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intRODUctiOn
Hypoxia occurs when the rate of oxygen delivery to tissue 
is inadequate to meet demand.1 Disordered angiogenesis in 
tumours makes delivery inefficient, leading to hypoxia. This 
is a hallmark of cancer2 and has been recognised for several 
decades as being a negative prognostic factor in most solid 
human cancers.3–5 Furthermore, since the 1950s6 hypoxia 
has been known to cause radioresistance, which results in 
failure in radiotherapy treatment.7 More recently, tumour 
hypoxia has been implicated in the failure of chemotherapy 
regimens and numerous targeted therapies.8

In oncology there are three main approaches to circum-
venting these negative effects of tumour hypoxia. Modifiers 
such as carbogen gas (95%O2:5%CO2) and nicotinamide 
have been shown to alleviate tumour hypoxia in combi-
nation with existing (chemo)-radiotherapy,9 through 
improving blood flow and tumour oxygenation. The hypoxic 
subregions within tumours can be targeted selectively, for 
example with hypoxia-activated prodrugs10–12 or drugs that 
modify oxygen consumption.13,14 Finally, there is interest 

in modulating the dose distribution of delivered radiation 
based on heterogeneity within tumours,15 focusing on 
spatial differences in pathophysiological features such as 
glucose metabolism16,17 as well as tissue hypoxia.16,18

Current clinical practice does not identify or quantify 
hypoxia in tumours. When patients present with cancer, 
their disease distribution and volume is initially staged.19 
Later, the change in these features following therapy is 
assessed by response monitoring.20 However, these evalu-
ations are based on anatomical and morphological staging 
and response systems that regard all abnormal tumour 
tissue as being equal in importance and relevance.21 Various 
imaging methods are available that can take radiology 
beyond this approach and incorporate measurements of 
tumour function.22 In this review, we discuss the various 
clinically available MRI methods that can map tumour 
hypoxia, with particular focus on oxygen-enhanced MRI 
[OE-MRI; also known as tumour oxygenation level depen-
dent (TOLD) MRI and blood oxygenation dependent 
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ABstRAct

Hypoxia is known to be a poor prognostic indicator for nearly all solid tumours and also is predictive of treatment 
failure for radiotherapy, chemotherapy, surgery and targeted therapies. Imaging has potential to identify, spatially map 
and quantify tumour hypoxia prior to therapy, as well as track changes in hypoxia on treatment. At present no hypoxia 
imaging methods are available for routine clinical use. Research has largely focused on positron emission tomography 
(PET)-based techniques, but there is gathering evidence that MRI techniques may provide a practical and more readily 
translational alternative. In this review we focus on the potential for imaging hypoxia by measuring changes in longitu-
dinal relaxation [R1; termed oxygen-enhanced MRI or tumour oxygenation level dependent (TOLD) MRI] and effective 
transverse relaxation [R2*; termed blood oxygenation level dependent (BOLD) MRI], induced by inhalation of either 
100% oxygen or the radiosensitising hyperoxic gas carbogen. We explain the scientific principles behind oxygen-en-
hanced MRI and BOLD and discuss significant studies and their limitations. All imaging biomarkers require rigorous 
validation in order to translate into clinical use and the steps required to further develop oxygen-enhanced MRI and 
BOLD MRI into decision-making tools are discussed.
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(BOLD) MRI] and we critique the biomarkers derived from 
these methods.

ReqUiReMents FOR A BiOMARKeR OF hyPOxiA
A biomarker is a “defined characteristic that is measured as an 
indicator of normal biological processes, pathogenic processes or 
responses to an exposure or intervention, including therapeutic 
interventions”.23,24 Biomarkers are used in cancer medicine to 
diagnose, predict and to stratify patients into different treatment 
groups, and also to monitor response to therapy.25

For assessing hypoxia, biomarkers must be technically valid, 
shown to measure tumour biology and relate to clinical 
outcome.26,27 Unfortunately at present, no biomarkers are used 
routinely to evaluate tumour hypoxia,28 although several inves-
tigational approaches exist (Table  1). Oxygenation in tumours 
can be directly measured using needle electrodes, a technique 
that was invaluable in first proving the associations with hypoxia 
and treatment response using Eppendorf histography.3,4,29,30 
However, this technique was limited to accessible tumours and 
is not generally available.

