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Exploiting evolutionary steering to induce collateral
drug sensitivity in cancer
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Drug resistance mediated by clonal evolution is arguably the biggest problem in cancer
therapy today. However, evolving resistance to one drug may come at a cost of decreased
fecundity or increased sensitivity to another drug. These evolutionary trade-offs can be
exploited using ‘evolutionary steering’ to control the tumour population and delay resistance.
However, recapitulating cancer evolutionary dynamics experimentally remains challenging.
Here, we present an approach for evolutionary steering based on a combination of single-cell
barcoding, large populations of 108-10° cells grown without re-plating, longitudinal non-
destructive monitoring of cancer clones, and mathematical modelling of tumour evolution.
We demonstrate evolutionary steering in a lung cancer model, showing that it shifts the
clonal composition of the tumour in our favour, leading to collateral sensitivity and pro-
liferative costs. Genomic profiling revealed some of the mechanisms that drive evolved
sensitivity. This approach allows modelling evolutionary steering strategies that can poten-
tially control treatment resistance.
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Ithough targeted cancer therapies are effective in many

patients!, complete eradication of the disease is impeded

by treatment resistance, currently an intractable problem
in cancer. Resistance is often mediated by redundancies in
downstream signalling pathways?, cell phenotypic plasticity?, and
most importantly, intra-tumour heterogeneity (ITH)%. High levels
of ITH, and the huge number of cells in a tumour, imply that pre-
existing cancer subclones that are drug resistant because of
heritable genetic® or epigenetic®’ alterations are invariably pre-
sent when treatment starts®?, thus leading to Darwinian adap-
tation!¥. Treatment resistance can also be polyclonal, with
multiple distinct subclones harbouring different resistance
mechanisms driving tumour progression, thus making resistance
even harder to control!!. In addition, drug-tolerant cancer cells or
‘persistors’ can survive and acquire de novo alterations that give
rise to fully resistant subclones during or after treatment!>13. The
emergence of pre-existing populations that prior to treatment are
fitness neutral (or even deleterious)!4 and are positively selected
by intervention can be recapitulated in the lab, as first demon-
strated by the classic Luria-Delbruck experiment in bacterial®.

Hence, cancers are unlikely to be successfully treated with a
single agent!®. Whereas combination strategies are often highly
toxic and impractical, relatively little is known about the most
effective sequence of drugs. Administering a drug can sensitise
cancer cells to a second drug, a phenomenon known as collateral
sensitivity, which has been demonstrated in seminal studies in
bacteria!/~1%, malaria?® and cancer!421:22, This is based on the
observation that, as in ecological systems, developing a new trait,
such as resistance to cancer treatment, likely comes at the expense
of other features?3-4, leading to a trade-off often referred to as an
‘evolutionary double bind’2>-2%, Indeed, cost of resistance has been
observed in distinct pathogenic organisms?’ as well as in
cancer?®2%,

Evolutionary steering refers to the use of drug intervention
aimed at exploiting trade-offs to control tumour evolution. The
goal is directing the evolution of the tumour population using
Darwinian adaptation to a drug. When a second drug is admi-
nistered, the clonal composition of the population is different
from the start, and this can lead to increased sensitivity, or even
complete extinction®?31. In this scenario, because steering has
changed the clonal structure of the population, collateral drug
sensitivity is likely to be persistent rather than transient. Ther-
apeutic strategies that rely on rational evolutionary steering to
control clonal evolution are likely less subject to stochastic tem-
porary effects and cell plasticity, and hence potentially more
feasible to implement in the clinic.

Here we present an approach for evolutionary steering based
on a combination of single-cell barcoding, very large populations
of 108-10° cells grown without re-plating, longitudinal non-
destructive monitoring of cancer clones, and mathematical
modelling of tumour evolution. We use this method to quanti-
tatively study evolutionary steering and demonstrate the evolu-
tionary determinants of collateral drug sensitivity in cancer cell
populations.

Results

Recapitulating the evolution of cancer drug resistance experi-
mentally. Standard experimental approaches are inadequate to
study evolutionary steering because they are limited to small
populations that do not recapitulate the extensive ITH present in
human malignancies32. Current methods to study drug resistance
rely on passaging the cells repeatedly under low drug Effective
Concentration (e.g. EC50) or escalating doses until a fully resis-
tant phenotype arises, 6 months to a year later33. Although these
techniques are useful to generate fully resistant lines, the temporal

evolutionary dynamics in these systems are unlike what happens
in patients. First, current techniques are based on waiting for a de
novo mutation, rather than selecting for a pre-existing subclone
(Fig. la). This means that in each replicate the evolutionary
process is different, driven by the stochastic arrival of a new
mutation, which has very variable waiting times, as we demon-
strate with stochastic simulations in Fig. 1b (see “Methods” sec-
tion). It is not even guaranteed that the same resistance mutation
arises in each replicate, thus making replicates hard to compare
and results difficult to generalise. Second, re-plating induces
sampling bottlenecks that are hard to control, leading to genetic
drifting and artificial loss of ITH through time (Supplementary
Fig. 1A). Mutation rates per base per cell division in cancer are in
the order of 1078-107 (refs. 21:30:34), and with standard 384-well
plates or even T175 flasks, not even 10 passages (assuming 1:10
re-plating) are enough to have a single mutant in the population
(Supplementary Fig. 1b), and instead 10 times the population of a
T175 flask is required (see “Methods” section for details on the
calculations). Hence, small culture systems risk pushing the
evolutionary dynamics towards highly stochastic regimens that
are very hard to predict and control. Moreover, cell plasticity and
drug tolerance3” are important mechanisms of drug adaptation,
leading to resistance that is non-heritable and potentially rever-
sible®. Non-heritable drug resistance can arise through
epithelial-mesenchymal transition?73%37 or upregulation of
drug-efflux pumps®. In small cultured populations driven by
stochastic forces and de novo mutants, it is extremely hard to
distinguish the heritable and non-heritable components of drug
resistance.

Here, we present an experimental approach that leverages on
large populations (>10%) containing trackable pre-existing
resistant subclones with highly reproducible evolutionary
dynamics (Fig. 1c) to overcome the limitations of standard
approaches (Fig. 1d).

Evolutionary steering of resistant cells through fitness land-
scapes. The relationship between heritable genetic or epigenetic
information, and the corresponding cellular phenotype, can be
represented by the classical fitness landscape model3. Phenotypes
are multifaceted and arise as a product of the complex interac-
tions between heritable factors and the environment. If we
summarise the fitness of these complex phenotypes with respect
to a certain condition or environment by a single value, the
genotype—phenotype relationship can be represented as an n + 1
dimensional space whereby the alleles present at n (epi)genetic
loci are mapped to the relative fitness advantage they confer. A
single cell can therefore be represented by a point in this land-
scape corresponding to its (epi)genetic state. As populations
proliferate and randomly mutate, cell lineages move around the
landscape. In a simple illustrative drug-free scenario (Fig. le),
multiple cells, each characterised by a certain genotype (x, y and
z), are scattered around a neutral ‘flat’ fitness landscape because
of mutations. When a drug is applied (e.g. drug 1), the fitness
landscape changes, and genotypes that were previously neutral
(or even slightly deleterious) may become advantageous under
the new condition (e.g. y and z), and outcompete the rest (e.g. x).
Due to Darwinian selection, populations in lower fitness eleva-
tions will likely go extinct, whereas populations in fitness ‘peaks’
will prosper. This makes populations ‘climb’ higher and higher
fitness peaks, leading to evolutionary adaptation.

