(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization International Bureau
(43) International Publication Date 31 August 2017 (31.08.2017)
|||
(10) International Publication Number WO 2017/147102 AI
(51) International Patent Classification:

C07D 401/14 (2006.01) A61P 35/00 (2006.01)
C07D 471/04 (2006.01) C07D 417/14 (2006.01)
A61K 31/4184 (2006.01)
(21) International Application Number:

PCT/US20 17/0 18790
(22) International Filing Date:

22 February 2017 (22.02.2017)
(25) Filing Language: English
(26) Publication Language:
(30) Priority Data:

62/298,726 23 February 2016 (23.02.2016)
English

US
(71) Applicant: PADLOCK THERAPEUTICS, INC. [US/US]; Route 206 \& Province Line Road, Princeton, New Jersey 08543-4000 (US).
(72) Inventors: DEVRAJ, Rajesh; 301 Palomino Hill Court, Chesterfield, Missouri 63005 (US). KUMARAVEL, Gnanasambandam; 21 Appletree Lane, Lexington, Massachusetts 02420 (US). ATTON, Holly; 114 Innovation Drive, Milton Park; Abingdon Oxfordshire OX 14 4RZ (GB). BEAUMONT, Edward; 114 Innovation Drive, Milton Park; Abingdon Oxfordshire OX14 4RZ (GB). GADOULEAU, Elise; 114 Innovation Drive, Milton Park; Abingdon Oxfordshire OX 14 4RZ (GB). GLEAVE, Laura; 114 Innovation Drive, Milton Park; Abingdon Oxfordshire OX14 4RZ (GB). KERRY, Philip Stephen; 114 Innovation Drive, Milton Park; Abingdon Oxfordshire OX14 4RZ (GB). LECCI, Cristina; 114 Innovation Drive, Milton Park; Abingdon Oxfordshire OX 14 4RZ (GB). MENICONI, Mirco; 114 Innovation Drive, Milton Park; Abingdon Oxfordshire OX 14 4RZ (GB). MONCK, Nat; 114 Innovation Drive, Milton Park; Abingdon Oxfordshire OX14 4RZ (GB). PALFREY, Jordan; 114 Innovation

Drive, Milton Park; Abingdon Oxfordshire OX 14 4RZ (GB). PAPADOPOULOS, Kostas; 114 Innovation Drive, Milton Park; Abingdon Oxfordshire OX 14 4RZ (GB). TYE, Heather; 114 Innovation Drive, Milton Park; Abingdon Oxfordshire OX14 4RZ (GB). WOODS, Philip A.; 114 Innovation Drive, Milton Park; Abingdon Oxfordshire OX14 4RZ (GB).
(74) Agents: REID, Andrea L.C. et al; One International Place, 40th Floor, 100 Oliver Street, Boston, Massachu setts 021 10-2605 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, $\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BN}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}$, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
(57) Abstract: The present invention provides compounds useful as inhibitors of PAD4, compositions thereof, and methods of treating PAD4-related disorders.

HETEROARYL INHIBITORS OF PAD4

BACKGROUND OF THE INVENTION

 capable ${ }_{2}$ off catalysing, the, citrullination of arginine into citrulline within peptide sequences. $\mathrm{PAD}_{4} \mathrm{is}_{3}$ responsible ${ }_{3}$ for the, deimination or citrullination of a variety of proteins in vitro and ${ }_{i}$ in vivo, with ${ }_{1}$ consequences; of:diverse, functional responses in a variety of diseases (Jones J.E. et al, Curr. Opin. Drug, Discov. Devel., 12(5), (2009),616-627). Examples of exemplar diseases include ${ }_{\jmath}$ rheumatoid arthritis, diseases; with neutrophilic contributions to pathogenesis (for example ${ }_{2}$ vasculitis, systemic; lupus; erythematosus, ulcerative colitis) in addition to oncology indications. PAD4|inhibitors; also, have; wider applicability as tools and therapeutics for fhuman

[0002] Inhibitors; of $-P A D 4$ have, utility against Rheumatoid Arthritis (RA). RA is an autoimmune $_{2}$ disease $_{2}$ affecting, $_{5}$ approximately 1% of the population (Wegner N. et al, Immunol. Rev., $233(1))$ (2010), 34-54). It_{t} is; characterised by inflammation of articular joints jleading to debilitating $_{5}$ destruction $_{1}$ of bone, and cartilage. A weak genetic association between PPAD4 polymorphisms; and susceptibility to, RA has been suggested, albeit inconsistently, in a a number of population $_{1}$ studies $_{3}$ (Kochii Y. et al, Ann. Rheum. Dis., 70, (2011),512-515). PAD4 (along with family ${ }_{7}$ member $\left._{r} \mathrm{PAD}\right)_{\text {) , has; }}$ been detected in synovial tissue where it is responsible for the deimination of $f a_{1}$ variety, of: joint proteins. This process is presumed to lead to a break of tolerance ${ }_{2}$ to, and initiation $_{1}$ of immune responses to, citrullinated substrates such as fibrinogen, vimentin and $_{1}$ collagen in $_{1}$ RA joints. These anti-citrullinated protein antibodies (ACPA) contribute, to, disease, pathogenesis; and may also be used as a diagnostic test for RA, (e.g. the commercially, available, CCP2; or cyclic citrullinated protein $\underline{2}$ test). In addition, jincreased citrullination ${ }_{1}$ may, also, offer- additional direct contributions to disease pathogenesis through its ability $_{f}$ to,affect ${ }_{t}$ directly, the,function of ofseveral joint and inflammatory mediators, (e.g. fibrinogen, anti-thrombin, multiple; chemokines). In a smaller subset of RA patients, anti-PAD4 antibodies can ${ }_{1}$ be $_{2}$ measured $_{1}$ andmay correlate, with a more erosive form of the disease.
[0003] PAD4/inhibitors; are also, useful for the reduction of pathological neutrophil activity in a_{1} variety ${ }_{l}$ offdiseases. Studies; suggest that the process of Neutrophil Extracellular Trap (NET) formation, an_{1} innate, defence, mechanism by which neutrophils are able to immobilise ;and kill
pathogens, is associated with histone citrullination and is deficient in PAD4 knockout mice (Neeli I. et'al, J. Immunol., 180, (2008), 1895-1902 and Li P. et al, J. Exp. Med., 207(9), (2010), 1853-1862). PAD4 inhibitors may therefore: have applicability for diseases where NET formation in tissuesi contributes to local injury and disease pathology. Such diseases include, but are: not limited to, small vessel vasculitis (Kessenbrock K. et al, Nat. Med., 15(6), (2009), 623625), systemic lupus. erythematosus. (Hakkim A. et al, Proc. Natl. Acad. Sci. USA, 107(21), (2010), 9813-9818 and Villanueva E. et al, J. Immunol., 187(1), (2011), 538-52), ulcerative colitisi (Savchenko'A. et al, Pathol. Int., 61(5), (2011), 290-7), cystic fibrosis, asthma (Dworski R. ett al, J. Allergy Clin. Immunol., 127(5), (2011), 1260-6), deep vein thrombosis (Fuchs T. et al, Proc. Natl. Acad. Sci. USA, 107(36), (2010), 15880-5), periodontitis (Vitkov L. et al, Ultrastructural' Pathol., 34(1), (2010), 25-30), sepsis (Clark S.R. et al, Nat. Med., 13(4), (2007), 463-9), appendicitis: (Brinkmann V. et al, Science, 303, (2004), 1532-5), and stroke. In addition, there isi evidence that NETs, may contribute to pathology in diseases affecting the skin, eg in cutaneous: lupus erythematosis. (Villanueva E. et al, J. Immunol., 187(1), (2011), 538-52) and psoriasis: (LiniA.M. et al., J. Immunol., 187(1), (2011), 490-500), so a PAD4 inhibitor may show benefit to tackle: NET skin diseases, when administered by a systemic or cutaneous route. PAD4 inhibitors: may affect additional functions within neutrophils and have wider applicability to neutrophilic: diseases.
[0004] Studies, have: demonstrated efficacy of tool PAD inhibitors (for example chloroamidine), in a number of animal models, of disease, including collagen-induced arthritis (Willis V.C. et al, J. Immunol., 186(7), (2011), 4396-4404), dextran sulfate sodium (DSS)-induced experimental colitis; (Chumanevich A.A. et al, Am. J. Physiol. Gastrointest. Liver Physiol., 300(6), (2011), G929-G938), spinal cord repair (Lange S. et al, Dev. Biol., 355(2), (2011), 20514), and experimental autoimmune encephalomyelitis (EAE). The DSS colitis report also demonstrates; that chloro-amidine drives apoptosis of inflammatory cells both in vitro and in vivo, suggesting; that PAD4 inhibitors may be effective more generally in widespread inflammatory diseases.
[0005] PAD4 inhibitors are also useful in the treatment of cancers (Slack.J.L. et al, Cell. Mol. Life. Sci., 68(4), (2011), 709-720). Over-expression of PAD4 has been demonstrated in numerous, cancers, (Chang•X. et al, BMC' Cancer, 9, (2009), 40). An anti-proliferative role has been suggested for PAD4 inhibitors from the: observation that PAD4 citrullinates arginine
residues in histoness at the promoters of p53-target genes such as p 21 , which are involved in cell cycle: arrest and induction of apoptosis (Li P. et al, Mol. Cell' Biol., 28(15), (2008), 4745-4758).
[0006] The: aforementioned role of PAD4 in deiminating arginine residues in histones may be: indicative: of a role for PAD4 in epigenetic regulation of gene expression. PAD4 is the primary PAD family member observed to be resident in the nucleus as well as the cytoplasm. Early evidence that PAD4 may act as a histone demethyliminase as well as a deiminase is inconsistent and unproven. However, it may reduce histone arginine methylation (and hence epigenetic: regulation associated with this mark) indirectly via depletion of available arginine residues by conversion to citrulline. PAD4 inhibitors are useful as epigenetic tools or therapeutics: for affecting; expression of varied target genes in additional disease settings. Through such mechanisms, PAD4 inhibitors may also be effective in controlling citrullination levels; in stem cells: and may therefore therapeutically affect the pluripotency status and differentiation potential of diverse stem cells including, but not limited to, embryonic stem cells, neural stem cells, haematopoietic stem cells and cancer stem cells. Accordingly, there remains an unmet: need to identify and develop PAD4 inhibitors for the treatment of PAD4-mediated disorders.

SUMMARY OF THE INVENTION

[0007] It:has now been found that compounds of formula I are useful as inhibitors of PAD4:

I
or a pharmaceutically acceptable salt thereof, wherein each of Ring A, Ring B, $R^{1}, R^{2}, R^{3}, X^{1}, L$, and R^{4} is; as; defined and described herein.
[0008] It has, also been found that compounds of formula \mathbf{I} ' are useful as inhibitors of PAD4:

I
or a pharmaceutically acceptable: salt thereof, wherein each of Ring A, Ring B, $R^{1}, R^{2}, R^{3}, X^{1}, L$, R^{4} and n is as: defined and described herein.
[0009] In some embodiments, a provided compound demonstrates selectivity for PAD4 with respect to PAD 2 . The present invention also provides pharmaceutically acceptable compositions comprising; a provided compound. Provided compounds are useful in treatment of various disorders associated with PAD4. Such disorders are described in detail, herein, and include, for example: rheumatoid arthritis, vasculitis, systemic lupus erythematosus, ulcerative colitis, cancer, cystic: fibrosis, asthma, cutaneous lupus erythematosis, and psoriasis.