Assessment of tissue-level hypoxia is common in pre-clinical 
experiments, but mapping the spatial distribution of hypoxic 
tumour tissue is also possible in humans. Strategies available use 
either exogenous administered compounds such as nitroimid-
azoles (e.g. pimonidazole) that bind to macromolecules in cells 
under hypoxic conditions,31 or use endogenous markers such 
as proteins CA-IX and GLUT1.32 Alternative approaches use 
gene signatures of hypoxia.33 However, biopsies are challenging 
or impossible in some tumour types, provide only a limited 
subsampling of the tumour, and are difficult to interpret in the 
presence of temporally fluctuating hypoxia. Furthermore, repeat 
measurements are normally impractical.28 In distinction, sero-
logical markers (e.g. osteopontin) have shown some utility34 and 
can be performed on repeat sampling, but cannot distinguish 
levels of hypoxia in different tumours within the same patient.

Imaging is an attractive option since it can provide serial non-in-
vasive sampling of whole tumour volumes. Imaging can both 
identify subregions within one tumour that vary in their hypoxic 
profiles, and simultaneously distinguish hypoxic and normoxic 
tumours from one another in the same patient.15 At present no 

Table 1. Summary of methods available to study hypoxia in the clinic. *e.g. [18F]-fluoromisonidazole (FMISO), [18F]-fluoroazomyc-
inarabinoside (FAZA) or [18F]-flortanidazole (HX4). **[64Cu]-diacetyl-bis(N4-methylthiosemicarbazone)

Technique Invasive to 
tumour

Contrast agent 
requirements Measured entity Spatial 

resolution
Further 

comments
In vivo

pO2 histography Yes None
[O2(s)] inferred from rate of 
arrival of O2 molecules at 
electrode

Sub mm scale Very limited clinical 
availability

PET with 
[18F]-labelled 
nitroimidazoles*

No
i.v. injection of tracer

Retained [18F] or [64Cu] 
implying insufficient [O2] 
to reverse effect of tissue 
reductases

Few mm scale except 
for rodent MRI
0.2 to 0.5 mm for 
rodent MRI

Some validation; 
limited availability

PET with [64Cu] 
ATSM No Seldom used compared 

to [18F] PET

DCE-MRI No
i.v. injection of 
gadolinium-based 
contrast agent

Blood flow and permeability Indirectly associated 
with hypoxia

R1 weighted OE-MRI No Hyperoxic inhalation [O2(s)]
Emerging techniques 
requiring further 
validation

R2* weighted BOLD 
MRI No optional hyperoxic 

inhalation
compartmentalised 
deoxyhaemoglobin

Ex vivo

Hypoxia RNA gene 
signatures Yes None gene expression associated 

with hypoxia

µm scale
Requires tissue: 
provides important 
cross- validation 
for other hypoxia 
biomarkers

HIF 1α Yes None HIF 1α transactivation

GLUT 1 and CA-IX Yes None HIF 1α transactivation

Pimonidazole Yes Oral or i.v. 
administration

Retained nitroimidazole 
implying insufficient [O2] 
to reverse effect of tissue 
reductases

Circulating 
osteopontin No None Chronic hypoxia N/A

BOLD, blood oxygenation level dependent; DCE, dynamic contrast-enhanced ; OE, oxygen-enhanced; PET, positron emission tomography;RNA, 
ribonucleic acid.
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MRI, positron emission tomography (PET) or other imaging 
biomarker has sufficient technical, biological and clinical valida-
tion to have been translated into routine clinical practice.35 In the 
sections below, we review the current status of MRI biomarkers 
of hypoxia and discuss what further work is required to translate 
these techniques into clinical use.

