(C and D) Phosphorylation kinetics of individual

sites from (B) is shown. Data represent the mean

log2 ratios of phosphorylated peptides normalized

to their non-phosphorylated counterparts ± SEM,

n = 3. Statistics for RET phospho-Y687, -Y826,

-Y900, -Y905, and -Y900/Y905 (JM-KD versus

KD): ****p < 0.0001, ***p = 0.009, two-way ANOVA

Bonferroni test (black asterisks); *p < 0.05, **p <

0.005, multiple t test Sidak Bonferroni method

(gray asterisks).

(E) Enzymatic assay performed with RET JM-KD and RET KD (1 mM) incubated with increasing concentrations of ATP at a fixed (4 mg/ml) ABL peptide con-

centration. Data represent the mean ± SEM, n = 4 from two different protein preparations; ****p < 0.0001, two-way ANOVA Bonferroni test (left panel). Catalytic

efficiency constants (kcat/KM, fold difference) are depicted in the right panel.
this artificial system could lead to forced dimerization by the GST

modules to dominate and override the effect of JM segment on

RET activity, these data indicate that dimerization is not driving

the increased activity promoted by the JM region in solution.

The JM Segment Increases RET Catalytic Activity
without Affecting Substrate Presentation
The JM segment could potentially increase RET autoP by pro-

moting a better substrate. To assess whether the JM segment

also influences the substrate presentation properties of RET,

we performed phosphorylation rescue experiments in trans us-

ing catalytically deficient RET K758M variants as substrates

(Plaza-Menacho et al., 2014a). Consistent with earlier experi-

ments, RET JM-KD-containing residues 661–677 were more

active against catalytically deficient RET intracellular domain
(ICD) K758M (i.e., substrate) than RET KD (Figure S3A). A recip-

rocal experiment was then performed using an active RET ICD

against a catalytically deficient RET K758M in either JM-KD or

KD context (Figure S3B). No significant differences were

observed between the two substrate variants with or without

the JM segment, indicating that the JM regionmakes RET kinase

a better enzyme and not a better substrate for autoP.

JM Segment Y687 Promotes RET Catalytic Activity
The activating JM segment spanning residues 661–697 contains

Y687, a known autoP site. To evaluate the functional role of this

phospho-site in RET catalytic activity, we made Y687F mutant

variants. AutoP assays of wild-type (WT) or Y687F mutants in

a RET JM661 or JM678 context were compared with RET

JM698 and showed a significant detrimental effect for Y687F
Cell Reports 17, 3319–3332, December 20, 2016 3321
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Figure 2. Mapping Key JM-Segment Elements Required for RET

Catalytic Activation

(A) Enzymatic assay performed with purified recombinant (1 mM) RET JM-KD

(with differing lengths) and RET KD varying the concentration of ABL peptide

(sequence EAIYAAPFAKKK). Data are mean ± SEM and represent n = 3.

(B) Catalytic efficiency constants (kcat/KM, fold difference) from (A).

(C) WB analyses of purified recombinant RET JM-KD (2.5 mM, JM residues

661–705, RET JM661-KD), RET JM678-KD, RET JM698-KD, and RET KD

treated with ATP (5 mM) and MgCl2 (10 mM) for 0–120 min using the indicated

antibodies.

(D) WB analyses of purified recombinant GST-RET fusions treated with ATP

(5 mM) and MgCl2 (10 mM) for 0–80 min using the indicated antibodies. Total

amount of protein was assessed by Coomassie blue staining.
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Figure 3. JM-Y687 Promotes RET Catalytic Activity and Rescues

a Catalytically Deficient RET Activation-Loop Mutant Lacking

Tyrosine

(A) WB analysis of purified recombinant RET JM661-KD, JM678-KD, and JM-

698-KD (2.5 mM) WT and Y687F mutants stimulated with ATP (5 mM) and

MgCl2 (10 mM) for 0–80 min using the indicated antibodies.

(B) WB analysis of purified recombinant RET JM661-KD (2.5 mM) WT and

indicated Y/F mutants (Y900F, Y905F, Y900/905F, Y981F) with ATP (5 mM)

and MgCl2 (10 mM) for 0–80 min using the indicated antibodies.

(C) WB analysis of purified recombinant RET JM661-KD and RET KD (2.5 mM)

WT, Y900/905F (YY/FF), and Y687/900/905F (YYY/FFF) mutants as indicated

stimulated with ATP (5 mM) and MgCl2 (10 mM) for 0–90 min using the indi-

cated antibodies. Total amount of protein was assessed by Coomassie blue

staining.
mutants using both total phospho-tyrosine and phospho-specific

RET Y905 and Y981 antibodies, respectively. In RET JM661, the

effect of the Y687F mutant was reduced, suggesting 661–678

could partially compensate for the loss of Y687. Next, a phos-

pho-specific polyclonal antibody was raised against a phospho-

Y687 peptide. As expected, the phospho-specific Y687 antibody

showed no signal for Y687F mutants nor RET JM698, but

increased signal for WT RET JM661 compared with RET JM678

(Figures 3A and S3C). Previous data showed no impact of Y687

on RET ICD activity (Plaza-Menacho et al., 2014a). A dependency

on Y687 is seen only in the absence of RET C-terminal (CT)
3322 Cell Reports 17, 3319–3332, December 20, 2016
sequences.One explanationwould be if the JMandCT segments

were in a spatially close proximity and could exhibit a compen-

satory effect masking a Y687 functional role (see Figure 5 and



Table 1. Data Collection and Refinement Statistics

RET JM-KDd3 RETJM-KDd1

5FM3 5FM2

Space group P 63 2 2 P 63 2 2

Cell dimensions

a, b, c, Å 98.5, 98.5, 146.3 98.4, 98.4, 144.5

a, b, g 90.0�, 90.0�, 120.0� 90.0�, 90.0�, 120.0�

Resolution (outer

resolution shell), Å

40 – 2.95

(3.11 – 2.95)