DETAILED DESCRIPTION OF THE INVENTION

1. General'Description of_Certain_Aspects_of the Invention

[0010] In. some embodiments, such compounds include those of the formulae described herein, or a pharmaceutically acceptable salt thereof, wherein each variable is as defined herein and described in embodiments. Such compounds have the structure of formula I:

I
or a pharmaceutically acceptable: salt thereof, wherein:
Ring A is,

wherein Ring; A is, optionally substituted with 1-4 groups, selected from fluorine, -CN, -OR, or C_{1-6} aliphatic optionally substituted with 1-3 fluorine atoms;

Ring; B isia. 5-6 membered .heteroaryl ring having; 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur.;
R^{1} is hydrogen, -Cy , or C_{1-6} aliphatic optionally substituted with -Cy and optionally further substituted with 1-4 groups selected from fluorine, -CN, or -OR;
each - Cy is independently 4-7 membered saturated monocyclic ring having 0-2 heteroatoms independently selected from nitrogen, oxygen, or sulphur, wherein -Cy is optionally substituted with 1-4 groups selected from fluorine, -CN, or -OR;
R^{2} is hydrogen, - CN , - OR, - Cy , or $\mathrm{C} 1-10$ aliphatic optionally substituted with -Cy and optionally further 'substituted with 1-5 groups selected from fluorine, -CN , or - OR;
X^{1} is N^{-}or $\mathrm{C}\left(\mathrm{R}^{3}\right)$;
R^{3} isi-R or--OR;
each R. is independently hydrogen or C1-6 aliphatic optionally substituted with 1-3 fluorine atoms;
L. isi selected from a covalent bond or a C1-6 membered straight or branched, saturated or unsaturated hydrocarbon chain wherein one: methylene : unit of L is optionally replaced by $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{\mathrm{y}}\right)$-, wherein R^{y} is R or $-\mathrm{CH}_{2}$ phenyl; and
R^{4} is; halogen, R, phenyl, or a 5-6-membered heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulphur, wherein R^{4} is optionally substituted with 1-4 groups independently selected from halogen, -CN, -OR, or C1-6 aliphatic optionally substituted with 1-3 fluorine atoms
[0011] In some : embodiments, such compounds include those: of the formulae described herein, or a pharmaceutically acceptable salt thereof, wherein each variable is as defined herein and described in embodiments. Such compounds have the structure of'formula I':

I^{\prime}
or•a pharmaceutically acceptable salt thereof, wherein:

Ring
A

wherein Ring A is optionally substituted with 14. groups : selected from fluorine, -CN, -OR, or C_{1-6} aliphatic optionally substituted with 1-3 fluorine : atoms;

Ring; B is a. 5-6 membered heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
R^{1} is; hydrogen, -Cy , or C_{1-6} aliphatic optionally substituted with -Cy and optionally further substituted with 1-4 groups selected from fluorine, -CN, or -OR;
each - Cy is: independently a 6-membered aryl ring containing $0-2$ nitrogen atoms, or a 4-7 membered saturated monocyclic ring having 0-2 heteroatoms independently selected from nitrogen, oxygen, or sulphur, wherein -Cy is optionally substituted with $1-4$ groups selected from fluorine, - CN , or-OR;
R^{2} is, hydrogen, $-\mathrm{CN},-\mathrm{OR},-\mathrm{Cy}$, or C_{1-10} aliphatic optionally substituted with -Cy and optionally further substituted with 1-5 groups selected from fluorine, -CN , or -OR ; or:
two, $\mathrm{R}^{2 ;}$ groups ion the same carbon atom are optionally taken together to form $=\mathrm{O}$;
n_{I} is; 1,2 , or 3 ;
X^{1} is N or $\cdot \mathrm{C}\left(\mathrm{R}^{3}\right)$;
R^{3} is ; $-R$, halogen, or $-O R$;
each R is, independently hydrogen or C1-6 aliphatic optionally substituted with 1-3 fluorine atoms;
L. is selected from a covalent bond or a C1-6 membered straight or branched, saturated or unsaturated hydrocarbon chain wherein one methylene : unit of ${ }^{\prime} \mathrm{L}$ is optionally replaced by -$\mathrm{S}(\mathrm{O})_{2}-$ or $-\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{\mathrm{y}}\right)$-, wherein R^{y} is R or $-\mathrm{CH}_{2}$ phenyl; and
$R^{4 .}$ is: halogen, R, phenyl, or a 5-6-membered heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulphur, wherein R^{4} is optionally substituted with 1-4 groups , independently selected from halogen, $-\mathrm{CN},-\mathrm{OR},-\mathrm{C}(\mathrm{O}) \mathrm{OH}$, or C_{1}. ${ }_{6}$ aliphatic :optionally substituted with 1-3 fluorine atoms.

2. Definitions:

[0012] Compounds of the present invention include those described generally herein, and are further 'illustrated by the: classes, subclasses, and species disclosed herein. As used herein, the following ; definitions ; shall apply unless . otherwise : indicated. For purposes of this invention, the chemical elements, are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, $75^{\text {th }}$. Ed. Additionally, general principles of organic : chemistry are: described in "Organic Chemistry", Thomas Sorrell, University Science Books, Sausalito: 1999, and "March's Advanced Organic Chemistry", 5 ${ }^{\text {th }}$ Ed., Ed.: Smith, M.B. and March, J., John Wiley \& Sons, New York: 2001, the entire contents of which are hereby incorporated by reference.
[0013] The:term "aliphatic" or" "aliphatic : group", as used herein, means a straight-chain (i.e., unbranched) or branched, substituted or unsubstituted hydrocarbon chain that is completely saturated or that: contains, one or more : units of unsaturation, or a monocyclic hydrocarbon or bicyclic: hydrocarbon that ; is completely saturated or that contains one or more units of unsaturation, but which is, not aromatic ; (also referred to herein as "carbocycle," "cycloaliphatic" or "cycloalkyl"), that has, a single point of" attachment to the rest of" the molecule. Unless otherwise : specified, aliphatic ; groups, contain 1-6 aliphatic carbon atoms. In some embodiments, aliphatic: groups, contain 1-5 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1-4. aliphatic : carbon atoms. In still other embodiments, aliphatic groups contain 1-3 aliphatic ; carbon atoms, and in yet other embodiments, aliphatic groups contain 1-2 aliphatic carbon atoms. In some embodiments, "cycloaliphatic" (or "carbocycle" or "cycloalkyl") refers to, a monocyclic: C3-C6 hydrocarbon that is, completely saturated or that contains one or more units ; of ${ }^{\prime}$ unsaturation, but which is, not aromatic, that has a single point of attachment to the rest of the: molecule. Suitable : aliphatic groups, include, but are not limited to, linear or branched,
substituted or unsubstituted alkyl, alkenyl, alkynyl groups and hybrids thereof such as (cycloalkyl)alkyl, (cycloalkenyl)alkyl or (cycloalkyl)alkenyl.
[0014] As used herein, the term "pharmaceutically acceptable salt" refers to those salts which are, within the scope: of" sound medical judgment, suitable for use in contact with the tissues of humans: and lower animals without undue toxicity, irritation, allergic response and the like, and are: commensurate: with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the: art. For example, S. M. Berge et al., describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, incorporated herein by reference. Pharmaceutically acceptable salts of the compounds of this invention include those derived from suitable inorganic and organic acids and bases. Examples of pharmaceutically acceptable, nontoxic: acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic; acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using, other methods used in the art such as ion exchange. Other pharmaceutically acceptable: salts include: adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p -toluenesulfonate, undecanoate, valerate salts, and the like.
[0015] Salts; derived from appropriate: bases include alkali metal, alkaline earth metal, ammonium and $\mathrm{N}^{+}\left(\mathrm{C}_{1-4} \text { alkyl }\right)_{4}$ salts. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable; salts, include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine: cations; formed using counterions, such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate and aryl sulfonate.
[0016] Unless, otherwise stated, structures depicted herein are also meant to include all isomeric; (e.g., enantiomeric, diastereomeric, and geometric (or conformational)) forms of the
structure; for example, the R and S configurations for each asymmetric center, Z and E double bond isomers, and Z and E conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, and geometric (or conformational) mixtures of the present compoundsi are: within the scope: of the invention. Unless otherwise stated, all tautomeric forms of the: compounds of the invention are within the scope of the invention. Additionally, unless otherwise: stated, structures depicted herein are also meant to include compounds that differ only in the: presence: of one or more: isotopically enriched atoms. For example, compounds having the present structures. including the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a ${ }^{13} \mathrm{C}$ - or ${ }^{14} \mathrm{C}$-enriched carbon are within the scope of this invention. Such compoundsi are useful, for example, as analytical tools, as probes in biological assays, or as therapeutic agents in accordance with the present invention.
[0017] The: terms, "measurable: affinity" and "measurably inhibit," as used herein, means a measurable change in PAD4 activity between a sample comprising a compound of the present invention, or composition thereof, and PAD4, and an equivalent sample comprising PAD4 in the absence of said compound, or composition thereof.

3. Description of Exemplary Compounds

[0018] According; to one aspect, the present invention provides a compound of formula \mathbf{I} :

I
or a pharmaceutically acceptable: salt thereof, wherein:
Ring
A
is

wherein Ring; A is optionally substituted with 1-4 groups selected from fluorine, -CN, -OR, or ${ }^{-}$C1-6 aliphatic optionally substituted with 1-3 fluorine : atoms;

Ring; B is: a. 5-6 membered heteroaryl ring having ; 1-3 heteroatoms independently selected from nitrogen, oxygen, or'sulfur.;
R^{1} is, hydrogen, - Cy , or ${ }^{\text {C1 }}-6$ aliphatic optionally substituted with -Cy and optionally further substituted with 1-4 groups , selected from fluorine, -CN , or -OR;
each. -Cy is: independently 4-7 membered saturated monocyclic ring having 0-2 heteroatoms independently selected from nitrogen, oxygen, or sulphur, wherein -Cy is optionally substituted with 1-4 groups , selected from fluorine, -CN , or -OR;
R^{2} is hydrogen, $-\mathrm{CN},-\mathrm{OR},-\mathrm{Cy}$, or C_{1-10} aliphatic optionally substituted with -Cy and optionally further 'substituted with 1-5 groups selected from fluorine, -CN , or - OR ;
X^{1} is N^{-}or $\mathrm{C}\left(\mathrm{R}^{3}\right)$;
R^{3} is -R or--OR;
each R. is independently hydrogen or C1-6 aliphatic optionally substituted with 1-3 fluorine atoms;
L. isi selected from a covalent bond or a. C_{1-6}, membered straight or branched, saturated or unsaturated hydrocarbon chain wherein one methylene : unit of ${ }^{\bullet} \mathrm{L}$ is optionally replaced by $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{\mathrm{y}}\right)$-, wherein R^{y} is R or--CH2phenyl; and
R^{4} is; halogen, R , phenyl, or a 5-6-membered heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulphur, wherein R^{4} is optionally substituted with 1-4 groups independently selected from halogen, -CN, -OR, C1-6 aliphatic optionally substituted with 1-3 fluorine atoms.
[0019] According ; to another aspect, the present invention provides a compound of formula I':

I^{\prime}

or a pharmaceutically acceptable : salt thereof, wherein:
Ring
A
is

wherein Ring A is optionally substituted with 14 groups : selected from fluorine, -CN, -OR, or C1-6 aliphatic optionally substituted with 1-3 fluorine : atoms;