MR cOntRAst MechAnisMs: POtentiAl 
MethODs FOR iMAging hyPOxiA
MRI is attractive as it offers several independent contrast mech-
anisms which interrogate different facets of hypoxia. In humans, 
MRI voxels are large (typically a few millimetres in each orthog-
onal dimension) in comparison with typically 0.1 mm distance 
between a hypoxic domain and its nearest capillary.36 Although 
some subvoxel hypoxia heterogeneity can be expected, the reso-
lution is more than adequate for radiotherapy planning. Regis-
tration of MRI with radiotherapy, however, is more difficult 
than for CT, single photon emission CT and PET, because of the 
different mechanisms of image formation.

Two substances of particular interest in imaging hypoxia 
are the dioxygen molecule, in solution, O2(s), which has two 

unpaired electrons37 and the deoxyhaemoglobin monomer, 
Hb, which has four unpaired electrons. Both molecules have 
an effect on longitudinal relaxation rate (R1), the reciprocal 
of the longitudinal relaxation time (T1). Independently, the 
heterogeneous intravoxel distribution of Hb affects the effec-
tive transverse relaxation time (T2*), through its effect on T2’ 
(Figure 1; details below). This effect on T2* (unlike the effect 
on T1) depends in a complex way on the spatial arrangement 
of the microvasculature and haematocrit, but in general higher 
concentrations of deoxyhaemoglobin in a voxel, are associated 
with short T2*.

The unpaired electrons endow both substances with modest 
longitudinal relaxivities (r1) at 1.5T of 0.17 s−1.mM−1 for O2(s) 
and 0.008 s−1.mM−1 for the Hb monomer.38,39 These relaxivities 
and concentrations are too small to allow hypoxic tumours to be 
identified from their T1 alone. However, switching the inhaled 
gas between air and 100% oxygen causes arterial hyperoxia. This 
in turn perturbs regional tumour concentrations of O2(s) and Hb 
imparting a heterogeneous change in R1 (termed ΔR1) which is 
directly related to tumour hypoxia. This experimental design is 
referred to as OE-MRI or TOLD contrast.40,41

Figure 1. Schematic representation of the change in R1 and ΔR2* induced by hyperoxic gas.

http://birpublications.org/bjr
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In addition to their longitudinal relaxivities, O2(s) and Hb make 
a paramagnetic contribution to tumour magnetic susceptibility 
which can be detected directly through susceptibility-weighted 
imaging.42 The paramagnetic susceptibility of Hb has an addi-
tional and important use as it induces extreme field gradients 
around erythrocytes, massively enhancing signal dephasing and 
increasing the effective transverse relaxation rate (R2*; recip-
rocal of T2*)–the so-called BOLD effect.43 However, rather than 
measure native R2*, most studies exploit a similar experimental 
design to the above OE-MRI where the change in R2* (termed 
ΔR2*) is measured following perturbation with 100% oxygen. 
Unfortunately, unlike OE-MRI, there is no direct linear relation-
ship between R2* or hyperoxia-induced ΔR2* and hypoxia.

An alternative experimental design uses carbogen gas as a hyper-
oxic challenge rather than 100% oxygen. This stems from the 
fact that many early BOLD studies were applied with the aim 
of measuring the effects of carbogen therapy. However, the 
interpretation of this design is more challenging because of the 
need to interpret the physiological effects of both O2 and CO2.40 
Studies in animal models and in humans have shown that the 
effects of the two gases differ between various normal tissues.44,45 
Furthermore, carbogen can be unpleasant to breathe. Because of 
these facts, and because most subsequent studies have not been 
designed to monitor the effect of carbogen as a therapy, many 
investigators have resorted to using 100% oxygen as a challenge 
instead of carbogen.

