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Abstract 

Background and purpose: Daily image guidance is standard care for prostate radiotherapy. 

Innovations which improve the accuracy and efficiency of ultrasound guidance are needed, 

particularly with respect to reducing interobserver variation. This study explores automation tools for 

this purpose, demonstrated on the Elekta Clarity Autoscan®. The study was conducted as part of the 

Clarity Pro trial (NCT02388308). 

 

Materials and methods: Ultrasound scan volumes were collected from 32 patients. Prostate matches 

were performed using two proposed workflows and the results compared with Clarity’s proprietary 

software. Gold standard matches derived from manually localised landmarks provided a reference. 

The two workflows incorporated a custom 3D image registration algorithm, which was benchmarked 

against a third-party application (Elastix). 

 

Results: Significant reductions in match errors were reported from both workflows compared to 

standard protocol. Median (IQR) absolute errors in the left-right, anteroposterior and craniocaudal 

axes were lowest for the Manually Initiated workflow: 0.7(1.0) mm, 0.7(0.9) mm, 0.6(0.9) mm 

compared to 1.0(1.7) mm, 0.9(1.4) mm, 0.9(1.2) mm for Clarity. Median interobserver variation was 

<< 0.01 mm in all axes for both workflows compared to 2.2 mm, 1.7 mm, 1.5 mm for Clarity in left-

right, anteroposterior and craniocaudal axes. Mean matching times was also reduced to 43 s from 152 

s for Clarity. Inexperienced users of the proposed workflows attained better match precision than 

experienced users on Clarity. 

 

Conclusion: Automated image registration with effective input and verification steps should increase 

the efficacy of interfraction ultrasound guidance compared to the current commercially available 

tools. 



 

Introduction 

Accurate image guidance is essential to minimise setup errors and facilitate reduced margins in 

prostate radiotherapy. This is especially the case for ultrahypofractionation which may become 

standard within a few years. However, streamlined workflows are required to reduce interobserver 

variability in matching and to improve departmental efficiency. 

Ultrasound imaging (US) is non-invasive, non-ionising, cost-effective and allows for direct 

visualization of the prostate and surrounding tissues in 4D (serial 3D imaging). Systems can be used 

for interfraction and intrafraction motion management [1, 2] and some radiotherapy departments are 

using ultrasound as their standard image guidance method for prostate cancer. The Clarity Autoscan 

systems uses a 3D transperineal ultrasound (TPUS) probe and provides continuous imaging of the 

prostate for intrafraction motion estimation [3, 4]. The Clarity system uses manual comparison of an 

image acquired at simulation with one acquired prior to treatment to calculate the couch shift 

necessary to correct for interfraction motion. This requires the radiation therapist to scroll back and 

forth through the 3D volume in two or three of the axial, sagittal and coronal planes, iteratively 

adjusting a matching contour (the reference position volume (RPV) contour), which can be time-

consuming and requires significant familiarity with ultrasound image interpretation. Ultrasound is a 

user-dependent and observer-dependent modality, leading to variations in image quality and image 

interpretation, which further contributes to uncertainty in the estimated interfraction motion [5]. 

Automating the matching of simulation and treatment TPUS images would reduce the complexity of 

US-guided interfraction motion correction and could improve precision. Similar to commercial 

image-guided radiotherapy software, automated match results should be displayed to the operator for 

visual inspection and approval prior to couch correction [6]. A quantitative measure of match quality 

could also be developed to assist the user in deciding whether the match is acceptable, a step 

commonly used after automated registration of CBCT images [7]. This study examines two possible 

clinical workflows with differing levels of automation, comparing their overall speed and precision to 



provide an insight into how the integration of such tools can improve the standard of care in US 

image-guided radiotherapy.  

 

Materials and Methods 

An application was developed to automate interfraction matching of a manually defined prostate 

reference positioning volume (RPV) in TPUS scans acquired using Elekta Clarity Autoscan (Elekta 

AB., Sweden) [4, 8]. The application was used to simulate two potential workflows; both of which 

were tested against the current clinical protocol using retrospective data. A custom 3D template 

matching algorithm was developed for the application and benchmarked against Elastix, an 

established third party image registration software [9, 10]. A training dataset was used for 

development, optimisation and benchmarking. The workflows were then validated on a separate test 

dataset to demonstrate interpatient generalisability, where larger variations in anatomical appearance 

and image quality are expected. 