Ring ; B is a , 5-6 membered heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
R^{1} is, hydrogen, -Cy , or C1-6 aliphatic optionally substituted with -Cy and optionally further substituted with 1-4 groups selected from fluorine, -CN, or -OR;
each -Cy is; independently a 6-membered aryl ring containing 0-2 nitrogen atoms, or a 4-7 membered saturated monocyclic ring having $0-2$ heteroatoms independently selected from nitrogen, oxygen, or sulphur, wherein -Cy is optionally substituted with 1-4 groups selected from fluorine, - CN , or -OR ;
R^{2} is ; hydrogen, -CN , - OR, - Cy, or C1-10, aliphatic optionally substituted with -Cy and optionally further substituted with 1-5 groups selected from fluorine, -CN , or -OR ; or:
two, R^{2} groups ; on the same carbon atom are optionally taken together to form $=\mathrm{O}$;
n_{l} is; 1,2 , or 3 ;
X^{1} is, N or $\cdot \mathrm{C}\left(\mathrm{R}^{3}\right)$;
R^{3} is ; -R , halogen, or -OR ;
each R is, independently hydrogen or C1-6 aliphatic optionally substituted with 1-3 fluorine atoms;
L. isi selected from a covalent bond or a. C1-6 membered straight or branched, saturated or unsaturated hydrocarbon chain wherein one methylene : unit of L is optionally replaced by -$\mathrm{S}(\mathrm{O})_{2}-$ or $-\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{\mathrm{y}}\right)$-, wherein R^{y} is R or $-\mathrm{CH}_{2}$ phenyl; and
R^{4} is halogen, R, phenyl, or a 5-6-membered heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulphur, wherein R^{4} is optionally substituted with 1-4 groups , independently selected from halogen, -CN , $-\mathrm{OR},-\mathrm{C}(\mathrm{O}) \mathrm{OH}$, or C_{1}. ${ }_{6}$ aliphatic :optionally substituted with 1-3 fluorine atoms.
[0020] As.defined above, X^{1} is. N or $\mathrm{C}\left(\mathrm{R}^{3}\right)$. In some embodiments, X^{1} is N . In some embodiments, X^{1} is: $\mathrm{C}\left(\mathrm{R}^{3}\right)$. In certain embodiments, the present invention provides a compound of formula $\mathbf{I}-\mathbf{a}$ or $\mathbf{I}-\mathbf{b}$:

or•a.pharmaceutically acceptable salt thereof, wherein each of $\operatorname{Ring} A$, Ring $B, R^{1}, R^{2}, R^{3}, L$, and R^{4} isi as: defined and described herein.
[0021] In certain embodiments, the: present invention provides a compound of formula I'-a or I'-b:

or• a pharmaceutically acceptable salt thereof, wherein each of ${ }^{\prime}$ Ring $A, R i n g B, R^{1}, R^{2}, R^{3}, L, R^{4}$ and n_{l} is; as; defined and described herein.
[0022] As, defined above : and described herein, R^{1} is hydrogen, -Cy , or C_{1-6} aliphatic optionally substituted with -Cy and optionally further substituted with 1-4 groups selected from fluorine, -CN, or--OR; each -Cy is, independently 4-7 membered saturated monocyclic ring
having; 0-2 heteroatoms independently selected from nitrogen, oxygen, or sulphur, wherein -Cy isi optionally substituted with 1-4 groups , selected from fluorine, -CN, or -OR.
[0023] In. some : embodiments, R^{1} is hydrogen. In some embodiments, R^{1} is $-C y$. In some embodiments, R^{1} is C1-6 aliphatic optionally substituted with 1-4 groups selected from fluorine, $C N$, or-OR. In some : embodiments, R^{1} is C1-3 aliphatic. In some embodiments, R^{1} is methyl. In some : embodiments, R^{1} is ethyl. In some : embodiments, R^{1} is propyl. In some embodiments, R^{1} is:- CH_{2}-cyclobutyl optionally substituted with methyl and -OH . In some embodiments, each-Cy is independently a. 4-7 membered saturated monocyclic ring having 0-2 heteroatoms independently selected from nitrogen, oxygen or sulphur. In some embodiments, -Cy is optionally substituted with 1-4 groups selected from fluorine, -CN , or -OR . In some embodiments, -Cy is phenyl. In some embodiments, -Cy is pyridyl.
[0024] In some :embodiments, -Cy is a 6-membered aryl ring containing 0-2 nitrogen atoms.
[0025] In some embodiments, R^{1} is phenyl. In some embodiments, R^{1} is

some embodiments, R^{1} is

In some embodiments, R^{1} is

[0026] As, defined above : and described herein, R^{2} is hydrogen, $-\mathrm{CN},-\mathrm{OR},-\mathrm{Cy}$, or C_{1-10} aliphatic: optionally substituted with -Cy and optionally further substituted with 1-5 groups selected from fluorine, -CN , or -OR . In some embodiments, R^{2} is hydrogen. In some embodiments, R^{2} is; C1-10, aliphatic : optionally substituted with 1-5 groups selected from fluorine, -CN , or - OR. In some : embodiments, R^{2} is, C_{1-10} aliphatic optionally substituted with -Cy and optionally further substituted with 1-5 groups, selected from fluorine, - CN , or -OR . In some embodiments, R^{2} is $-C y$. In some : embodiments, R^{2} is methyl. In some embodiments, R^{2} is ethyl. In some : embodiments, R^{2} is propyl. In some embodiments, R^{2} is butyl. In some embodiments, R^{2} is; pentyl. In some embodiments, R^{2} is hexyl. In some embodiments, R^{2} is cyclopropyl. In some : embodiments, R^{2} is cyclobutyl. In some embodiments, R^{2} is cyclopentyl. In some : embodiments, R^{2} is, cyclohexyl. In some embodiments, R^{2} is cyclopropylmethyl. In some ; embodiments, R^{2} is; cyclobutylmethyl. In some embodiments, R^{2} is cyclopentylmethyl. In some : embodiments, R^{2} is, cyclohexylmethyl. In some embodiments, R^{2} is cyclopropylethyl. In
some : embodiments, R^{2} is cyclobutylethyl. In some embodiments, R^{2} is cyclopentylethyl. In some : embodiments, R^{2} is cyclohexylethyl. In some embodiments, R^{2} is -CH 2 -cyclopropyl or -CH_{2}-cyclobutyl. In some : embodiments, R^{1} is. $-\mathrm{CH}_{2}$-cyclobutyl optionally substituted with methyl and --OH. In some embodiments, R^{1} is selected from those depicted in Table 1, below.
[0027] In some: embodiments, R^{2} is. C1-10 aliphatic, substituted with 1-5 fluorine atoms. In some: embodiments, $R^{2 ;}$ is. C_{1-10} aliphatic, substituted with $1-5$ fluorine atoms. In some embodiments, R^{2} is C_{1-10} aliphatic, substituted with 1 fluorine atom. In some embodiments, R^{2} is C1-10, aliphatic, substituted with 2 fluorine atoms. In some embodiments, R^{2} is C1-10 aliphatic, substituted .with 3 fluorine atoms. In some embodiments, R^{2} is $\mathrm{Cl}-10$ aliphatic, substituted with 4 fluorine : atoms. In some :embodiments, R^{2} is. C_{1-10} aliphatic, substituted with 5 fluorine atoms. In some: embodiments, R^{2} is methyl, substituted with 1-3 fluorine atoms. In some embodiments, R^{2} is, trifluoromethyl. In some : embodiments, R^{2} is ethyl, substituted with 1-5 fluorine atoms. In some : embodiments, R^{2} is 2,2,2-trifluoroethyl. In some embodiments, R^{2} is propyl, substituted with. 1-5 fluorine: atoms. In some: embodiments, R^{2} is 3,3,3-trifluoropropyl. In some embodiments, R^{2} is; butyl, substituted with 1-5 fluorine atoms. In some embodiments, R^{2} is 4,4,4-trifluorobutyl. In some: embodiments, R^{2} is pentyl, substituted with $1-5$ fluorine atoms. In some : embodiments, R^{2} is. 5,5,5-trifluoropentyl. In some embodiments, R^{2} is hexyl, substituted with. 1-5 fluorine : atoms. In some: embodiments, R^{2} is. 6,6,6-trifluorohexyl. In some embodiments, R^{2} is; selected from those : depicted in Table 1, below.
[0028] In some :embodiments, R^{2} is phenyl. In some embodiments, R^{2} is n-propyl. In some embodiments, R^{2} is, iso-propyl. In some embodiments, R^{2} is pyridyl. In some embodiments, R^{2} is, fluoro. In some embodiments, R^{2} is, bromo. In some embodiments, R^{2} is benzyl. In some embodiments, R^{2} is; - One. In some : embodiments, R^{2} is $-O H$. In some embodiments, R^{2} is CN . In some :embodiments, two, R^{2} groups are taken together to form $=0$.
[0029] In some embodiments, R^{2} is

In some embodiments, R^{2}

In some embodiments, R^{2} is

In some embodiments, R^{2} is

In some embodiments, R^{2} is
[0030] In some embodiments, R^{2} is
 . In some embodiments, R^{2}

In some embodiments, R^{2} is

is
In some embodiments, R^{2} is

[0031] In some embodiments, R^{2} is

In some embodiments, R^{2} is

In some embodiments, R^{2} is

In some embodiments, R^{2} is

In some embodiments, R^{2} is

In some embodiments, R^{2} is

[0032] As, defined above : and described herein, R^{3} is $-R$ or $-O R$. In some embodiments, R^{3} is; hydrogen. In some : embodiments, R^{3} is C1-6 aliphatic optionally substituted with 1-3 fluorine
atoms. In some: embodiments, R^{3} is -OCH 3 . In some embodiments, R^{3} is selected from those depicted in Table: 1 , below.
[0033] In some:embodiments, R^{3} is halogen. In some embodiments, R^{3} is fluoro.
[0034] A
As. defined
above, Ring
A
is

wherein Ring A is optionally substituted with 1-4 groups selected from fluorine, -CN, -OR, or C_{1-6} aliphatic optionally substituted with 1-3 fluorine atoms.
[0035] In some embodiments, Ring A is selected from
 or

In some embodiments, Ring A is
 In some embodiments, Ring

In some embodiments, Ring A is

In some embodiments,

Ring A is.

In some embodiments, Ring A is

In some

embodiments, Ring A is

[0036] In some embodiments, Ring A is

In some embodiments, Ring A

In some

embodiments, Ring A is

[0037] In some embodiments, Ring A is

. In some embodiments, Ring A is

In some embodiments, Ring A is
 In some embodiments,

Ring A is

In some embodiments, Ring A is

In ${ }_{\text {s }}$ ome embodiments, Ring; A is selected from those depicted in Table 1, below.
[0038] In some embodiments, Ring. B is a 5-membered heteroaryl ring having 1-3 heteroatoms; independently selected from nitrogen, oxygen, or sulfur. In other embodiments, Ring $_{;} B$ is a a 6 -membered heteroaryl ring; having 1-2 nitrogens.
[0039] In some: embodiments, Ring ${ }_{\text {; }}$ B is, imidazolyl, pyrazolyl, pyrrolyl, pyridyl, or thiazolyl. In $_{\downarrow}$ some: embodiments, Ring, B is, imidazolyl, pyrazolyl, pyrrolyl, or thiazolyl. In some embodiments, Ring; B is pyridyl. In some embodiments, Ring B is selected from those depicted in Table 1 , below.
[0040] In some: embodiments, Ring B is pyrrolyl. In some embodiments, Ring B is

In some embodiments, Ring B is

embodiments, Ring B is

In some embodiments, Ring B is

In some embodiments, Ring B

[0041] In some embodiments, Ring B is imidazolyl. In some embodiments, Ring B is

[0042] In some: embodiments, Ring; B is phenylenyl. In some embodiments, Ring B is pyridonenyl. In some embodiments, Ring B is pyridinyl. In some embodiments, Ring B is pyrrolenyl. In some; embodiments, Ring B is pyazolenyl. In some embodiments, Ring B is thiazolenyl.
[0043] In some: embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

In some
embodiments, Ring; B with its. R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

In some
embodiments, Ring; B with its. R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

In some

In some
embodiments, Ring; B with its. R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

. In some embodiments,
embodiments, Ring; B with its, R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

In some embodiments, Ring B
Ring; B with its; R^{2} and $-L-R^{4}$ substituents is

In some embodiments, Ring B with its

R^{2} and $-L-\mathrm{R}^{4}$ substituents is

In some embodiments, Ring B with its

In some embodiments, Ring B with its R^{2}

and -L-R ${ }^{4}$ substituents is

In some embodiments, Ring B with its R^{2}
and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is
 In some embodiments, Ring B with its R^{2} and -L-
and -L-R ${ }^{4}$ substituents is

