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Abstract 
 

Despite the advent of immunotherapy, metastatic melanoma represents an aggressive 

tumor type with a poor survival outcome. The successful application of immunotherapy 

requires in-depth understanding of the biological basis and immunosuppressive 

mechanisms within the tumor microenvironment. In this study, we conducted spatially 

explicit analysis of the stromal-immune interface across 400 melanoma H&E 

specimens from TCGA (The Cancer Genome Atlas). A computational pathology 

pipeline (CRImage) was used to classify cells in the H&E specimen into stromal, 

immune or cancer cells. The estimated proportions of these cell types were validated 

by independent measures of tumor purity, pathologists' estimate of lymphocyte 

density, imputed immune cell subtypes and pathway analyses. Spatial interactions 

between these cell types were computed using a graph-based algorithm (Topological 

Tumor Graphs: TTGs). This approach identified two stromal features, namely stromal 

clustering and stromal barrier, which represented the melanoma stromal 

microenvironment. Tumors with increased stromal clustering and barrier were 

associated with reduced intratumoral lymphocyte distribution and poor overall survival 

independent of existing prognostic factors. To explore the genomic basis of these 

TTG-derived stromal phenotypes, we used a deep learning approach integrating 

genomic (copy number) and transcriptomic data, thereby inferring a compressed 

representation of copy number-driven alterations in gene expression. This integrative 

analysis revealed that tumors with high stromal clustering and barrier had reduced 

expression of pathways involved in naïve CD4 signalling, MAPK and PI3K signalling. 

Taken together, our findings support the immunosuppressive role of stromal cells 

within metastatic melanoma via physical barrier and T cell exclusion within the vicinity 

of cancer cells. 

 

Statement of significance 

Computational histology-based stromal phenotypes within the tumor 

microenvironment are significantly associated with prognosis and immune exclusion 

in melanoma. 
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Introduction 

Cutaneous melanoma remains one of the most aggressive cancer types with global 

increase in incidence and mortality, despite the advent of immunotherapy  (1,2). Late 

stage diagnosis is associated with poor survival related to metastatic spread of 

disease to distant anatomical sites (3–5). Despite durable responses in patients 

treated with systemic anti-CTLA-4 and anti-PD-1 immunotherapy in the past decade, 

the fact remains that a significant proportion of patients do not respond to treatment 

(6). To this effect, diverse intrinsic mechanisms of tumor immune evasion have been 

described, including loss of tumor antigenicity (7), upregulation of co-inhibitory immune 

checkpoint molecules and recruitment of regulatory T cells. On the other hand, 

immunosuppression is modulated by the tumor microenvironment, which is composed 

of cell types including fibroblasts, endothelial cells, immune cells and tissue-resident 

interstitial cells. Fibroblasts can act as immunosuppressive agents through paracrine 

signalling, modulating the cytotoxic activity of natural killer cells(8), and inhibition of 

the antitumoral T cell response(9). For example, remodelling of the extra cellular 

matrix (ECM) by fibroblasts has been showed to result in increased ECM rigidity 

because of thickening and linearization of collagen fibres (10,11). This modified ECM 

could restrict access of immune cells to cancer cells, serving as a physical barrier 

(12,13). Understanding the mechanisms by which this stroma network is generated 

has the potential to aid the development of new therapeutics. However, to date there 

is no established method to provide systems characterisation of the stroma-mediated 

immunosuppression.  

We propose a new method to study the spatial structure of the tumor 

microenvironment, referred to as Topological Tumor Graphs (TTGs), which 

establishes spatial interactions among cell types as phenotypes of tumor-host 

interactions. We focus our analyses on specific cell types broadly defined by nuclear 

morphology, namely: tumor cells (large, round nuclei), lymphocytes (smaller, darker 

nuclei) and stromal cells (spindle-shaped cells likely to be fibroblasts, with possible 

inclusion of endothelial cells).  

 Based on TTGs inferred directly from pathological slide images, algorithms that are 

typically used for social network analysis can be directly applied to the investigation of 

architectural complexity of the tumor microenvironment. Building on the idea that the 
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TTGs transform seemingly chaotic cell distribution data in pathological slides, into 

highly structured microenvironmental phenotypes, integration with high-dimensional 

genomic data may inform cancer adaptive strategies that enable it to overcome 

external constraints. In this work, we: 1) developed a new graph-based method to 

characterise two distinct spatial features of the stromal microenvironment, stromal cell 

clustering and stromal barrier between cancer cells and lymphocytes; 2) developed a 

new unsupervised deep learning approach for simultaneous dimension reduction and 

integration of copy-number alterations (CNAs) and gene expression data, which 

further enables genotype-phenotype integration and 3) learned the clinical implications 

and biological processes underpinning stromal recruitment and their effects on 

immunosuppression.  