Other MRI biomarkers also provide indirect insight into hypoxia. 
Inadequate perfusion is a proximate cause of hypoxia and can be 
interrogated by arterial spin labelling or dynamic contrast-en-
hanced MRI (DCE-MRI).46,47 Cell death and necrosis are a 
common consequence of hypoxia and can be reflected in elevated 
ADC or T2.22 Finally, a few investigational hypoxia-sensitive 

MRI probes have been used in pre-clinical studies, but have not 
progressed far in the clinic.48,49

OE-MRI: R1 contrast MRI and hypoxia
In well-oxygenated voxels, inhaling excess O2 increases R1 
because supply is already adequate to meet the demand of local 
mitochondria, and excess oxygen remains dissolved in blood 
plasma and interstitial tissue fluid.50 The measured change, ΔR1 
induced by breathing oxygen is given by:

 △R1 = R1(t) − R1(0) = △[O2].r1,02 +△[Hb].r1,Hb  (1)

where R1(0) is R1 at baseline, R1(t) is R1 at time t after the switch 
to O2 inhalation, depending on the changes in concentration 
of the two relaxive substances Δ[O2] and Δ[Hb] together with 
their respective relaxivity constants r1,O2 and r1,Hb. The second, 
Hb-dependent, term is small and in many settings can be 
neglected, leaving ΔR1 simply proportional to change in tissue 
oxygen concentration Δ[O2]. The R1 values and concentrations 
are voxel-averages, R1 is assumed to be mono-exponential and 
measurements are assumed not to be confounded by inflowing 
blood.

Multiple studies have shown that OE-MRI produces measur-
able signal changes in normal tissues and is feasible on both 
clinical scanners40,51,52 and at the high field strengths used 
for pre-clinical studies,45 with signal changes of up to 20% 
reported (Figure  2). Although the relaxivity of O2(s) declines 
at high field, this disadvantage is offset by the lower R1(0) and 
higher SNR at high field. The technique has also been used in 
several non-oncological settings over the last two decades in 
approximately 40 published studies of respiratory physiology 
and disease.53–55

Figure 2. OE-MRI in normal tissues: mean of the ΔR1 recorded in the spleens of 16 healthy volunteers. There is a positive ΔR1 
induced following both 100% oxygen (O2) and carbogen (CB), although the response seen with O2 is slightly attenuated with CB 
gas. The ΔR1 returns to baseline once air breathing is resumed. Adapted from reference.40 OE-MRI, oxygen-enhanced MRI.
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Since OE-MRI can measure oxygen delivery, investigators in the 
2000s began to explore its role in oncology. In most studies of 
pre-clinical xenograft and orthotopic tumour models41,56–62 and 
in some human tumors,63–65 positive values of oxygen-induced 
ΔR1 were reported, reflecting the average effect of O2 inhalation 
in tumours. These studies covered a range of field strengths. R1 
changes, and the concomitant signal intensity changes in T1- 
weighted MRI, are typically ≤5%, but with care the technique is 
feasible on both pre-clinical and clinical MRI platforms.

These studies of OE-MRI in oncology created interest in it being 
a method for use in studies of hypoxia. However, measuring 
positive ΔR1 in OE-MRI quantifies and maps oxygen delivery in 
tissues with fully saturated haemoglobin, but does not directly 
identify tissue hypoxia per se. This inspired a second look at 
OE-MRI signal changes in tumours. For the first time, analyses 
highlighted that some tumour subregions were refractory in R1 
to oxygen challenge,61,66 or even exhibited negative ΔR1. These 
regions had low haemoglobin oxygen saturation, so excess O2 
molecules were immediately bound to Hb and did not signifi-
cantly alter tissue [O2(s)].28 At the same time this depletion of 
paramagnetic Hb may induce a barely-detectable decrease in 
R1. Decreasing R1 suggests a vascular volume fraction which is 
substantial (since only vasculature contains Hb), but nonetheless 
inadequate to supply the local mitochondria, perhaps because 
of chaotic architecture. Retrospective evaluation showed that 

this finding was also present in several other studies from other 
research groups.41,56,61