50 – 3.30

(3.48 – 3.30)

Rsym (%) 10.9 (79.5) 0.17 (0.89)

Rp.i.m. (%) 4.1 (30.1) 0.05 (0.28)

I/s 12.9 (2.8) 10.9 (2.8)

Completeness (%) 99.9 (100.0) 100 (100)

Redundancy 7.9 (8) 10.9 (11.3)

Resolution (outer

resolution shell), Å

40 – 2.95

(3.37 – 2.95)

55.0 – 3.3

(3.75 – 3.3)

No. of unique

reflections

9,360 6,686

Rwork 19.9 (25.0) 23.4 (25.7)

Rfree
a 22.4 (28.9) 25.3 (29.4)

No. of atoms 2,151 2,105

Wilson B factor 76.8 79.4

Average isotropic

B factors, Å2

74.4 75.9

Rmsds

Bonds, Å 0.002 0.002

Angles, � 0.66 0.65

Ramachandran plot

(favored/allowed/

disallowed), %

94.9/4.7/0.4 96.3/3.7/0.0

aA total of 5% of the data were set aside to compute Rfree.
Discussion).Next,weassessed theeffect of singleY900F,Y905F,

and Y981F and double Y900/905F mutants on RET JM-KD activ-

ity. In contrast with the detrimental effect observed for Y687Fmu-

tants, replacement of theother phospho-sites (Y/F) didnotdisrupt

RET autoP (Figures 3B and S3D). Of note, double activation-loop

RET JM-KDY900/905Fmutant showed significant lower levels of

Y981 phosphorylation despite no effect on total phosphorylation.

More importantly, RET JM661-KD Y900/905F showed WT levels

of phospho-Y687 and total phosphorylated RET kinase, indi-

cating the JM segment is able to rescue the activity in cis of the

catalytically deficientRETKDY900/905Fmutant (Plaza-Menacho

et al., 2011, 2014a). These data demonstrate that crosstalk (i.e.,

rescue) between the JM segment and the activation-loop is

required for RET catalytic function. Further evidence of coupling

between the JMandactivating segmentswas obtained by testing

a triple RET JM-KD Y687F/Y900/905F mutant for tyrosine kinase

activity (Figures 3C and S3E). Crucially, RET JM-KD Y687F was

not able to rescue the catalytically deficient Y900/905F mutation.

Altogether, these data demonstrate that Y687 is required for a

proper allosteric input by the JMsegmentonRETcatalytic activity

able to overcome and stabilize a Y900/905F-deficient activation-

loop mutant.
Crystallographic Identification of an Unexpected
Activation-Loop Phospho-S909
We have determined two similar crystal structures of a construct

containing the RET JM region and KD (amino acids 659–1013) at

3.3 and2.95 Å, respectively (Table 1). Bothcrystal structures con-

tained the PP1 tyrosine kinase inhibitor in the nucleotide-binding

pocket, had an ordered proximal portion of the RET JM segment,

and had a hyper-phosphorylated statuswith four sites phosphor-

ylated (Y809, Y905, S909, and Y928) (Figures 4A and 4B). The

structures differ slightly in resolution and in the occupancy of

thephospho-S909 site. Theenhancedmulti-site phosphorylation

status was surprising when compared with previously solved

crystal structures ofmono-phosphorylated RET catalytic domain

(see PDB: 2IVT, 2IVU, 2IVV, and 4CKI), but consistent with

biochemical data, indicating higher RET JM-KD levels of tyrosine

kinase activity compared with RET KD (Figures 1 and 2). Residue

Y809 is located within the RET hinge connecting the N-lobe and

C-lobe of theRETKD,whereasY905 andS909 arewithin theRET

activation loop, and Y928 follows the WMAIE motif at the end of

the activation segment between helixes a4 and a5 (Hanks

et al., 1988). Thepresenceof thesephosphorylation sites impacts

mainly on the activation-loop conformation detaching it from the

body of the catalytic core without affecting the conformation of

the hinge, as described later (Figures 4A, 4B, and S4A). Previ-

ously solved phosphorylated RET KD crystal structures (PDB:

2IVT, 2IVV, and 2IVU) showed phospho-Y905 tethers several

basic side chains including R770 from the aC helix and residues

R897 and K907 from the activation loop. In the crystal structures

presented in this study, phospho-S909 displaces phospho-Y905

and adopts an approximate equivalent position by engaging acti-

vation segment residues R897 and R912, as well as R873 from

theHRDmotif instead (Figures 4B, 4C, and S4B). In this situation,

Y905 does not engage the side chain of the aC helix R770; as a

consequence, phospho-Y905 projects away from the body of

the RET kinase to mimic a fully solvent-accessible conformer.

The second unexpected phosphorylation site at Y928 is posi-

tioned beneath the tethered phospho-S909 and is likely to further

disrupt interactions of phospho-Y905 with the activation loop.

Phospho-Y928 forms hydrogen bonds with side chains of

R873 (HRD motif) and activation loop R897 at the top and with

H926 frombeneath. Its partially buried position indicates the acti-

vation loop must have adopted an accessible conformation to

fully expose Y928 to undergo phosphorylation. These data are

consistent with a recent study where we showed enhanced sub-

strate presentation in trans (i.e., activation-loop out conformer) in

solution by an oncogenic RET M918T mutant targeting the P+1

substrate-binding pocket (Plaza-Menacho et al., 2014a).

