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Abstract
To identify new risk loci for colorectal cancer (CRC), we conducted a meta-analysis of seven genome-wide association studies
(GWAS) with independent replication, totalling 13 656 CRC cases and 21 667 controls of European ancestry. The combined
analysis identified a new risk association for CRC at 2q35 marked by rs992157 (P¼3.15�10�8, odds ratio¼1.10, 95%
confidence interval¼1.06–1.13), which is intronic to PNKD (paroxysmal non-kinesigenic dyskinesia) and TMBIM1
(transmembrane BAX inhibitor motif containing 1). Intriguingly this susceptibility single-nucleotide polymorphism (SNP) is
in strong linkage disequilibrium (r2¼0.90, D0 ¼0.96) with the previously discovered GWAS SNP rs2382817 for inflammatory
bowel disease (IBD). Following on from this observation we examined for pleiotropy, or shared genetic susceptibility, between
CRC and the 200 established IBD risk loci, identifying an additional 11 significant associations (false discovery rate
[FDR])<0.05). Our findings provide further insight into the biological basis of inherited genetic susceptibility to CRC, and
identify risk factors that may influence the development of both CRC and IBD.

Introduction
Colorectal cancer (CRC), a leading cause of cancer-related death
worldwide, has a heritable basis (1,2). Recent genome-wide associ-
ation studies (GWAS) have successfully identified a number of
common single-nucleotide polymorphisms (SNPs) influencing CRC
risk thereby vindicating the assertion that part of the heritable risk
is polygenic (3–7). These studies have also provided insights into
the biology of CRC, highlighting the importance of bone morphoge-
netic protein signalling pathway genes (BMP2, BMP4, GREM1 and
SMAD7) (4,5), candidate genes (CDH1), as well as genes not previ-
ously implicated in CRC (POLD3, TERC, CDKN1A, VIT1A and
SHROOM2) (6,7). It is well established that inflammatory bowel dis-
ease (IBD), which primarily presents as Crohn’s disease or ulcera-
tive colitis, is associated with an increased CRC risk (8–11). Despite
IBD being strongly heritable (12), little evidence for shared genetic

susceptibility or differential effects of genetic variation on IBD and
CRC risk has been reported, although the presumption is that the
direction of effect will be consistent between both diseases.

A failure to uncover pleiotropy may be reflective of a lack of
power of CRC GWAS conducted thus far. Indeed statistical
modelling of GWAS data shows that although 19% of the herita-
bility of CRC can be ascribed to common variation, only 10% of
this is explained by currently identified risk SNPs (13). To
empower the identification of new CRC susceptibility SNPs in
persons of European ancestry, we conducted a genome-wide
meta-analysis of a previously unreported GWAS with six pub-
lished datasets in addition to independent replication totalling
13 810 cases and 21 754 controls.

We report the identification of a new CRC risk association
which also impacts on IBD risk. Extending our analysis to
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established IBD loci, we provide evidence of shared genetic sus-
ceptibility between CRC and IBD at 11 additional loci.

Results
Primary GWAS

In the primary scan (termed the FIN GWAS), 1172 CRC cases as-
certained through the Finnish CRC collection and Finnish Cancer
Registry were analysed with control data on 8266 individuals
from the FINRISK, Health2000, Finnish Twin Cohort and Helsinki
Birth Cohort Study cohorts. After applying strict quality control
criteria, 283 906 autosomal SNPs were available for association
with CRC risk. A quantile–quantile (Q–Q) plot of observed versus
expected v2-test statistics showed little evidence for an inflation
of test statistics, thereby excluding the possibility of substantive
hidden population substructure, cryptic relatedness among sub-
jects or differential genotype calling (inflation factor k¼ 1.07).

Meta-analysis

We performed a meta-analysis of our primary scan data with
six other non-overlapping GWAS of European ancestry (CCFR1,
CCFR2, COIN, UK1, Scotland1 and VQ58), which have been previ-
ously reported (14). To maximize the prospects of identifying
novel risk variants, we imputed the data with a merged refer-
ence panel using Sequencing Initiative Suomi (SISu) (for the FIN
data) or UK10K (for the UK data) in addition to 1000 Genomes
Project data. After quality control procedures, over 10 million
variants, including over 1 million insertion–deletions, were ana-
lysed in 8749 cases and 18 245 controls.