Based on these data, we investigated whether the regions that are 
perfused but lack oxygen enhancement (with an OE-MRI and 
DCE-MRI biomarker termed perfused Oxy-R) could identify 
hypoxic subregions within tumours.31 This study showed for the 
first time the translational potential for OE-MRI,36 since signals 
were accurate, precise, and sensitive to changes in tumour pO2 
(Figure 3A). The relationship of ΔR1 to change in pO2 has also 
been shown by another independent research group.67 Further-
more, perfused Oxy-R fraction quantified the hypoxic fraction 
in multiple models and detected dynamic changes in hypoxia 
induced by a vasomodulator (Figure 3B).

The potential value of OE-MRI is now being investigated by 
several research groups. The method has been shown capable 
of distinguishing radiation necrosis from malignant high-grade 
glioma in mouse models62 (Figure 4). This indicates a possible 
diagnostic application. The potential use in radiotherapy prog-
nosis has been suggested in a small study of rats with Dunning 
R3327-AT1 tumours treated with radiotherapy, where those 
tumors with greater oxygen-induced ΔR1 during therapy had 
greater growth delay.68 In distinction, comparable results 
were not reported in mice bearing glioma and rhabdomyo-
sarcoma xenografts where carbogen-induced challenges were 

Figure 3. OE-MRI validation in tumours: (A) Positive increase in R1 is induced following 100%oxygen (O2) in a mouse model of renal 
carcinoma (786–0 R). OE-MRI changes are mirrored by change in tumour pO2. (B) When OE-MRI signals are examined in perfused 
tissue, the oxygen refractory voxels (termed perfused Oxy-R; blue) are distinguished from oxygen-enhancing voxels (yellow); 
non-perfused voxels (grey) are excluded. The perfused Oxy-R fraction correlated significantly to the hypoxic volume measured on 
immunofluorescence.Adapted from reference.31 OE-MRI, oxygen-enhanced MRI.
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performed.69 Further pre-clinical studies will be required to 
help determine the best clinical trial design to qualify the role of 
OE-MRI parameters as prognostic biomarkers.

Perhaps the most easily envisaged OE-MRI application may be 
in evaluating response to therapy. Although in their infancy, 
OE-MRI studies have shown considerable initial promise in 
this regard. A pre-clinical study using Calu6 and U87 xeno-
grafts has shown that the OE-MRI biomarker ‘perfused Oxy-R’ 
is sensitive to changes in hypoxia induced by hypoxia modi-
fying targeted therapies.70 Here, both the hypoxia-activated 
cytotoxic prodrug banoxantrone, and the oxygen consumption 
modifier atovaquone were shown to be active in the xenograft 
models, with reduction in the volume of tumor identified by 
OE-MRI, relative to control. Similarly, reduction in hypoxia 
has been shown with high-dose single fraction radiation 
as well as with fractionated chemoradiotherapy in the same 
xenograft models.68,71

BOLD: R2* contrast MRI and hypoxia
The contribution of blood deoxyhaemoglobin to the R2* relax-
ation rate of each voxel is not simple

 ∆R2 = R2
(
t
) − R2

(
0
) = f

(
∆
[
Hb

])
  (2)

Where f is an unknown non-linear function of the voxel dimen-
sions and capillary geometry and Δ[Hb] is the change in tissue 
deoxyhaemoglobin concentration caused by hyperoxia.

Note that, unlike eq [1] for R1, eq [2] is not a voxel-average, and 
the relationship between the relaxation rate and the concentra-
tion of the relaxive substance cannot be simply described by a 
relaxivity. ΔR2* is determined by the vascular geometry, vascular 

volume and change in blood oxygenation, and may reflect the 
potential to enhance oxygen delivery to a tumour.