Phospho-S909 Arises from an Intrinsic RET
Dual-Specificity Kinase Activity
Full-length RET and RET ICD are known to be serine phosphor-

ylated in cells and in vitro, respectively (Plaza-Menacho et al.,

2014a; Takahashi et al., 1993). S909 is invariant in all RET se-

quences and is found only within a minority of RTKs in the human

kinome (e.g., FGFR4, ROR1, and HER3). We did not detect S909

phosphorylation bymass spectrometry; however, whenwe used

a specific antibody against an RET phospho-S909 epitope

(pSQG), weak basal phospho-serine activity was observed for
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Figure 4. Crystallographic Identification of an Unexpected Activation-Loop Phospho-S909 Reveals Intrinsic RET Dual-Specificity Activity
(A) Cartoon representation of phosphorylated RET JM-KD structure bound to PP1 inhibitor. Selected residues (including phosphorylated side chains) and

secondary structure elements are depicted with discrete colors: JM-segment residues D707 to K716 (magenta), aC helix (purple), hinge residues (yellow), and

activation segment residues (green) are shown.

(B) Close-up of the activation-loop conformation and side chains in (A) (green) superposed with RET KD (tint wheat, PDB: 2IVV).

(legend continued on next page)
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RET WT (Figure 4D, upper panel). RET S909 phosphorylation

was dependent on the catalytic status of the receptor as indi-

cated by lack of signal of a kinase-dead K758M mutant and

was highly specific for S909 (i.e., no signal by a S909A mutant).

These data suggested that, contrary to a constitutive phosphor-

ylation event in trans on S909 by an unknown serine-threonine ki-

nase aswe initially hypothesized, RET could be a dual-specificity

kinase that can autophosphorylate on S909. To test this hypoth-

esis, we performed time-course autoP assays with RET ICD WT

versus K758M and S909A mutants (Figure 4D, lower panel). As

predicted from previous results, RET K758M showed no tyrosine

kinase activity compared with RETWT and S909Amutant, which

showed similar time-dependent tyrosine autoP (Figure S4C).

Crucially, when a phospho-specific RET S909 epitope antibody

was used, a time-dependent effect was seen only for RET WT,

which showed phospho-serine levels saturating at 60–90 min af-

ter stimulation. In contrast, no signal was seen in the case of RET

K758M or S909A mutants. Taken together, these data demon-

strated that phospho-S909 arises from an intrinsic RET dual-

specificity kinase activity not previously reported for an RTK.

Structure-Function Validation of RET JM-KD Crystal
Structure
To interpret the increased JM-KD kinase activity from the new

structure, we considered whether aC R770 side chain, which co-

ordinates phospho-Y905 in the RET KD structure, could instead

make contacts with the JM segment, thereby stabilizing a more

active conformer independently of phospho-Y905. Assessing

the functional impact of an R770A mutant in the context of both

RETJM-KDandRETKD,we found themutantwas selectively im-

pairingRETJM-KDactivitybuthadnotameasureabledetrimental

effectonRETKD (Figures4EandS4F). Thesedata implicateR770

in engaging the JM segment to increase RET catalytic domain

activity. Second, we evaluated whether S909 was required for

RET tyrosine kinase activity in vitro. Surprisingly, we did not

observe any significant effect of theS909Amutant onRETactivity

in either enzyme kinetics using peptide substrates or in autoP

assays (Figures S4C and S4D). Further enzymatic experiments

using purified recombinant RET KD with increasing concentra-

tions of activation-loop-derived S909 phospho- and non-phos-

pho-peptides confirmed these results further (Figure S4E). These

data indicate that analogously to RET KD tyrosine autoP sites,

S909 is not intrinsically required for catalytic activity. We also

considered that redundancy of phospho-S909 with phospho-

Y905 could mask such a critical role. The latter possibility was

further excluded by the lack of any functional effect observed by

an RET JM-KD Y905F/S909A double mutant (Figure S5A). An

equally plausible explanation is that multi-site phosphorylation

of the RET activation segment could play a role in releasing phos-
(C) The 2Fo-Fc electron density map of phosphorylated activation-loop from PDB

residues engaged by either phospho-S909/Y928 from the JM-KD structure (upp

(D) WB analyses using a specific antibody against RET phospho-S909 epitope (p

in vitro time-course autoP assay in the presence of ATP (5mM) andMgCl2 (10mM)

staining. Quantitation of WB data of Figure 4D is depicted. Data represent the m

antibodies, n = 3. Statistics: ****p < 0.0001, two-way ANOVA Bonferroni test ver

(E)WB analysis of in vitro time-course autoP assay using RET JM661-KD and RET

(10 mM) for 0–80 min using the indicated antibodies.
pho-Y905 or even phospho-S909 acting as a docking or adaptor

site required for downstream signaling (see Discussion).

Structural Identification and Functional Validation of
RET aC Hydrophobic Patch
The JM-KD structure revealed contacts from a short segment of

theproximal JM region (residuesD707 toW717)with a hydropho-

bic patch composed of residues from different structural

elements including b4 (L790), b5 (L800, L801, L802), and aC helix

(L769, L772, L773, F776, L779) (Figures 5A and 5B). This aC hy-

drophobic patch is present inmany tyrosine and serine-threonine

kinases and is frequently a site of regulation to assemble a func-

tional regulatory (R) spine (Kannan et al., 2007; Kovacs et al.,

2015; Thompson et al., 2009). Intramolecular contacts with this

hydrophobic patch arise from interaction with either N- or C-ter-

minal sequences flanking the KD (Jura et al., 2011). We noticed a

passing similarity between RET aC hydrophobic patch-JM-

segment interaction and the PIF pocket-hydrophobic motif inter-

action found in AGC kinases first described for the PDK1 serine-

threonine kinase (where PIF is defined as the PDK1-interacting

fragment) and PKA (Kannan et al., 2007; Biondi et al., 2000).