 

Materials and Methods 

Patients and samples 

This study is based on 400 patients from TCGA SKCM cohort with no previous 

systemic therapy (except that adjuvant interferon-α ≥90 days prior was permitted) (14), 

wherein all specimens were obtained with written informed consent from the relevant 

institutional review board participated in TCGA. H&E-stained whole-tumor sections 

(obtained from the public TCGA Data Portal) from diagnostic samples were used 

owing to better preserved morphology compared to frozen samples. Clinical endpoint 

was overall survival (OS) which was censored at the date of death or the date of last 

contact (for living patients). Samples were randomly split into equal sized discovery 

and a validation cohorts. 

A second cohort included 12 patients with melanoma who underwent serial biopsies 

were analyzed using the same methods (Table S1). Patients were treated with 

antibodies targeting CTLA4, PD-1 or a combination of both. Treatment was 

administered until disease progression or unacceptable toxicity. All specimens were 

obtained with consent from the patient in accordance to ethical approval 111/2010 

granted by the institutional review board of the University of Navarre.  
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H&E image processing 

An previously described computational pathology pipeline CRImage was used for 

image processing (15). In brief, watershed segmentation and Otsu thresholding for 

hematoxylin positive nuclei was performed. For every cell nucleus morphological 

features such as shape, intensity and texture features were calculated. Cell 

classification was based on a support vector (14–20) using 97 morphological and 

textural features. Each cell was classified into artefact, lymphocyte, cancer or stromal 

cell. The following measures were used to validate the automated cellular 

classifications for melanoma: 

LScore: Pathologist-provided LScore was defined based on lymphocyte distribution 

and density within the tumors (21). LScore was calculated as the sum of two scores: 

lymphocyte distribution (0-3, 0 = no lymphocytes within the tissue, 1 = lymphocytes 

present involving <25% of the tissue cross sectional area, 2 = lymphocytes present in 

25 to 50% of the tissue, 3 = lymphocytes present in >50% of tissue), and lymphocyte 

density (0-3; 0 = absent, 1 = mild, 2 = moderate, 3 = severe). 

CPE (Consensus measure of Purity Estimation): Molecular measure of tumor purity 

value based on (22) 

Imputed lymphocyte scores: From TIMER (23) 

Immune phenotype clusters were derived from previously described (24) six 

immune phenotype groups as follows: 

Immune phenotype 1 and 2 (‘low cytotoxicity’): Cluster 1 

Immune phenotype 3 and 4 (‘intermediate cytotoxicity’): Cluster 2 

Immune phenotype 5 and 6 (‘high cytotoxicity’): Cluster 3 

 

Differential Expression analyses: TCGA Biolinks 

(http://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html) was used for 

differential gene expression, using the function TCGAanalyze_EAcomplete for 

enrichment analysis. 
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Topological Tumor Graphs 

Based on cell spatial mapping provided by automated image analysis, each cell was 

treated as a node and edges between cells were drawn if they were in spatial proximity 

(< 35μm). This threshold was determined by calculating the distance of cancer cells 

to their closest stromal neighbour in regions of the tumor-stroma interface. The mean 

value of this distribution was used as threshold (Additional file 1: Fig. S3a). Cancer 

supernodes were created by deleting all edges of cancer cells to non-cancer cells. 

Afterwards the connected components in the remaining network were calculated. 

Connected components with more than 50 cells have been summarized in cancer 

supernodes and the network was connected again. For every network we kept only 

the largest connected component. 

Network centrality measures 

The node degree measures the number of neighbours (edges) of a node. The node 

degree for the whole network was calculated, regardless of the node’s cell type. Cell 

type-specific node degrees were created by separating the nodes by their cell type 

(the neighbours were counted regardless of the cell type). 

The clustering coefficient measures the degree in which the neighbourhood of a 

node is connected. For a particular node, clustering coefficient =  !"#$%&	()	*+(,%-	.&/0+%.,
!"#$%&	()	1++	.&/0+%.,

, 

where a triplet consists of three nodes with edges connecting all of them.  