. In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is

In some embodiments, Ring B with its R^{2} and $-L-R^{4}$

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is
 In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is

substituents is

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
 In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is

. In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$

. In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$

substituents is
In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is

[0044] In some embodiments, Ring B with its R^{2} and -L-R ${ }^{4}$ substituents is

some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

. In some
embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

In some
embodiments, Ring B with its R^{2} and $-L-R^{4}$ substituents is

In some
embodiments, Ring B with its R^{2} and $-L-R^{4}$ substituents is

In some

In some
embodiments, Ring B with its R^{2} and $-L-R^{4}$ substituents is

In some
embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

In some
embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

In some

In some
embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

In some embodiments,
embodiments, Ring B with its R^{2} and $-L-R^{4}$ substituents is

In some embodiments,
Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

. In some embodiments, Ring
Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

B with its R^{2} and -L-R ${ }^{4}$ substituents is

In some embodiments, Ring B

In some embodiments, Ring B with its R^{2}
and -L-R ${ }^{4}$ substituents is

In some embodiments, Ring B with its R^{2} and -

. In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
L-R ${ }^{4}$ substituents is

substituents is

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$

In some embodiments, Ring B with its R^{2} and $-L-R^{4}$
substituents is

In some embodiments, Ring B with its R^{2} and $-L-R^{4}$

[0045] In some embodiments, Ring B with its R^{2} and $-L-R^{4}$ substituents is

some embodiments, Ring B with its R^{2} and $-L-R^{4}$ substituents is
In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is . In some

embodiments, Ring B with its R^{2} and $-L-R^{4}$ substituents is

embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is \qquad In some embodiments,

Ring B with its R^{2} and $-L-R^{4}$ substituents is \qquad In some embodiments, Ring B with

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-$
its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is
R^{4} substituents is

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$
substituents is
 In some embodiments, Ring B with its R^{2} and $-L-R^{4}$
 . In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

In some
In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

In some embodiments,
embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

In some embodiments,
 In some embodiments, Ring B with
Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is

its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is \quad. In some embodiments, Ring B with its R^{2} and -L-

R^{4} substituents is
 In some embodiments, Ring B with its R^{2} and $-L-R^{4}$ substituents is
 In some embodiments, R ing B with its R^{2} and $-L-R^{4}$

substituents is In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents

is

In
[0046] In some embodiments, Ring B with its R^{2} and $-L-R^{4}$ substituents is
 . In some
some embodiments, Ring B with its R^{2} and $-L-R^{4}$ substituents is

. In some
embodiments, Ring B with its R^{2} and $-L-R^{4}$ substituents is

embodiments, Ring B with its R^{2} and $-\mathrm{L}^{2} \mathrm{R}^{4}$ substituents is \quad In some embodiments, Ring B with its R^{2} and $-\mathrm{L}-\mathrm{R}^{4}$ substituents is [0047] In some embodiments, R^{1} is methyl, R^{2} is cyclopropylmethyl, X^{1} is $C\left(R^{3}\right), R^{3}$ is $-H$, and Ring A is
 In some embodiments, R^{1} is methyl, R^{2} is cyclopropylmethyl, X^{1} is $C\left(R^{3}\right), R^{3}$ is $-H$, and Ring A is

In some embodiments, R^{1} is methyl, R^{2} is
cyclopropylmethyl, X^{1} is $\mathrm{C}\left(\mathrm{R}^{3}\right), \mathrm{R}^{3}$ is $-\mathrm{OCH}_{3}$, and Ring A is

[0048] As, defined above : and described herein, L is selected from a covalent bond or a C1-6 membered straight : or branched, saturated or unsaturated hydrocarbon chain wherein one methylene : unit of L is, optionally replaced by $-\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{y}\right)$-, wherein R^{y} is R or $-\mathrm{CH}_{2}$ phenyl. In some : embodiments, L is, a, covalent bond. In some embodiments, L is $-(\mathrm{CH} 2)$. In some embodiments, L is, $-C(O) N\left(R^{y}\right)$-. In some embodiments, R^{y} is R. In some embodiments, R^{y} is hydrogen. In some : embodiments, R^{y} is. C_{1-6} aliphatic optionally substituted with 1-3 fluorine atoms. In some : embodiments, R^{y} is, -CH 2 phenyl. In some embodiments, -L - is selected from those: depicted in Table : 1, below.
[0049] In some : embodiments, L is, a C_{1-6}, membered straight or branched, saturated or unsaturated hydrocarbon chain wherein one methylene unit of L is optionally replaced by $\mathrm{S}(\mathrm{O}) 2$-. In some :embodiments, L is, $-\mathrm{S}(\mathrm{O}) 2$-. In some embodiments, L is -CH 2 CH 2 -.
[0050] In some embodiments, L is

In some embodiments, L is

In some embodiments, L is

In some embodiments, L is

In some embodiments, L is

In some embodiments, L is

[0051] As. defined above and described herein, R^{4} is halogen, R, phenyl, or a 5-6-membered heteroaryl ring; having; 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulphur, wherein R^{4} is optionally substituted with 1-4 groups independently selected from halogen, -CN, -OR, or C_{1-6} aliphatic optionally substituted with 1-3 fluorine atoms.
[0052] In some : embodiments, R^{4} is, halogen. In some embodiments, R^{4} is -Br . In some embodiments, R^{4} isi cyano. In some embodiments, R^{4} is phenyl. In some embodiments, R^{4} is pyridyl. In some : embodiments, R^{4} is a 5-6 membered heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulphur, wherein R^{4} is optionally substituted with 1-4 groups independently selected from halogen, -CN, -OR, or C1-6 aliphatic optionally substituted with 1-3 fluorine : atoms. In some embodiments, R^{4} is selected from those depicted in Table: 1, below.
[0053] In some:embodiments, R^{4} is, substituted with - $\mathrm{C}(\mathrm{O}) \mathrm{OH}$.
[0054] In some embodiments, R^{4} is, methyl. In some embodiments, R^{4} is ethyl. In some embodiments, R^{4} is; hydrogen. In some embodiments, R^{4} is cyclopropyl. In some embodiments, R^{4} is; cyclobutyl. In some embodiments, R^{4} is n-propyl. In some embodiments, R^{4} is iso-propyl. $\mathrm{In}_{\text {I }}$ some :embodiments, R^{4} is, fluoro.
[0055] In some embodiments, R^{4} is

In some embodiments, R^{4} is

In some embodiments, R^{4} is

In some embodiments, R^{4} is

In some embodiments, R^{4} is

In some embodiments, R^{4}

In some embodiments, R^{4} is
 In some embodiments, R^{4} is

[0056] In some embodiments, R^{4} is
 In some embodiments, R^{4} is

[0057] In some embodiments, R^{4} is

In some embodiments, R^{4} is
 In some embodiments, R^{4} is
 In some

[0058] As, defined above and described herein, n is. 1,2 , or 3 . In some embodiments, n is 1 . In_{l} some; embodiments, n is, 2 . In some embodiments, n is 3 . In some embodiments, n is selected from those depicted in Table: 1, below.
[0059] In some embodiments, the compound of formula \mathbf{I} or formula \mathbf{I} ' is selected from those; depicted below in Table: 1 .

Table 1. Exemplary Compounds of Formula I or Formula I'

I-1

I-3

I-6

I-7

I-9

I-10

I-11

I-14

I-15

I-16

I-17
I-18

I-19

I-20

I-23

I-24

I-26
I-25

I-27
I-28

I-31

I-32

I-39 I-40

I-41

I-42

I-43
I-44

I-45
I-46

I-47

I-49

I-48

I-50

I-51

I-55

I-54
I-52

I-56

I-61

I-63

I-65

I-64

I-66

I-67

I-69

I-71

I-73
I-70

I-75
I-76

I-81
I-82

I-83
I-84

I-85
I-86

I-87

I-89

I-90

I-91

I-93

I-94

I-95
I-96

I-97
I-98

I-99
I-100

I-101
I-102

I-103
I-104

I-111
I-112

I-114

I-119
I-120

[0060] In certain embodiments, the: present invention provides any compound described above, and herein, or a pharmaceutically acceptable salt thereof. In some embodiments, the present invention provides a compound as depicted in Table 1, above, or a pharmaceutically acceptable: salt thereof.
[0061] In some embodiments, the present invention provides any compound described above and herein in isolated form.

