
drugs. However, our current health care system does not facilitate

a ‘learning health care system’. In general, there are no structured

clinical data collections of the outcome of off-label use. In the

Netherlands, this approach has been incorporated into a ‘Drug

Rediscovery Protocol’ (acronym DRUP) study (ClinicalTrials.gov

Identifier: NCT02925234). DRUP serves as a platform where

patients can be treated with off-label targeted agents whilst collect-

ing all relevant outcome data. This approach improves access to

these off-label drugs, diminishing inequalities in care, ensures ro-

bust review of target and treatment selection, and prospectively

collects outcome data to be shared with industry, payers and regu-

latory bodies. This study, initiated in 2016, now has over 26 ap-

proved targeted drugs at its disposal. Data from this study led to a

pay-for-performance system [10] for nivolumab in patients with

MSI-high tumors (no approved drug available in Europe for this

indication) whereby the manufacturer provides nivolumab for free

during the first 16 weeks of treatment with payer commitment to

reimbursement for responding patients. Negative findings are

shared with the scientific community in order to prevent repetitive

treatments without the outlook of clinical benefit. Several coun-

tries are now using similar protocols [e.g. TAPUR (NCT02693535)

and CAPTUR (NCT03297606)] which specifically allow data

sharing.

In conclusion, while we are grateful for all the novel drugs that

have been developed for cancer, we have an obligation to maxi-

mize the clinical value for our patients and communities. These

dual obligations require commitments to rational off-label use

and to structured learning through data collection and sharing in

order to identify those approaches that deserve to become li-

censed indications and to be reimbursed. Importantly, this allows

us to distinguish them from those that are inadequately effective

to justify licensing or clinical recommendation.
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Is the tumour microenvironment a critical

prognostic factor in early-stage colorectal

cancer?

The TNM staging system remains the cornerstone of risk assess-

ment in patients with early-stage colorectal cancer (CRC).

However, clinical behaviour is diverse within the same stages,

making prognostication an imprecise science. Microsatellite in-

stability (MSI) is the only biomarker routinely considered

beyond TNM, although a range of major genomic changes is well

established, with contradictory evidence in outcome prediction

[1, 2]. So what other markers could improve prognostic

precision?

CRC heterogeneity has now been comprehensively character-

ised at the transcriptomic level as between three and six prognos-

tic and potentially predictive subtypes [3–8]. For clinical

application, these competing subtypes were integrated into four

consensus molecular subtypes (CMS1–4) by the ColoRectal
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Cancer Subtyping Consortium [9]. The CMS classification has

shown prognostic significance in both the early and advanced set-

tings in multiple cohorts from high-quality clinical trials testing

contemporary regimens [10–13]. While CMS2 and CMS3 pri-

marily represent epithelial cancer cell heterogeneity, CMS1

and CMS4 also include cellular components of the tumour mi-

croenvironment, mainly immune cells and stromal fibroblasts

[9, 10, 14].

The immune microenvironment is known to contribute to

CRC patient prognosis [15]. Among tumour microenvironment

cells, immune cell infiltrates, specifically cytotoxic T lymphocytes

(CytoLym, enriched in CMS1), are associated with better out-

comes in early-stage CRC patients [15]. The CMS4 subtype is

enriched for cancer-associated fibroblasts (CAFs) and has a poor

prognosis [9, 16]. Is it possible that subtype-specific prognosis is

driven by the microenvironment?