Patients 

Patients referred for radical radiotherapy to the prostate were recruited to the Clarity-Pro trial 

(NCT02388308), approved by the Surrey and SE Coast Regional Ethics Committee, UK [15]. From 

42 patients a random selection of 32 were analysed for this study. All trial patients received CBCT 

image guidance in line with the clinical standard of care. Ultrasound scans were also acquired at 

simulation and during CBCT acquisition as described below. Assuming all match errors are normally 

distributed with a 1.0 mm standard deviation and no systematic bias, the population size results in an 

error measurement precision with a ±0.5 mm 95% confidence interval and a standard error of ±0.3 

mm [11]. 

Clarity image acquisition: 

3D ultrasound scans were obtained from the 32 selected patients. Volumetric data was recorded using 

the Clarity Autoscan probe, which is optically tracked to enable 3D image reconstruction in DICOM 



room coordinates. At simulation, a CT scan was acquired before realigning the patient to the room 

lasers and acquiring a reference US scan. 

Treatment planning was conducted using Pinnacle (Philips Healthcare, Amsterdam, Netherlands), 

after which simulation CT and planning contours were imported into the Clarity workstation. A 

trained operator ensured the reference US and CT scans were co-registered before manually 

contouring a prostate US RPV, aided by the CT and clinical treatment volume (CTV) contour. The 

CTV could not directly be used as the US RPV, because it often incorporated the seminal vesicles and 

because the CT voxel size was significantly larger compared to US. 

For each fraction, the patient set up from simulation was reproduced. A guide ultrasound scan was 

acquired by a trained radiation therapist prior to the patient being treated on a conventional Elekta 

Synergy linac using CBCT image guidance. The ultrasound probe remained fixed in place throughout 

radiation delivery.  

Clarity Matching: 

Prostate matching was performed offline by three experienced observers (two physicists and one 

radiation therapist) following the standard clinical workflow in the Clarity Guide Review software. 

Observers viewed reference and guide scans side by side in sagittal, coronal and transverse planes. 

The RPV contour was superimposed over the reference ultrasound scan and the user placed an 

identical guidance positioning volume (GPV) contour in the same position on the guide scan.  

Gold standard matches: 

For each fraction, up to five landmarks visible both within the RPV and guide image were manually 

localized. These landmarks included calcifications that were clearly visualized in some ultrasound 

scans, acting as endogenous fiducial markers [12]. Matches were defined as the mean landmark shift 

and a gold standard result calculated to be the mean landmark match from three experienced 

observers. Any fraction with an interobserver difference greater than 5 mm was repeated 

independently by all three observers up to two times to reduce uncertainties. Gold standard results 

were used to evaluate the accuracy of all other match methods described in this study. 



Template matching algorithm: 

A dedicated registration algorithm was developed, because third party registration tools were either 

computationally slow, or were too sensitive to variations in image quality between scans caused by 

changes in probe and patient position. A correlation based algorithm was chosen due the technique's 

ability to accurately estimate motion in clinical ultrasound images, as reported previously by O'Shea 

et al. and Shams et al. [7, 13]. Algorithm results were validated against matches derived from 

manually identified endogenous fiducial prostate landmarks and also against the current Clarity 

matching software. The Clarity software did not quantify prostate rotations and the algorithm likewise 

only estimated translations. 

Spatial regularization methods were used to ensure the algorithm was robust to images containing few 

discernible features or large variations in image quality caused by patient and probe motion. A 

detailed description of the algorithm is given in Supplementary Materials 1 and the code is available 

upon request. 

Prostate matching workflows: 

Two workflows – Full and Manually Initiated (Figure 2) – were devised to examine the best way of 

clinically implementing the algorithm with manual inspection steps of both scans and match results. 

The Full workflow comprised three matching methods: 1) automated matching – where the previously 

described algorithm was used; 2) semi-automated matching – for which the user manually located the 

approximate prostate location by placing a small rectangular search window (15 pixels larger than the 

RPV) around it; 3) Clarity matching – manual matches performed on the Clarity Guide Review 

software. An automated match was performed and reviewed. If unsatisfactory, a semi-automated 

match was performed. If this match was also rejected, the user resorted to a manual Clarity match. 

