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Purpose: To determine whether quantitation of T�2 is sufficiently repeatable and sensitive to detect clinically relevant
oxygenation levels in head and neck squamous cell carcinoma (HNSCC) at 3T.
Materials and Methods: Ten patients with newly diagnosed locally advanced HNSCC underwent two magnetic resonance
imaging (MRI) scans between 24 and 168 hours apart prior to chemoradiotherapy treatment. A multiple gradient echo
sequence was used to calculate T�2 maps. A quadratic function was used to model the blood transverse relaxation rate as a func-
tion of blood oxygenation. A set of published coefficients measured at 3T were incorporated to account for tissue hematocrit
levels and used to plot the dependence of fractional blood oxygenation (Y) on T�2 values, together with the corresponding
repeatability range. Repeatability of T�2 using Bland–Altman analysis, and calculation of limits of agreement (LoA), was used to
assess the sensitivity, defined as the minimum difference in fractional blood oxygenation that can be confidently detected.
Results: T�2 LoA for 22 outlined tumor volumes were 13%. The T�2 dependence of fractional blood oxygenation increases
monotonically, resulting in increasing sensitivity of the method with increasing blood oxygenation. For fractional blood
oxygenation values above 0.11, changes in T�2 were sufficient to detect differences in blood oxygenation greater than
10% (DT�2 > LoA for DY>0.1).
Conclusion: Quantitation of T�2 at 3T can detect clinically relevant changes in tumor oxygenation within a wide range of
blood volumes and oxygen tensions, including levels reported in HNSCC.

J. MAGN. RESON. IMAGING 2016;44:72–80.

Tissue oxygenation is an important parameter of the tumor

microenvironment that influences both proliferation and

angiogenesis.1,2 The presence of hypoxic regions within tumors

is considered an important cause of treatment failure affecting

both radiotherapy and chemotherapy, and adversely affects the

prognosis of head and neck squamous cell carcinoma

(HNSCC).3–5 Noninvasive methods to rapidly quantify the spa-

tial distribution and extent of hypoxia within an individual

tumor are thus highly desirable in clinical practice to allow mod-

ification of treatment strategies in this poorer prognosis group.

Magnetic resonance imaging (MRI) measurements of

the transverse relaxation time (T �2 ) have been proposed as
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imaging biomarkers of tissue oxygenation status in both pre-

clinical and clinical settings.3,4,6,7 Paramagnetic deoxyhemo-

globin increases the apparent MRI transverse relaxation rate

R�2 (51/T �2 ) of water in blood and surrounding tissues,

which provides the opportunity to image tissue oxygenation

at high spatial resolution. The T �2 of the vascular space is

dependent on fractional blood oxygenation (Y), and can be

described by a quadratic function of hematocrit levels (Hct)

and magnetic field strength (B0).8,9 Changes in R�2 are used

to study brain activity associated with modulated regional

brain perfusion (the blood oxygen level dependent or

BOLD effect).10 However, the strength of the correlation

between tissue R�2 and tissue oxygen partial pressure (pO2),

measured using oxygen electrodes, and immunohistochemi-

cal detection of the hypoxia marker pimonidazole, has been

reported to be only weak to moderate.11–13 Consequently,

quantitative measurements of tissue oxygenation using

BOLD have yet to be established.14

BOLD measurements can also be performed in combi-

nation with hyperoxic gas breathing, whereby the oxy/

deoxygenated hemoglobin ratio is altered. The magnitude of

changes in BOLD measurements within tumors, on breath-

ing hyperoxic gas relative to air, have been shown to relate

to the tumor hypoxic fraction as determined by pimonida-

zole labelling.15 An increase in T �2 was found to correlate

with inhalation of higher percentages of oxygen in preclini-

cal studies, but the magnitude of signal changes was not

proportional to the absolute measured tissue oxygenation.16

Preclinical and clinical studies in prostate, cervix, and head

and neck cancers have consistently reported increases in

tumor tissue T �2 in response to hyperoxic gas challenge.17–20

In contrast, studies in breast cancer have shown differing

results, as tumors were found to exhibit T �2 decreases following

hyperoxic challenge but with relatively large magnitude varia-

tion in the magnitude of T �2 changes.21 This discrepancy is

thought to relate to differences in tumor biology across histol-

ogies.15,21,22 Such discordant results may be explained by T �2 -

weighted signal dependence on physiological factors, including

the hematocrit, blood volume (BV), vessel caliber,23,24 and the

intermittent tumor vessel blood flow.16,25 Therefore, the rela-

tionship of baseline tumor tissue T �2 to tumor hypoxia varies

according to the nature of the tumor vasculature and its host

hematological status. It therefore should not be surprising that

tumor T �2 and its response to various tumor challenges (treat-

ment, hyperoxia) varies according to tumor type.