The oxygenation of haemoglobin depends on the arterial blood 
paO2, but this is not in equilibrium with tissue pO2 if viable 
mitochondria are present, because there must be an O2 gradient 
from the vessels to the mitochondria. Measurements of tumour 
R2* therefore cannot provide an index of tumour oxygenation. 
The relationship of R2* weighted image response and tumour 
pO2 has been investigated by invasive Eppendorf histography 
with carbogen breathing and showed a weak correlation.72 A 
stronger correlation of carbogen-induced decreases in R2* with 
tumour oxygen tension, measured by oxygen microelectrodes, 
has been observed in rat mammary carcinomas.73 Carbogen-in-
duced decreases in R2* of rat intracranial gliomas were shown to 
correlate with an increase in pO2 measured by EPR oximetry.74 
Simultaneous measurements of tumour R2* and pO2 have been 
achieved using an MRI-compatible fibre-optic pO2 sensor.75,76

Collectively these studies demonstrated that the R2* signal 
response to carbogen is temporally correlated with changes in 
tumour pO2, but that there was no correlation between abso-
lute R2* and pO2. Associations of tumour R2* and oxygen-in-
duced ΔR2* with hypoxia and improved tumour oxygenation, 
measured using immunohistochemical detection of reduced 
2-nitroimidazole adducts, have been demonstrated in a range of 
pre-clinical tumour models77–80 (Figure 5). Taken together, these 
data suggest that BOLD MRI can be used to assess changes in 
tumour oxygenation and provide good evidence that a hyper-
oxia-induced decrease in R2* is indicative of increased tumour 
oxygenation in vivo.81

As highlighted earlier, hyperoxia increases blood oxygenation, 
and the magnitude of the change in tumour R2* is dependent 
on blood volume, which is itself a determinant of the hypoxic 
fraction.82,83 BOLD MRI has been shown to correctly predict 
the relative effects of radiosensitisers on tumour hypoxic frac-
tion.84 One pre-clinical study sought to test the hypothesis that 
the baseline tumour R2* and carbogen-induced ΔR2* measured 
prior to radiotherapy were prognostic for treatment outcome. 
Prior to irradiation, tumour R2* was quantified while the host 
breathed air and subsequently carbogen, and correlated with the 
subsequent tumour growth inhibition in response to ionizing 
radiation. Overall, tumours which exhibited a significantly faster 
baseline R2* and a significantly greater carbogen-induced ΔR2* 
were more responsive to radiotherapy (Figure 6).85

Despite potential distortion artefacts arising in the vicinity of 
air and tissue interfaces in some anatomical sites, BOLD MRI 
has been implemented on standard clinical scanners and good 
reproducibility of human tumour baseline R2* maps demon-
strated.86 BOLD MRI has been used to quantify R2* and carbo-
gen-induced changes in R2* of human head and neck cancers 
prior to radiotherapy.87 In this study, all 11 patients studied 
showed a carbogen-induced tumour ΔR2* (statistically signifi-
cant in 7) prior to ARCON therapy, and subsequently showed 
a low tumour recurrence rate after a considerable follow-up 
time. A clinical study on hypoxia in prostate cancer compared 

Figure 4. OE-MRI application: The ΔR1 induced following car-
bogen inhalation distinguished tumour from radiation necro-
sis. Both pathologies had lower ΔR1 than healthy brain in the 
contralateral hemisphere. Adapted from reference.62 OE-MRI, 
oxygen-enhanced MRI.
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tumour R2* and relative blood volume (rBV, measured by DCE 
MRI) with tissue sections immunohistochemically stained for 
pimonidazole.88 Fast R2* was correlated with pimonidazole 
staining and found to have a high sensitivity in depicting tumour 
hypoxia (88%), which was further enhanced by the addition of 
low rBV information (95%) without a change in specificity (36 
and 29%, respectively), suggesting that the combination of native 
R2* with rBV were effective in mapping intraprostatic tumour 
hypoxia. In a follow-up study, 17 patients with prostate cancer 
were investigated using R2* measurements before and during a 
period of carbogen gas breathing.89 64% exhibited a reduction in 
tumour R2* during carbogen inhalation, with a significant mean 
reduction of 22%, suggesting the presence of tumour hypoxia 
in the native state which was improved by carbogen inhalation. 
In exploring the relationship between BOLD MRI and invasive 
oxygen electrode measurements in human prostate cancer, a 
significant positive correlation was found between tumour R2* 
and the fraction of tumour exhibiting pO2 values < 5 mmHg, and 
a negative trend between R2* and pO2.90