Stromal clustering was defined as the average clustering coefficient of stromal cells 

within a tumor, whereas only the stromal neighbours of the (stromal) cell were 

considered in the calculation. In order to avoid biased results at the border of tumor 

clusters, we only calculated the clustering coefficient for stromal cells that did not 

directly border a cancer supernode. 

Stromal barrier was calculated by counting the number of stromal cells that a 

lymphocyte has to cross in order to reach a cancer cluster. Lymphocytes that directly 

bordered a cancer cluster were excluded. The overall stromal barrier of a sample was 

calculated as the average of the individual stromal barriers of the lymphocytes in the 

sample. 
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Betweenness centrality measures the network flow or traffic in a communication 

network or graph based on shortest paths. The betweenness centrality for a node in 

the network is the number of the shortest paths between every pair of nodes that pass 

through this node. For each type of cells betweenness was computed and averaged 

to represent the betweenness centrality of this cell type within the cell network. 

Survival analysis 

Univariate Cox proportional hazards model was used to test the differential OS 

between patients whose tumors had low or high stromal clustering and barrier. 

Patients stratification into low (n=97) or high (n=97) stromal barrier was defined using 

the upper/lower quartile of stromal barrier, since this produced the best group 

separation. In the case of stromal clustering, since OS in the upper/lower quartile did 

not vary significantly, an optimal cut-off was identified. This cut-off (stromal clustering 

< 0.590253) was identified in the discovery subset and found to be significant in the 

validation subset, stratifying the tumors into low (n=156) or high (n=230) stromal 

clustering. Multivariate Cox regression was performed using the same patient 

stratification, after adjusting for clinical parameters. The above described stratification 

of low/high stromal barrier and clustering were used to create the combination groups. 

Kaplan Meier curves were used for visual representation.   

Genomic and transcriptomic data 

RNAseq-derived transcriptomic data was downloaded from TCGA biolinks 

(http://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html)(25). 

Thresholded copy number data was downloaded from the Broad Institute TCGA 

Genome Data Analysis Centre (Broad Institute TCGA Genome Data Analysis Centre 

(2016): SNP6 Copy number analysis (GISTIC2). Copy number data and the gene 

expression data were scaled between zero and one using min-max scaling.  

For differential gene expression analysis, we used RNASeq data that was aligned 

against the human reference genome hg19. The data was normalized using within-

lane and between-between lane normalization using (25) and filtered using quantile 

filtering with a threshold of 0.25 (25). 

 

Research. 
on April 2, 2020. © 2019 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on December 24, 2019; DOI: 10.1158/0008-5472.CAN-19-2268 

http://cancerres.aacrjournals.org/


 8 

CNx 

Integration of transcriptomic and copy number data was done using  CNx, which was 

inspired by the Stacked Denoising Autoencoders (SDA) previously applied to gene 

expression data (26,27). Transcriptomic data were binarized using Gaussian mixture 

clustering and used in the loss function of the unsupervised deep learning network. In 

contrast to an SDA, the input for CNx was copy number data and the loss function was 

the cross-entropy between copy number data and binarized gene expression data. 

Genes that contributed to the nodes were determined by multiplying the weight 

matrices (27) of the individual layers and selecting the genes that have a weight that 

is more than two standard deviations from the mean.  

The bottleneck layer of CNx was visualised as a network, by binarizing the node 

activities (28). We identified each node's highest and lowest activity values and defined 

10 equally spaced activation thresholds between these values. We evaluated the 

agreement in the binarized activation values between two nodes at each threshold. 

Two nodes were connected if they had an agreement larger than 55% of the binarized 

activation values for one of the thresholds. 

Software and Data 

Image processing was performed using the Bioconductor packages CRImage (15) and 

EBImage (29). Topological Tumor Graphs were created using the Python package 

NetworkX (30). The encoder-decoder network was implemented using Python and 

Tensorflow (4). Genomic analysis was performed in R using the packages 

TCGAbiolinks (25).   

 

Results 

Mapping cell spatial distribution in whole-tumor histology melanoma sections  

To spatially map the locations and types of cells, 400 full face, H&E-stained sections 

from FFPE (formalin-fixed paraffin-embedded) diagnostic blocks of melanoma 

patients from TCGA were subjected to fully automated image analysis (Fig. 1a, Fig. 