Different drugs may select for distinct phenotypes (e.g. y and z
are differentially selected by drugs 2 and 3—Fig. 1e). Using drugs
with divergent fitness landscapes is the central idea of
evolutionary steering. This concept is illustrated in Fig. 1f.
Tumourigenesis gives rise to a heterogeneous population of
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Fig. 1 Limits of current approaches to study the evolution of cancer drug resistance through fitness landscapes. a Current approaches use small
populations with re-plating and escalating drug dose to produce de novo resistant lines over a period of 6-12 m. Evolutionary dynamics in this setting are
highly stochastic, with different mutants arising at distinct times in different replicates. b Stochastic modelling of waiting time to the emergence of a
resistant clone in current experimental approaches shows that this is extremely variable (re-plating every 2 weeks, 1:10, resistant mutation rate 2 x 108,
104 simulations). ¢ Systems accommodating large populations are more likely to contain pre-existing resistant subclones, can be grown without re-plating,
and lead to evolutionary dynamics of resistance that can be largely deterministic, reproducible and predictable. d Summary of the differences between
current approaches and the approach we propose. e The selective effect of a drug on a heterogeneous population can be visualised as a fitness landscape.
Genetically distinct cells are represented by points in the horizontal plane, whilst their fitness within a certain environment is the vertical axis. Different
drugs have different landscapes, selecting against different clones. For simplicity, here we assume in the absence of drug all clones to be equally fit (flat
landscape). Drug 1 changes the landscape, selecting for y and z but against x. Drug 2 selects only for z and drug 3 only for y. f First, a population of cells is
present at baseline, represented here as equally fit for simplicity. g Drug 1 selects clones that are resistant to drug 2. h Applying first drug 3 leads to
evolutionary steering of a population that is entirely sensitive to drug 2. Here genotypes with values below the plain have negative fitness and so their
frequency will decrease until they go extinct.
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Fig. 2 Experimental design. a The Corning” High Yield PERformance Flasks (HYPERflask®) cell culture vessel is a 10-layer 1720 cm? total growth area

system with polystyrene gas permeable surface that can reach the order of 150-200 million cells. b One million HCC827 lung cancer cells were lentivirally
barcoded before being expanded to a population (POT) of ~120 million cells in a HYPERflask. Eight replicates were seeded with ~12 million cells each and
expanded to 120 million. The remaining POT cells are frozen for subsequent analysis. Of the eight seeded replicates, three are exposed to GI90 doses of
gefitinib (GEF1-3), three to GI90 of trametinib (TRM4-6) and two were used as controls (DMSO7-8). ¢ Clonal evolution of a large population containing
pre-existing resistant subclones that is exposed to high drug concentration (GI90) without re-plating. A clonal bottleneck occurs by means of Darwinian
selection for drug resistance. Barcode enrichment analysis, genomic profiling and drug screening is performed on the resistant population. d Schematic
growth curves for gefitinib (4 weeks for resistant population to regrow) and trametinib (9 weeks for the resistant population to regrow). Media and drug
are changed weekly. @ When cells die, they detach and float in the media. At each media change (once per week), supernatant cells are harvested from the
spent media and their DNA extracted for barcodes analysis and non-destructive tracking of tumour evolution.

cancer cells that is the substrate for Darwinian selection to
operate. When drug 1 is applied (Fig. 1g), only populations that
are around the new fitness peaks survive, while drug-sensitive
cells in fitness valleys go extinct. If then we expose the population
to drug 2, which has an overlapping fitness peak, we select for a
doubly resistant phenotype z, against which both drug 1 and 2 are
ineffective. At this point we would have lost control of the
tumour. Instead, if we first apply drug 3 (Fig. 1h) this leads to
selection for phenotype y. Because drug 2 shows differential
fitness peaks with respect to drug 3, the sequence drug 3-drug 2
leads to an evolutionary trap in which the cancer cell population
goes extinct3!. This is the principle of evolutionary steering that
can be exploited to delay and potentially control drug resistance,
thus significantly extending patient survival.

Evolving resistance in large populations without re-plating. We
demonstrate evolutionary steering using the HCC827 non-small
cell lung cancer line. HCC827 is an EGFR exon19del mutant lung
cancer cell line sensitive to EGFR inhibition*’. We chose HCC827
because it is a well-characterised line for which some mechanisms
of resistance to EGFR inhibition are already known, such as pre-
existing MET amplification®. We used two small molecule
inhibitors for steering: gefitinib, an EGFR inhibitor, and trame-
tinib, a MEKI/2 inhibitor. To recapitulate the evolutionary
dynamics of large populations, we employed a HYPERflask® cell
culture system, wherein each flask has a capacity of up to 150-200
million cells, about 10 times higher than a normal T175 flask
(Fig. 2a). To track clonal evolution we employed high complexity

lentiviral barcoding!, a now established technique to study drug
resistance3>42. By barcoding the cells at baseline and splitting
them into distinct replicates (Fig. 2b), we could determine whe-
ther resistant clones were pre-existing if the same barcodes were
enriched post-treatment in different replicates. We first barcoded
a population of one million cells with one million distinct bar-
codes, and then expanded it to ~120M in a HYPERflask (see
“Methods” section). We call this initial baseline population the
“POT” (Fig. 2b). For each of the two drugs we seeded three
HYPER(lask replicates in addition to two HYPER(flask as DMSO
controls. Each HYPERflask was seeded with ~15 million cells
from the same POT (i.e. most barcodes are common to all flasks)
and expanded to 80-90% confluence. Thus, we achieved a total
population of 120 x 106 x 3 =~0.4 billion cells per drug arm
(Fig. 2b). Stochastic mathematical modelling demonstrates that
this experimental design leads to each replicate being repre-
sentative of the POT (see “Methods” section and Supplementary
Fig. 2).

These large populations allowed us to expose the cells to high
drug concentrations without causing extinction and without the
need for re-plating. This is because large populations are highly
heterogeneous and likely to contain pre-existing resistant
subclones that would survive high-dose drug exposure. We used
GI90 concentrations (90% Growth Inhibition) until resistant
clones grew back (Fig. 2c and Supplementary Fig. 3). Three
HYPER(flasks were drugged with gefitinib (40 nM) and three with
trametinib (100 nM). Drug exposure in the gefitinib-treated lines
GEF1-GEF3, induced extensive cell death, causing a major
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population bottleneck. Under constant drug concentration, the
resistant population grew back and reached confluence again in
4 weeks. Drug exposure in the trametinib-treated lines
TRM4-TRMS6 also induced extensive cell death and a resistant
population grew back to confluence in 9 weeks (Fig. 2d).

We reasoned that not only the surviving resistant cells at the
end of the experiments were important for the analysis, but also
that the cells that died during the experiment could prove
informative on the temporal dynamics of the system. The idea is
that the sum of the surviving cells attached to the plate and the
dead cells floating in the media would contain information on the
whole evolutionary history of the cell population. Moreover, we
hypothesised that dead cells may be a representative sample of the
live population and, like circulating tumour DNA in cancer
patients*, could be used to monitor the temporal dynamics of the
system in a non-destructive way. Once a week at each media
change, we collected the floating (dead) cells as pellets to extract
DNA and perform barcode analysis (Fig. 2e, see “Methods”
section).