That said, opposite observations of R2* values in relation to 
hypoxia have been observed in other tumour types. For example, 
in a pre-clinical study of mammary tumours, basal R2* was nega-
tively correlated with pimonidazole staining.77 The relationship 
of native R2* to tissue hypoxia appears to vary according to the 
underlying histology, and this relationship needs to be defined 
across a range of different tumour types.

Native R2* and cycling hypoxia
Since the paramagnetic susceptibility of Hb induces extreme 
field gradients around erythrocytes it enhances signal dephasing 
and increases R2*. Indeed, this effect is so pronounced that low 
tumour signal in T2* weighted MRI suggests hypoxia. This effect 
has been exploited in a small number of studies, where the native 

Figure 6. BOLD imaging application: Pre-treatment R2* and 
carbogen (CB)-induced ΔR2* for individual GH3 prolactino-
mas (white triangles) and RIF-1 fibrosarcomas (black trian-
gles), plotted against tumour volume at day 7 post-irradiation 
with 15 Gy as a percentage of the volume pre-treatment. GH3 
prolactinomas displayed a fast baseline R2*, large CB-induced 
ΔR2* prior to radiotherapy and greater reduction in tumour 
volume post-irradiation. In contrast, RIF-1 fibrosarcomas dis-
played a slow baseline R2*, negligible ΔR2* response to CB and 
a smaller growth inhibition. The data suggest that quantita-
tion of tumour R2* and CB-induced ΔR2* provide prognostic 
indicators of radiotherapeutic response. Adapted from refer-
ence.85 BOLD, blood oxygenation level dependent.

Figure 5. BOLD imaging validation in tumours: Parametric R2* 
maps of a GH3 prolactinoma during inhalation of a) medical 
air and b) carbogen (CB). Intense (white) regions (relatively 
fast R2*) in the initial air breathing reflect the presence of par-
amagnetic Hb, whilst dark areas (relatively slow R2*) are con-
sistent with the presence of oxyhaemoglobin. Inhalation of CB 
results in a clear decrease in R2*, indicating a decrease in Hb. 
Composite fluorescence images showing the distribution of 
reduced 2-nitroimidazole adduct formation from c) CCI-103F 
(red), administered during air breathing, and d) pimonidazole 
(green), administered during CB breathing, obtained from the 
same GH3 tumour, are also shown. Spatially, both CCI-103F 
and pimonidazole adduct formation are co-localised, but the 
extent of hypoxia staining is reduced following CB, providing 
histopathological validation of carbogen-induced ΔR2* as a 
non-invasive imaging biomarker of increased tumour oxygen-
ation. BOLD, blood oxygenation level dependent.
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R2* has been measured in the absence of a challenge with hyper-
oxic gas.

Cyclical hypoxia arises from fluctuations in erythrocyte flux 
through the abnormal tumour vasculature.91–93 Given the sensi-
tivity of R2* to deoxygenated erythrocytes, continuous BOLD 
MRI measurements have been exploited pre-clinically to non-in-
vasively image cyclical hypoxia through changes in the oxy/
deoxyhaemoglobin ratio at high spatial and temporal resolution 
in both xenografts and patient tumours in vivo.94–96 Frequen-
cies in the range of 0.00027–0.001 Hz (corresponding to 15 to 
60 min) were measured, comparable to the periodicity originally 
reported from classical pre-clinical invasive measurements of 
cyclical hypoxia.97,98 Interestingly, in patients with head and neck 
squamous cell carcinoma, R2* fluctuations spatially correlated 
with parts of lymph nodes with low Ktrans values, typically in 
the vicinity of necrotic nodes. The R2* fluctuation fraction was 

higher in the non-responding patient group, suggesting that 
the presence of such fluctuations may be predictive of a worse 
outcome following treatment for HNSCC96 (Figure 7).