4. Uses, Formulation and'Administration

Pharmaceutically'acceptable compositions

[0062] According; to another embodiment, the invention provides a composition comprising a. compound of this invention or a pharmaceutically acceptable derivative thereof and a pharmaceutically acceptable carrier, adjuvant, or vehicle. The amount of compound in compositions of this invention is such that is effective to measurably inhibit PAD4, in a biological sample: or in a patient. In certain embodiments, the amount of compound in compositions of this invention is such that is effective to measurably inhibit PAD4, in a biological sample or in a patient. In certain embodiments, a composition of this invention is formulated for administration to a patient in need of such composition. In some embodiments, a composition of this invention is formulated for oral administration to a patient.
[0063] The: term "subject," as used herein, is used interchangeably with the term "patient" and meansi an animal, preferably a mammal. In some embodiments, a subject or patient is a human. In other embodiments, a subject (or patient) is a veterinary subject (or patient). In some embodiments, a veterinary subject (or patient) is a canine, a feline, or an equine subject.
[0064] The: term "pharmaceutically acceptable carrier, adjuvant, or vehicle" refers to a nontoxic: carrier, adjuvant, or vehicle that does not destroy the pharmacological activity of the compound with which it is: formulated. Pharmaceutically acceptable carriers, adjuvants or vehicles; that may be: used in the: compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances. such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride: mixtures, of saturated vegetable: fatty acids, water, salts or electrolytes, such as protamine: sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
[0065] Compositions; of the present invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The: term "parenteral" as, used herein includes subcutaneous, intravenous, intramuscular, intraarticular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques. Preferably, the compositions are administered orally, intraperitoneally or intravenously. Sterile injectable forms of the compositions of this invention
may be: aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using; suitable dispersing or wetting agents and suspending agents. The sterile: injectable: preparation may also be a sterile injectable solution or suspension in a nontoxic: parenterally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among; the: acceptable: vehicles and solvents that may be employed are water, Ringer's solution and isotonic: sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium.
[0066] For this purpose, any bland fixed oil may be employed including synthetic mono- or di-glycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing; agents, that are commonly used in the formulation of pharmaceutically acceptable: dosage: forms including emulsions and suspensions. Other commonly used surfactants, such asi Tweens, Spans and other emulsifying agents or bioavailability enhancers which are: commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage: forms may also be used for the purposes of formulation.
[0067] Pharmaceutically acceptable compositions of this invention may be orally administered in any orally acceptable dosage: form including, but not limited to, capsules, tablets, aqueousi suspensionst or solutions. In the case of tablets for oral use, carriers commonly used include: lactose: and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying; and suspending agents. If desired, certain sweetening, flavoring or coloring; agents; may also, be; added.
[0068] Alternatively, pharmaceutically acceptable compositions of this invention may be administered in the, form of suppositories for rectal administration. These can be prepared by mixing; the: agent with a suitable non-irritating excipient that is solid at room temperature but liquid at rectal temperature and therefore: will melt in the rectum to release the drug. Such materials; include; cocoa butter, beeswax and polyethylene glycols.
[0069] Pharmaceutically acceptable compositions of this invention may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including; diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
[0070] Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see: above) or in a suitable enema formulation. Topically-transdermal patches: may also be: used.
[0071] For topical applications, provided pharmaceutically acceptable compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers. Carriers for topical administration of compounds of this invention include, but are: not: limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene: compound, emulsifying wax and water. Alternatively, provided pharmaceutically acceptable compositions can be formulated in a suitable lotion or cream containing; the: active components suspended or dissolved in one or more pharmaceutically acceptable: carriers. Suitable carriers, include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60 , cetyl esters, wax, cetearyl alcohol, 2 -octyldodecanol, benzyl alcohol and water.
[0072] For ophthalmic: use, provided pharmaceutically acceptable compositions may be formulated as micronized suspensions, in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with or without a preservative such as benzylalkonium chloride. Alternatively, for ophthalmic uses, the pharmaceutically acceptable compositions may be:formulated in an ointment such as petrolatum.
[0073] Pharmaceutically acceptable: compositions of this invention may also be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques wellknown in the: art of pharmaceutical formulation and may be prepared as solutions in saline, employing; benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
[0074] Most preferably, pharmaceutically acceptable compositions of this invention are formulated for oral administration. Such formulations may be administered with or without food. In some embodiments, pharmaceutically acceptable compositions of this invention are
administered without food. In other embodiments, pharmaceutically acceptable compositions of ${ }^{\prime}$ this invention are: administered with food.
[0075] Pharmaceutically acceptable: compositions of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), bucally, as an oral or nasal spray, or the like, depending on the severity of the infection being treated. In certain embodiments, the compounds of the invention may be administered orally or parenterally at dosage: levels of about $0.01 \mathrm{mg} / \mathrm{kg}$ to about $50 \mathrm{mg} / \mathrm{kg}$ and preferably from about $1 \mathrm{mg} / \mathrm{kg}$ to about $25 \mathrm{mg} / \mathrm{kg}$, of subject body weight per day, one or more times a day, to obtain the desired therapeutic effect.
[0076] Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically acceptable: emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers; such as; ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene: glycols, and fatty acid esters of sorbitan, and mixtures thereof. Besides, inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending, agents, sweetening, flavoring, and perfuming agents.
[0077] Injectable: preparations, for example, sterile: injectable aqueous or oleaginous suspensions, may be formulated according to the known art using suitable dispersing or wetting agents ${ }^{2}$ and suspending; agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as; a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be, employed are: water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils, are conventionally employed as a solvent or suspending medium. For this; purpose: any bland fixed oil can be: employed including synthetic mono- or diglycerides. In addition, fatty acids; such as oleic acid are used in the preparation of injectables.
[0078] Injectable: formulations, can be: sterilized, for example, by filtration through a bacterial-retaining, filter, or by incorporating, sterilizing agents in the form of sterile solid
compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
[0079] In order to prolong; the effect of a compound of the present invention, it is often desirable to slow the absorption of the compound from subcutaneous or intramuscular injection. This: may be: accomplished by the: use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the compound then depends upon its rate of dissolution that, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered compound form is accomplished by dissolving or suspending; the: compound in an oil vehicle. Injectable depot forms are made by forming microencapsule: matrices: of the compound in biodegradable polymers such as polylactidepolyglycolide. Depending upon the ratio of compound to polymer and the nature of the particular polymer employed, the rate of compound release can be controlled. Examples of other biodegradable: polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are: also prepared by entrapping the compound in liposomes or microemulsions that are compatible: with body tissues.
[0080] Compositions; for rectal or vaginal administration are preferably suppositories which can be: prepared by mixing, the compounds of this invention with suitable non-irritating excipients, or carriers; such as, cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
[0081] Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage: forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers; or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents; such as, agar--agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators; such as; quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants; such as, talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium
lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.
[0082] Solid compositions of a similar type may also be employed as fillers in soft and hardfilled gelatin capsules using; such excipients as lactose or milk sugar as well as high molecular weight polyethylene: glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings, well known in the: pharmaceutical formulating art. They may optionally contain opacifying; agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes. Solid compositions: of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using; such excipients as lactose or milk sugar as well as high molecular weight polethylene: glycols and the like.
[0083] The: active: compounds, can also be in micro-encapsulated form with one or more excipients, as, noted above. The: solid dosage forms of tablets, dragees, capsules, pills, and granules; can be: prepared with coatings. and shells such as enteric coatings, release controlling coatings, and other coatings well known in the pharmaceutical formulating art. In such solid dosage: forms; the active: compound may be admixed with at least one inert diluent such as sucrose, lactose or starch. Such dosage forms may also comprise, as is normal practice, additional substances, other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline: cellulose. In the case of capsules, tablets and pills, the dosage forms; may also comprise buffering agents. They may optionally contain opacifying; agents, and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples; of embedding; compositions that can be used include polymeric substances and waxes.
[0084] Dosage forms, for topical or transdermal administration of a compound of this invention include; ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable: carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, ear drops, and eye drops, are also contemplated as being within the scope of this invention. Additionally, the present invention contemplates the use of transdermal patches,
which have: the: added advantage: of providing controlled delivery of a compound to the body. Such dosage: forms can be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The: rate: can be controlled by either providing a rate controlling membrane or by dispersing; the: compound in a polymer matrix or gel.
[0085] The amount of compounds of the present invention that may be combined with the carrier materials to produce a composition in a single dosage form will vary depending upon the host: treated, the particular mode of administration. Preferably, provided compositions should be formulated so that a dosage: of between $0.01-100 \mathrm{mg} / \mathrm{kg}$ body weight/day of the inhibitor can be administered to a patient receiving; these compositions.
[0086] A compound of the current invention can be administered alone or in combination with one: or more: other therapeutic compounds, possible combination therapy taking the form of fixed combinations or the administration of a compound of the invention and one or more other therapeutic compounds being; staggered or given independently of one another, or the combined administration of fixed combinations and one or more other therapeutic compounds. A compound of the current invention can besides or in addition be administered especially for tumor therapy in combination with chemotherapy, radiotherapy, immunotherapy, phototherapy, surgical intervention, or a combination of these. Long-term therapy is equally possible as is adjuvant: therapy in the context of other treatment strategies, as described above. Other possible treatments: are: therapy to maintain the patient's status after tumor regression, or even chemopreventive: therapy, for example in patients at risk.
[0087] Those: additional agents may be administered separately from an inventive compound-containing; composition, as part of a multiple dosage regimen. Alternatively, those agents; may be part of a single: dosage form, mixed together with a compound of this invention in a_{\downarrow} single: composition. If administered as part of a multiple dosage regime, the two active agents may be: submitted simultaneously, sequentially or within a period of time from one another normally within five hours, from one another.
[0088] As, used herein, the: term "combination," "combined," and related terms refers to the simultaneous; or sequential administration of therapeutic agents in accordance with this invention. For example, a compound of the present invention may be administered with another therapeutic agent simultaneously or sequentially in separate unit dosage forms or together in a
single unit dosage form. Accordingly, the present invention provides a single unit dosage form comprising; a compound of the current invention, an additional therapeutic agent, and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
[0089] The: amount of both an inventive: compound and additional therapeutic agent (in those compositions which comprise an additional therapeutic agent as described above) that may be combined with the carrier materials to produce a single dosage form will vary depending upon the: host: treated and the: particular mode of administration. Preferably, compositions of this invention should be:formulated so that a dosage of between $0.01-100 \mathrm{mg} / \mathrm{kg}$ body weight/day of an inventive: compound can be administered.
[0090] In those compositions which comprise an additional therapeutic agent, that additional therapeutic agent and the: compound of this invention may act synergistically. Therefore, the amount of additional therapeutic agent in such compositions will be less than that required in a monotherapy utilizing; only that therapeutic agent.
[0091] The: amount of additional therapeutic agent present in the compositions of this invention will be: normore than the amount that would normally be administered in a composition comprising; that therapeutic agent as the only active agent. Preferably the amount of additional therapeutic agent in the: presently disclosed compositions will range from about 50% to 100% of the amount normally present in a composition comprising that agent as the only therapeutically active: agent.
[0092] It should also, be understood that a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the: age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the: judgment of the treating physician and the severity of the particular disease being treated. The amount of a compound of the present invention in the composition will also, depend upon the particular compound in the composition.

Uses: of Compounds and'Pharmaceutically Acceptable Compositions
[0093] Compounds, and compositions described herein are generally useful for the inhibition of $:$ PAD4.
[0094] The activity of a compound utilized in this invention as an inhibitor of PAD4, may be assayed in vitro, in vivo, or in a cell line. In vitro assays include assays that determine the inhibition of PAD4. Detailed conditions, for assaying a compound utilized in this invention as an
inhibitor of PAD4 are: set forth in the Examples below. In some embodiments, a provided compound inhibits PAD4 selectively as compared to PAD2.
[0095] As. used herein, the terms. "treatment," "treat," and "treating" refer to reversing, alleviating, delaying; the: onset of, or inhibiting the progress of a disease or disorder, or one or more: symptoms: thereof, as described herein. In some embodiments, treatment may be administered after one or more symptoms have developed. In other embodiments, treatment may be: administered in the absence of symptoms. For example, treatment may be administered to a susceptible: individual prior to the: onset of symptoms. (e.g., in light of a history of symptoms and/or in light: of genetic: or other susceptibility factors). Treatment may also be continued after symptoms have: resolved, for example to prevent or delay their recurrence.
[0096] Provided compounds are inhibitors of PAD4and are therefore useful for treating one or more: disorders associated with activity of PAD4. Thus, in certain embodiments, the present invention provides a method for treating a PAD4-mediated disorder comprising the step of administering; to a patient in need thereof a compound of the present invention, or pharmaceutically acceptable composition thereof.
[0097] In one: embodiment, a PAD4-mediated disorder is a disease, condition, or disorder mediated by inappropriate PAD4 activity. In some embodiments, a PAD4-mediated disorder is selected from the group consisting of rheumatoid arthritis, vasculitis, systemic lupus erythematosus, ulcerative colitis, cancer, cystic fibrosis, asthma, cutaneous lupus erythematosis, and psoriasis. In a further embodiment, the disorder mediated by inappropriate PAD4 activity is rheumatoid arthritis. In a further embodiment, the disorder mediated by inappropriate PAD4 activity is; systemic; lupus. In a further embodiment, the disorder mediated by inappropriate PAD4. activity is, vasculitis. In a further embodiment, the disorder mediated by inappropriate PAD4. activity is, cutaneous lupus erythematosis. In a further embodiment, the disorder mediated by inappropriate: PAD4 activity is psoriasis.
[0098] In one: embodiment there is, provided a method of treatment of rheumatoid arthritis, vasculitis, systemic lupus, erythematosus, ulcerative colitis, cancer, cystic fibrosis, asthma, cutaneous; lupus, erythematosis, or psoriasis, which method comprises administering to a human subject in need thereof, a therapeutically effective amount of a provided compound or a pharmaceutically acceptable salt thereof.