For the Manually Initiated workflow, only the semi-automated matching and Clarity matching steps 

were performed. For both workflows, the output was recorded as the first approved match, or the 

Clarity match in case of rejection. 



At review, matches were displayed to the user by overlaying RPV and GPV contours on their 

respective reference and guide image volumes. A match summary was also generated to aid visual 

assessment of match quality. It comprised central sagittal and coronal planes through the positioning 

volumes with contour overlays and an accompanying correlation map (Supplementary Materials 2). 

Match results and observer decisions were collected for every image pair using all three matching 

methods. The two workflows were retrospectively simulated for one experienced and two 

inexperienced observers based upon their review decisions. Due to patient confidentiality 

considerations, all Clarity match results were performed by three experienced clinical staff and the 

mean match results used for all observers. The inexperienced observers underwent training, 

comprising an instruction manual and a practice session with experienced staff using the training 

dataset. A gap of at least two weeks was imposed between observers performing matches using the 

automated and semi-automated methods to restrict their familiarisation with the data. Review 

decisions from each observer were automatically recorded and used to recreate the workflows. Match 

and review timings were also recorded for all three methods to produce estimates of total workflow 

times. 

Analysis and application development 

Match errors, 𝐸, were calculated as the relative difference between match result and the gold standard. 

Translational registrations using Elastix software provided a third-party comparator to evaluate 

algorithm accuracy on the training dataset by comparing error distributions, absolute error, |𝐸|, 

medians and interquartile ranges. Correlation coefficients, 𝐶, between each method and the gold 

standard were calculated to measure how comparable the results were. Both methods were optimised 

prior to evaluation as described in Supplementary Materials 3. 

Workflow evaluation was conducted on the test dataset. Error means, standard deviations, and ranges 

were compared. Timings, 𝑡, for individual matches and the entire workflows were recorded, as were 

rejection rates for each match method. Finally, for Clarity and both workflows, interobserver variation 

(IOV) was quantified as the maximum difference between observers for each fraction. Matlab 



(MathWorks Inc., USA) running on an Intel 2.8 GHz Xeon CPU with 16 GB RAM was used to write 

the algorithm, develop the application and perform all subsequent analyses. 

 

Results 

For each selected patient, a reference scan was acquired during simulation, and guide scans from five 

fractions were collected producing 160 reference-guide scan pairs. The training dataset comprised 100 

scan pairs from 20 patients. The remaining 60 scan pairs from 12 patients formed the test dataset. 

Using the training dataset, accuracy was assessed against the gold standard. The algorithm and Elastix 

both produced significant accuracy and precision improvements over Clarity according to statistical 

testing of median absolute errors, |𝐸|, (Mann-Whitney U: 𝑝 < 0.05) and dispersion in 𝐸 (Ansari-

Bradley: 𝑝 < 0.05). Comparable errors were observed between the algorithm and Elastix, |𝐸|, (Mann-

Whitney U: 𝑝 > 0.05) and 𝐸 (Ansari-Bradley: 𝑝 > 0.05). Error distributions were confirmed non-

normal using t-tests, although there was no indication of bias beyond outliers in the error distributions 

with all mean errors, 𝐸 ≤ 1.1 mm (2 pixels). 

Clarity absolute error median and interquartile ranges for the Left-Right (LR), Anterior-Posterior (AP) 

and Superior-Inferior (SI) axes were |𝐸|𝑚𝑒𝑑𝑖𝑎𝑛(𝐼𝑄𝑅) = 1.5(1.8) mm, 1.0(1.4) mm, 1.1(1.8) mm. 

For Elastix, |𝐸|𝑚𝑒𝑑𝑖𝑎𝑛(𝐼𝑄𝑅) = 0.6(0.9) mm, 0. 7(1.4) mm, 0.7(1.2) mm. And for the algorithm, 

|𝐸|𝑚𝑒𝑑𝑖𝑎𝑛(𝐼𝑄𝑅) = 0.7(0.8) mm, 0.6(1.0) mm, 0.6(1.1) mm. 