We compared baseline (POT) vs. resistant lines and confirmed
decreased drug sensitivity for both gefitinib (Fig. 3a) and
trametinib (Fig. 3b). To identify possible genetic mechanisms of
resistance, we performed whole-exome sequencing at 160x
median depth. We found a focal amplification of MET in
gefitinib-resistant lines (Fig. 3c), consistent with previous
results? and that was confirmed by digital droplet PCR (ddPCR)
(Supplementary Fig. 4). No amplification of MET was detected in
trametinib-resistant lines, suggesting that MET-amplified sub-
clones are gefitinib-resistant but may be trametinib-sensitive. The
trametinib-resistant lines shared a gain of chrlp and deletions in
chr9, encompassing CDKN2A (Figs. 3c, S4, S5, S6 and
Supplementary Data 1). CDKN2A encodes tumour suppressors
pl6é and pl4ARF and loss of this gene has been linked to
resistance to targeted drugs*4, although never in the context of
trametinib resistance. Analysis of single nucleotide variants
(SNVs) revealed a small cluster of mutations clearly enriched in
the trametinib-resistant lines compared to POT (Fig. 3d, S7).
These mutations were also enriched in the gefitinib-resistant
lines, although to a lesser extent, potentially indicating a pre-
existing subclone that is doubly resistant to gefitinib and
trametinib, although more strongly selected by trametinib.

The fact that genomic alterations were consistent between
evolved replicates but different for the two drugs suggests that
multiple resistant subclones were already present in the initial
population. Differential evolution and competition of these
subclones under the two drugs also suggests a target for steering.

Tracking clonal evolution in real time non-destructively. We
next sought to more precisely quantify the temporal evolutionary
dynamics of drug resistance. We profiled the barcodes of all
samples using ultra-deep sequencing (see “Methods” section and
Supplementary Fig. 8). In comparison to the 2295 unique bar-
codes identified in the POT population, we found an average of
872 unique barcodes in the gefitinib-treated lines and an average
of 199 unique barcodes in the trametinib lines (Supplementary
Fig. 8), indicating that drug exposure induced a strong selective
bottleneck. We note that because of the single-cell barcoding, we
expect multiple barcodes corresponding to each pre-existing
subclone (i.e. multiple cells in the subclone have been barcoded
with different barcodes). We shall also note that the number of
unique barcodes identified with deep sequencing in the POT is a
small subsample of the total number of barcodes present in the
sample due to limitations of sequencing which can only identify
haplotype frequencies as low as 1-0.1%. We sequenced at a depth
of 300,000-600,000x (see Supplementary Fig. 8B), and hence

considering that we start with ~150 cells per barcode, we can only
pick up at most some thousands of unique barcodes.

We considered a barcode as positively selected in a given
replicate when its estimated growth rate was positive with respect
to DMSO (see “Methods” section). We grouped barcodes with
similar growth dynamics into ‘functional subclones’. We define
pre-existing functional subclones as those having similar growth
dynamics in more than one replicate (Fig. 4a and see “Methods”
section for details). Notably, we cannot exclude that each
functional subclone may be composed of multiple genetically
distinct subclones. This is not critical for our analysis as we are
interested in drug response phenotypes, rather than individual
genotypes.

We identified five functional subclones with different growth
dynamics (Fig. 4b). The first group (grey) was the largest (87.2%)
and represented largely clones that died under both drugs
(sensitive) as well as clones for which the growth rate could not be
determined because not found in the DMSO (Supplementary
Fig. 9). The second group (blue) was resistant to gefitinib but
sensitive to trametinib. The third group (purple) was resistant to
trametinib but sensitive to gefitinib. The fourth group (orange)
was doubly resistant to both drugs. Finally, the fifth group (green)
was composed by a set of barcodes that were found in only one
replicate either of trametinib or gefitinib. This set could
correspond to possible de novo resistant lineages. As this group
comprises barcodes at very low frequency, we focused on the
majority of pre-existing resistant subclones that are relevant to
evolutionary steering. We examined the frequency of barcodes
and associated phenotypes in the POT versus the evolved lines.
Strikingly, the frequencies of barcodes between replicates of a
drug were highly similar, confirming that the initial conditions
are a strong determinant of evolution under exposures to high
drug concentrations (Fig. 4b). Importantly, these results indicate
that in this system, dynamics are largely deterministic and hence
predictable.

We reasoned that the doubly resistant (orange) subclone could
be the one carrying the SN'Vs found highly enriched in TRM and
partially enriched in GEF using the exome sequencing analysis.
We contrasted the barcodes frequency of the orange subclone
with the SNV cancer cell fraction (CCF) in each sample and
found that these two independent measurements matched in all
samples, including the POT, thus suggesting that those SNVs and
the orange barcodes are in the same cells (Fig. 4c).

Using mathematical modelling, we measured the growth rates
of each barcode under each condition (see “Methods” section).
This analysis confirmed that gefitinib-resistant population was
polyclonal, with a large MET-amplified subclone (blue barcode
group) composing ~32.8% (average) of the population in
GEF1-GEF3 and a relatively large initial population (~2.4%) in
the POT (see Fig. 4b). This subclone was characterised by many
barcodes with a positive growth rate under gefitinib but a negative
growth rate under trametinib (Fig. 4d—blue barcodes). We also
found enrichment for the multidrug-resistant subclone (orange
barcodes) that exhibited a positive growth rate under both
gefitinib and trametinib. This subclone was found at mean
frequency of 22.4% in the GEF lines and 86.1% in the TRM lines
(Fig. 4d—orange barcodes). This clone was smaller than the blue
clone in the original POT population (~0.91%) and therefore
carried many fewer barcodes. There was also a small set of
barcodes that were only enriched in the trametinib lines (Fig. 4d—
purple barcodes, ~4.2% average in TRM lines, ~0.57% in POT).
The combined frequency of all enriched (resistant) barcodes,
belonging to distinct subclones in the initial population, was 3.9%.
The growth rates across replicates were highly similar (Fig. 4e and
Supplementary Fig. 10). Hence, the barcode analysis supports the
presence of pre-existing polyclonal drug resistance.
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Fig. 3 Characterisation of resistant lines. a Dose-response curves of gefitinib-resistant lines and b trametinib-resistant lines versus DMSO demonstrate
acquired resistance. Error bars of dose-response curves represent SEM. ¢ Relative copy number profiles of resistant lines compared to POT highlight MET
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Fig. 4 Barcodes reveal evolutionary dynamics over time. a Map of barcodes associated to drug response shows proportion of barcodes that were
sensitive to both drugs (in grey—bottom left corner), versus resistant to gefitinib only (blue), trametinib only (purple) or both (orange). Values indicate the
proportion of unique barcodes with positive growth rates across the given number of replicates of gefitinib exposure and trametinib exposure. b Barcode
frequency distributions in each sample. Left hand bars show the frequency of each unique barcode. Barcode colours and ordering are identical between
replicates. Right hand bars indicate the drug response phenotypes assigned to each barcode (see right hand legend). Phenotypes are determined by the set
of evolutionary replicates in which a barcode exhibits a positive growth rate (see “Methods” section). Barcode and phenotype distributions are highly
conserved between replicates, indicating repeatable evolution. € Cancer cell fraction estimates for the cluster of four SNVs identified form exome
sequencing matched barcode frequencies for the doubly-resistant clone. d Growth rates for each barcode assigned to the GEF, TRM or double resistant
phenotypes are shown under both the gefitinib (GEF1-3, left) and trametinib (TRM4-6, right) exposure. Points indicate the growth rates in the three
replicates and lines connect these points to highlight variance. e Representative scatter plots show the concordance in barcode growth rates between
evolutionary replicates. Points are coloured according to barcode phenotype, as in b. f Temporal frequencies for the floating barcodes in each evolutionary
replicate. Lines are coloured by phenotypes and marker colours correspond to the unique barcode as in a. POT and DM7 measurement are harvested (live)
populations as is the final time point, all others are floating barcode measurements. The temporal frequency dynamics are conserved between time points

of different replicates. Moreover, the final samples (harvested population) largely match the last floating barcodes samples.