Superposition of the RET JM-KD crystal structure with the PKA

catalytic domain (PDB: 1ATP) suggests an equivalence between

residuesof thePKAhydrophobicmotif locatedat itsC terminus to

contact the aC helix with those observed in the RET JM segment

that engage the hydrophobic aC patch (Figures 5A and 5B). Our

interest in this similarity was stimulated by the development of

selective drugs against the PDK1 PIF pocket, suggesting the

potential for targeting the same region of RET by chemical inhib-

itors as an alternative route to RET nucleotide pocket inhibition.

To biochemically probe the role of this aC hydrophobic patch

on RET tyrosine kinase activity in vitro, we engineered individual

mutants L769A, L772A, and L773A and double mutants L769/

772A and L769/773A, and assessed the effect on autoP and

enzyme kinetic assays (Figures 5C and 5D). Out of the three sin-

gle-point mutants, L772A had a profound detrimental effect

compared with WT and L769A, whereas L773A had a marked

gain-of-function effect on RET kinase activity. The proximity

of L772 and L773 on the aC helix and their opposing effects

suggests a subtle conformational alteration of aC would be

important for R-spine assembly and hence RET activation. We

note that the insulin receptor kinase L1045 (structural equivalent

to L773 of RET) directly contacts JM segment Y984 side chain

stabilizing an auto-inhibited form (Li et al., 2003). By analogy,

L773 could also potentially engage Y687 bound in a similar

manner; this would explain why a L773A mutant stimulates

RET activity (see Discussion). In contrast, L772A gave rise to a

loss-of-function effect. We hypothesize that an RET L772A

mutant would not create a constitutively active RET (based on
: 5FM2 is shown as bluemesh countered at 1s. Cartoon representation of basic

er panel, PDB: 5FM2) or phospho-Y905 (from PDB: 2IVV).

SQG) using recombinant RET ICD WT, K758M, and S909A (upper panel) and

for 0–90min (lower panel). Total RET protein was evaluated byCoomassie blue

ean of autoP (percentage) normalized to total protein ± SEM of the indicated

sus control (WT).

KD core wild-type (WT) andR770Amutants after adding ATP (5mM) andMgCl2
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Figure 5. Structure-Function Analysis of RET aC Hydrophobic Patch

(A) Upper panel shows a cartoon representation of RET JM-KD structure, colored according to Figure 4A, with the superposition of PKAC-terminal residues (PDB:

1ATP). Lower panel shows two views of a surface representation of PKA catalytic subunit together with one of the RET JM-KD structures. The PKA C-terminal

segment (pale brown), aC helix (purple), and activation loop (green) are depicted together with selected residues.

(B) Close-up of a superposition of RET aC hydrophobic patch contact residues from the proximal JM-residues (D707 to W717) together with the C-terminal

hydrophobic motif (FTDF) from PKA. Selected residues and secondary structural elements are depicted as in (A); some residues have been omitted for

clarity. Alignment of RET sequences from different species indicating secondary structural elements and key residues (*) implicated in the aC hydrophobic patch

(lower panel).

(C)WB analysis of in vitro time-course phosphorylation assay using RET JM661-KDWT and indicatedmutants after addition of ATP (5mM) andMgCl2 (10mM) for

0–80 min using the indicated antibodies.

(D) Enzymatic assay performed with recombinant purified (1 mM) RET JM661-KDWT and indicated mutants with increasing concentrations of ATP using the ABL

peptide at a fixed concentration (4 mg/ml). The corresponding fold-difference in kcat/KM values is shown in the lower panel. Data represent mean ± SEM, n = 2.
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the BRAF paradigm, see Discussion), but would rather impact on

the catalytically required K758-E775-D892 tether and would

therefore have a similar impact to the loss-of-function K758M

mutant. Double mutants L769/772A and L769/773A were both

impaired in their catalytic activity. The contribution of residues

from the proximal JM region (i.e., D707, F709, and I711) was

also evaluated, revealing lack of functional effect (Figures S6A

and S6B). These data suggest that other N-terminal residues

from the JM segment not captured in the crystal structure may

be relevant for this interaction (e.g., Y687). Alternatively, residues

proximal to the transition between JM segment and catalytic

domain boundary could also be implicated (see RET W717 Con-

tributes to the Assembly of the JM Hinge and R-Spine and

Discussion sections). These data implicate residues L772 and

L773 from the aChelix as key determinants in achieving an active

conformer and may potentially, by analogy to PDK1, provide an

alternative druggable pocket to target within RET.