All methods were significantly correlated to the gold standard with 𝑝 < 0.05 in every axis for all 

matching methods. Algorithm correlation was strongest, with coefficients 𝐶 = 0.87, 0.93 and 0.92 

(LR, AP, SI respectively). For Clarity 𝐶 = 0.78, 0.91 and 0.85. For Elastix, 𝐶 = 0.87, 0.68 and 0.22. 

Poor Elastix matches in four fractions from a single patient where |𝐸| < 19 mm (AP) and |𝐸| < 30 

mm (SI) resulted in weaker correlations (Supplementary Materials 3). An inspection of the patient 

images found anatomical changes caused by rectal filling at simulation not observed in subsequent 

treatment images. 



Elastix produced the largest error range: −29.4 mm ≤ 𝐸 ≤ 6.8 mm across all axes, while the 

algorithm exhibited the smallest error range: −7.4 mm ≤ 𝐸 ≤ 6.1 mm. However mean calculation 

times were longer for the algorithm: 𝑡�̅�𝑙𝑔𝑜 = 113 s, 𝑡�̅�𝑙𝑎𝑠𝑡𝑖𝑥 = 58 s. 

The two matching workflows were assessed on the test dataset (Table 1). Both workflows produced 

significant error improvements compared to Clarity according to paired t-tests (𝑝 < 0.05) and paired 

F-tests (𝑝 < 0.05). The same tests showed the results arrived at by both workflows exhibited 

statistically equivalent errors (𝑝 > 0.05 in all cases). All error distributions were confirmed normal 

using t-tests and are displayed in Figure 2. As shown in Table 1, Clarity match accuracy was 

hampered by outlying errors as large as ±16.0 mm that were not evident in either Full or Manually 

Initiated workflows, where absolute axial errors were reduced to within ±5 mm. No indication of bias 

was found, demonstrated by mean errors 𝐸𝑚𝑒𝑎𝑛 within ±0.5 mm for Clarity and for both workflows. 

The workflows improved precision, reducing axial error standard deviations 𝐸𝑠𝑡𝑑 from ≤ 2.1 mm 

using Clarity, to ≤ 1.4 mm using the Full workflow and ≤ 1.3 mm using the Manually Initiated 

workflow. 

The three observers’ rejection rates for automated matches were: 24%, 21% and 11%, with the two 

inexperienced observers recording significantly higher rejection rates. Semi-automated matches 

produced lower, more equitable rejection rates of: 2%, 7% and 5% respectively. The Manually 

Initiated workflow was also significantly quicker than both the Full workflow and Clarity with mean 

match times, 𝑡̅ = 43 s, 131 s and 152 s respectively (Table 1). 

Match uncertainties arising from interobserver variation were almost completely suppressed by the 

workflows as shown in Table 2 and Figure 3. The median IOV was << 0.01 mm in all axes for both 

workflows, conversely the largest Clarity median IOV was 2.2 mm in the LR axis. 

 

Discussion and Conclusions 



This study suggests automated matching algorithms can improve the accuracy of ultrasound-guided 

prostate radiotherapy, especially when incorporated into a broader workflow with simple manual 

input and verification steps. Such a workflow may allow the technique to become more widely used 

clinically. Our results thus demonstrate how to raise the current standard of care for ultrasound guided 

radiotherapy.  Furthermore, the introduction of TPUS imaging was primarily to enable intrafraction 

prostate motion monitoring, which has been shown to have high accuracy and precision, 

implementing an interfraction guidance protocol would provide a complementary application [3, 14]. 

Some guidance technologies, such as imaging implanted fiducial markers with planar kV, or CBCT 

may confer an accuracy advantage, however ultrasound provides superior soft tissue contrast and the 

ability to image continuously without increased radiation dose [15]. The accuracy of markerless 

CBCT is reported to be comparable to current ultrasound guidance techniques, with many centres 

avoiding marker implantation due to the increased need for resources and associated risk of infection 

[16]. Furthermore, with further development, ultrasound may be sufficiently accurate to enable daily 

adaptive replanning on a range of radiotherapy systems [17]. 