As part of our experimental design, we never re-plated cells
following drug exposure in order to avoid stochastic drift effects
and sampling bias. As such, we could not take aliquots of cells for
analysis throughout the experiment. To track evolution through
time in a non-destructive way, we leveraged the large volume of
media (560 ml) that is changed every week. HCC827 is an
adherent cell line, with cells that detach from the plate surface
upon death. We collected pellets consisting of cells that had died
and extracted barcodes from each time point. We confirmed that
pellets from supernatant collection were apoptotic/necrotic cells
(Supplementary Fig. 11). Time-course barcodes allowed us to
track the evolution under drug exposure without perturbing the
system and at high resolution (Fig. 4f). This barcode analysis
clearly showed an expansion of the subclones we identified in the
final populations, with the final time point of barcodes derived
from supernatant cells being very similar to the final harvested
populations (Fig. 4f, line colours indicate phenotype, point colours
indicate unique barcodes). This result seems partially counter-
intuitive, as one might expect the barcodes harvested from the
dead cells not to correspond to a resistant clone. However, this
phenomenon can be understood by consideration of the under-
lying evolutionary dynamics. At first, many barcodes are driven to
extinction, because the majority of cells in the initial population
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are sensitive to the drug. At this stage, those cells present in the
harvested media correspond to the thousands of different barcodes
of sensitive cells (grey), none of which is common in the initial
population, hence no enrichment is detected. As the resistant
population grows, the contribution to the floating media becomes
a mixture of sensitive cells being driven to extinction, and resistant
cells turning over. At the end of the experiment, it is these
resistant cells that are dominant, with most floating cells (and
therefore barcodes) representing the underlying resistant popula-
tion dividing and turning over. The frequencies of the clones
stabilised after ~3 weeks of gefitinib exposure, and 6 weeks of
trametinib exposure. By comparing the time series barcode
dynamics between replicates, we again saw that the temporal
evolutionary dynamics are strikingly conserved, suggesting that
the resistance dynamics are highly predictable (Fig. 4f).

Single-cell analysis confirms pre-existing polyclonal resistance.
Genomic analysis revealed a MET-amplified clone in the
gefitinib-treated lines and a separate CDKN2A-loss clone in the
trametinib-treated lines. We performed single-cell RNA-seq on
the POT sample, one gefitinib-treated replicate (GEF1) and one
trametinib-treated replicate (TRM4). tSNE analysis confirmed
that cells derived from the same sample clustered together
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Fig. 5 Evolutionary steering leads to collateral drug sensitivity. a tSNE plot of single cell RNA sequencing coloured by sample (POT, TRM4 and GEF1 from
top). b tSNE analysis of all samples together identifies 9 clusters with distinct transcriptomic profiles. € Growth rates of all lines in the absence of drugs
show a cost of resistance in terms of proliferation in the evolve lines. Box plots show mean, interquartile values and the range. d Dose response curves of
second generation HDAC inhibitor quisinostat show collateral drug sensitivity in TRM lines. e Dose response curve of single clones derived from gefitinib-
resistant lines under MET inhibitor capmatinib show collateral sensitivity for clones that bear MET amplification (only B8 and F6). f Combination of

capmatinib + gefitinib further increases collateral sensitivity of MET-amplified clones, in particular F6. g High throughput drug screening of 485 compounds
shows collateral sensitivity in TRM clones TRM4 E9 (1 copy left of CDKN2A) and TRM4 D6 (two copies left of CDKN2A). Here we show top 5% with
highest % change inhibition with respect to DMSO7 F4 (three copies of CDKN2A as HCC827 is a triploid line). Error bars of dose-response curves

represent SEM.

(Fig. 5a). Gene expression patterns confirmed that the gefitinib-
resistant population (GEF1) was composed largely of two major
subclones, one that was MET amplified (Fig. 5b, clusters 4 and 5)
and one that was EPCAM—/VIM+, indicative of epithelial to
mesenchymal transition®> or EMT (cluster 2). Indeed, EMT has
been implicated in gefitinib resistance in lung cancer®. In
agreement with the pre-existing nature of these subclones, over-
expression of MET was detected in a subset of cells in the POT
(cluster 3—see Supplementary Figs. 12 and 13). An EPCAM—/
VIM+ subpopulation was also present in the POT (cluster 9—see
Supplementary Figs. 12 and 13). The trametinib-resistant

population was mostly composed of a single CDKN2A loss sub-
clone (Fig. 5b, cluster 1) and again CDKN2A loss was detectable
in a subpopulation of cells from the POT (cluster 6—see Sup-
plementary Figs. 12 and 13). Hence, the scRNA-seq data confirms
the clonal composition reported by the barcodes. No over-
expression of P-glycoprotein (PGP), a known multidrug resis-
tance gene, was detected (Supplementary Fig. 13), supporting the
idea that drug-resistant clones have heritable phenotypes. Phos-
phoproteomic results validated our findings in terms of the
functional effects of the drugs on the signalling pathways (Sup-
plementary Fig. 14, see “Methods” section).
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Evolutionary trade-offs and collateral drug sensitivity. We
wanted to determine whether drug adaptation came at a cost in
terms of proliferation rate or increased sensitivity to a second
drug. We measured the growth rates of the evolved lines in the
absence of drug and confirmed that they all grow significantly
slower than the parental line and DMSO controls (Fig. 5¢ and
Supplementary Fig. 15). Hence, a cost in terms of proliferation
that is now encoded in the genotype of the population has
occurred. This evolutionary trade-off can potentially be exploited
using a form of adaptive therapy termed ‘buffer therapy’24, where
the sensitive population can be used to keep in check the resistant
population through competition.

We then sought to test for collateral drug sensitivity to other
compounds that have shown evidence of being effective in EGFR
mutant NSCLCs. Histone deacetylase (HDAC) inhibitors are a
new class of drugs that have shown promising results in NSCLC
patients, and to which HCC827 is known to be sensitive?®47, We
did identify collateral sensitivity for second generation HDAC
inhibitor quisinostat in the trametinib-resistant lines, which
displayed <200x IC50 with respect to DMSO (Fig. 5d) but not for
pan-HDAC inhibitor Panobinostat (Supplementary Fig. 16A).
Another class of new promising drugs for NSCLCs are Aurora A
Kinase inhibitors*8. Aurora kinases have also shown to drive
resistance to third generation EGFR inhibitors*. However, we
found no collateral sensitivity for those inhibitors in our lines
(Supplementary Fig. 16B, C).

We then reasoned that the gefitinib resistant subclones may
exhibit collateral sensitivity to MET inhibition with capmatinib.
However, sensitivity was not increased in the bulk gefitinib resis-
tant population (Supplementary Fig. 16D). As both barcodes
(Fig. 4b) and single-cell transcriptomics (Fig. 5b) indicated
polyclonal resistance in the GEF population, with a mixture of
MET amplified and non-amplified clones, we isolated individual
single-cell-derived subclones from DMSO and resistant lines and
confirmed which ones were MET amplified and WT by ddPCR
(Supplementary Fig. 17A). We did the same for the trameti-
nib resistant line and verified CDKN2A loss amongst the isolated
clones (Supplementary Fig. 17B). Indeed, individual MET-
amplified clones, such as G1_B8 and G1_F6, showed increased
sensitivity to capmatinib, with >255x lower IC50 for G1_B8 and
>3.5% lower IC50 for G1_F6 with respect to DMSO (Fig. 5e). We
hypothesised that, given that both clones harboured >13 copies of
MET, the difference in increased sensitivity in G1_F6 was due to
residual EGFR signalling compensating for MET inhibition by
capmatinib in this clone. We tested for collateral sensitivity to the
combination of gefitinib + capmatinib, and indeed achieved
>23,000x lower IC50 in G1_F6 than DMSO (Fig. 5f). We
speculate that the decreased sensitivity to the combination of
capmatinib + gefinitib of POT may be due to some antagonism
between the two drugs.