RET W717 Contributes to the Assembly of the JM Hinge
and R-Spine
Further structural examination of the aC hydrophobic patch

highlighted W717, a highly conserved residue preceding the

b-1 strand in many protein kinases including SRC, BTK, EGFR,

and BRAF that separates the JM segment from the core catalytic

domain (Figure 1A). In the case of BRAF (W342), this residue is

important for capping the R-spine in an active conformation

and is preceded by a set of phosphorylated residues that are

important for dimerization (Hu et al., 2013). In RET, W717 is pre-

ceded by a short sequence that engages the aC hydrophobic

pocket that contains also the translocation site found in onco-

genic RET fusions. To test the function of W717, we generated

W717A and W717F mutants in the context of RET JM-KD and

found that, contrary to W717F, the W717A mutant had a pro-

found detrimental effect on RET phospho-tyrosine activity

compared with WT (Figure 6A). These data indicate that W717

is required for RET catalytic activity. One plausible scenario is

that W717 would be required for the proper alignment of the

JM-proximal hydrophobic motif (DALKIL) to the aC hydrophobic

patch (i.e., PIF-like pocket). Although correct in principle, this is

unlikely based on the lack of effect in RET activity seen by alanine

mutants targeting the DxLxI motif sequence (Figure S6), which

suggest that residues farther up in the JM segment (e.g., Y687)

make important contacts with the catalytic core (Figure 3). Alter-

natively, W717 would be required for docking onto and proper

alignment of the R-spine in the active conformation, following

the BRAF paradigm (Figure 6A). We hypothesize that mutating

W717by alanine andnot by phenylalaninewill perturb theR-spine

side chain stacking and, as a consequence, impact on RET activ-

ity. Examinationof thecrystal structure (Figure 6B) revealed that in

RET the R-spine is composed of four hydrophobic residues orig-

inating from the aF helix connecting N- and C-lobes; these resi-

dues include H872 (from the catalytic HRD motif), F893 (from

the DFG motif), L779 (aC helix), and L790 (b-4 strand). W717

caps from the top the R-spine in a linear tetrad compatible with

an active DFG in conformation of the kinase (Taylor and Kornev,

2011). It is further preceded by D714 adjacent to the fusion site

between L712 and E713, which forms an important salt bridge

with aC K780, a specific feature lacking in previously solved
RET catalytic domain crystal structures. The combined effect of

bothW717 docking and theD714-K780 tether locks the hinge be-

tween the proximal JM segment and N-terminal residues of the

catalytic core. In this scenario it is plausible also to hypothesize

that perturbation of the hinge by the W717A mutant, contrary to

hydrophobic motif DxLxIx alanine mutants, results in a non-

compatible JM-proximal segment alignment with N-terminal

residues of the catalytic core and a consequent alteration of the

R-spine. How perturbation of the R-spine linear architecture re-

sults in catalytic inefficiency is likely an indirect effect on both

the catalytic (C)-spine and the catalytically required K758 (b-3

strand)-E775 (aC helix)-D892 (DFG motif) tether, which links

both spines and the nucleotide moiety (Figure 6C). From these

datawe conclude thatW717 is an important residue for RET func-

tion by playing a role in the assembly of the JMhinge andR-spine.

Activation-Loop Serine Phosphorylation Is Required for
RET Signaling In Vivo
S909 is a novel autoP site that arises from intrinsic dual-specificity

kinase activity exhibited by RET in vitro (Figure 4D). Functional

assays of a S909A mutant excluded a direct role of S909 on RET

catalytic activity (Figures S4C and S4D). These results are consis-

tent with data for mutants targeting RET KD tyrosine autoP sites

(Figure 3B) and suggest phospho-S909 could act as a docking

or alternatively a substrate site for effector proteins important for

RET signaling. Given the high conservation of S909 in all RET se-

quences and its consistent occupancy, we assessed whether

S909 had a role in RET downstream signaling. We therefore

used aDrosophilaRet2B (dRet2B; dRetM955T) flymodel to assess

whethermutationat residueS946 (equivalent to humanRETS909)

could influence in vivo the aberrant phenotype promotedbyonco-

genic dRet2B. We employed a pUAST-attB fly vector system to

allow specific site insertion of the transgene into the fly genome

(Bischof et al., 2007). Overexpression of dRet2B in the developing

eye using the glass multiple reporter (GMR) Gal4-815 promoter

(GMR-Gal4-815 > dRet2B) led to extensive mispatterning and

positioning of ommatidia resulting in a ‘‘rough eye’’ phenotype in

the adult flycomparedwith thedriver-line control.Whenwegener-

ated a transgenic fly expressing a double mutant dRet2B/S946A

(dRet M955T/S946A), the aberrant rough eye phenotype was

completely rescued (Figure 7A). Further ectopic overexpression

of dRet2B in the peripodial cells of the developing wing epithe-

lium under the control of the 765 promoter (765>dRetM955T) led

to an increase in the number of aberrant veins (Figure 7B, arrows)

within the adult wing (Figures 7B and 7C). As anticipated, ectopic

expression of the double mutant in the developing wing

(ptc765>dRet M955T/S946A) resulted in the abolition of the aber-

rant phenotype. To assesswhether a signaling defect was associ-

ated with S946A (S909A in humans), we expressed ectopically

dRET WT, M955T, and M955T/S946A in S2 insect cells, together

with an Actin promoter-driven Gal4 construct, and performed

WB analyses. We observed a significant detrimental effect on

the doublemutant dRet M955T/S946A compared with oncogenic

dRet M955T in downstream signaling as indicated by total phos-

pho-tyrosine antibody, and also on dRet phosphorylation, as indi-

catedbyRETY1015andY1062phospho-specific antibodies (Fig-

ure 7D). These data indicate that an S909 phosphorylation event

plays a crucial role in RET signaling in vivo. These results point
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Figure 6. RET W717 Contributes to the Assembly of the JM Hinge and R-Spine

(A) WB analysis of in vitro time-course autoP assay using RET JM661-KDWT and indicated mutants (1 mM) after addition of ATP (5 mM) and MgCl2 (10 mM) for 0–

90 min using the indicated antibodies. Quantitation of RET phospho-Y687 and -Y905 signal is shown; data represent mean ± SEM, n = 3, ****p < 0.0001, **p =

0.0014, two-way ANOVA Bonferroni test.