Associations for the 37 previously established European CRC
risk SNPs showed a direction of effect consistent with previ-
ously reported studies, with 10 of these SNPs having
P< 5.0� 10�8 in this meta-analysis (Supplementary Material,
Table S1). Excluding these known risk SNPs, together with those
correlated with r2>0.8, from the meta-analysis two novel re-
gions of linkage disequilibrium (LD), marked by rs992157 and
rs2383207, showed the strongest association with CRC at
P< 1.0� 10�6 (Supplementary Material, Table S2).

To replicate these associations, we genotyped rs992157 and
rs2383207 in an additional 5061 CRC cases and 3509 controls,
with only rs992157 showing evidence for an association with
CRC (P¼ 0.023). In the combined analysis, the association was
significant at the genome-wide threshold (P¼ 3.15 � 10�8; Fig. 1).
There was no variation due to heterogeneity (I2¼0, Phet¼ 0.79).

rs992157 is located at 2q35, and is intronic to two genes: parox-
ysmal non-kinesigenic dyskinesia (PNKD) on the forward strand
and transmembrane BAX inhibitor motif containing 1 (TMBIM1)
on the reverse strand (Fig. 2).

Relationship between genotype and CRC phenotype

Using data on microsatellite instability (MSI) status from the FIN
(n¼ 1146), COIN (n¼ 1239) and NSCCG replication (n¼ 1282) series,
together with information on KRAS and BRAF mutation status in
tumours in COIN, we explored the possibility that the association
at rs992157 is restricted to a specific molecular subtype of CRC
(Supplementary Material, Table S3). There was no evidence of an
association between these SNPs and any of the variables after ad-
justing for multiple testing (i.e. P> 0.05). Additionally, we ob-
served no consistent association between age, sex or tumour site
using data from the UK1, Scotland1, VQ58, COIN and NSCCG se-
ries (Supplementary Material, Table S3).

IBD SNPs influence CRC

Another association at 2q35 defined by rs2382817 has previ-
ously been shown to influence IBD risk (CRC meta P¼ 1.02 �
10�5), which is also intronic to PNKD and TMBIM1, and is in
strong LD with rs992157 (r2¼0.90, D0 ¼ 0.96). Paradoxically, the
risk for rs2382817 in IBD is inverse to the CRC association.
Given the compelling evidence for an association between IBD
and CRC, we sought evidence for additional shared suscepti-
bility between the two diseases. Specifically, we examined the
risk of CRC in our meta-analysis at 200 loci that have been
shown in previous GWAS to affect IBD risk (15,16)
(Supplementary Material, Table S4). A Q–Q plot of the observed
CRC association P-values against the expected P-values for
each of the 200 IBD risk SNPs showed significant over-disper-
sion (k¼ 1.33, Fig. 3). This observation is compatible with a ge-
netic relationship between CRC and IBD.

To account for multiple testing, we imposed an FDR-adjusted
P-value of 0.05 as being statistically significant. At this threshold,
in addition to rs2382817, 11 IBD risk SNPs were associated with
CRC risk (Table 1), of which five were positively associated with
CRC risk, whereas the other seven displayed an inverse relation-
ship. A number of these SNPs annotate genes with documented
roles that are relevant to CRC development, such as Wnt-signal-
ling [WNT4, (17)], tumour suppression [MAPKAPK5, FOXO1 (18,19)]
and cellular transformation [CDC42, CEBPB (20,21)] (Table 1). We
examined for an association between the genotype of these 12
SNPs and the molecular subtype of CRC, and found no evidence
of a relationship (Supplementary Material, Table S3).