In addition to the tumor vascular microenvironment,

quantitation of T �2 is also dependent on physiochemical and

methodological parameters.14,26,27 Macroscopic magnetic

field homogeneity resulting from the iterative shimming

process affects the repeatability of T �2 measurements. The

measured T �2 value within a voxel is a composite of spin

relaxation rates within the intra- and extravascular tissue

spaces, a consequence of the scanning spatial resolution.

Spin relaxation in the extravascular space has a much weaker

and variable dependency on blood oxygenation than that for

the intravascular space within a tumor.10,26

Hypoxia is a common and well-recognized cause of

radioresistance in HNSCC, and therefore MRI-based meas-

urements of oxygenation in this region are of significant inter-

est.3–5 In this study we evaluated whether T �2 measurements

are sufficiently sensitive to detect clinically relevant oxygen-

ation levels in HNSCC at 3T, acknowledging the influence of

measurement repeatability, blood volume, and hematocrit.

Materials and Methods

Patients and MRI
MR images were acquired in two scanning sessions, between 24

and 168 hours apart, in 10 patients (nine male, one female) with

newly diagnosed locally advanced HNSCC, prior to their treat-

ment. A summary of the patient characteristics is presented in

Table 1. The median age of the patients was 57 years (range: 44–

64 years). Written informed consent was obtained from all patients

in this study, which was approved by the Institutional Research

Review Board (CCR 3970) and the NHS Research Ethics Com-

mittee (REC number 13/LO/0628).

MRI was performed at 3T (MAGNETOM Skyra, Siemens

Healthcare, Erlangen, Germany) using a dedicated 20-channel head

and neck coil. Patients were aligned in a supine position with slight

neck extension using a standard headrest and lateral cushions for

improved stabilization. Anatomical coronal T2-weighted images (TSE,

TE/TR 5 76/5000 msec, field of view [FOV] 5 250 3 250 mm2,

4 mm slice thickness) were obtained first in order to assess the extent of

the disease and aid axial sequence planning. Subsequently, T2-weighted

(TSE, TE/TR 5 84/4560 msec, FOV 5 240 3 240 mm2, 2.5 mm slice

thickness) and T �2 images were acquired over the volume of interest

(VOI) identified by a clinician (L.W. or K.W.). T �2 was measured using

a 2D gradient echo sequence with six echo times (flip angle [FA] 5 248,

TE 5 4.92 to 29.52 msec in increments of 4.92 msec, TR 5 350 msec,

FOV 5 240 3 240 mm2, 2.5 mm slice thickness, acquisition matrix:

256 3 256, BW 5 435 Hz). Echoes were acquired with the same gradi-

ent polarity with in-phase fat and water signal. No signal normalization

or filtering was used. All the imaging data were anonymized, coded,

and exported to a dedicated research PACS database system (XNAT).28

Images acquired from the first MRI session were used as a guide to rep-

licate patient positioning and VOI identification in the second session.

A blood sample was taken for a full blood count prior to each MRI

scans to determine blood hematocrit.

MRI Data Analysis and VOI Definition
Paired image datasets were retrieved for image coregistration, VOI

definition, and image processing. Signal changes on the multiple

gradient echo images were used to calculate 3D T �2 relaxivity

maps. Data processing was performed using in-house MatLab soft-

ware (MathWorks, Natick, MA). Signal intensity decay, measured

for increasing echo times, was fitted on a voxel-by-voxel basis to a

monoexponential model using a least-squares fit method. No data

truncation or filtering was used. Calculated T �2 maps were exported

in the DICOM format allowing further analysis with a radiother-

apy treatment planning system (TPS).
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VOIs, including primary and nodal tumor sites, were man-

ually delineated by radiologists (A.M.R. and D.M.K., each having

more than 10 years of experience) using the Pinnacle3 TPS (Phi-

lips Healthcare, Best, Netherlands). Axial images and T �2 maps

from both MRI sessions were coregistered using operator-assisted

rigid body algorithms. T �2 images with significantly varying neck

flexion or translation of tumor volume were identified and the cor-

egistration manually corrected. For such cases primary tumor and

involved lymph nodes were coregistered independently to compen-

sate for interscan anatomical and positional variation. T �2 values

for respective VOIs were exported from the TPS and used for sta-

tistical evaluation.