(B) Cartoon representation of RET JM-KD crystal structure secondary structural elements, colored according to Figure 4A. Close-up of JM-hinge-composing

residues (D714, K780, and W717) and R-spine-assembling residues (L779, L790, F893, H872, and D993) is shown; further selected residues and secondary

structural elements are depicted as in Figure 4A. Some residues and structural elements have been omitted for clarity.

(C) View of the C- and R-spines of RET JM-KD crystal structure as per text (see Results and Discussion for R-spine); in addition, the catalytic triad K758 (b-3

strand)-E775 (aC helix)-D892 (DFG motif) in sticks representation and the nucleotide moiety represented by the PP1 inhibitor (soft blue surface) are shown. The

larger C-spine of RET contains residues emanating from the hydrophobic aF helix, through to nucleotide and capping N-lobe residues (i.e., L940, I944, L812, I880,

L881, V882, V738, and A756).
toward further complexity through interplay with RET phospho-

tyrosine sites, or alternatively as a docking and/or phospho-site

for a yet unknown effector that impacts on RET signaling.

DISCUSSION

To identify unique features of RET tyrosine kinase activation, we

have applied biochemical, structural, and biophysical analyses,

together with an in vivo model for RET hyper-activation. We
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show that the JM segment functions to increase RET tyrosine

KD activity without affecting substrate presentation in trans. Fully

phosphorylated RET JM-KD appears rapidly, between 20 and

40 min, compared with the 80–120 min required for core RET

KD (Figure 1B). This increased activity promoted by the JM

segment, contrary to the EGFR (Jura et al., 2009; Red Brewer

et al., 2009), does not appear to result fromstable dimer formation

in solution (Figure S1C) and is independent of ‘‘forced’’ dimeriza-

tion through the presence of aGST tag (Figure 2D).Our results are
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(A) Ectopic expression of dRet2B (dRet M955T) and

dRet2B S946A in the retina from the GMR-Gal4 815

promoter.

(B) Expression of dRet2B from theGal4 765 promoter

led to ectopic vein formation. S946A mutation

rescued the wing defects. Scale bar, 500 mM.

(C) Quantification of data shown in Figure 6B. The

percentage of wings with ectopic veins was deter-

mined from three distinct transformants for each

genotype. The number of individual flies counted

from each transformant was 19, 30, and 23 for

dRet2B and 35, 17, and 23 for dRet2B S946A. **p <

0.01, one-way ANOVA Bonferroni test.

(D) WB analyses of S2 insect cells ectopically ex-

pressing dRet WT, M955T, and M955T/S946A,

together with an Actin-promoter-driven Gal4

construct using the indicated antibodies.
consistent with VEGFR2,where in solution the kinetics of autoP is

significantly enhanced by the JM region (Solowiej et al., 2009).

Comparing these data with the slower overall phosphorylation ki-

netics of RET ICD (Plaza-Menacho et al., 2014a) suggests the

C-terminal (CT) segment could act as a negative regulator of

RET catalytic domain activity and restrain by competition JM

segment activating input. The RET JM region appears not to

play a cis-inhibitory role as observed for KIT and MET (Chan

et al., 2003; Hubbard, 2004) but is likely to stabilize an active

form of RET in a manner that is dependent on Y687. We argue

that autoP is not prevented by a non-phosphorylated conformer

of JM segment on Y687, but that timely phosphorylation of JM

segment on Y687 leads to a conformation contributing to a

more active RET kinase. This is supported by the observation

that Y687 is required for the JM segment to rescue a catalytically

deficient RET KD lacking both activation-loop tyrosines (Y900/

905F). Furthermore, a RET JM-KD Y687E mutant (mimicking a

constitutive phospho-Y687) showed a significant decrease on

tyrosine kinaseactivity,which indicated thatY687 is a tightly regu-

lated autoP site. We hypothesize that constitutive phosphoryla-

tion on Y687 results in a detrimental effect on activity because

of the lack of required contacts between JM segment and RET
Cell Reports
catalytic core prior and during kinase acti-

vation (Figure S5B). Furthermore, the de-

pendency seen by RET JM-KD, but not

RET KD, on aC R770 implicates its side

chain in engaging the JM segment to in-

crease RET catalytic domain activity.

Further evidence for the cis effect of the

JM segment in RET activation includes:

(1) phosphorylation rescue experiments

in trans using as substrate catalytically

deficient versions (i.e., K758M) of RET

JM-KD and RET KD (Figure S3B) did not

show significant differences because of

the JM segment, and (2) the presence of

the RET JM-segment effectively rescues
an otherwise catalytically-deficient RET mutant bearing a dou-

ble-tyrosine (Y900/905F) substitution in the activation-loop.

Note this is contrary to the rescue experiment in trans of catalyti-

callydeficientK758Mkinaseversions,whichcannotbe rescued in

cis by either JM segment (Figure S3) or oncogenic mutations

(Plaza-Menacho et al., 2014a).

The trajectory of the proximal part of the RET JM-segment

resembles to someextent that seen in the IR JM-KDcrystal struc-

ture (PDB: 1P14) (Li et al., 2003). In the IR crystal structure, JM-

Y984 docks into the aC hydrophobic patch in cis (adopting an

equivalent position to RET F776) and forms a network of

hydrogen bonds between residues from the aC helix and prox-

imal JM segment. These interactions provide steric restraints

preventing aC from assuming a catalytically competent position.