For trametinib, as CDKNZ2A loss leads to upregulation of
CDK4/6, we reasoned that inhibition of CDKs could prove
effective against the trametinib-resistant population. Although
CDK4/6 inhibitor palbociclib alone was not effective (Supple-
mentary Fig. 16E), combination of palbociclib + trametinib
showed some level of sensitivity for the clone with the highest
loss of CDKN2A (clone TRM4 E9—see Supplementary Fig. 17B),
with IC50 reduced by 14x with respect to DMSO (Supplementary
Fig. 16F). To scale up our search for collateral sensitivity to
trametinib, we leveraged on high throughput drug screening
technology to assay a panel of 485 compounds (see “Methods”
section) at each of three concentrations (20, 200 and 800 nM)
with three replicates of clones TRM4 D6 and E9 vs. DMSO7 F4.
This screen revealed a large number of collaterally sensitive
compounds. The 5% of compounds with the highest % change in
inhibition is reported in Fig. 5g.

Discussion

The vast majority of metastatic cancers remain largely incurable.
Treatment with standard approaches may extend survivall, but
ultimately fails due to the emergence of resistant cells*. This is the
natural consequence of a process of clonal evolution fuelled by
ITH!?. Combining different drugs together at the same time has
been investigated, but typically only improves survival by a few
months, if any>?°1, and the narrow therapeutic window of cancer
drugs leads to high toxicity in combinations, limiting the prac-
ticality of this approach. Instead, controlling the disease, rather
than attempting to cure it, may be the only viable option in
advanced cancers?4. Although this sounds radical in oncology,
resistance management is well established in fields such as HIV>2,
antibiotics'® and pest control>3->°, In cancer, different groups
have explored the concept of ‘adaptive therapy’, first pioneered by
Gatenby?*, where drug dose is modulated in response to the
underling evolutionary dynamics®®>’, with encouraging pre-
liminary results in clinical trials®. Many adaptive approaches are
based on ‘buffer therapy’, which exploits the fact that resistance
often comes at a proliferative cost and hence resistant sub-
populations may be outcompeted in a drug-free environment?’.
This evolutionary double bind?>2¢ has been observed pro-
spectively in colorectal cancer patients under EGFR inhibition,
where KRAS-driven resistance seems to imply a cost, and KRAS
subclones decrease in relative frequency if the drug is sus-
pended?8. We have also observed this in our evolved lines treated
with trametinib, which show significantly slower growth with
respect to baseline. When resistance comes at a cost in a drug-free
environment, the drug-sensitive subpopulations can be used to
“keep in check” drug-resistant cells*%. This would explain the low
prevalence in the POT of the CDKN2A-loss and MET-amplified
clones. Moreover, evolutionary game theory has been proposed as
a conceptual framework for adaptive therapy, in which cellular
phenotypes are represented as strategies in a game>?. In light of
these advances in adaptive therapy, in this study we evaluated
evolutionary double binds that could be exploited with evolu-
tionary steering to control or prevent drug resistance.

Despite the conceptual elegance and promises of adaptive
therapy however, current strategies are often based on ad hoc
rules of thumb. The lack of reliable experimental model systems
that recapitulate patient heterogeneity and clonal evolution is a
major barrier for bringing adaptive therapies to the clinic. Here
we presented an approach for clonal steering where evolution can
be tightly controlled, monitored and altered using drugs. This has
the potential of paving the way to multidrug adaptive treatments.

Although we have attempted to design a model system that
specifically aims at recapitulating the evolutionary dynamics of
treatment resistance occurring in patients, our study has limita-
tions. First, we do acknowledge that an established cell line with a
clonal oncogenic driver in EGFR may not recapitulate the
dynamics of evolutionary steering in patients. Second, we have
used high concentrations of drugs that may not be always
achievable in patients. Third, future studies will be needed that
incorporate tumour microenvironment factors, such as cancer-
associated stromal and immune cells, as well as different doses of
drugs. Fourth, here we focus on the study of drugs as selective
pressure for pre-existing resistant clones but we do acknowledge
the importance of de novo mutants as well. For example, in a
clonal cell line with no pre-existing resistance one would expect
that all resistance dynamics are driven by drug tolerance followed
by de novo resistance. This phenomenon is often described by
bet-hedging dynamics!2. This could be potentially studied with
the presented platform, although one would expect different
barcodes in different replicates, making the evolution highly
stochastic. On the other hand, the floating barcodes would
allow us to determine the waiting time for a de novo mutant with
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great precision, and hence the measurement of temporal
dynamics in the context of bet-hedging, which are key to
understanding mutation rates and the dynamics of resistance. In
conclusion, additional validation experiments will be needed
prior to the adoption of this type of framework into clinical trial
design. The first step would be to apply this framework to patient-
derived organoid models, which have been shown to recapitulate
clinical outcome®.

Despite these limitations, model systems that replicate the
temporal dynamics of human cancer evolution will shed new light
on how to control drug resistance in advanced cancers, and open
the opportunity of personalised adaptive drug schedules that may
achieve long-term control in advanced human malignancies.

Methods

Mathematical modelling of experimental evolution approaches. In order to get
the expected distribution of waiting times for the occurrence of resistant mutations
in typical in vitro re-plating experiments we did individual-based stochastic
simulations of the original cell growth and cell sampling process. We start the
simulation with 2 x 10° non-resistant cells. Cells are randomly picked for division
and the population is grown to a size of 4 x 107 cells, which corresponds to the
expected cell population size after 14 days with an average cell division rate of once
every 3 days. During each division cells hit a resistance inducing mutation with
probability y = 2 x 10~8. Given a healthy mutation rate of 1 x 10~ bp/cell division
this approximately implies 20 different resistance inducing mutations. Once the
population reaches 4 x 107 cells, cells were replated, which in our simulation
corresponds to a population size reduction to 2 x 10 cells. The growth and
resampling process was repeated until the first resistance inducing mutation
occurred. We ran 10 independent stochastic simulations and recorded the times of
resistance occurrence, which allowed us to construct the expected distribution of
waiting time. In Fig. 1d we estimated the expected number of mutants arising in an
expanding population in different scenarios, using:

E(# of mutants) = u(N,,,, — N,) x replatings

where y is the mutation rate of the resistant mechanism, Nj is the seeded popu-
lation in the flask/well and N,y is the maximum number of cell capacity before re-
plating.

To demonstrate that each of the 8 HYPERflask is representative in terms of
barcodes, we performed a stochastic population simulation of the whole splitting
and growing step to estimate the likelihood that a barcode in an initial population
is present in N/8 of the replicate populations. The simulation comprised of two
parts:

a. Stochastic simulation of the POT outgrowth from an initial population of
uniquely barcoded cells.

b. Stochastic simulation of splitting the POT population into eight replicate
populations.

To achieve (a) we assumed that each cell in the initial population was uniquely
barcoded, and that each uniquely barcoded population was subject to stochastic
exponential growth with birth rate b and death rate d. We implemented a Gillespie
algorithm to simulate the exponential growth (Supplementary Fig. 2A, see ref. ¢1
for details). Birth and death rates for the HCC827 cell line were previously derived
in ref. 62. For the oxygen concentration of 20% and media glucose concentration of
2 g/L that correspond to our experimental design, the appropriate values are
approximately b = 0.032, d = 0.002, which we used to parameterise the model.
Supplementary Fig. 2B shows a histogram of population sizes from 10,000
realisations of the simulation from a single cell with instances of extinction
(population size equals zero) omitted.