Statistical Assessment of Repeatability
Tissue T �2 values were analyzed using boxplots and T �2 difference

maps were generated for each VOI to investigate the data distribu-

tion and spatial repeatability. Median T �2 values were calculated for

each VOI and used to assess the quantitative repeatability, to

account for a skewed parameter distribution previously described

in the literature.15,19 First, the Shapiro-Wilk test was used to ascer-

tain normality of the sample T �2 distribution. Second, the Wil-

coxon signed rank test was used to compare T �2 distributions from

each session to check whether the observed interscan variability

could be attributed to measurement error. The Bland–Altman

method was used to plot the T �2 differences between two scan ses-

sions against the mean value of median VOI T �2 for both ses-

sions.29 Finally, the coefficient of variation (CV) and limits of

agreement (LoA, average difference 6 1.96 standard deviation of

the difference) were calculated. The potential influence of both the

tumor volume and the duration between scans on repeatability was

investigated. Kendall’s tau (s) was used to test for correlation

between median T �2 changes between sessions and VOI volumes,

and also between T �2 changes and the interval between scans.

SIMULATION OF BLOOD OXYGENATION DEPENDENCE OF

T�2 . A quadratic model was used to describe the blood transverse

relaxation rate R�2 as a function of fractional blood oxygenation

(Y)8,9:

R�25A�1B�ð12YÞ1C�ð1-YÞ2 (1)

where A*, B*, and C* are empirically derived coefficients depend-

ent on B0 and Hct.

Coefficients A*, B*, C* previously measured empirically for

Hct in the range 0.21–0.57 at 3T9 were used to obtain R�2(Hct,Y)

values in the full range of blood oxygenation fractions.

In our simulations, a “tissue hematocrit” (Htiss) was used,

incorporating the BV fraction and a vascular factor (fvas 5 0.85) to

account for differences between erythrocyte concentration in large

vessels and the tissue capillary network24,26:

Htiss5Hct3BV3f vas (2)

The initial R�2(Y) values for Hct in the range 0.21–0.57 were

linearly extrapolated to calculate a new set of R�2 values at the tissue

hematocrit levels. Five blood volume fractions in the range 1–

30 ml/100g were considered, including values typical for muscle

(BV 5 1 ml/100g30, HNSCC (BV 5 5 ml/100g31, and highly vas-

cular tumors (BV> 10 ml/100g24. Equation (1) was used to calcu-

late sets of BV-specific coefficients A*, B*, and C* and to plot the

dependence of blood oxygen saturation on T �2 values.

A simulated y-intercept value for BV 5 5 mL/100g was sub-

tracted to derive and plot the relative T �2 dependence of fractional

blood oxygenation and pO2 together with corresponding 95% lim-

its of agreement. Relative, rather than absolute, T �2 values were

used in order to assess the minimum difference in fractional blood

oxygenation that can be reliably detected (T �2 changes greater than

limits of agreement) and to recognize the effect of tissue-specific

extravascular spin relaxation. Finally, the Hill equation (Hill’s

TABLE 1. Summary of Patient Characteristics

Patient
no.

Age
(years)

Gender Site Stage HPV
status

Interval between
scans (hours)

Hct

MRI1 MRI2

1 57 M Oropharynx T3N2bM0 1ve 36 0.300 0.343

2 51 M Oropharynx T2N2aM0 1ve 48 0.417 0.411

3 50 M Hypopharynx T3N2bM0 2ve 24 0.431 0.418

4 63 M Oropharynx T4N0M0 1ve 144 0.459 0.441

5 58 M Oropharynx T2N2cM0 1ve 48 0.283 0.354

6 64 M Supraglottis T2N2bM0 2ve 144 0.441 0.431

7 64 M Oropharynx T2N2c M0 1ve 168 0.437 0.431

8 64 M Supraglottis T3N2cM0 2ve 96 0.364 0.400

9 44 M Oropharynx T1N2bM0 Unk 168 0.397 0.398

10 51 F Oropharynx T3N2cM0 1ve 72 0.389 0.402

*Unk 5 Unknown human papilloma virus (HPV) status.
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coefficient: 2.26, t 5 378C, pH: 7.4) was used to identify the clini-