A recent study has shown, however, that the JM-IR can also

adopt a JM-out conformer contacting the aC of a second recep-

tor molecule and is able to stabilize an active catalytic dimer

(Cabail et al., 2015). This role for the IR JM-segment in trans

tethers a quite distinctive symmetric active dimer compared

with that observed for the asymmetric EGFR dimer (Jura et al.,

2009). This recent JM-IR structure (PDB: 4XLV) shows how the

JM-segment pivots about the equivalent residue to RET W717
17, 3319–3332, December 20, 2016 3329



(Hu et al., 2013) to make intermolecular contacts with the aC hy-

drophobic patch fromasecondmolecule. This resembles in trans

an extended stretch of the proximal JM region seen in our RET

JM-KD crystal structure. Our interpretation is that in the absence

of a stable RET JM-KD dimer in solution or in the crystal, the JM-

segment collapses onto the aC helix in cis in the crystal lattice.

Our data pointed also at the critical RET aC hydrophobic pocket

as being sensitive to allosteric input from JM-segment elements,

possibly including Y687. This hydrophobic pocket has the poten-

tial to be targeted by small molecules, because there are prece-

dents for PDK1 where allosteric inhibitors against an equivalent

site are already available (Busschots et al., 2012).

Chromosomal translocations involving the RET exons 12–21

are found in human thyroid and lung cancers (Nikiforov and Niki-

forova, 2011; Plaza-Menacho et al., 2014b). These gene rear-

rangements fuse a variety of unrelated coiled-coil proteins within

the sameRET intron, thereby removing exons 1–11, including the

JM segment. Our data are consistent with a scenario in which

removing the JM segment, rather than eliminating an autoinhibi-

tory element, replaces it with a more potent dimerizing motif that

stabilizes a RET dimer independently of ligand and transmem-

brane region. For the IR, its JM segment extends away from

the kinase core pivoting about a conserved VPDEWE motif to

engage a second kinase molecule via contacts to the aC helix.

A network of salt-bridge interactions at the pivot point involves

the VPDEWE motif to help stabilize a conformation associated

with an activated IR tyrosine kinase. The equivalent sequence

for RET, EDPKWE, contains the fusion site (between L712 and

E713) of many RET translocations that eliminate RET exons

1–11 (Nikiforov andNikiforova, 2011). Such fusions add a dimeric

coiled-coil region just prior to D714 and W717 that would lock

permanently the JM hinge and R-spine into a DFG-in conformer

resulting in a hyperactive RET, no longer localized at the plasma

membrane. These findings have important drug discovery and

therapeutic implications as perturbation of the JM hinge and

consequent effect on adequate R-spine assembly could be a

new drug-targetable strategy against oncogenic RET.

The JM-KD crystal structure shows two unexpected phos-

phorylation sites, Y928 and S909, both invariant RET residues.

Both are in close proximity and engage basic residues otherwise

found in the core RET KD structures engaged by phospho-Y905

(Figures 4A and 4B; Figure S4B). In particular, the unconven-

tional activation-loop S909 phospho-site engages the HRDmotif

in what it seems to be a unique active conformation promoting

both regulatory-spine assembly and accessibility to phospho-

tyrosine bindingmodules. As a consequence, Y905 is displaced,

adopting a solvent-accessible conformer competent for a

signaling function rather than playing an activating role.

Analyses of RET sequences flanking the invariant protein ki-

nase RD motif establish it as tyrosine kinase (HRDLAARN or

HRDLRAAN) rather than a serine-threonine kinase (H/YRDLXXN)

(Hanks et al., 1988; Lindberg et al., 1992). There are precedents

for dual-specificity kinase activity among the cyclin-dependent

kinase (CDK), mitogen-activated protein kinase (MAPK), gly-

cogen synthase kinase (GSK3), CDC-like kinase (CLK) group of

protein kinases (CMGC) that include the mitogen-activated pro-

tein kinase (MAPK) and DYRK kinase members. The latter exam-

ples phosphorylate exclusively serine and threonine side chains
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in their substrates but are able to autoP on tyrosine (Himpel et al.,

2000). More recently, a non-receptor tyrosine kinase Syk has

been shown to exhibit dual-specificity kinase activity (Heizmann

et al., 2010). In our study, robust biochemical examination re-

vealed that S909 is an autoP site that arises from an intrinsic

RET dual-specificity kinase activity. This is consistent with a

recent study reporting that RET can phosphorylate AP2 in trans

on threonine (Bagheri-Yarmand et al., 2015). This dual-specific

activity can generate phospho-S909 in vitro. However, phos-

phorylation on RET S909 was not catalytically required (Figures

S4C–S4E), consistent with other serine-to-alanine mutants tar-

geting the JM segment (Figure S5C). Further efforts are needed

to establish whether phospho-S909 can act as a docking for a

yet-unknown effector protein involved in RET signaling. Interest-

ingly, when we evaluated an RET S909D mutant, a marked in-

crease in RET JM-KD phospho-tyrosine activity was observed

(Figure S5B). These data suggest that a phosphorylation event

on S909 in trans can contribute to RET tyrosine kinase activity

and signaling in vivo. To explore further this hypothesis, we em-

ployed an in vivo model and found that mutating this residue in

Drosophila Ret (dRet) has a deleterious effect on the dRet2B

(dRet M955T) oncogenic phenotype, a well-established model

of transformation. In particular, dRet M955T/S946A efficiently

rescued the phenotype of dRet2B using alternative promoters.

Overall, our structure-function analyses and in vivo experi-

ments have revealed complex elements in the mechanism of

RET activation and signaling. Allosteric inputs from the JM-

segment and activation-loop S909 contribute to kinase function.