Workflows incorporating an image registration algorithm significantly improved match accuracy 

compared to Clarity. Match error ranges and standard deviations were significantly reduced, as was 

interobserver variation. Training staff to interpret ultrasound images is a recognised challenge, 

especially for departments where resources are often stretched [5, 18]. Our proposed workflows could 

reduce time-pressure and training burdens for radiotherapy practitioners, as demonstrated by the 

effectiveness of inexperienced users operating our software. The proposed workflows also profoundly 

reduced interobserver variation, which has been implicated in poor agreement between US and CBCT 

by Fargier-Voiron et al. [8, 19]. The same group reported variations in TPUS probe pressure 

significantly impacted prostate motion, with repercussions for treatment quality [8]. 

Match times were comparable to Clarity when using the Full workflow (𝑡𝑚𝑒𝑎𝑛 = 151 s and 132 s 

respectively) and significantly faster using the Manually Initiated workflow (43 s). Users had to 

assess prostate location and any indications of significant morphological changes more closely when 

performing a Manually Initiated match compared to the automated method, because they were tasked 



with manually positioning a search window. Review times subsequently improved and rejection rates 

decreased. Automated match rejections were 11% for an experienced observer and < 20% for 

inexperienced observers, but decreased to  ≤ 7% for all observers using Manually Initiated matching, 

possibly due to greater confidence in the semi-automated match result arising from a more thorough 

examination of the images. 

A subset of images from two patients were consistently rejected by all observers. Variations in 

prostate appearance and geometry were identified between these scans despite the requirement in our 

scan protocol for maintaining good image quality, minimising probe-patient contact and assessing the 

penile bulb for consistency. These variations likely resulted in dissatisfaction with the rigid 

registration results. A robust deformable registration algorithm could also elicit greater match 

confidence, but requires sophisticated treatment plan adaptation to the deformed target volume. Even 

though all Clarity scans are recorded with the probe fixed in place, locating the optimal scan position 

and acquisition parameters requires significant user involvement. Other studies have sought to 

automate probe set up, which would further reduce registration errors [17]. In its current form, Clarity 

lacks the ability to assess prostate rotation and this study suggests the system is not yet suitable for 

patients where such motion is clearly observed. For this reason, we suggest the proposed workflow 

should be used in conjunction with other image guidance techniques, such as CBCT, for cases where 

large rotations or deformations are observed in the review step of the workflow.  

The gold standard was derived from a consensus match of up to five common prostate landmarks, 

with ≤3 landmarks recorded for 17% of matches and observer variations up to ±2.6 mm from the 

mean. This carried an inherent uncertainty and was a compromise in the absence of a reliable ground 

truth. Other studies have used a reference imaging modality, such as CBCT with markers, to assess 

ultrasound prostate localisation accuracy. While the correlation between the different modalities can 

be used to assess relative performance, the inherent uncertainties of the reference method often remain 

unquantified and may implicitly degrade the perceived accuracy of ultrasound guidance. Scale 

Invariant Feature based registration was also investigated for this study, however the sparsity of 

common features or landmarks produced poor results in the presence of even relatively minor motion, 



often resulting in divergence during optimisation. The lack of common features was attributed to 

significant changes in image quality and poor spatial resampling of US image volumes from a stack of 

B-scans in polar coordinates onto a cartesian grid in room space. Although the presence of echogenic 

features should have aided the registration algorithms, an assessment of registration errors relative to 

the mean number of features identified found no clear relationship. This was likely due to the over-

riding influence of other factors such as variations in the appearance of features between scans. The 

gold standard also could not adequately describe rotational, affine or deformable prostate motion. 

Furthermore, the increased computational cost would have slowed match times and limited the 

workflow’s usability. 

Previous intramodality registration algorithms have been reported for patient positioning in prostate 

RT using transabdominal ultrasound [20, 21]. Kaar et al. reported a mean Euclidean error and 

standard deviation �̅�𝑒𝑢𝑐 = 3.0(1.5) mm [20]. Similarly, Presles reported �̅�𝑒𝑢𝑐 = 3.5 mm with 𝐸𝑠𝑡𝑑 = 

1.7 mm, 2.6 mm and 2.4 mm in LR, AP and SI axes [21]. By comparison, our Semi-Automated 

workflow exhibited smaller errors: �̅�𝑒𝑢𝑐 = 1.8(1.0) mm and 𝐸𝑠𝑡𝑑 = 1.3 mm, 1.1 mm, 1.1 mm. 