Under this model of stochastic exponential growth differently barcoded
populations do not interact, and so the POT barcode frequency distribution was
computed by combining 10,000 independent realisations of the stochastic process.
The barcode frequency distribution that arises is shown in Supplementary Fig. 2C.

Finally, to simulate (b) we performed a random equal size 8 way split of the full
population of barcodes generated by the stochastic simulation. To determine the
likelihood that a barcode appears in precisely N/8 replicates, we simulated the
stochastic outgrowth of the POT 10 times, each with 20 associated stochastic
simulations of the split, and averaged the results. The predictions are shown in
Supplementary Fig. 2D. We find that ~90% of the barcodes that survive the POT
outgrowth appear in 8/8 replicates, with an additional 4% and 2% appearing in 7/8
and 6/8, respectively. Approximately 0.01% of barcodes appear in precisely one
replicate.

This calculation is indeed confirmed by the fact that all replicates contain a
statistically similar repertoire of barcodes comes from the fact that in all three
replicates exposed to trametinib and all three replicates exposed to gefitinib showed
enrichment for exactly the same set of barcodes that were rare in the POT. Hence,
all rare barcodes are well represented in each replica. See Supplementary Methods
for additional statistical analysis of barcodes.

Analysis of growth curves. HCC827 cells from POT, DMSO7, DMSO8, GEF1-3
and TRM4-6 were seeded at a density 1000 and 3000 per well in a 96-well and 48-
well plates (Corning), respectively. Cells were grown in six independent replicates
in 96-well plate and three independent replicates 48-well plates for the duration of
total 8 days. Media containing neither a vehicle control nor a drug were used as a
fresh media every 3 days. The plates were placed into the IncuCyte® S3 Live-Cell
Analysis System (Sartorius) and images were taken every 2 h at x4 and x10
magnifications. At the end of 8 days, confluency determination for each of the time
points were automatically calculated based on the images acquired using IncuCyte®
S3 Live Cell Analysis System (Sartorius). We calculated the growth rate of each line
using linear fitting of log-transformed data (see Supplementary Fig. 15).

Cell line culture in HYPERflasks. HCC827 cell line was cultured in RPMI-1640
medium (Sigma-Aldrich) supplemented with 10% FBS (Sigma-Aldrich), 4 mM L-
glutamine (Sigma-Aldrich), 1% non-essential amino acids (Sigma-Aldrich), and 1%
penicillin-streptomycin (Sigma-Aldrich). Cell line was confirmed to be Myco-
plasma free using PCR-based method. Cell line was grown and expanded in High
Yield PERformance Flasks (HYPERflask®) cell culture vessel (Corning). Medium
was changed once a week and cells were harvested upon reaching ~85% confluence.

Barcoding of cell lines. The ClonTracer lentiviral barcode library construction and
the generation of the lentivirus were previously described (38). The ClonTracer
library was a gift from Frank Stegmeier (Addgene #67267). HCC827 cell lines were
cultured in normal growth media and barcoded by lentiviral infection using 0.8 ug/
ml polybrene. For the majority of single cells to be infected with a single barcode a
multiplicity of infection (MOI) of 0.1 corresponding to 10% infection was chosen,
following lentiviral titration results. Following infection, 2.5 pg/ml puromycin was
used for selection of cells infected with a barcode. Statistical analysis of the bar-
coding process suggests that <1% of cells were doubly barcoded and <0.1% of
unique barcodes were received by multiple cells (Supplementary Methods).

Generation of gefitinib and trametinib-resistant cell lines. The 1 million bar-
coded HCC827 cells were expanded to ~120 million cells, harvested and frozen. Of
these frozen cells, 4 million cells were thawed and again expanded to ~120 million
cells. These cells were seeded into eight HYPERflasks equally. Two HYPERflasks
were grown under <0.0001% of DMSO for 6 days upon which they reached ~85%
confluence and were harvested as controls. The remaining six HYPERflasks were
grown under normal growth media for 1 week upon which they were exposed to
GI90 concentrations of gefitinib (Selleckchem) and trametinib (Selleckchem) (three
replicate flasks for each), for 4 and 9 weeks, respectively. During this time, the
medium and inhibitor were replenished weekly. The GI90 concentrations for
gefitinib and trametinib were previously determined to be 40 and 100 nM (Sup-
plementary Fig. 1). Cell counts were determined via the Countess IT Automatic Cell
Counter (ThermoFisher).

Barcode amplification and next generation library preparation. Barcoded
HCC827 cell lines were harvested and pelleted. Genomic DNA isolation was
performed using DNeasy Blood and Tissue DNA extraction kit (Qiagen) according
to manufacturer’s recommendations. Half of the conditioned media from each
HYPERflask was centrifuged at 1,200 rpm and pelleted. Quantification of genomic
DNA was carried out using Qubit (Life Technologies). Amplicon PCR reaction was
performed using 2x Accuzyme mix (Bioline) and 20 ng of DNA to amplify the
barcode using the previously published primer sequences?!:

Forward: ACTGACTGCAGTCTGAGTCTGACAG.

Reverse: CTAGCATAGAGTGCGTAGCTCTGCT.

Following detection of 80-bp PCR product including the 30-bp semi-random
barcode and after purification, NGS libraries were prepared using the NEBnext
Ultra II DNA library preparation kit for Ilumina (New England Biolabs) according
to manufacturer’s recommendations. Libraries were quantified using Qubit (Life
Technologies) and KAPA library quantification kit (KAPA Biosystems), as well as
TapeStation (Agilent Genomics). Library preparation was not successful for DNA
extracted at four floating cell time points (GEF2-F2, GEF3-F2, TRM5-F1 and
TRM6-F3). NGS was performed in house using MiSeq (Ilumina).

Barcode bioinformatics analysis. FastQ files were first filtered to extract those
reads with quality score >20 in all positions. Reads matching potential barcodes
were extracted from FastQ files by use of a regular expression matching 12 bases of
the forward barcode primer, followed by 30 base pairs, followed by 12 bases of the
reverse barcode primer. To account for potential errors arising from PCR ampli-
fication or mutation, similar barcodes were merged via a method (outlined in the
Supplementary Methods) that assigns each barcode to a representative matching
the known weak/strong base pair pattern by consideration of the Hamming dis-
tance between barcodes. Barcode frequencies are reported in Supplementary
Data 2.

To assign a phenotype to each barcode we first determined an approximate
growth rate under each condition by consideration of the frequencies. We assumed
that the frequency of each barcode in the DMSO replicates was representative of
the frequency in the drug-treated replicated GEF1-GEF3, TRM4-TRM6 prior to
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the introduction of drug. To ensure a conservative estimate of the growth rate, we
estimated the initial frequency as f, = Max(fy;, fps) Where f;,,, fps denote the
frequency of the barcode in the lines DMSO7 and DMSO8, respectively. Denote
the barcode frequency in a given replicate following drug exposure, expansion
and harvesting by f;. We estimated the growth rate of the barcode under drug

exposure as
1
T ?log (,j;;)

where log denotes the natural logarithm and T denotes the time between drug
exposure and harvesting the cells (T'=4 weeks for gefitinib, T=9 weeks for
trametinib).