Functional effect prediction analysis

The genomic region containing rs992157 is the site of active struc-
ture and has regulatory motifs for both enhancer and promotor
function in multiple cell types (Fig. 2). Moreover ChIP-seq data
identify over 122 transcription factors binding to the region, in-
cluding CRC-related transcription factors such as MYC, HNF4A
and TCF7L2 (Supplementary Material, Table S5). We also per-
formed an expression quantitative trait loci (eQTL) analysis and
found no significant relationship between the rs992157 genotype
and PNKD and TMBIM1 expression in colorectal adenocarcinoma
cells (Supplementary Material, Table S6). The risk genotype was
however associated with altered gene expression in other tissues,
including lymphoblastoid cells (FDR P-value< 0.05,

Figure 1. Forest plot of the odds ratios for the association between rs992157 and

CRC. Studies were weighted according to the inverse of the variance of the log of

the OR. Horizontal lines: 95% confidence intervals (95% CI). Box: OR point esti-

mate; its area is proportional to the weight of the study. Diamond: overall sum-

mary estimate, with confidence interval given by its width. Vertical line: null

value (OR¼1.0).
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Supplementary Material, Table S6). This apparent difference in
eQTLs may be reflective of the differences in epigenetic profiles at
2q35 between CRC and lymphoblastoid cells (Fig. 2).

To further investigate the relationship between CRC and IBD
risk we performed eQTL analysis on the 12 IBD SNPs associated
with CRC risk in the colorectal adenocarcinoma data, and found
two significant relationships between rs174537 and the expres-
sion of fatty acid desaturase 2 (FADS2, FDR P-value¼ 3.28 � 10�6)
and between rs516246 and fucosyltransferase 2 (FUT2, FDR P-
value¼ 2.08 � 10�17) (Supplementary Material, Table S6).
Additional evidence for these eQTLs was found in other tissues
in the Geuvadis, Blood and GTEx databases (Supplementary
Material, Table S6). Similarly to rs992157, as reported above,
rs2382817 is an eQTL for PNKD and TMBIM1 in both lymphoblas-
toid and whole blood tissues.

Following on from this we investigated the presence of
shared genetic pathways between CRC and IBD using the LENS
pathway tool (22), which allows exploration of interactions be-
tween the gene products in proximity to the GWAS SNPs.
Across the 594 CRC proteins and 1574 IBD proteins, a network of
542 overlapping proteins was identified. Figure 4 shows the
common network and interactions between key proteins. Of in-
terest was the direction of association between the CRC SNPs
with IBD risk. Pathways with evidence of enrichment (i.e.
P< 0.001) with a consistent effect between CRC and IBD were in-
volved in immune and inflammatory response, such as co-stim-
ulation by the CD28 family, Fc epsilon receptor signalling and
downstream B-cell receptor signalling. In contrast, the protein
networks defined by reciprocal SNPs association for CRC and
IBD were enriched for interleukin and calmodulin signalling.

Figure 2. Regional plot of association results and recombination rates for the 2q35 locus. In the panel,�log10 P values (y-axis) of the SNPs are shown according to their

chromosomal positions (x-axis). The top SNP is shown as a large triangle and is labelled by its rsID. The colour intensity of each symbol reflects the extent of LD with

the top SNP: white (r2¼0) through to dark red (r2¼1.0), with r2 estimated from the 1000 Genomes Phase 1 data. Genetic recombination rates (cM/Mb) are shown with a

light blue line. Physical positions are based on NCBI build 37 of the human genome. Also shown are the relative positions of genes and transcripts mapping to each re-

gion of association. The lower panel shows the chromatin state segmentation track (ChromHMM) in HCT116 CRC and GM12878 lymphoblastoid cell lines.
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Pathways that were enriched in both, albeit involving different
proteins, included those related to the adaptive immune re-
sponse, cytokine signalling and interferon signalling
(Supplementary Material, Table S7).