S1a, Methods). Samples consisted of primary tumors (n=91), regional lymph node 

metastases (n=191), metastases from regional skin (n=61) and from distant sites 
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(n=51), with 6 samples being unclassified. Our quantitative morphological classifier 

identified the following cell types from whole-section images: cancer cells (an average 

of 662,276 cells with standard deviation ±489,852), lymphocytes (±213,832) and 

123,081 stromal cells that included fibroblasts and endothelial cells (±121,035). 

Individual cellular percentages were computed as a proportion of all cell types 

(Stromal%, Cancer% and Lymphocyte% henceforth). 

The cellular classifications derived from image analyses were validated using single 

cell annotations on the H&E images, pathologist scores, imputed immune subtypes, 

tumor purity measure and pathway analysis. Using a set of 3230 single-cell 

annotations, the balanced accuracy of our classifier was found to be 84.9% (81.9% 

recall, 90.9% precision). Lymphocyte% was significantly higher in tumors with higher 

pathologist-measured LScore (p < 0.001, Fig. S1b) while Cancer% was significantly 

higher in tumors with increased tumor purity (as measured by CPE score, p < 0.001, 

Fig. S1c). Lymphocyte% was significantly higher in tumors with high imputed 

lymphocyte score (Fig. S1d, p < 0.001) and in imputed immune subtypes  which were 

described as ‘high-immune’ subtype (24) (“Cluster 3”, p < 0.014, Fig. S1e). Differential 

gene expression analysis revealed that samples with high lymphocyte ratio were 

enriched for immune-related pathways, including B Cell and T Cell Receptor Signalling 

(Fig. S2, Methods). Collectively, these orthogonal analyses supported the validity of 

automated H&E image analysis when applied to the TCGA melanoma dataset.  

 

Constructing Topological Tumor Graphs for structural mapping of the 
Melanoma microenvironment 

We quantitatively dissected the stromal architecture using graph-based algorithms. 

This enabled transformation of the three cell types (lymphocytes, stromal and cancer 

cells) and their spatial relationships into a new representation, namely TTGs (see 

Methods). In the TTGs, each cell (irrespective of the type) was represented as a node, 

while the spatial proximity between cells were represented as edges (Fig 1b). Since 

cancer cells were frequently found to be clustered, those with low edge length 

(‘connected’ cancer cells) were merged into ‘cancer supernodes’. The TTG produced 

the following network centrality measures, which gauged the spatial relationship 

between cell types: i) Node degrees which quantified the number of edges connected 
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to a node ii) clustering coefficient which measured the degree of clustering among 

cells and iii) betweenness centrality which quantified the amount of control over 

communications among cells in a network. The mean node degree of stromal cells 

was significantly lower than that of cancer cells (p < 2.2e-16), indicating increased 

spatial interactions of cancer cells with neighbouring cells than did the stromal cells. 

Lymphocytes had a wider spread of node degree, indicating a mixture of connection 

patterns (Fig. 1c). Importantly, the clustering coefficient of stromal cells had higher 

variability compared to cancer cells and lymphocytes, which share similar distribution 

of clustering coefficient (Fig. 1d). In contrast, there was no significant difference in 

betweenness centrality among the cell types, indicating little difference in cellular 

position relative to the network centre (Fig. 1e). Thus, we further investigated the 

clustering coefficient of stromal cells (‘stromal clustering’ henceforth), from among the 

aforementioned network features. Additionally, in an effort to gauge lymphocytes’ 

accessibility to cancer cells (a frequent histopathological observation in melanomas), 

we measured the ‘stromal barrier’, which is a measure of the barrier presented by 

stromal cells to cancer infiltrating lymphocytes (Fig. 2a-b, see Methods).  

In comparing stromal features with clinicopathological features in the TCGA melanoma 

cohort (Table 1), stromal clustering and barrier did not vary significantly with AJCC 

stage or NRAS/BRAF mutation subtype, but stromal clustering was significantly 

inversely associated with Breslow thickness and ulceration status. In comparing with 

tumor type, stromal clustering was significantly lower in primary melanomas compared 

to metastases, with no significant difference in stromal barrier between primary and 

metastatic melanomas. Notably, stromal clustering and barrier were positively 

associated with stromal% and inversely associated with lymphocyte% respectively. 

The inverse correlation of lymphocyte% with stromal features persisted in a stratified 

analysis of tumor type (primary tumors, regional lymph node metastases and distant 

regional cutaneous metastases), suggesting that stromal features are inversely 

correlated with lymphocytes, irrespective of the tumor type.   