Future studies will investigate the use of deformable registration methods in conjunction with the 

polar US scan volumes to improve match accuracy and intermodality registration. Technical support 

from Elekta is also needed to integrate automated matching software with a TPUS system for online 

testing and validation. Routine clinical implementation will also require industrial support and 

regulatory approval. 

Two workflows incorporating automated image registration with varying levels of manual input were 

devised, tested and compared to the current standard practice of manually matching volumetric 

ultrasound scans. A registration workflow incorporating manual initialisation and verification was 

found to be superior to automated registration alone. Such a workflow would improve efficacy of 

interfraction prostate localisation in ultrasound guided radiotherapy compared to standard practice. 
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Tables 

Table 1. Test dataset match errors (E) in each patient axis, absolute error medians (|𝐸|𝑚𝑒𝑑), interquartile ranges (|𝐸|𝐼𝑄𝑅) 

and match times(t) for: manually selected landmarks, the Clarity workflow, Full workflow and Manually Initiated workflow. 

Landmark match times were not recorded 

 Landmarks Clarity Full Manually Initiated 

LR AP SI LR AP SI LR AP SI LR AP SI 

𝑬𝒎𝒆𝒂𝒏 (mm) - - - 0.3 -0.2 -0.1 0.1 -0.3 0.1 0.2 -0.2 0.1 

𝑬𝒔𝒕𝒅 (mm) 0.8 0.7 0.7 2.1 2.1 1.8 1.3 1.1 1.1 1.4 1.1 1.1 

𝑬𝒎𝒊𝒏 (mm) -2.4 -1.9 -2.6 -5.6 -5.5 -6.0 -3.9 -5.0 -3.1 -3.9 -5.0 -3.2 

𝑬𝒎𝒂𝒙 (mm) 2.5 1.6 1.9 12.5 16.0 7.8 3.7 3.0 3.0 4.0 3.0 3.0 

|𝑬|𝒎𝒆𝒅 (mm) 0.5 0.4 0.3 1.0 0.9 0.9 0.7 0.6 0.7 0.7 0.7 0.6 

|𝑬|𝑰𝑸𝑹 (mm) 0.6 0.6 0.5 1.7 1.4 1.2 1.0 0.9 0.9 1.0 0.9 0.9 

𝒕𝒎𝒆𝒂𝒏 (s) - 152 131 43 

𝒕𝒎𝒊𝒏 (s) - 16 24 15 

𝒕𝒎𝒂𝒙 (s) - 308 308 136 

 

Table 2 Interobserver match variation (IOV) for the Clarity, Full and Manually Initiated Workflows with manual landmark 

matching for reference. 

IOV 

(mm) 

Landmarks Clarity Full Manually Initiated 

LR AP SI LR AP SI LR AP SI LR AP SI 

25% 0.9 0.7 0.6 1.1 1.2 0.9 0.0 0.0 0.0 0.0 0.0 0.0 

50% 1.5 1.3 1.0 2.2 1.7 1.5 0.0 0.0 0.0 0.0 0.0 0.0 

75% 2.0 1.9 1.8 3.8 2.6 2.4 0.0 0.0 0.0 0.5 0.5 0.5 

IQR 1.1 1.3 1.2 2.7 1.4 1.5 0.0 0.0 0.0 0.5 0.5 0.5 

 

  



Figures 

 

Figure 1. Flowcharts for the two semi-automated matching workflows: (a) Full workflow and (b) Manually Initiated 

workflow. 
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Figure 2. Match error (E) violin distributions from all three observers across Clarity, Full and Manually Initiated workflows 

with Manual Landmark match errors for reference. Significance symbols are shown for paired F-tests between Clarity and 

algorithm workflows. 

(a)

(b)

(c)



 

Figure 3. Histograms of interobserver variation (D) in match results for Clarity, Full and Manually Initiated workflows, 

with Manual Landmark matches for reference. 
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