Discussion
In this meta-analysis we combined seven independent GWAS,
and have identified a risk locus for CRC risk at 2q35 marked by
rs992157. As this SNP is intronic to both PNKD and TMBIM1, and
these are the only transcripts within the region of high LD, it is
a plausible that the genetic basis of the 2q35 association for CRC
is through functional effects on one of these genes a priori. This
is coupled with the fact that rs992157 localizes to a genomic re-
gion with regulatory function and the eQTL data showing allele-
specific cis-regulatory relationship between SNP genotype and
PNKD and TMBIM1 expression. Although speculative, the long
isoform of PNKD appears to function in a pathway to detoxify al-
pha-ketoaldehyde using glutathione as a cofactor (23). As gluta-
thione is essential for maintaining cellular redox status,
reduced glutathione levels in cells through dysfunctional PNKD

may lead to increasing oxidative stress levels, which have been
linked to inflammation (24). TMBIM1 has been reported to have
a role in regulating the level of Fas ligand (25,26), which medi-
ates both apoptosis and inflammation (27). Therefore, both gene
products indirectly contribute to the regulation of inflamma-
tion, a physiological process linked with the onset of IBD and
CRC.

Another SNP in the 2q35 locus (rs2382817), which is in strong
LD with rs992157, has previously been shown to influence IBD
risk (15). In addition, contemporaneous with our analysis, a re-
cent study (28) has also found evidence, albeit not GWAS signifi-
cant, for a relationship between 2q35 variation and CRC risk
(P¼ 7.0 � 10�5), additionally finding an inverse relationship with
risk of IBD. The identified SNP, rs11676348, is correlated with
both rs992157 and rs2382817 (LD metrics, r2 and D0 ¼ 0.32, 0.65
and 0.33, 0.71, respectively). The opposing effects of the
rs2382817-C allele with increased risk of CRC but decreased risk
of IBD may initially appear paradoxical, given the increased risk
of CRC associated with IBD. The risk of CRC in IBD increases
with longer duration, extent of colitis and the degree of inflam-
mation (11). The inflammatory response has been linked to in-
creased oxidative stress, and this oxidative state stimulates
antioxidant defences that promote the survival pathways in
cancer cells, favouring tumour proliferation (29). Nonetheless,
these SNPs may indicate shared pathways in which there are
opposing relationships between carcinogenesis and
inflammation.

Motivated by the observation that the 2q35 locus influences
IBD risk, we sought additional evidence for a common genetic
basis for both diseases by evaluating the CRC risk at previously
established IBD loci (15,16). While not formally significant glob-
ally, there was an over-representation of association signals for
CRC defined by the IBD risk SNPs. Through this analysis we
identified potential risk variants for CRC mapped to regions in
the proximity of genes encoding WNT4 and CDC42, previously
shown to be involved in the risk of CRC (14); MAPKAPK5, a mem-
ber of the MAPK family reported to regulate MYC protein levels
(18); and the transcription factor CEBPB, found to be highly ex-
pressed in samples derived from CRC patients (21). Moreover,
our eQTL analysis on IBD SNPs showed altered expression of
FADS2 and FUT2 genes in CRC tissues. Both the genes have pre-
viously been reported to have a role in the development of IBD
(30,31) providing further evidence of possible shared genes.
Further studies are required to delineate the genetic basis and
implicate perturbation of a specific gene as the functional basis

Figure 3. Quantile–quantile (Q–Q) plot of observed and expected CRC association

P-values for 200 IBD risk SNPs (15, 16).