Phenotypes were then assigned according to the number of gefitinib and
trametinib evolutionary replicates in which the barcode exhibited a positive growth
rate. As a barcode can appear extinct in a given replicate either because it has
negative growth rate, because the specific barcode was never seeded to that
replicate, or because of drift, we determined barcode phenotypes as follows. Where
a barcode exhibited positive growth rate in both 14 GEF and 14+ TRM replicates,
the barcode was designated as double-resistant. Where a barcode exhibited positive
growth rate in 2+ GEF lines but no TRM lines, it is designated gefitinib resistant/
trametinib sensitive. Likewise, where a barcode exhibited positive growth rate in
2+ TRM lines but no GEF lines, it is designated trametinib resistant/gefitinib
sensitive. Where a barcode exhibits positive growth rate in a single replicate (GEF
or TRM), it is designated as putatively de novo resistance. Other barcodes with
measured growth rate are designated sensitive. Finally, some barcodes are
designated as having undetermined phenotype where a barcode is not detected in
DMSO7 or DMSO8 (potentially due to loss at seeding) but observed in a replicate,
as a growth rate cannot be determined. Figure 4a shows a schematic of the
phenotype mapping along with the proportion of unique barcodes assigned to each
phenotype. Moreover, we compared a previous POT’ baseline sample with the
POT used in this experiment, after it has been frozen, stored and then thawed.
Supplementary Fig. 14 shows that barcodes are highly consistent in terms of
proportion in the two samples, with a proportion of barcodes that are always
missed by sequencing, which implies a binomial sampling of the barcodes.

Whole exome sequencing. Nine whole exome sequencing libraries were prepared
from 200 ng of genomic DNA using the Agilent SureSelect HT2 Human All
Exon_V6 kit following the manufacturer’s instructions. The libraries were pooled
and sequenced on the Illumina NovaSeq platform. The median (of medians)
coverage achieved was 161x (min 43x, max 218x) (see Supplementary Data 3).

Trimming was performed with Skewer v0.1.126. Reads with a mean quality
value > 10 prior to trimming and a minimum read length of 35 following trimming
were kept. All others were discarded. Trimmed reads were aligned to the full
human reference genome hg19 with the Burrows-Wheeler Aligner tool (bwa-mem,
v0.7.15). PCR duplicates were marked using Picard tools (v2.8.1). Mutations were
jointly called for all samples together using Platypus v0.8.103. The extent of
selection was determined by identifying SNV exhibiting a 10x enrichment in VAF
in the treated lines (GEF1-GEF3, TRM4-TRMS6) over the POT line. This analysis
yielded a cluster of four SNVs exhibiting enrichment corroborating that predicted
by the barcode enrichment analysis. See Supplementary Data 4 for SNV calls
filtered for a minimum coverage of 10 reads in all samples and a location within the
target regions of the exome capture panel.

Heterozygous single nucleotide polymorphisms (SNPs) in the exome
sequencing of the cell lines were identified using allelecount v3.0.1 (www.github.
com/cancerit/alleleCount). Here we counted bases at SNP locations that have a
global minor allele frequency between 0.1 and 0.2 (min. genomic position 100,000
bp) in dbSNP build 13264 and overlap with the target regions of the exome panel
for all autosomes. We calculate B-allele frequency (BAF) by dividing the highest
base pair count by the total coverage at the SNP loci. These values were randomly
subtracted from 1 to simulate the random assignment of the A and B allele. Log R
ratio (LRR) was calculated as the log base 2 of the coverage of each SNP loci
normalised by subtracting the global median LRR value.

To identify segments of copy number alterations (CNAs) we smoothed and
segmented the LRRs of each sample using DNAcopy (Seshan and Olshen, 2016,
‘DNAcopy: DNA copy number data analysis’. R package version 1.48.0). In order
to calculate the mean heterozygous major allele frequency in each segment we
required a test for distinguishing between segments with pure loss-of-
heterozygosity (LOH) and segments containing heterozygous SNPs. We identified
segments with heterozygosity by counting the numbers of SNPs in each segment
with a major allele frequency <0.9. We then performed an exact binomial test in
which the alternative hypothesis was that more than 5% of the segment contains
heterozygous SNPs (p < 0.05). For those segments in which the null hypothesis was
rejected, the median heterozygous major allele frequency value was used to
represent the allelic (im)balance of the segment.

Using the ASCAT equations®?, we assumed each sample was pure (rho = 1) and
solved the ploidy of each sample (psi) by calculating the distance of the continuous
major and minor copy number values of all segments from their nearest integer
states across a range of psi values that are realistic for tumour ploidy (1.5-5.5). The
psi value that produced the smallest distance from integers in all segments was

taken as the ploidy solution. This was ~3 for all cell lines as the cell line HCC827 is
known to be triploid®’. See Supplementary Data 1 for copy number calls.

We additionally calculated GC content normalised depth ratios between each
treated cell line and the parental population (POT) using Sequenza®. To calculate
segments of differential copy number status, we subset the loci by their global
minor allele frequency in dbSNP build 132 and segmented the depth ratios using
DNAcopy. Segments in the depth ratio analysis are considered gains if the depth
ratio is >1.2 and losses if <0.8.

Digital droplet PCR. Genomic DNA isolation for ddPCR was performed using
DNeasy Blood and Tissue DNA extraction kit (Qiagen) according to manufacturer’s
recommendations. Quantification of gDNA was carried out using Qubit (Life
Technologies). Digital droplet PCR (ddPCR) was performed on a QX200 ddPCR
machine (Bio-Rad). Copy number assay was performed using 3 ng gDNA as a
template and commercially available probes for MET (dHSACP2500321, FAM, Bio-
Rad), CDKN2A (dHSACP1000581, FAM, Bio-Rad) and NSUN3 (dHSACP2506682,
HEX, Bio-Rad) as a reference gene. PCR reactions were performed using 3 ng of
DNA, 10 pl of 2xSupermix in a total volume of 20 pl. Automated droplet generator
(Bio-Rad) was used to generate ~20,000 droplets for partition of PCR reactions.
Negative controls with no DNA and positive control DNA extracted from a cell line
with previously reported CN were included. QuantaSoft v1.3.2.0 software was used
for MET and CDKNZ2A CN analysis. Copy number status of NSUN3 was assumed to
be 3 (triploid) and this was confirmed by copy number analysis in exome
sequencing data.

High-throughput drug screening. Cells from DMSO7 F4, TRM4 D6 and E9 were
tyripsined and counted. 120-600 cells per well were seeded in 384-well plates
(Corning). Cells were grown in a 37 °C and 5% CO, incubator overnight. A panel
of 485 agents (Supplementary Data 5) was prepared in three different concentra-
tions (20, 200 and 800 nM) and dispensed per well using Echo 555 liquid handler
(Labcyte Inc.). After 5 days of treatment with agents, cells were incubated with 10%
CellTiter-Blue cell viability reagent (Promega) for 4 h in a 37 °C and 5% CO, cell
culture incubator. Finally, EnVision (PerkinElmer) plate reader was used to obtain
readings.

Hit identification was performed separately for each of the three drug
concentrations and three replicates of each line. First, raw fluorescence intensities
were converted into an estimated percentage of inhibition (PCI), using the
following formula:

100 (cpos - 1)
C,

PCI =
pos Cneg

where I is the raw fluorescence intensity, ¢, is the positive control of the plate, and
Cneg is the negative control of the plate. The plate-specific positive control was
defined as the average fluorescence of 14 wells seeded with cells but no drug. The
plate-specific negative control was defined as the average fluorescence of 14
empty wells.

Collaterally sensitive second line therapies were identified as those exhibiting a
large increase in mean PCI, with respect to the DMSO lines, across multiple
replicates and/or concentrations. Compounds were ranked, for a given replicate
and concentration, according to their mean PCI change. Those with PCI change
<5% at the given concentration were excluded and the top six of those remaining
were considered for hit identification. Potential hits were identified as compounds
appearing in the top six of more than one concentration or replicate.