In one: embodiment there is provided a method of treatment of rheumatoid arthritis, which method comprises administering; to a human subject in need thereof, a therapeutically effective: amount of a provided compound, or a pharmaceutically acceptable salt thereof. In one embodiment there is provided a method of treatment of systemic lupus, which method comprises administering, to a human subject in need thereof, a therapeutically effective amount of a provided compound, or a pharmaceutically acceptable salt thereof. In one embodiment there is provided a method of treatment of vasculitis, which method comprises administering to a human subject in need thereof, a therapeutically effective amount of a provided compound, or a pharmaceutically acceptable: salt thereof. In one embodiment there is provided a method of treatment of cutaneous. lupus erythematosis, which method comprises administering to a human subject: in need thereof, a therapeutically effective amount of a provided compound, or a pharmaceutically acceptable: salt thereof. In one embodiment there is provided a method of treatment: of psoriasis, which method comprises administering to a human subject in need thereof, a therapeutically effective amount of a provided compound, or a pharmaceutically acceptable: salt thereof.
[00100] In some: embodiments, a PAD4-mediated disorder is selected from the group consisting; of acid-induced lung, injury, acne (PAPA), acute lymphocytic leukemia, acute, respiratory distress, syndrome, Addison's disease, adrenal hyperplasia, adrenocortical insufficiency, ageing, AIDS, alcoholic hepatitis, alcoholic hepatitis, alcoholic liver disease, allergen induced asthma, allergic: bronchopulmonary, aspergillosis, allergic conjunctivitis, alopecia, Alzheimer's disease, amyloidosis, amyotropic lateral sclerosis, and weight loss, angina pectoris, angioedema, anhidrotic: ecodermal dysplasia-ID, ankylosing spondylitis, anterior segment, inflammation, antiphospholipid syndrome, aphthous stomatitis, appendicitis, arthritis, asthma, atherosclerosis, atopic: dermatitis, autoimmune diseases, autoimmune hepatitis, bee sting-induced inflammation, behcet's disease, Behcet's syndrome, Bells Palsey, berylliosis, Blau syndrome, bone; pain, bronchiolitis, burns, bursitis, cancer, cardiac hypertrophy, carpal tunnel syndrome, catabolic disorders, cataracts, cerebral aneurysm, chemical irritant-induced inflammation, chorioretinitis, chronic heart failure, chronic lung disease of prematurity, chronic lymphocytic leukemia, chronic obstructive pulmonary disease, colitis, complex regional pain syndrome, connective tissue: disease, corneal ulcer, crohn's disease, cryopyrin-associated periodic syndromes, cyrptococcosis, cystic fibrosis, deficiency of the interleukin-1-receptor
antagonist: (DIRA), dermatitis, dermatitis endotoxemia, dermatomyositis, diffuse intrinsic pontine: glioma, endometriosis, endotoxemia, epicondylitis, erythroblastopenia, familial amyloidotic polyneuropathy, familial cold urticarial, familial mediterranean fever, fetal growth retardation, glaucoma, glomerular disease, glomerular nephritis, gout, gouty arthritis, graft-versus-host disease, gut diseases, head injury, headache, hearing loss, heart disease, hemolytic anemia, Henoch-Scholein purpura, hepatitis, hereditary periodic fever syndrome, herpes zoster and simplex, HIV-1, Hodgkin's. disease, Huntington's disease, hyaline membrane disease, hyperammonemia, hypercalcemia, hypercholesterolemia, hyperimmunoglobulinemia D with recurrent: fever (HIDS), hypoplastic and other anemias, hypoplastic anemia, idiopathic thrombocytopenic purpura, incontinentia pigmenti, infectious mononucleosis, inflammatory bowel disease, inflammatory lung disease, inflammatory neuropathy, inflammatory pain, insect bite-induced inflammation, iritis, irritant-induced inflammation, ischemia/reperfusion, juvenile rheumatoid arthritis, keratitis, kidney disease, kidney injury caused by parasitic infections, kidney injury caused by parasitic infections, kidney transplant rejection prophylaxis, leptospiriosis, leukemia, Loeffler's syndrome, lung injury, lung injury, lupus, lupus, lupus nephritis, lymphoma, meningitis, mesothelioma, mixed connective tissue disease, Muckle-Wells syndrome: (urticaria deafness amyloidosis), multiple sclerosis, muscle wasting, muscular dystrophy, myasthenia gravis, myocarditis, mycosis fungiodes, mycosis fungoides, myelodysplastic: syndrome, myositis, nasal sinusitis, necrotizing enterocolitis, neonatal onset multisystem inflammatory disease (NOMID), nephrotic syndrome, neuritis, neuropathological diseases, non-allergen induced asthma, obesity, ocular allergy, optic neuritis, organ transplant, osterarthritis, otitis media, paget's disease, pain, pancreatitis, Parkinson's disease, pemphigus, pericarditis, periodic; fever, periodontitis, peritoneal endometriosis, pertussis, pharyngitis and adenitis; (PFAPA syndrome), plant irritant-induced inflammation, pneumonia, pneumonitis, pneumosysts, infection, poison ivy/' urushiol oil-induced inflammation, polyarteritis nodosa, polychondritis, polycystic kidney disease, polymyositis, psoriasis, psoriasis, psoriasis, psoriasis, psychosocial stress, diseases, pulmonary disease, pulmonary hypertension, pulmonayr fibrosis, pyoderma gangrenosum, pyogenic sterile arthritis, renal disease, retinal disease, rheumatic carditis, rheumatic disease, rheumatoid arthritis, sarcoidosis, seborrhea, sepsis, severe pain, sickle; cell, sickle; cell anemia, silica-induced disease, Sjogren's syndrome, skin diseases, sleep apnea, solid tumors, spinal cord injury, Stevens-Johnson syndrome, stroke, subarachnoid
hemorrhage, sunburn, temporal arteritis, tenosynovitis, thrombocytopenia, thyroiditis, tissue transplant, TNF receptor associated periodic syndrome (TRAPS), toxoplasmosis, transplant, traumatic brain injury, tuberculosis, type: 1 diabetes, type 2 diabetes, ulcerative colitis, urticarial, uveitis, and Wegener's granulomatosis.
[00101] In one: embodiment, the invention provides a provided compound, or a pharmaceutically acceptable salt thereof, for use in therapy. In another embodiment, the invention provides a provided compound, or a pharmaceutically acceptable salt thereof, for use in the: treatment of a disorder mediated by inappropriate PAD4 activity. In another embodiment, the: invention provides a provided compound, or a pharmaceutically acceptable salt thereof, for use: in the: treatment: of rheumatoid arthritis, vasculitis, systemic lupus erythematosus, ulcerative colitis, cancer, cystic: fibrosis, asthma, cutaneous lupus erythematosis, or psoriasis. In another embodiment, the: invention provides a provided compound, or a pharmaceutically acceptable salt thereof, for use: in the treatment of rheumatoid arthritis. In another embodiment, the invention provides. a provided compound, or a pharmaceutically acceptable salt thereof, for use in the treatment of systemic lupus. In another embodiment, the invention provides a provided compound, or a pharmaceutically acceptable salt thereof, for use in the treatment of vasculitis. In another embodiment, the: invention provides a provided compound, or a pharmaceutically acceptable: salt thereof, for use in the treatment of cutaneous lupus erythematosis. In another embodiment, the: invention provides a provided compound, or a pharmaceutically acceptable salt thereof, for use: in the: treatment of psoriasis. In another embodiment, the invention provides the use of a provided compound, or a pharmaceutically acceptable salt thereof, in the manufacture of a_{1} medicament for use in the treatment of a disorder mediated by inappropriate PAD4 activity. In another embodiment, the invention provides the use of a provided compound, or a pharmaceutically acceptable: salt thereof, in the manufacture of a medicament for use in the treatment of rheumatoid arthritis, vasculitis, systemic lupus erythematosus, ulcerative colitis, cancer, cystic fibrosis, asthma, cutaneous, lupus erythematosis, or psoriasis. In another embodiment, the invention provides the use of a provided compound, or a pharmaceutically acceptable: salt thereof, in the: manufacture of a medicament for use in the treatment of rheumatoid arthritis. In another embodiment, the invention provides the use of a provided compound, or a pharmaceutically acceptable: salt thereof, in the manufacture of a medicament for use: in the: treatment of systemic lupus. In another embodiment, the invention provides the use of
a provided compound, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use: in the treatment of vasculitis. In another embodiment, the invention provides the: use of a provided compound, or a pharmaceutically acceptable salt thereof, in the manufacture: of a medicament for use in the treatment of cutaneous lupus erythematosis. In another embodiment, the: invention provides the use of a provided compound, or a pharmaceutically acceptable: salt thereof, in the manufacture of a medicament for use in the treatment: of psoriasis. In a further embodiment, the invention provides a pharmaceutical composition for the treatment or prophylaxis of a disorder mediated by inappropriate PAD4 activity comprising; a provided compound, or a pharmaceutically acceptable salt thereof. In a further embodiment, the: invention provides a pharmaceutical composition for the treatment or prophylaxisi of rheumatoid arthritis, vasculitis, systemic lupus erythematosus, ulcerative colitis, cancer, cystic: fibrosis, asthma, cutaneous. lupus erythematosis, or psoriasis, comprising a provided compound, or a pharmaceutically acceptable salt thereof. In a further embodiment, the invention provides a pharmaceutical composition for the treatment or prophylaxis of rheumatoid arthritis; comprising; a provided compound, or a pharmaceutically acceptable salt thereof. In a further embodiment, the: invention provides a pharmaceutical composition for the treatment or prophylaxis: of systemic lupus comprising a provided compound, or a pharmaceutically acceptable: salt: thereof. In a further embodiment, the invention provides a pharmaceutical composition for the treatment or prophylaxis, of vasculitis comprising a provided compound, or a pharmaceutically acceptable; salt thereof. In a further embodiment, the invention provides a pharmaceutical composition for the treatment or prophylaxis of cutaneous lupus erythematosis comprising; a provided compound, or a pharmaceutically acceptable salt thereof. In a further embodiment, the invention provides, a pharmaceutical composition for the treatment or prophylaxis; of psoriasis comprising a provided compound, or a pharmaceutically acceptable salt thereof
[00102] All features, of each of the aspects of the invention apply to all other aspects mutatis mutandis.
[00103] In order that the invention described herein may be more fully understood, the following; examples; are; set forth. It should be understood that these examples are for illustrative purposes, only and are, not to be construed as limiting this invention in any manner.

EXEMPLIFICATION

[00104] As depicted in the: Examples below, in certain exemplary embodiments, compounds are prepared according; to the: following; general procedures. It will be appreciated that, although the: general methods: depict the synthesis of certain compounds of the present invention, the following; general methods, and other methods known to one of ordinary skill in the art, can be applied to all compounds and subclasses and species of each of these compounds, as described herein.

[00105] Preparative HPLC methods

[00106] Basic HPLC preparative method

Column: XBridgeTM Prep. C18 10 um OBDTM, $30 \times 100 \mathrm{~mm}$
Mobile: Phase: 5-. 95% Acetonitrile: (0.2% ammonium hydroxide) in Water (0.2% ammonium hydroxide) over 14 minutes
Flow Rate: $40 \mathrm{~mL} / \mathrm{min}$
UV Detection: 215 and 254 nm

[00107] Acidic HPLC preparative method

Column: SunfireTM Prep. C18 10 um OBDTM, $30 \times 100 \mathrm{~mm}$
Mobile: Phase: 5-95 \% Acetonitrile (0.1% formic acid) in Water (0.1% formic acid) over 14 minutes

Flow Rate: $40 \mathrm{~mL} / \mathrm{min}$
UV Detection: 215 and 254 nm
[00108] Analytical LCMS methods:
[00109] Method A
MET/u-HPLC (low pH MSQ1 7 min method)
Column: Phenomenex Kinetex-XB C18, $2.1 \mathrm{~mm} x 100 \mathrm{~mm}, 1.7 \mu \mathrm{~m}$
Flow rate: $0.6 \mathrm{ml} / \mathrm{min}$
Mobile: Phase: A, Formic acid (aqueous) 0.1% and B, Formic acid (MeCN) 0.1%
Injection Vol: $3 \mu \mathrm{l}$
Temp.: $40,{ }^{\circ} \mathrm{C}$
Detection: 215 nm (nominal),
Gradient Time (minutes), - \% B
0.001-. 5
5.30ı-. 1001
5.801-. 100
5.82;-.5;
[00110] Method B;
MET/CR/1600) (high ${ }_{4} \mathrm{pH}$ MS10, ${ }^{\prime}$ min $_{\text {m }}$ method)
Column: Phenomenex Gemini C $18,2.0 \mathrm{~mm} \times 100 \mathrm{~mm}, 3 \mu \mathrm{~m}$
Flow.rate: $0.5 \mathrm{ml} / \mathrm{min}_{1}$
Mobile; phase: A, 2 mM ammonium bicarbonate: in HPLC grade: water pH 10
B;HPLC grade; MeCN
Injection $_{1}$ volume: $3 \mu \mathrm{l}$
Temperature: $50,{ }^{\circ} \mathrm{C}$
Detection: $215 \mathrm{~nm}_{1}$
Gradienttime: (minutes) $)_{1}-\% B_{;}$
$0.0)=5 ;$
$5.50=100$)
5.90) $=100$)
$5.92=5 ;$
9.00)-.5;
[00111] Method $_{[}$C $_{\text {; }}$
METCR: 1416; (low, $\mathrm{pH}_{[}$Shimadzu $_{1} 7 \mathrm{~min}_{1}$ method),
Column::Waters;Atlantis; ${ }_{j}$ dC18, $2.1 \mathrm{~mm}_{l} \mathrm{x}_{\mathrm{t}} 100 \mathrm{~mm}, 3 \mu \mathrm{~m}_{1}$ column $_{1}$
Flow rate: $: 0.6 ; \mathrm{ml} / \mathrm{min}_{1}$