Table 1. Table of the IBD SNPs with FDR-corrected P-value<0.05 in the CRC GWAS

rsID Chr Position Tag genes CRC risk
allele

IBD risk
allele

CRC
RAF

CRC P-value CRC FDR
corrected

CRC OR CRC 95% CI

rs12568930 1 22702231 WNT4, CDC42 T T 0.85 6.58� 10�05 3.29� 10�03 1.12 (1.06; 1.18)
rs7554511 1 200877562 GPR25, C1orf106 A C 0.29 6.95� 10�04 0.02 1.08 (1.03; 1.13)
rs7608910 2 61204856 PUS10, REL A G 0.63 7.28� 10�04 0.02 1.07 (1.03; 1.12)
rs17229285 2 199523122 PLCL1, SATB2 C C 0.49 2.46� 10�03 0.04 1.06 (1.02; 1.1)
rs2382817 2 219151218 TMBIM1, PNKD C A 0.62 1.02� 10�05 1.02� 10�03 1.09 (1.05; 1.14)
rs4722672 7 27231762 HOXA13, HOXA11 C C 0.20 2.46� 10�03 0.04 1.08 (1.03; 1.13)
rs174537 11 61552680 MYRF, TMEM258 G T 0.67 2.63� 10�03 0.04 1.06 (1.02; 1.11)
rs653178 12 112007756 ATXN2, MAPKAPK5 T C 0.54 2.23� 10�05 1.49� 10�03 1.09 (1.05; 1.13)
rs17085007 13 27531267 GPR12, UPS12 C C 0.19 5.81� 10�04 0.02 1.09 (1.04; 1.15)
rs941823 13 41013977 MRPS31, FOXO1 T C 0.27 2.47� 10�03 0.04 1.07 (1.02; 1.12)
rs516246 19 49206172 FUT2, MAMSTR T T 0.54 4.71� 10�04 0.02 1.07 (1.03; 1.11)
rs913678 20 48955424 CEBPB, PTPN1 C T 0.34 7.30� 10�06 1.02� 10�03 1.10 (1.05; 1.14)
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of the associations. Collectively these data are consistent with a
degree of commonality in genetically defined pathways in the
development between CRC and IBD, albeit that many of the as-
sociations have opposite effects.

Considering the low prevalence of IBD in European popu-
lations (<0.5%) (32), together with the observation that other
SNPs that are strongly associated with risk of IBD were not
associated with CRC, it is unlikely that sampling has biased
our findings. Moreover if the association between these IBD
SNPs and CRC was simply mediated by its association with
IBD per se, we would have expected directionality of the asso-
ciation to be identical but this was not the case for many of
the SNPs.

In summary, we have identified a new risk association for
CRC which also influences IBD risk. Our association signals for
CRC defined by other established IBD risk SNPs also serve to
highlight the importance of shared gene pathways in the devel-
opment of CRC and IBD. Deciphering the functional and biologi-
cal basis of these SNPs associations has the potential to
translate into a better understanding of the biological basis of
how IBD transitions to CRC. Finally our analysis serves to illus-
trate that inter-relationships between diseases do not necessar-
ily equate to consistent allelic architecture in risk, thus adding
an extra layer of complexity to interpretation.

Materials and Methods
Ethics

Collection of blood samples and clinico-pathological informa-
tion from subjects was undertaken with informed consent and
ethical review board approval at all sites in accordance with the
tenets of the Declaration of Helsinki.

Primary GWAS

The Finnish GWAS (FIN) was based on 1172 CRC cases and 8266
cancer free controls ascertained through Finnish Hospitals (33)
and through the Finnish Cancer Registry. Cases were genotyped
using Illumina HumanOmni 2.5M8v1 according to the manufac-
turer’s recommendations. For controls, we made use of
Illumina HumanHap 670k and 610k array data on individuals
from the FINRISK (34), Health 2000 (35), Finnish Twin Cohort (36)
and Helsinki Birth Cohort Studies (37). Individuals were ex-
cluded with:<90% successfully genotyped SNPs, discordant sex
information, duplication or cryptic relatedness (identity by de-
scent> 0.2). We excluded SNPs from the analysis with: call
rate< 95%, (minor allele frequency [MAF])< 0.01 and departure
from Hardy–Weinberg equilibrium in controls at P< 10�6. The
adequacy of the case–control matching and the possibility of
differential genotyping of cases and controls were assessed us-
ing quantile–quantile (Q–Q) plots of test statistics.

Published GWAS for meta-analysis

We made use of six previously published GWAS: UK1 (CORGI
study) (7) comprised 940 cases with colorectal neoplasia and 965
controls; Scotland1 (COGS study) (7) included 1012 CRC cases
and 1012 controls; VQ58 comprised 1800 CRC cases from the
UK-based VICTOR and QUASAR2 adjuvant chemotherapy clini-
cal trials (38) and 2690 population control genotypes from the
Wellcome Trust Case Control Consortium 2 (WTCCC2) 1958
birth cohort (39); CCFR1 comprised 1290 familial CRC cases and
1055 controls from the Colon Cancer Family Registry (CCFR) (40);
CCFR2 included a further 796 cases from the CCFR and 2236 con-
trols from the Cancer Genetic Markers of Susceptibility (CGEMS)
studies of breast and prostate cancer (41,42); and the COIN