Dose response curves. Resistant cell lines and single cell clones were trypsinised
and counted. Between 300 and 10,000 cells per well were seeded in 96-well stan-
dard plates (Corning). Following overnight incubation in a 37 °C and 5% CO, cell
culture incubator, average 10-fold changing dose of 10 concentrations from each
inhibitor were used. 3 days post inhibitor treatment for all of the drugs validated,
with an exception of 10 days for trametinib and 7 days for capmatinib. 10%
CellTiter-Blue cell viability reagent (Promega) was applied. After overnight of
incubation with 10% CellTiter-Blue in a 37 °C and 5% CO, cell culture incubator,
readings were obtained using EnVision (PerkinElmer) plate reader.

To derive dose-response curves, normalised percentage growth was derived
from OD readings by normalisation to six positive control (drug-free growth) and
six negative control (empty) wells. A two parameter (ec50, hill coefficient) log-
logistic dose response curve was then fitted to the data via non-linear least-squares
regression.

Luminex phosphoprotein assay. POT, DMSO7, GEF1 and TRM4 cell lines were
tyripsinied and counted. Following seeding of 300,000 cells per well in six-well
plates and incubation in a 37 °C and 5% CO, cell culture incubator overnight, three
biological replicates of each cell lines were treated with DMSO, 40 nM of gefitinib
and 100 nM of trametinib for 1 h. After the incubation under those conditions, cells
were tyripsinised and centrifuged at 1500 rpm to generate cell pellets. Cell pellets
were lysed using MDS Tris Lysis Buffer (Meso Scale Diagnostics) containing
phosphatase inhibitor I (Sigma-Aldrich), phosphatase inhibitor II (Sigma-Aldrich),
protease inhibitor (Cell Signalling Technology). Protein content of lysed samples

| (2020)11:1923 | https://doi.org/10.1038/s41467-020-15596-z | www.nature.com/naturecommunications 1


http://www.github.com/cancerit/alleleCount
http://www.github.com/cancerit/alleleCount
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

was quantified using BCA assay (Sigma-Aldrich). MILLIPLEX MAP Akt/mTOR
phosphoprotein kit, MILLIPLEX MAPK/SAPK signalling kit, MILLIPLEX MAP
RTK phosphoprotein kit (48-611MAG, 48-660MAG, HPRTKMAG-01K respec-
tively, MerckMillipore) were combined with the following singleplex magnetic bead
sets to produce three multiplex Luminex assays; Total HSP27, GAPDH (46-
702MAG, 46-710MAG, 46-623MAG, 46-641MAG, 46-608MAG, 46-667Mag,
MerckMilipore). Bio-Plex Pro phosphor-PDGFRb and Akt (Thr308) (171-
V50018M, 171-V50002, Bio-Rad) were combined into a triplex assay. Manu-
facturer’s recommendations were followed. Phosphoprotein levels were measured
on the Luminex 200 system utilising xPOTENT c3.1 software.

Floating barcodes harvesting. To track evolution through time, we leveraged the
large volume of media (560 ml) that must be changed each week to maintain the
HYPERflask culture system. HCC827 is an adherent cell line, with cells that detach
from the plate surface upon death. By spinning the spent media in a centrifuge at
1,200 rpm for 10 min, we collected pellets consisting of cells that had died within
the week. We extracted barcodes from these intermediate time points for each of
the gefitinib exposed lines (weekly for 4 weeks) and for each of the trametinib-

resistant exposed lines (weekly for 9 weeks). These barcodes permitted us to track
the evolution of each cell lineage, under each drug exposure, without the need for
re-plating, and with a temporal resolution that is unparalleled. Apoptotic barcoded
cells were extracted using DNeasy Blood and Tissue DNA extraction kit (Qiagen).

Single cells RNA profiling. Single cells were prepared from POT, GEF1 and
TRM4 cells. After centrifugation, single cells were washed with PBS and were re-
suspended with a buffer (Ca™/Mg* free PBS + 0.04% BSA) at 1000 cells/ul.

Viability was confirmed to be >90% in all samples using acridine orange/
propidium iodide dye with LUNA-FL Dual Fluorescence Cell Counter (Logos
Biosystems, L20001). Single cell suspensions were loaded on a Chromium Single
Cell 3’ Chip (10X Genomics) and were run in the Chromium Controller to
generate single-cell gel bead-in-emulsions using the 10X genomics 3’ Chromium
v2.0 platform as per manufacturer’s instructions. Single-cell RNA-seq libraries were
prepared according to the manufacturer’s protocol and the library quality was
confirmed with a Bioanalyzer High-Sensitivity DNA Kit (Agilent, 5067-4627) and a
Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851). Samples were pooled up to
three and sequenced on an Illumina HiSeq 4000 according to standard 10X
Genomics protocol.

CellRanger (v2.1.1) was run on the raw data using GRCh38 annotation (v1.2.0).
Output from cellRanger was loaded into the statistical computing environment R
v3 (www.r-project.org) through the function load_cellranger_matrix_h5 from
package cellranger (v1.1.0; genome = “GRCh38”). Datasets were merged according
to gene names. Before normalisation, a series of filtering steps was performed. Only
those cells showing at least 1500 detected genes and 5000 UMIs were considered
for further analyses®”. Reads mapping on mitochondrial genes were excluded. After
that, data were imported in Seurat (v2.3.4)%8 and scaled (NormalizeData function
using normalization.method = “LogNormalize”, scale.factor = 10,000, followed by
the ScaleData function). A further filtering step was performed based on the
cumulative level of expression (the sum of the Seurat-scaled values) of three
housekeeping genes (GAPDH, RPL26 and RPL36)%°. Manual inspection of these
values versus the number of UMIs per cell (or the number of genes with non-zero
expression per cell) revealed no significant correlation between the two.
Nevertheless, a number of cells showed extremely low expression of these genes, so
those in the bottom 1% were excluded from further analyses. At last, genes
expressed in <20 cells were also excluded. Linear normalisation and scaling were
performed again on the filtered, raw data. Variable genes were identified using the
FindVariableGenes function of Seurat (mean.function = ExpMean, dispersion.
function = LogVMR, xlow.cutoff = 0.01, x.high.cutoff = 6, y.cutoff = 0.01, num.
bin = 100). Principal component analysis (PCA) was run using variable genes as
input and, based on p-values estimated by the JackStraw function, the top 44
components were kept. These components were used as input for further
dimensionality reduction (using ¢-Distributed Stochastic Neighbour Embedding;
t-SNE) through the RunTSNE function (perplexity = 50, do.fast = TRUE, seed.use =
44). Clusters were then identified using FindClusters (resolution = 0.6).

Single clones isolation. Single cell isolation from DMSO7, GEF1 and TRM4 cell
lines was performed using CellenONE™ (Scienion, Lyon). Harvested cells were
diluted in PBS to generate cell suspension. Later, the number of cells in the sus-
pension were controlled optically in the piezo dispense capillary (PDC) to manage
the presence of truly single cell for each dispensing. Finally, each of the single cells
was dispensed into a specific position in the 96-well flat bottom microplate already
filled with 100 ul of full growth media. Ultimately, single cells grown in 96-well
plate were harvested and they were transferred into a cell culture flask for their
expansion. Single-cell-derived cell lines were named according to their position in
the 96-well plate that they have originated.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Exome sequencing data has been deposited at the European Genome-phenome Archive
(EGA), which is hosted by the EBI and the CRG, under accession number
EGAS00001003200. Further information about EGA can be found on https://ega-archive.
org. Single cell sequencing data is deposited in both raw and processed form in
ArrayExpress under the Accession E-MTAB-8809. FASTQ files containing the
sequencing of barcodes are deposited in ArrayExpress under the Accession E-MTAB-
8841. ArrayExpress is also hosted by EMBL-EBI and the data can be found at www.ebi.
ac.uk/arrayexpress.

Code availability
Python code used to analyse the barcodes and to create plots in Fig. 4 are hosted at www.
github.com/sottorivalab/ExpEvolutionSteering.
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