cally relevant region of hypoxia (pO2< 20 mmHg, Y 5 0.32).6,32

RESULTS

Repeatability
The median time interval between two scans was 84 hours

(range: 24–168 hours). For all patients there was no signifi-

cant difference (P 5 0.57) in the group mean Hct across the

two MRI sessions, with a respective mean value of 0.4

(range: 0.283–0.459). Anatomical image coregistration

revealed varying degrees of differences in patient neck flex-

ion between the MRI sessions, despite having attempted to

replicate patient positioning at each visit. However, it was

possible to compensate for these differences in patient posi-

tioning by independent regional coregistration for primary

and nodal VOIs.

In total, 22 VOIs were identified and outlined. An

example of a VOI overlaid on a T2-weighted image is pre-

sented in Fig. 1A. One primary tumor and one lymph node

(Table 2: patients 1, 10) were excluded from analysis due to

inadequate VOI coverage resulting from differences in

patient positioning between sessions and/or significant inter-

nal motion between T2-weighted and T �2 examinations.

Representative parametric T �2 maps, with corresponding dif-

ferences in T �2 between the visits on a per-voxel basis, and

VOI boxplots, are shown in Fig. 1. Table 2 summarizes the

measured VOI parameters, including location, volume, T �2
values, and differences between the two MR examinations.

The mean T �2 values significantly (P< 0.01) differed

between nodes (23.6 msec) and primary tumor sites (18.7

msec). The distribution of intra-VOI T �2 values was posi-

tively skewed. An example of the spatial distribution of dif-

ferences between the relaxation times in two MR

FIGURE 1: A: T2-weighted image for a 50-year-old stage IV HNSCC patient (patient 3) with outlined primary VOI (red). B: T�2 para-
metric maps calculated for visit 1 (three representative slices at the center of the tumor). C: Boxplots showing distributions of T�2
measured in primary tumor VOI in both visits and differences in T �2 between the visits. D: Differences in T �2 between the visits on
a per-voxel basis.
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examinations (DT �2 ) is presented in Fig. 1D. Subregions of

uniformly increased or decreased T �2 can be observed within

analyzed VOIs.

The distribution of T �2 for all patient VOIs did not

differ from normality (primary tumors: P 5 0.48, lymph

nodes: 0.61) and the population mean values did not differ

between the two scan sessions (primary tumors: P 5 0.32,

lymph nodes: P 5 0.64). A Bland–Altman plot showing T �2
difference between the two scans (MR2-MR1) against the

mean value of VOI median T �2 for both sessions is shown

in Fig. 2. The coefficient of variation and limits of agree-

ment were 6.9 and 13%, respectively. There was a weak

negative and nonsignificant correlation between median T �2
differences and the VOI volumes (s 5 –0.14, P 5 0.11), and

also between median T �2 differences and interval between

scans (s 5 –0.12, P 5 0.48).

Simulations
The average tissue hematocrit levels, Htiss, were calculated

using a mean of patient Hct values, and for BV 5 1, 5 10,

20, and 30 ml/100g were 0.003, 0.017, 0.034, 0.068, and

0.1, respectively. Simulated relative transverse relaxation

time constants T �2 plotted as functions of fractional blood

oxygen saturation in HNSCC are shown in Fig. 3A. The coef-

ficients A*, B*, and C* for BV 5 5 ml/100g were 12.42,

19.58, and 17.5, respectively, and the T �2 Y50 y-intercept value

TABLE 2. Summary of Tumor Characteristics

Pt. No. 18 Vol.
[cc]

LNs Vol.
[cc]

Median T2* [msec]

18 LNs

MRI1 MRI2 D MRI1 MRI2 D

1 12 15 NA NA NA 17.6 20.7 3.1

2 17.8 21 3.2

2 32 3 18.3 18.7 0.4 25.6 26.7 1.1

3 27 2 18.5 18.8 0.3 24.2 23.3 20.9

7 22.9 24.6 1.7

2 17 18.9 1.9

4 29 21.5 21.5 0.01

5 173 6 19.2 17.8 21.4 21.5 20.3 21.1

2 21.5 24 2.5

1 26 26.2 0.2

6 15 16.3 19.7 3.4

7 6 60 18.6 18.5 20.2 26.3 26.2 20.1

8 10 28.4 29.2 0.8

15 24.6 23.9 20.8

9 17 21.7 22.5 0.8

10 45 5 16.81 19.19 2.4 NA NA NA

18: primary tumor, LNs: lymph nodes.
*NA 5 insufficient or poor quality data.