Figure 4. Hive plot of common protein–protein interactions between CRC and IBD defined by risk SNPs. Each arc represents an interaction between two proteins, and

the distance from the centre of the plot corresponds to a greater number of protein–protein interactions (higher degree of the node). The left arm represents proteins

that were only identified using the CRC SNPs, the right arm represents proteins that were only identified using the IBD SNPs, and the central arm represents the com-

mon proteins, highlighting the previously associated tag genes.
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GWAS (14) was based on 2244 CRC cases ascertained through
two independent Medical Research Council clinical trials of ad-
vanced/metastatic CRC (COIN and COIN-B) (43) and controls
comprised 2162 individuals from the UK Blood Service Control
Group genotyped as part of the WTCCC2 (39).

The VQ58, UK1 and Scotland1 GWAS series were genotyped
using Illumina Hap300, Hap240S, Hap370, Hap550 or Omni2.5M
arrays. 1958BC genotyping was performed as part of the
WTCCC2 study on Hap1.2M-Duo Custom arrays. The CCFR sam-
ples were genotyped using Illumina Hap1M, Hap1M-Duo or
Omni-express arrays. CGEMS samples were genotyped using
Illumina Hap300 and Hap240 or Hap550 arrays. The COIN cases
were genotyped using Affymetrix Axiom Arrays and the Blood
Service controls were genotyped using Affymetrix 6.0 arrays.
After applying the same quality control as that performed for
FIN, data on 8749 CRC cases and 18 245 controls were available
for the meta-analysis.

The adequacy of the case–control matching and possibility
of differential genotyping of cases and controls were assessed
using Q–Q plots of test statistics. kGC values (44) for the UK1,
Scotland1, VQ58, CCFR1, CCFR2 and COIN studies were 1.02,
1.01, 1.01, 1.02, 1.03 and 1.05, respectively. Any ethnic outliers or
individuals identified as related were excluded.

Replication series

In total, 5061 CRC cases from the National Study of Colorectal
Cancer Genetics (NSCCG) (45) were genotyped. Controls
(n¼ 3509) were from NSCCG and the Genetic Lung Cancer
Predisposition Study (46). None of the controls had a known his-
tory of malignancy at ascertainment. All subjects were British
residents with self-reported European ethnicity and there were
no obvious demographic differences between cases and con-
trols. DNA was extracted from EDTA-venous blood samples us-
ing conventional methodologies and PicoGreen quantified
(Invitrogen Corporation, Carlsbad, CA, USA). Genotyping of two
SNPs was conducted using KASPar competitive allele-specific
PCR chemistry (LGC, Hoddesdon, UK; primer sequences and
conditions available on request). To monitor quality control, du-
plicate samples were included in assays, and concordance be-
tween duplicate samples was>99%.

Imputation and meta-analysis

Analyses were undertaken using R (v3.02) (47) and PLINK (v1.9)
(48) software. Phasing of GWAS SNP genotypes was performed us-
ing SHAPEIT (v2.r644 and v2.r790 for FIN) (49). Prediction of the
untyped SNPs was carried out using IMPUTE (v2.3.1) (50). The FIN
dataset used a merged reference panel based on data from the
1000 Genomes Project (Phase 1 v3) (51) together with an additional
population matched reference panel of 3882 SISu haplotypes. The
UK samples used a merged reference panel using data from the
1000 Genomes Project and UK10K (April 2014 release). The fidelity
of imputation, as assessed by the concordance between imputed
and sequenced SNPs, was examined in a subset of 200 UK cases
(14). The association between each SNP and the risk of CRC was
assessed by a frequentist association test under an additive
model, using SNPTEST (v2.5.1) (52), utilizing the genotype proba-
bilities from IMPUTE where an SNP was not directly typed.
Population stratification was controlled in the FIN samples using
sex and six principal components. Association meta-analyses
only included markers with info scores>0.8, imputed call rates/
SNP>0.9 and MAFs>0.005. Meta-analyses were carried out using

META (v1.6) (53). We calculated Cochran’s Q statistic to test for
heterogeneity and the I2 statistic to quantify the proportion of the
total variation that was caused by heterogeneity (54). I2 val-
ues�75% are considered characteristic of large heterogeneity (54).