To address this question and following up on their previous

study [1], Dienstmann et al. explored whether tumour microen-

vironment features such as CytoLym and CAFs are stronger

determinants of disease-free survival (DFS) in early-stage CRC

patients than the known genomic aberrations (MSI, BRAF and

KRAS mutational status) and CMS subtypes [17]. Their large,

retrospective study of several public and private clinically anno-

tated stage II/III CRCs (n¼ 2, 636), both untreated (n¼ 1, 656)

and treated (n¼ 980), evaluated CMS1/4 subtype scores and

microenvironment-based (CytoLym and CAF) continuous

scores in silico. In a multivariable model, clinicopathological (in-

cluding TNM) and microenvironment features were independent

prognostic factors. Clinicopathological variables explained the

majority (56%–77%) of variation in DFS, followed by immune

stromal infiltrating markers (14%–35%), while only<6% of DFS

variation was explained by CMS and genomic factors. Moreover,

CAF scores were associated with poor prognosis exclusively in

stage III cancers while CytoLym scores were associated with good

prognosis specifically in stage II and microsatellite stable cancers.

Hence, CMS4 and MSI subtypes (enriched for CAFs and

CytoLym, respectively [14, 16]) were not prognostic when these

specific microenvironment features were included [17].

This study adds to the evidence that the tumour microenviron-

ment plays a crucial prognostic role in CRC. The authors must be

appreciated for their efforts in collecting over 2600 patient sam-

ples from public and private (including clinical trial) datasets.

Their findings are consistent with previous studies, in particular

with the immunohistochemistry assay Immunoscore
VR

, which has

been extensively validated in early-stage CRCs [18].

Overall, this represents an excellent summary of the relative con-

tribution of clinicopathological and molecular features in explain-

ing DFS. Validation of these current results in additional, high-

quality datasets is recommended, including those in oxaliplatin-

treated stage III cancers. However, the study has limitations.

Genomic data (MSI and BRAF mutation) were missing for a large

number of samples, which were instead imputed computationally,

although the prevalence of these aberrations was similar to those

previously reported [2]. Conversely, all included samples had

CytoLym and CAF scores available. This inconsistent availability of

data may have biased the statistical analyses. Hence, the results of

these exploratory analyses in this study of multiple retrospective

cohorts need to be interpreted appropriately.

Age is usually considered a clinical factor when balancing che-

motherapy benefit against side-effects [2]. As highlighted by the

authors [17], age accounted for a significant proportion of DFS,

especially in the untreated (and older) population, who more of-

ten experience non-cancer-related deaths. Hence, it is worth con-

sidering only CRC-related relapses for DFS.

Sidedness is a known surrogate biomarker of complex CRC bi-

ology: while the poor prognosis and reduced response to anti-

epidermal growth factor receptor therapy in the right-sided met-

astatic setting is increasingly recognised, the prognostic role of

sidedness in early-stage CRC is less clear [19]. The current study

shows that right-sided early-stage (II and III) CRCs have a better

DFS than left-sided CRCs irrespective of MSI status (using par-

tially imputed data) [17], similar to previously published results

[20]. Nevertheless, this observation requires further validation

using well-annotated data to assess whether these observations

are generalisable to early CRCs in the real clinical setting.

The MicroCells approach was limited to detecting only a few

immune cell types and did not include, for example, T regulatory

cells and specific macrophage subsets, which may be important in

governing pro- and anti-inflammatory responses in tumours

and, therefore, prognosis. Furthermore, the scores for the micro-

environment cell types may vary depending on the cell-type

markers and computational methods used. It is worth remember-

ing that computational methods require rigorous validation us-

ing established immunohistochemistry or similar experimental

methods before clinical application. Nevertheless, the association

between CytoLym and MSI status suggests that this study in-

cluded the most relevant microenvironment scores and impor-

tant immune populations.

This interesting study now prompts the question of what other

factors beyond the microenvironment may affect prognosis in

patients with early-stage CRCs. Epigenetics, colonic crypt cell types

(similar to previously reported [3]), tumour mutational burden,

and neoantigens are promising candidates. Whatever the answer,

robust and clinically relevant biomarkers and assays are mandatory

for effective clinical translation, which may need to be developed in

the future based on the current study. Nevertheless, with further

validation, these findings will hopefully facilitate our understanding

of the relative contributions of cancer cells and the microenviron-

ment in determining prognosis in early-stage CRC patients and re-

fine personalised medicine approaches in the future.
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