FIGURE 2: Bland–Altman plot showing difference between
median VOI T �2 in two scans against the mean value of T�2 for
both visits (CR 5 coefficient of repeatability, CV 5 coefficient of
variation). Mean difference (solid line) and 95% limits of agree-
ment (dotted lines) are also shown, with corresponding 95%
confidence limits (error bars).
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was 19.4 msec. The relative T �2 dependence plot for

BV 5 5 ml/100g with LoA is illustrated in Fig. 3B. A blood

oxygen partial pressure of 20 mmHg corresponded to frac-

tional oxygen saturation of Y 5 0.32 and was used as a thresh-

old to identify clinically relevant regions of hypoxia in Fig.

3B. The T �2 dependence of fractional oxygen saturation

increases monotonically, resulting in increasing sensitivity of

the method with increasing blood oxygenation. In normoxic

conditions, small changes of DY result in T �2 changes greater

than the repeatability LoA (DT �2 > LoA). For example, an

increase of fractional blood oxygenation from 0.4 to 0.5

would lead to an increase of T �2 of 4.8 msec, with the corre-

sponding repeatability threshold of 1.9 msec (LoA 5 13%).

T �2 value differences were lower than the measurement repeat-

ability for fractional blood oxygen saturation below 0.11, or

pO2 of 12.4 mmHg. For Y values above that threshold,

changes in T �2 were sufficient to detect differences in blood

oxygenation greater than 10% (DT �2 >LoA for DY> 0.1).

Discussion

MRI measurements of transverse relaxation times have the

potential to characterize tissue oxygenation and therefore are

of interest in the context of tumor hypoxia imaging. Never-

theless, quantitative tissue oxygenation measurements using

BOLD MRI remain a challenge due to T �2 dependence on

additional biological and physicochemical factors, together

with significant intra- and intertumor variations. These con-

comitant independent parameters are likely to explain the

moderate correlation between T �2 , direct measurement of

tumor tissue oxygen tension, and immunohistochemical

detection of pimonidazole. It is therefore desirable to

directly measure these nonoxygen-related contributions and

FIGURE 3: A: Transverse relaxation time constant T �2 simulated for blood volume fractions in the range 1–30 mL/100g plotted as a
function of blood O2 saturation (hematocrit: 0.4, microcapillary vascular factor 0.85, field strength: 3T). B: Relative T �2 dependence
of fractional blood oxygenation and pO2 simulated for BV 5 5 mL/100g. The dashed line shows limits of agreement (LoA,
a 5 0.05). The oxygen partial pressure was calculated using Hill’s equation (human blood, coefficient for blood oxygen binding:
2.26, temperature: 378C, pH: 7.4).
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to stratify tumors into more homogenous subgroups

depending on disease site, level of edema, necrosis, and per-

fusion. Several methods for BV calculation using MRI have

been proposed, including measurements of changes in T �2
induced by injection of paramagnetic contrast agents such as

ultrasmall superparamagnetic iron oxide (USPIO) particles33

and gadolinium chelates (dynamic susceptibility contrast

[DSC] MRI34). To date, USPIO has been investigated clini-

cally as an off-label intravenous MRI contrast agent with

various imaging applications35 and could be used in the

context of BV measurements. It is also possible to use T �2 to

study changes in tissue oxygenation as a result of an acute

intervention such as blood transfusion, vascular disruptive

therapy, or hyperoxic gas challenge, where the significance

of relative T �2 changes rather than absolute oxygenation lev-

els is of interest.

It is important to recognize that the sensitivity of the

quantitative determination of tissue T �2 is strongly depend-

ent on measurement repeatability, which in turn is influ-

enced by the iterative shimming process employed. Our

data show that a minimum change in median tissue T �2 of

13% is required to be regarded as statistically significant

within an individual primary tumor or metastatic lymph

node. In general, primary HNSCC tumors are expected to

be affected by motion and shimming imperfections associ-

ated with tissue/air interfaces, and which can explain the

increased differences seen in the lower T �2 regions. Our

model simulation of tissue T �2 shows that the sensitivity of

the measured change in T �2 increases as a function of frac-

tional blood oxygenation. For HNSCC tumors, measured

oxygen partial pressure vary widely across a range of 0–

70 mmHg, but with a median of between 10 and

20 mmHg.36,37 The measured sensitivity of median tumor

tissue T �2 is thus sufficient to permit detection of clinically

significant changes in tumor tissue oxygenation for most

HNSCC tumors. However, an exception exists for anoxic,

and severely hypoxic, tumor regions (Y< 0.11), where the

T �2 value differences are lower than the measurement repeat-

ability (LoA 5 13%).