 

Quantitative measures of tumor microenvironmental architecture are 
independent predictors of patient survival  
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Using univariate survival analyses, high stromal clustering (Fig.3a) and barrier (Fig.3b) 

were both associated with poor 10-year OS (Table 2) while stromal% was not 

significantly associated with survival (Fig. S5a). Multivariable survival analyses 

revealed that the poor prognosis associated with high stromal clustering and stromal 

barrier was independent of ulceration status and Breslow depth (Table 2). Notably, the 

prognostic significance of both stromal clustering and barrier were also independent 

of stromal% and lymphocyte% (Table 2). Even among tumors with high lymphocyte%, 

high stromal clustering and stromal barrier were associated with poor 10-year OS (Fig. 

S3a). In tumor site-specific analyses, high stromal clustering was associated with poor 

prognosis within regional lymph nodes and distant metastasis (Fig. S3b). High stromal 

barrier was associated with poor prognosis within regional lymph nodes but not in 

distant metastases (Fig. S3c). 

We then interrogated the combination of stromal clustering and barrier by defining four 

combination groups: low-clustering/low-barrier, low-clustering/high-barrier, high-

clustering/high-barrier and high-clustering/low-barrier) (Fig. 3c). Tumors with high-

clustering/high-barrier had significantly worse 10-year OS compared to low-

clustering/low-barrier tumors (Fig. 3d, Table 2). Lymphocyte% was significantly lower 

in tumors with high-clustering/high-barrier compared to those with low-clustering/low-

barrier (Fig 3e). 

Taken together, histology-based measures of stromal architecture were significant 

predictors of melanoma prognosis, independent of the common clinicopathological 

predictors of OS as well as the content of stroma and lymphocytes.  

 

Immunosuppressive potential of stromal barrier and clustering  

Given that high stromal clustering and barrier were independently predictive of poor 

prognosis, we tested the hypothesis that stromal barrier and clustering could promote 

immunosuppression by impeding cancer-lymphocyte interactions. To this effect, we 

observed a significant negative correlation of lymphocyte-to-tumor area ratio with 

stromal barrier and clustering (Fig. 4a). Concordantly, stromal barrier was significantly 

higher in tumors belonging to the ‘low-cytotoxicity’ immune phenotype (“Cluster 1”) 

compared to ‘high-cytotoxicity’ immune subtypes (“Cluster 3”) (Fig. 4b), which also had 

the highest lymphocyte%. However, stromal clustering and barrier did not vary 
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significantly across the previously reported melanoma molecular subtypes (Fig. S4a). 

In order to delineate the immune contexture associated with stromal features, we 

compared 16 previously-reported (24) immune cell signatures between tumors with 

low or high stromal features. While T-regulatory cells (T-regs) and T-effector memory 

cells were significantly higher in tumors with low stromal barrier, CD8 T cells scores 

were significantly higher in tumors with low stromal clustering (Fig. 4c). Taken 

together, this suggested that increased stromal cell barrier and spatial clustering are 

associated with reduced distribution of lymphocytes over the entire tumor tissue.  

To further explore the evolution of the stromal features over time, we used a small 

melanoma cohort with serial biopsies (Table S1). There was a significant decrease in 

stromal clustering but not in stromal barrier (Fig. S5a). Since stromal clustering was 

significantly higher in metastasis tissues compared to primary tumors (Fig. S5b) in the 

TCGA melanoma cohort, it is unlikely that this decrease can be attributed to the 

difference in the type of samples. Therefore, in this very limited, sequential cohort of 

melanoma patients, our preliminary analysis on melanoma evolution over time suggest 

that stromal clustering decreases with disease progression, possibly indicating a 

higher diversity in immune evasion strategies in progression compared with the initial 

stage of the disease. 

Taken together, these data support the immunosuppressive potential and prognostic 

value of stromal organization, identified by the proposed stromal graph-based 

measures, to suppress anti-tumoral activity of lymphocytes.   