Comparison of R1 and R2* contrast MRI
Tumour subregions with low haemoglobin oxygen saturation are 
refractory to oxygen challenge on R1 OE-MRI. Low haemoglobin 
oxygen saturation implies very low blood [O2(s)], and even lower 
tissue [O2(s)] if there are functional mitochondria. Even if oxygen 
challenge substantially increases haemoglobin oxygen satura-
tion, the absolute changes in [O2(s)] are small, causing undetect-
able change in R1. It is logical to suspect that the R2* in these 
voxels should be high at baseline and also decrease on oxygen 
challenge because HbO2, unlike Hb, causes no paramagnetic 
effect on magnetic susceptinility shift inside erythrocytes.

Several studies have examined the relationships between 
ΔR1, native R2* and ΔR2* in xenografts56–59,61 or in patient 
tumours.65,99 These generally describe complex and non-linear 
relationships, possibly reflecting spatial or temporal heteroge-
neity with subregions of luxurious and inadequate perfusion 
present simultaneously and sometimes seen (with temporal 
disconnect) in the same voxel. However, potential confounds 
exist in both measurements; for example ΔR1 can be confounded 
by inflow effects, ΔR2* can be confounded by presence of haem-
orrhage and both parameters can be confounded by oxygen-in-
duced vasoconstriction and by vascular steal (Figure 8).

Since it is unclear from these studies as to whether ΔR1 and the 
R2*-based biomarkers measure the same underlying tumour 
pathophysiology, we performed a study in a xenograft model 
and in seven patients with renal cell carcinoma to explore the 

Figure 7. Native R2* evaluation of cycling hypoxia: An exam-
ple map of R2* perturbation is shown of a lymph node metas-
tasis from a patient with squamous cell head and neck cancer 
(with zoomed in section). An example of the power spectra 
tested for non-random fluctuations is shown. Adapted from 
reference.96

Figure 8. Schematic representation of the theoretical relationship between gas-induced ΔR1 and ΔR2*.

http://birpublications.org/bjr
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relationship between the two techniques.80 Tumour-wise and 
voxel-wise ΔR1 and ΔR2* comparisons did not show correla-
tive relationships in 786–0 R renal cancer xenografts. However, 
parcellation analysis revealed that perfused Oxy-R regions had 
faster native R2* (102.4 s–1 vs 81.7 sec–1) and greater negative 
ΔR2* (−22.9 s–1 vs −5.4 s–1) when compared with perfused Oxy-E 
and non-perfused tumour subregions. Similar findings were 
present in human renal cell carcinomas.

FUtURe DiRectiOns
Both R1 and R2* gas-challenge MRI techniques have potential 
to identify, spatially map and quantify tumour hypoxia. There 
is a significant body of evidence that biomarkers derived from 
the two techniques can reflect underlying low pO2 and resultant 
tissue hypoxia (identified by immunohistochemistry) in tumour 
subregions. However, nearly all of this data are in rodent tumour 
models and further investigation is required to add to the handful 

of small studies performed to date, to confirm that these findings 
are replicated consistently in a range of human cancer types. A 
small number of studies have also explored technical valida-
tion – such as repeatability – in a single centre setting. While 
these data are promising, further data are required to confirm 
high-to-excellent reproducibility in a multicentre setting using 
scanners that cover a range of vendors, MRI field strengths and 
sequences.35

However, the key questions for R1 and R2* gas-challenge MRI 
will be to demonstrate readily measurable and consistent value 
of their biomarkers in clinical applications, such as identifying 
tumour hypoxia, tracking change in hypoxia on therapy or 
spatially mapping hypoxia to guide differential dose radiotherapy 
(dose painting).100 This is an area of research priority for the next 
decade, which if successful could result in the rapid translation of 
these techniques into clinical decision making.
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