Several limitations of our study must be considered.

First, BOLD measurements are mainly sensitive to the vas-

cular space and therefore are not suitable for assessment of

tissue oxygenation in the absence of functional erythrocyte

perfused blood vessels, such as within necrotic tumor cores,

which may often be present within metastatic H&N lymph

nodes. In addition, there is uncertainty with regard to the

appropriate value for the vascular factor (fvas) used in the

quadratic model of T �2 dependence on fractional blood oxy-

genation.24,26 Second, the measured T �2 repeatability disre-

gards the presence of true physiological fluctuations in

blood flow within the tumor capillary network that lead to

transient or cyclical hypoxia, which has been reported in a

number of studies.16,38 It should be noted that the repeat-

ability of any quantitative MRI biomarker might be influ-

enced by a number of methodological factors, such as

patient setup, VOI localization, sequence parameters, and

shimming method. In terms of this study, the extent of

superior–inferior anatomical coverage used was relatively

small (<6 cm), and therefore local shimming is expected to

be more repeatable in comparison to large field of view

studies in other anatomical sites.39 Another limitation of the

study was the relatively small number and heterogeneity of

tumors imaged (8 primary and 14 metastatic nodal VOIs),

with the majority localized in the oropharynx. The distribu-

tion of T �2 for all patient VOIs, however, was distributed

normally, allowing for a reliable repeatability analysis. The

accuracy of measured T �2 values can also depend on the

choice of echo times and type of data processing. In general,

the signal-to-noise ratio (SNR) in the VOI should be

adequate for images acquired using all echo times.27 Tissues

characterized by short transverse relaxation times suffer from

low SNR in the longer echo time images, which may lead

to a subsequent overestimation of T �2 . These effects are not

likely to significantly affect the relatively long mean T �2 val-

ues measured at 3T in HNSCC nodal and primary tumor

sites (23.6 and 18.7 msec, respectively). The noise bias

should not be neglected when calculating relaxation times of

tissues with short T �2 , or in the case of subregional voxel-

based analysis, in which case Bayesian or data truncation

methods might be required.27 The number of echoes used

herein was a result of using in-phase fat and water signal

with echoes acquired with the same gradient polarity,

together with SNR threshold. Previous clinical T �2 studies

have employed between 4 and 16 echo times.19,39,40 In this

study, the signal acquired with the gradient echo sequence

was found to be dominated by noise for echo times longer

than 30 msec. In-phase fat and water echo times were cho-

sen to account for variable fat content in H&N tumors

resulting in potential signal cancellation effects.

Simulations highlight the necessity of additional meas-

urements to enable interpretation of T �2 data and quantita-

tive measurements of tissue oxygenation using BOLD

imaging, such as blood volume fraction and macroscopic

field homogeneity affecting measurement repeatability.

Future investigations of T �2 as an imaging hypoxia bio-

marker should include these confounding factors and would

benefit from a direct histological verification, which was not

available in this study.

The median T �2 values measured in the primary

tumors were significantly lower than in metastatic lymph

nodes, which is likely a consequence of a higher blood vol-

ume rather than more severe hypoxia. Similarly, interpreta-

tion of lower T �2 tumor subregions is possible if the spatial

distribution of blood volume is known. The information on

tissue oxygenation could be used to assist treatment manage-

ment, enabling the identification of radioresistant tumors,
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for which radiotherapy dose escalation, radical surgery, or

targeted chemotherapy could be used as an alternative or a

supplement of a conventional treatment.

In conclusion, our results confirm the utility of quan-

titative measurements of T �2 at 3T to detect clinically rele-

vant tumor tissue oxygenation across a wide range of BV

and oxygen tensions, including those reported for HNSCC.

This establishes tumor tissue T �2 measurement as a sensitive

and reproducible quantitative imaging technique that may

be used in future studies of tumor hypoxia.
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