 

Deciphering the molecular basis of stromal features from omics-based deep 
learning approaches 

To identify biological processes underpinning histologically-defined stromal 

recruitment, matching copy-number and transcriptomic data were integrated and 

analysed using an unsupervised deep-learning framework (named CNx). This enabled 

the identification of gene expression changes driven by copy-number alterations in 

cancer cells, within the context of the microenvironmental measures described thus 

far. CNx consisted of an input layer (15667 nodes), an encoding layer (7000 nodes), 

a bottleneck layer (200 nodes), a decoding layer (7000 nodes) and an output layer 

(15667 nodes). To integrate the histology-based stromal architecture measures into 
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this model, we identified the nodes in the bottleneck layer that had the highest 

Spearman correlation between their activation and stromal clustering or barrier. These 

nodes and their relationship with other nodes were visualised as a network, along with 

the most weighted genes as nested nodes (Fig. 4d). Since this compressed layer 

captures copy-number-driven gene expression (both cis and trans), the list of genes 

contributing to the activation of nodes associated with stromal feature therefore 

constitute a catalogue of putative genes implicated in cancer-stromal interactions. To 

this effect, CNx identified 578 genes (Table S2) and 633 genes (Table S3) associated 

with stromal barrier and clustering respectively. 

The genes identified by CNx had significantly higher correlation between copy number 

and gene expression data, compared to the genes identified by differential expression 

analysis as being correlated with stromal clustering and barrier (Fig. 4e).  

Stroma-mediated down-regulation of lymphocyte cytotoxic program 

The genes downregulated in tumors with high stromal barrier (268 genes at FC<0, 

red-labelled, Table S2) and high stromal clustering (324 genes at FC<0, red-labelled, 

Table S3) were enriched for pathways such as TCR signalling in naïve CD4 T cells, 

Wnt, Interleukin, PI3K-Akt and MAPK signalling (Table S4, S5). Conversely, genes 

upregulated in tumors with high stromal barrier (310 genes at FC>0, green-labelled, 

Table S2) and clustering (309 genes at FC>0, green-labelled, Table S3) were enriched 

for Mitochondrial translation, non-alcoholic fatty liver disease and processing of 

Capped intron-containing pre-mRNA (Table S6, S7).  

We compared these CNx-derived findings with a lasso regression-based approach 

(detailed in supplementary materials), which identified copy number of 396 cytobands 

associated with gene expression events, analogous to the bottleneck nodes identified 

by CNx. These ‘nodal cytobands’ pertained to 692 and 723 constituent genes 

correlated significantly with stromal barrier and clustering respectively. In comparing 

the pathways enriched for these genes with those identified by CNx, we report that 

CNx identified genes enriched for immune-related pathways such as IL12-, IL2-, CXCR4- 

and TCR-mediated signalling, to be downregulated in tumors with high stromal clustering 

and barrier, as opposed to the lasso regression-based approach (Table S8, S9).  

Since chemokines and cytokines direct cell trafficking and mediate cell recruitment in 

the tumor microenvironment (31), we investigated them and related 
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simulator/regulator in the CNx gene lists (Fig. 4f). There were only three genes shared 

between the cytokine/chemokine networks for stromal clustering and barrier: GAB2, 

RASGRP1, XCL1. Exclusive to stromal clustering were genes involved in JAK/STAT 

signalling (JAK2, STAT2, STAT3), chemokines and interleukin receptors (CCL3, 

IL2RA, IL7R, IL15), adhesion proteins (VCAM1, ICAM1), key hypoxia and 

differentiation markers (HIF1A, TWIST1, FOXO1, JUN). Among genes exclusive to 

the stromal barrier network were CD80, CD38 and TNFRSF1A. The apparent lack of 

overlap between these two gene networks suggests functional mutual exclusivity, 

which was also consistent with the independent prognostic value of these two features. 

Thus, CNx enabled the curation of a catalog of genomic alterations in cancer cells 

significantly over-represented in specific stromal phenotypes, thereby linking genes 

with microenvironmental context and providing a catalog of putative genomic features 

of stromal recruitment.   

 

Discussion 

In this study, we present Topological Tumor Graphs (TTGs): a new approach to study 

the spatial architecture of the tumor microenvironment in primary and metastatic 

melanoma. Although cell-cell network analysis has previously been used for tasks 

such as aiding nucleus identification (32), it has not been explicitly used to study tumor-

host interactions. To construct TTGs, the melanoma tumor microenvironment learned 

from whole-tumor pathological section images were transformed into a network of cells 

using computational pathology. An understanding of the spatial interplay of 

heterogeneous cell types in the melanoma tumor microenvironment was derived 

network centrality measures such as node degree (the number of neighbours), 

clustering coefficient (a measure for the connectedness of a node), and betweenness 

(the number of shortest path in the network that cross this node). The node distribution 

of a melanoma TTG was similar to a random graph, suggesting that most cells have 

similar numbers of neighbours and there are not many hubs in the network. However, 

there were strong differences in node degree distribution between the cell types, 

particularly stromal cells having smaller node degrees than epithelial cells and more 

widespread clustering coefficients. The variable distribution patterns for different cell 
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types suggested that spatial interaction patterns among cancer, lymphocyte and 

stromal cells are dependent on cell identity.  