Injection, Vol: $3 ; \mu_{1}$
Temp.: 40 , ${ }^{\circ} \mathrm{C}$,
Detection: 215; nm_{1} (nominal))
Gradient $_{\mathrm{t}}$ Time $_{2}(\text { minutes })^{-}-\%, \mathrm{~B}_{3}$
0.00 --5;
5.00)-_100)
5.40)-_100)
5.42?-5;

[00112] Method D

METCR 1410, (low pH Shimadzu 2min method),
Column: Kinetex Core-Shell C18, $2.1 \mathrm{~mm} \times 50 \mathrm{~mm}, 5 \mu \mathrm{~m}$ column
Flow rate: $1.2 ; \mathrm{ml} / \mathrm{min}_{\text {I }}$
Mobile; Phase: A, Formic; acid (aqueous) 0.1% and B, Formic acid (acetonitrile) 0.1%
Injection V Vol: $3 \mu \mathrm{l}$
Temp.: $40{ }^{\circ} \mathrm{C}$
Detection: $215 \mathrm{~nm}_{l}$ (nominal),
Gradient-Time:(minutes) $)_{-} . \%, \mathrm{~B}$,
0.00 -. 5 ;
1.20)-.100)
1.30)-.100)
$1.31=5$;
[00113] Method[H[
MET/u-HPLC (high ${ }_{1} \mathrm{pH}\left[\mathrm{MS} 16 ; 7\right.$ ' min $_{1}$ method)
Column: Waters; UPLC:CSH[C18, $2.1 \mathrm{~mm}_{[} \mathrm{x} \cdot 100 \mathrm{~mm} 5 \mu \mathrm{~m}$ column
Flow ${ }_{r}$ rate: $: 0.6 ; \mathrm{ml} / \mathrm{min}_{1}$

(aqueous) ${ }^{\text {and }} \mathrm{B}$, acetonitrile,
Injection ${ }_{1}$ Vol: $3_{;} \mu_{1}$
Temp.: 40 , ${ }^{\circ} \mathrm{C}$;
Detection: $215 ; \mathrm{nm}_{1}($ nominal $)$)
Gradient $_{t}$ Time $_{3}(\text { minutes })^{-}-\%, \mathrm{~B}_{\text {; }}$
0.00)-. 5 ;
5.30)-. 100)
5.80)-.100)
5.82?-5;
$\left.{ }^{[00114]}\right]_{\text {Method } J_{I}}$
MET/CR/0990) (high $\mathrm{pH}_{[} 3 \mathrm{~min}_{1}$ method))
Column: Phenomenex Femini $_{\mathrm{i}} \mathrm{C} 18,2.0 \mathrm{~mm}_{1} \mathrm{x}_{\mathrm{F}} 100 \mathrm{~mm}, 3 \mu \mathrm{~m}_{\mathrm{I}}$
Flow rate: $: 1 \mathrm{ml} / \mathrm{min}_{1}$

Mobile: phase: A, 2 mM ammonium bicarbonate: in HPLC grade: water pH 10 B HPLC grade: MeCN
Injection volume: 3μ
Temperature: $600^{\circ} \mathrm{C}$
Detection: 215 nm
Gradient:time: (minutes) $1-\% \mathrm{~B}$
0.0-. 1
1.801-100
2.101-100
2.301-- 1
[00115] Analytical and preparative chiral HPLC methods:
[00116] MethodIE:
Chiral HPLC' preparative, method|
Column: Chiralpak $\mathrm{IC}^{\prime} \cdot 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$, $5 \mu \mathrm{~m}$ column
Flow rate: $15 \mathrm{ml} / \mathrm{min}_{\text {}}$
Mobile:Phase: 35% Ethanol: 65% CO2
Sample;Diluent: Ethanol
Temp.: $40^{\circ} \mathrm{C}$
Detection: $215 \mathrm{~nm}_{l}$ (nominal),
[00117]| Method[F:
Chiral|purity analysis;method
Column: Chiralpak-IC:250mm x: $4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}_{\text {c }}$ column
Flow $_{\text {r }}$ Rate: $: 4 \mid \mathrm{ml}^{2} / \mathrm{min}_{\text {I }}$
Injection, Vol: $10, \mu \mathrm{~L}$,
Temp. $: 40^{\circ} \mathrm{C}$;
Detection: $215 ; \mathrm{nm}_{\mid}$
Isocratic; Conditions; 40\%, Ethanol: $60 \% \mathrm{CO} 2$.
[00118] Certain ${ }_{1}$ compounds; of the; present invention $_{1}$ were, prepared according; to, Schemes; 1 and 2 , below.

Scheme. 1

step 2

[00119] Synthesis: of (3R)-1-\{2-[1-(cyclopropylmethyl)-5-phenyl-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-amine hydrochloride I-9 EOAI3428252 (EV-AR0067-002)

[00120] Methyl 5-phenyl-1H-pyrrole-2-carboxylate (EV-AR0054-002) - Step 1
[00121] To a, solution of 5-phenyl-1H-pyrrole-2-carboxylic acid ($500 \mathrm{mg}, 2.67 \mathrm{mmol}$) in toluene: (10 ml) and methanol (3 ml) was added 2 M (diazomethyl)(trimethyl)silane in hexane (2 $\mathrm{ml})$ and the: mixture: was stirred under nitrogen at room temperature for 30 minutes. To the reaction mixture: was added acetic acid (1 ml) and the mixture was concentrated in vacuo to afford 530 mg (99%) of methyl 5-phenyl-1H-pyrrole-2-carboxylate (EV-AR0054-002) as a pale yellow powder. LCMS (method D): retention time $1.14 \mathrm{~min}, \mathrm{M} / \mathrm{z}=202.0(\mathrm{M}+1)$.
[00122] 1-(Cyclopropylmethyl)-5-phenyl-1H-pyrrole-2-carboxylic acid (EV-AR0056-003)

-Step 2

[00123] To a solution of methyl 5-phenyl-1H-pyrrole-2-carboxylate (EV-AR0054-002, 530 $\mathrm{mg}, 2.63 \mathrm{mmol}$) in anhydrous. DMF (10 ml) was added sodium hydride $(60 \%, 120 \mathrm{mg}, 3.00$ $\mathrm{mmol})$ portion wise: and the: resulting mixture was stirred for 15 minutes. After this time (bromomethyl)cyclopropane: ($285 \mu \mathrm{l}, 2.94 \mathrm{mmol}$) was added and the mixture was stirred under nitrogen at room temperature for 72 h . The mixture was treated with further (bromomethyl)cyclopropane: ($450 \mu \mathrm{l}, 4.65 \mathrm{mmol}$) and sodium hydride $(60 \%, 60 \mathrm{mg}, 1.50 \mathrm{mmol})$ and stirred at $40^{\circ} \mathrm{C}$ for 30 minutes. The reaction mixture was concentrated in vacuo and the residue: was, dissolved in ethanol (8 ml) and water (2 ml). 5 M aqueous sodium hydroxide (2 ml) was, added and the resulting, mixture was stirred in a pressure tube at $80^{\circ} \mathrm{C}$ for 2 h . The reaction mixture: was; concentrated in vacuo and taken up in water (5 ml), acidified with 5 N aqueous hydrochloric acid ($\sim 5 \mathrm{ml}$) until no, further precipitation was observed. The resulting suspension was; stirred on an ice; bath for 15 minutes and filtered through filter paper under vacuum. The resulting; solid was dried to afford 495 mg (78%) of 1 -(cyclopropylmethyl)-5-phenyl-1H-pyrrole-

2-carboxylic acid (EV-AR0056-003) as a beige powder. LCMS (method D): retention time $1.17 \mathrm{~min}, \mathrm{M} / \mathrm{z}=242.0^{(}(\mathrm{M}+1)$.
[00124] Methyl 4-(methylamino)-3-nitrobenzoate (EV-AR0020-002) - Step 3
[00125] To a a stirred solution of methyl 4-fluoro-3-nitrobenzoate ($10.0 \mathrm{~g}, 50.2 \mathrm{mmol}$) in DMF $(100 \mathrm{ml})$ ' was added methanamine hydrochloride: ($1: 1$) ($4.00 \mathrm{~g}, 59.2 \mathrm{mmol})$. Potassium carbonate $(99 \%, 9.00 \mathrm{~g}, 64.5 \mathrm{mmol})$ was added and the mixture was stirred under nitrogen at room temperature: for 18 h . The reaction crude was concentrated in vacuo and partitioned between ethyl acetate: $(400 \mathrm{ml})$ and. 1 M aqueous hydrochloric acid $(2 \times 25 \mathrm{ml})$. The organic layer was washed with brine: (25 ml), dried over sodium sulfate, filtered and concentrated in vacuo to afford 6.00 g (57\%) of methyl 4-(methylamino)-3-nitrobenzoate (EV-AR0020-002) as a yellow powder. LCMS (method D): retention time: $1.23 \mathrm{~min}, \mathrm{M} / \mathrm{z}=210.9(\mathrm{M}+1)$.
[00126] Methyl 3-amino-4-(methylamino)benzoate (EV-AR0021-002) - Step 4
[00127] To a solution of methyl 4-(methylamino)-3-nitrobenzoate (EV-AR0020-002, 6.00 g , 28.6 mmol) in ethanol (100 ml) was added $10 \% \mathrm{w} / \mathrm{w}$ Pd/C ($0.15 \mathrm{~g}, 1.41 \mathrm{mmol}$). The reaction mixture: was; stirred under an atmosphere: of hydrogen at room temperature for 18 h . The reaction crude: was, filtered through Kieselguhr and washed through with methanol (200 ml). The filtrate wasi concentrated in: vacuo to afford 5.00 g (97%) of methyl 3-amino-4-(methylamino)benzoate (EV-AR0021-002) as a purple: solid. LCMS (method D): retention time $0.84 \mathrm{~min}, \mathrm{M} / \mathrm{z}=181.0$ $(\mathrm{M}+1)$.
[00128] Methyl 2-[1-(cyclopropylmethyl)-5-phenyl-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carboxylate: (EV-AR0061-003) - Step 5
[00129] To, a solution of 1-(cyclopropylmethyl)-5-phenyl-1H-pyrrole-2-carboxylic acid (EV-AR0056-003, $295 \mathrm{mg}, 1.22 \mathrm{mmol}$) in DMF (5 ml) was added DIPEA ($225 \mu \mathrm{l}, 1.36 \mathrm{mmol}$) followed by HATU ($520 \mathrm{mg}, 1.37 \mathrm{mmol}$) and the resulting mixture was stirred at room temperature: for 30 minutes. Methyl 3-amino-4-(methylamino)benzoate (EV-AR0021-002, 250 $\mathrm{mg}, 1.39 \mathrm{mmol})$, was; added and the: mixture was stirred under nitrogen at room temperature for 3 h , at: $60^{\circ} \mathrm{C}$ for 3 h and at room temperature for 16 h . The mixture was then concentrated in vacuo, the: residue: was; suspended in acetic acid (3 ml) and the resulting mixture was stirred under nitrogen at $80^{\circ} \mathrm{C}$ for 7 h . The solvent was removed in vacuo and the remaining material purified by flash column chromatography ($10-25 \%$ ethyl acetate/heptane) to obtain a solid which was triturated from diethyl ether (5 ml) to afford $140 \mathrm{mg}(29 \%)$ of methyl 2-[1-(cyclopropylmethyl)-