Characterization of cancer phenotype

Associations by sex, age and clinico-pathological phenotypes
were examined by logistic regression. MSI status was determined
using BAT25 and BAT26 markers, and samples showing�5 novel
alleles when compared with normal DNA at either or both
markers were assigned as MSI-H (corresponding to MSI-high) (55).
Tumours were screened for KRAS codons 12, 13 and 61 and BRAF
codon 600 mutations by pyrosequencing (43). Additionally, KRAS
(all three codons) and BRAF (codons 594 and 600) were screened
for mutations by MALDI-TOF mass array (Sequenom, San Diego,
CA, USA) (56). Differences between the various sites of the tumour
(colonic [ICD-9:153], rectal [ICD-9:154.1] and recto sigmoid junc-
tion [ICD9:154.0]) were also analysed.

Functional prediction

To explore epigenetic profiles of genomic location associated
with CRC, we used ENCODE histone modification data, HaploReg
and RegulomeDB (57,58) to examine whether any of the SNPs or
their proxies (i.e. r2>0.8 in the 1000 Genomes EUR reference
panel) annotate transcription factor binding or enhancer ele-
ments. Additionally, we made use of ChIP-seq data on the LoVo
CRC cell line (59). We used ChromHMM to integrate DNase,
H3K4me3, H3K4me1, H3K27ac, Pol2 and CTCF states from the
CRC cell line HCT116 using a multivariate Hidden Markov Model
(60). ChromHMM tracks for lymphoblastoid cells were obtained
from ENCODE (61). We assessed sequence conservation using:
PhastCons (62) (>0.3 indicative of conservation) and Genomic
Evolutionary Rate Profiling (63) (>2 indicative of conservation).
SNAP plots were created using the visPIG tool (64).

eQTL analysis

To examine for a relationship between SNP genotype and
mRNA expression in CRC, we analysed Tumor Cancer Genome
Atlas (TCGA) RNA-seq expression and Affymetrix 6.0 SNP data
(dbGaP accession number: phs000178.v7.p6) on 416 colorectal
adenocarcinoma samples (65). Association between normalized
RNA counts per-gene and SNP genotype was quantified using
the Kruskal–Wallis trend test. To look for a relationship be-
tween SNP genotype and expression levels in other tissues, we
used publicly available expression data generated from the
MuTHER (66), eQTL Blood Browser (67), GTEx (68) and Geuvadis/
1000 Genomes (69) resources. For the Geuvadis data, the rela-
tionship between SNPs and expression of genes located within
1 Mb was analysed using the Matrix eQTL (70) package under a
linear model. When the SNPs were not directly typed, a proxy
SNP was used (r2�0.8). In all the datasets, eQTL results were in-
cluded where FDR P< 0.05.

Relationship between established risk SNPs for IBD and
CRC

To investigate pleiotropic (shared genetic susceptibility) be-
tween CRC and IBD, we examined the 201 SNPs identified in
GWAS that have been shown to affect IBD risk (15,16). One SNP
(rs71559680) is an indel that was not present in the CRC
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genotyping arrays or the reference panels, and was thus re-
moved from the analysis. We obtained the lead SNPs from the
IBD GWAS and extracted the P-values for the corresponding
SNPs in our CRC meta-analysis.

Pathway analysis

To investigate the possibility of shared genetic susceptibility be-
tween CRC and IBD, we performed pathway analysis. First, we
selected the two closest coding genes for the leading SNPs in
each GWAS and then performed pathway analysis using LENS
tool (22), which identifies gene product and protein–protein in-
teractions from HPRD (71) and BioGRID (72). Enrichment of path-
ways was assessed using Fisher’s exact test, comparing the
overlap of the genes in the network with the genes in the path-
way. Pathway data were obtained from REACTOME (73).
Cytoscape was used to perform network analyses (74), and the
Hive Plot was drawn using HiveR (academic.depauw.edu/
�hanson/HiveR/HiveR.html, last accessed March 29, 2016).

Supplementary Material
Supplementary Material is available at HMG online.
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