The roles of stromal cells, in particular cancer-associated fibroblasts (CAFs), in 

regulating T cell activity and function are well known. As an important source of TGF-

β, CAFs could promote cell death of effector CD8+ T cells by inhibiting expression of 

the pro-survival protein Bcl-2 (33), or alter cytotoxic CD8+T cell function by inhibiting 

the expression of perforin, granzymes A and B, Fas ligand, and IFN-γ 

(34,35). Alternatively, CAFs could restrict CD4+ and CD8+ T cells motility in dense 

matrix areas. Aligned fibres around tumor epithelial cell regions could restrict T cells 

from entering tumor islets (36). These studies and others, highlight the importance of 

stromal spatial positioning in the study of tumor immune response. 

To this effect, we defined spatially explicit measurements based on TTGs to define 

two phenotypes of stromal recruitment, spatial clustering of stromal cells within the 

tumor, and stromal barrier which quantified the average number of stromal cells that 

a lymphocyte has to cross along a shortest path to infiltrate a cancer cluster. High 

degree of both stroma clustering and barrier significantly and independently correlated 

with decreased lymphocytic infiltration and poor survival in melanoma. These support 

the immunosuppressive potential of stromal cells in melanoma and their clinical 

relevance.  

To identify intrinsic factors in cancer cells that drive stromal recruitment and enhance 

cell fitness, we investigated genomic alterations and gene expression in the context of 

stromal architecture. We applied a new deep learning approach, CNx, to identify copy 

number alterations that most influence the transcriptome and therefore best predict 

gene expression data even when reduced in dimension. There is a surge of interest in 

applying deep learning to cancer omics (16,17). Approaches which assess the 

association between gene expression and copy number changes, while being 

informative, do not always account for indirect effects of copy number change such as 

alterations in transcriptional factors. To this effect, we have adopted an unsupervised 

deep learning-based approach to directly integrate genome-wide copy number and 

tumor transcriptomics data. Furthermore, this study describes an integration of stromal 

phenotypes derived from whole-tumor section digital pathology, with omics data, in 

contrast to studies which focus on characterising microenvironmental phenotypes 
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using transcriptional immune/stromal signatures (24,37). Therefore, we propose that 

CNx could be a novel solution to infer independent, compressed representation of 

copy-number driven features from high-dimensional and highly inter-correlated 

genomic data in search of molecular features underpinning specific morphological 

phenotype.  

Limitations of this study include the limit of access to more extensive, independent 

clinical cohorts, and the availability of data on response to immunotherapy, and the 

lack of specific marker staining for immune cell subsets. Nevertheless, we have been 

able to identify novel features of the genomic imprint of tumors that may potentially 

enable specific stromal features. New phenotypes of stroma-mediated 

immunosuppression identified using spatial histology analysis of stroma-cancer 

interface could help illuminate potential molecular machineries that allow tumors to 

engage with this interface. Furthermore, the concept of TTGs could easily be adapted 

for the analysis of other cell-cell interactions in the tumor microenvironment, e.g. 

tumor-lymphocyte interactions or lymphocyte-lymphocyte clusters. 
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Table 1: Association of stromal features with clinicopathological measures in 
the TCGA melanoma cohort 

Association of stromal phenotype 
with 

Stromal clustering Stromal barrier 

AJCC stage p=0.78 p=0.98 

NRAS/BRAF status p=0.64 p=0.88 

Breslow thickness R= -0.167, p=0.003 R= 0.01, p=0.80  

Ulceration p=0.02  p= 0.23 

Tumour type (primary vs 
metastases) 

p=0.0037 p=0.237 

Stromal% R=0.33, p=1.7e-11 R=0.58, 2.2e-16 

Lymphocyte%  

- Whole data set  

- Primary tumours only  

- Distant regional cutaneous 

metastases 

- Regional lymph node metastases 

 

R=-0.31, p=2.2e-10 

R=-0.32, p=0.0012 

R=-0.51, p=4.6e-09 

                             