We show that phospho-S909 is an autoP site arising from an

intrinsic dual-specificity RET kinase activity and appears to

play key roles in oncogenic signaling. Our study also suggests

that targeting the aC hydrophobic pocket together with the

JM hinge using small molecules to manipulate RET kinase activ-

ity may be a productive approach for either blocking oncogenic

forms of RET or stimulating RET activity in Hirschsprung’s dis-

ease (HSCR) and neurodegenerative Parkinson’s disease (PD).

EXPERIMENTAL PROCEDURES

Expression and Purification of Recombinant Protein

Protein expression was carried out using Sf9 insect cells following a previously

described protocol (Knowles et al., 2006). Codon optimized human RET9 iso-

form intracellular domain (ICD residues 661–1072), different lengths versions

of the RET JM-KD (661 to 698–1012) and RET KD core (705–1013) WT, and

the indicated mutants proteins were purified following a protocol previously

described (Plaza-Menacho et al., 2014a).

Mass Spectrometric Label-free Quantitation

Mass spectrometry procedures were performed as previously described

(Plaza-Menacho et al., 2014a).

Autophosphorylation Assays, SDS-PAGE, and Western Blotting

Unless otherwise indicated, time-course autoP assays were performed with

recombinant purified protein as previously described (Plaza-Menacho et al.,

2014a). Western blotting was performed with the indicated antibodies as pre-

viously described (Plaza-Menacho et al., 2010, 2011). A specific antibody

against RET phospho-S909 epitope (pSQG) was from Cell Signaling. Data

represent at least two to six independent experiments (n) using different pro-

tein preparations. In addition to the quantitation of WB data shown on Figures

4D and 6A, further quantitation of the indicatedWB analyses can also be found

in the Supplemental Information.



Enzymatic Kinase Assays

Enzyme kinetic experiments were performed as previously described (Plaza-

Menacho et al., 2014a).

ITC

ITC experiments were performed as previously described (Plaza-Menacho

et al., 2014a).

Dynamic Light Scattering and ThermoFluor Assays

To determine protein stability, we performed thermal shifts assays as previ-

ously described (Plaza-Menacho et al., 2010, 2014a). Molecular weight deter-

mination in solution was performed by DLS using different RET protein

concentrations.

Crystallization, Diffraction, Data Collection, and Processing

Crystals of the phosphorylated RET JM-catalytic domain (residues 659–

1013) were grown at 22�C by vapor diffusion in sitting drops containing

crystal 1 (5FM2), 1 mL protein stock solution (6 mg/ml) mixed with 1 mL

reservoir solution (1.5 M ammonium sulfate, 0.1 M BIS-TRIS propane

[pH 7.0]); the protein stock solution also contained 2.5 mM ATP and

5 mM MgCl2. Crystal 2 (5FM3) comprised 0.8 mL protein stock solution

(5 mg/ml) mixed with 0.8 mL reservoir solution (1.2 ammonium sulfate,

0.1 M tri-sodium citrate [pH 5.43]). The crystals were cryoprotected in

25% glycerol in reservoir solution for several minutes and flash frozen in

liquid nitrogen, and X-ray datasets were collected at the I-24 beamline of

the Diamond Light Source Synchrotron (Oxford, UK). Data collection and

refinement statistics are summarized in Table 1. The dataset was indexed

with MOSFLM and scaled with SCALA (Winn et al., 2011). Molecular

replacement was carried out using the atomic coordinates of the phosphor-

ylated RET KD (PDB: 2IVT) in PHASER (McCoy et al., 2007). Refinement

was carried out by using Phenix (Adams et al., 2010). Model building was

carried out in COOT (Emsley et al., 2010). Model validation used

PROCHECK (Vaguine et al., 1999), and figures were prepared using the

graphics program PYMOL (http://www.pymol.org).

Drosophila Experiments

pUASTattB-dRetM955T (dRet2B) and double mutant pUASTattB-

dRetM955T/S946Aconstructsweregeneratedbysite-directedmutagenesis us-

ing the following primers: M955T forward 50-GTGCCCGTCAAGTGGACG

GCTCCGGA-30, M955T reverse 50- TCCGGAGCCGTCCACTTGACGGGCAC-

30, S946A forward 50- GCCTATTTAAAGAGAGCCCGAGATCGTGTGCCC-30,
and S946A reverse 50- GGGCACACGATCTCGGGCTCTCTTTAAATAGGC.

Transgenic flieswere generated usingP-element-mediated (pUAST) transgene-

sis by BestGene. Drosophila stocks and crosses were maintained at 25�C, un-
less stated otherwise. For ectopic expression of the various transgenes in the

developing Drosophila wing, dRet transgenic flies were crossed with the Gal4

C-765 driver (36523, Bloomington). Adult wings were dissected, mounted, and

imaged at 43 magnification using the EVOS cell imaging system. For ectopic

expressionof thedRet2BanddRet2BS946A in thedevelopingeye, the transgenic

flieswere crossedwith theGMR-Gal4 815 (weak) driver andmaintained at 18�C.
Eye phenotypes were analyzed by light microscopy of whole mounts.

Ectopic Expression in S2 Cells

pUASTattB-dRet WT, M955T, and M955T/S947A constructs (400 ng) were

co-transfected together with an Actin-promoter-driven Gal4 plasmid

(400 ng) as indicated into S2 cells using Effectene and following manufac-

turer’s instructions. Data represent three independent experiments.

Statistical Analyses

Graphs and statistical analyses were done using Prism GraphPad.

ACCESSION NUMBERS

The crystallographic coordinates and structure factors for the RET JM-KD

crystal structures reported in this paper are PDB: 5FM3 and 5FM2, respec-
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