R=-0.34, p=1.2e-06 

 

R=-0.18, p=0.00018 

R=-0.31, p=0.0016 

R=-0.25, p=0.0058 

                                

R=-10, p=0.15 
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Table 2: Association of stromal features with patient survival using univariate 
and multivariate analyses. Low and high stromal clustering are denoted by optimal 

cut-off (stromal clustering < 0.590253), low and high stromal barrier are denoted by 

the first and fourth quartiles 

   P-value HR HR 95% CI 

Stromal clustering    

      Univariate (low vs high) 

      Adjusted for Breslow depth and ulceration  

      Adjusted for Lymphocyte%  

     Adjusted for Stromal % 

 

0.002 

0.003 

0.006 

0.005 

 

1.97 

2.50 

1.99 

1.93 

 

1.26-3.07 

1.35-4.62 

1.21-3.27 

1.22-3.06 

Stromal barrier 

      Univariate (low vs high) 

      Adjusted for Breslow depth and ulceration 

      Adjusted for Lymphocyte% 

      Adjusted for Stromal% 

 

0.017 

0.017 

0.03 

0.04 

 

1.92 

1.78 

1.82 

1.87 

 

1.12-3.29 

1.10-2.86 

1.05-3.166 

1.02-3.43 

Mixed model: Stromal barrier + Stromal clustering  

high clustering/high barrier vs 

high clustering/low barrier 

low clustering/high barrier 

low clustering/low barrier 

 

 

0.62 

0.53 

0.35 
 

 

 

0.158 

0.308 

0.007 

 

 

0.31-1.20 

0.16-1.77 

0.16-0.76 
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Figure legends 

 

Figure 1. Computational pipeline schema. (a) Schema of automated computational 
pathology pipeline to analyse H&E slides classified at single-cell resolution, and 
converted to topological graphs (TTGs). TTGs-derived tumor phenotypes were 
integrated with omic data using a convolutional neural network with an hourglass 
shaped architecture. This network was designed to learn a sparse representation of 
CNAs that drive gene expression changes. (b) Illustration of a part of a TTG from a 
whole-tumor section, with cancer cluster summarized into a supernode. (c-e) Cell type 
specific distribution of node degree, clustering coefficient and betweenness, P-value 
from t-test.  

 

Figure 2. Conceptual illustration of stromal barrier for lymphocytic infiltration. 
(a) Example of the stromal barrier in a region of an H&E slide, where a fibrous stroma 
can be seen between a lymphoid aggregate and a tumor islet. (b) The corresponding 
TTG, in which cancer cell nodes have been summarized to a cancer supernode, 
whereas, each of the lymphocyte/stromal node represent a single lymphocyte/stromal 
cell. The number of stromal nodes on the shortest path from a lymphocyte to the 
nearest cancer supernode was calculated and later averaged to derive the quantitative 
measure of stromal barrier. 

 

Figure 3. Stromal barrier and clustering are associated with patient survival. 
Effect of Stromal barrier (a) and stromal clustering (b) on 10-year OS (Overall 
Survival), P-values from univariate Cox proportional hazards model. (c) Scatter plot of 
stromal barrier versus clustering, with colours corresponding to the four combination 
groups. Comparison of (d) 10-year OS and (e) lymphocyte% between 4 combination 
groups. P-values in (e) are from Tukey multiple comparisons of means test 

 

Figure 4. Immunosuppressive potential of stromal barrier and clustering.  (a) 
Boxplot showing the relationship between the ratio of lymphocyte to tissue area and 
stromal barrier, Right panel: the same for stromal clustering. (b) difference in stromal 
barrier between clusters derived from previously described immune phenotypes (24): 
Cluster 1 (‘Low-cytotoxicity’), Cluster 2 (‘intermediate-cytotoxicity), Cluster 3 (‘High-
cytotoxicity’) (c) Visualisation of the bottleneck layer of CNx. Nodes in the 
bottleneck/compressed layer were connected if they shared similar activity values 
(Methods) and visualised as a network. The nodes with highest correlation with 
different image phenotypic features were coloured. Genes with highest activation for 
these nodes were shown as nested network. (d) Correlation between CNA and gene 
expression of genes identified by CNx and by Differential Gene expression analysis. 
(e) Overrepresented pathways for genes identified by Differential Gene Expression 
and by CNx. (f) Cytokine genes from each gene list illustrated as protein-protein 
interaction networks (String interaction score >0.4). 
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