5-phenyl-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carboxylate (EV-AR0061-003) as a white powder. LCMS (method D): retention time: $1.28 \mathrm{~min}, \mathrm{M} / \mathrm{z}=386.1(\mathrm{M}+1)$.
[00130] 2-[1-(cyclopropylmethyl)-5-phenyl-1H-pyrrol-2-yl]-1-methyl-1H-1,3-

benzodiazole-5-carboxylic acid (EV-AR0064-002) - Step 6

[00131] To a solution of methyl 2-[1-(cyclopropylmethyl)-5-phenyl-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carboxylate (EV-AR0061-003, $140 \mathrm{mg}, 0.36 \mathrm{mmol}$) in THF (3 $\mathrm{ml})$ ' was added a solution of ${ }^{\circ}$ lithium hydroxide $(26 \mathrm{mg}, 1.09 \mathrm{mmol})$ in water $(3 \mathrm{ml})$ and the resulting; mixture was stirred under nitrogen at $50^{\circ} \mathrm{C}$ for 16 h . The reaction crude was concentrated in vacuo and taken up in water (5 ml), acidified with 5 N aqueous hydrochloric acid $(\sim 0.5 \mathrm{ml})$ until no further precipitation was observed. The resulting suspension was allowed to stir for 30 minutes and filtered through filter paper. The resulting solid was dried to afford 130 mg ; (96\%), of 2-[1-(cyclopropylmethyl)-5-phenyl-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carboxylic acid (EV-AR0064-002) as a white powder. LCMS (method D): retention time: $1.13 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=372.0(\mathrm{M}+1)$.
[00132] Tert-butyl $\mathrm{N}-[(3 \mathrm{R})$-1-\{2-[1-(cyclopropylmethyl)-5-phenyl-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-yl]carbamate (EV-AR0066-002) - Step 7
[00133] To a solution of 2-[1-(cyclopropylmethyl)-5-phenyl-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carboxylic: acid (EV-AR0064-002, $50 \mathrm{mg}, 0.13 \mathrm{mmol}$) in $2: 1 \mathrm{DMSO}$ acetonitrile: $(3 \mathrm{ml})$ was, added DIPEA ($26 \mu \mathrm{l}, 0.16 \mathrm{mmol}$) followed by HATU ($60 \mathrm{mg}, 0.16$ $\mathrm{mmol})$ and the resulting mixture was stirred at room temperature for 15 minutes. To this solution was; added tert-butyl (3R)-piperidin-3-ylcarbamate ($30 \mathrm{mg}, 0.15 \mathrm{mmol}$) and the mixture was stirred under nitrogen at room temperature for 16 h . To the mixture was added 3:2 acetonitrile water $(0.5 \mathrm{ml})$, 2:1 DMSO acetonitrile (2 ml) and water (5 ml) and the resulting suspension was filtered through filter paper under vacuum. The solid was washed with water $(10 \mathrm{ml})$ and dried to afford 53 mg ; (71%), of tert-butyl $\mathrm{N}-[(3 \mathrm{R})-1-\{2-[1-($ cyclopropylmethyl)-5-phenyl-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-yl]carbamate (EV-AR0066-002) as a white; powder. LCMS (method D): retention time: $1.20 \mathrm{~min}, \mathrm{M} / \mathrm{z}=554.2(\mathrm{M}+1)$.
[00134] (3R)-1-\{2-[1-(Cyclopropylmethyl)-5-phenyl-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-amine hydrochloride (I-9)(EV-AR0067-002) = Step 8
[00135] To a suspension of tert-butyl N-[(3R)-1-\{2-[1-(cyclopropylmethyl)-5-phenyl-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-yl]carbamate (EV-AR0066$\mathbf{0 0 2}, 53 \mathrm{mg}, 0.10 \mathrm{mmol})$ in methanol (2 ml) was added 4 M hydrochloric acid in dioxane (1 ml) and the: resulting; solution was stirred under air at room temperature for 2 h . The reaction crude was concentrated in vacuo and the residue was freeze-dried from water (4 ml) to obtain 46 mg (98\%) of (3R)-1-\{2-[1-(cyclopropylmethyl)-5-phenyl-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-amine: hydrochloride (EV-AR0067-002) as a white powder. LCMS (method A): retention time $2.17 \mathrm{~min}, \mathrm{M} / \mathrm{z}=454.2(\mathrm{M}+1)$.
[00136] Special cases for Scheme: 1

[00137] I-12

[00138] (3R)-1-\{2-[1-(Cyclopropylmethyl)-5-(pyridin-2-yl)-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-amine I-12 EV-AS5724-003 (EOAI3435373) was synthesised according; to the procedures described in Scheme 1 via methyl 1-(cyclopropylmethyl)-5-(pyridin-2-yl)-1H-pyrrole-2-carboxylate (EV-AS5714-004) synthesised according;tol Scheme: 1.1

Scheme 1.1

[00139] Methyl 5-bromo-1-(cyclopropylmethyl)-1H-pyrrole-2-carboxylate (EV-AS5711-002)-Step 1
[00140] To, a solution of methyl 5-bromo-1H-pyrrole-2-carboxylate (CAS 934-07-6, 500 mg , 2.45 mmol), in anhydrous, DMF (5 ml) was added sodium hydride ($60 \%, 150 \mathrm{mg}, 3.75 \mathrm{mmol}$). To this; solution was; added (bromomethyl)cyclopropane ($350 \mu \mathrm{l}, 3.61 \mathrm{mmol}$) and the mixture stirred under nitrogen at $30{ }^{\circ} \mathrm{C}$ in a sealed tube for 8 h . The reaction mixture was concentrated,
quenched with methanol and purified by flash column chromatography (0-50\% ethyl acetate/heptane) to afford 566 mg (89\%) of methyl 5-bromo-1-(cyclopropylmethyl)-1H-pyrrole-2-carboxylate: (EV-AS5711-002) as a yellow oil. LCMS (method D): retention time 1.44 min , M/z: $=258 / 260(\mathrm{M}+1)$.
[00141] Methyl 1-(cyclopropylmethyl)-5-(pyridin-2-yl)-1H-pyrrole-2-carboxylate (EV-AS5714-004) - Step 2
[00142] To a solution of methyl 5-bromo-1-(cyclopropylmethyl)-1H-pyrrole-2-carboxylate (EV-AS5711-002, $566 \mathrm{mg}, 2.19 \mathrm{mmol}$) in toluene: (3 ml) was added palladium triphenylphosphane: $(1: 4)(100 \mathrm{mg}, \quad 0.09 \mathrm{mmol})$. To this solution was added 2 (tributylstannanyl)pyridine: ($0.84 \mathrm{ml}, 2.63 \mathrm{mmol}$) and the mixture stirred under nitrogen at $110^{\circ} \mathrm{C}$ for 18 h . The: reaction mixture: was cooled, diluted with ethyl acetate (5 ml) and quenched with 1 M potassium fluoride $(2.5 \mathrm{ml})$. The mixture was stirred for 15 minutes, the resulting suspension was, filtered through Kieselguhr and the filter washed with ethyl acetate (100 ml). The: organic layer was washed with 1 M potassium fluoride ($2 \times 6 \mathrm{ml}$), saturated aqueous sodium chloride: $(6 \mathrm{ml})$ then dried over sodium sulfate, filtered and concentrated. The residue was purified by flash column chromatography ($0-50 \%$ ethyl acetate/heptane) to afford 176 mg (31\%) of methyl 1-(cyclopropylmethyl)-5-(pyridin-2-yl)-1H-pyrrole-2-carboxylate (EV-AS5714-004) as; a yellow gum. LCMS (method $D)$: retention time $1.22 \mathrm{~min}, \mathrm{M} / \mathrm{z}=257(\mathrm{M}+1)$.
[00143] I-17
[00144] (3R)-1-\{2-[1-(Cyclopropylmethyl)-5-(pyridin-3-yl)-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-amine: I-17 EV-AS5752-002 (EOAI3435970) was synthesised according; to the procedures described in Scheme 1 via methyl 1-(cyclopropylmethyl)-5-(pyridin-3-yl)-1H-pyrrole-2-carboxylate (EV-AS5741-002) synthesised according;to, Scheme: 1.2.

Scheme 1.2

[00145] Methyl 1-(cyclopropylmethyl)-5-(pyridin-3-yl)-1H-pyrrole-2-carboxylate (EV-AS5741-002) - Step 1
[00146] To a solution of methyl 5-bromo-1-(cyclopropylmethyl)-1H-pyrrole-2-carboxylate (EV-AS5714-003, $135 \mathrm{mg}, 0.52 \mathrm{mmol}$) in dioxane (1 ml) was added pyridin-3-ylboronic acid ($75 \mathrm{mg}, 0.61 \mathrm{mmol}$). To this solution was added 1,1'-bis(diphenylphosphanyl)ferrocene dichloropalladium ($1: 1)^{\prime}(15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and the mixture stirred under nitrogen at $100^{\circ} \mathrm{C}$ for 1 h . The: reaction mixture: was concentrated and the residue purified by flash column chromatography ($8-50 \%$ ethyl acetate/ heptane) to afford 100 mg (71%) of methyl 1-(cyclopropylmethyl)-5-(pyridin-3-yl)-1H-pyrrole-2-carboxylate (EV-AS5741-002) as a yellow oil. LCMS (method D): retention time $1.08 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=257(\mathrm{M}+1)$.

[00147] I-22

[00148] (3R)-1-\{2-[1-(Cyclopropylmethyl)-2-phenyl-1H-imidazol-4-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-amine: I-22 EV-AS5480-001 (EOAI3441169) was synthesised according; to the procedures described in Scheme 1 via methyl 1-(cyclopropylmethyl)-2-phenyl-1H-imidazole-4-carboxylate (EV-AS5469-002) synthesised according;to Scheme: 1.3.
Scheme 1.3

CAS 7051-34-5

EV-AS5468-002

EV-AS5469-002
[00149] Methyl 1-(cyclopropylmethyl)-2-phenyl-1H-imidazole-4-carboxylate (EV-AS5469-002) - Step 1
[00150] To a solution of methyl 2-phenyl-1H-imidazole-5-carboxylate (EV-AS5468-002 prepared asi described in scheme: $1.10,683 \mathrm{mg}, 3.38 \mathrm{mmol})$ in THF $(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added potassium hexamethyldisilazane (15% solution in toluene, $5.64 \mathrm{ml}, 3.72 \mathrm{mmol}$) and stirred for 5 mins, before: (bromomethyl)cyclopropane ($360 \mu \mathrm{l}, 3.72 \mathrm{mmol}$) was added and stirred at $70^{\circ} \mathrm{C}$ for 20h. The: reaction mixture: was cooled to $0^{\circ} \mathrm{C}$ and saturated aqueous ammonium chloride (20 ml) wasi added. The: reaction mixture was extracted with DCM ($2 \times 20 \mathrm{ml}$), the organic extracts were dried over sodium sulfate and concentrated. The residue was purified by flash column chromatography ($0-50 \%$ ethyl acetate/heptane) to afford 381 mg (43%) of methyl 1-(cyclopropylmethyl)-2-phenyl-1H-imidazole-4-carboxylate (EV-AS5469-002) as a beige powder. LCMS (method D$)$: retention time $1.12 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=257(\mathrm{M}+1)$.
[00151] I-32
[00152] (3R)-1-\{2-[1-(Cyclopropylmethyl)-5-(2-phenylethyl)-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-amine hydrochloride I-32 EV-AU3425-003 (EOAI3447741), was, obtained according to Scheme 1.4 from tert-butyl N-[(3R)-1-\{2-[1-(cyclopropylmethyl)-5-[(E)-2-phenylethenyl]-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5carbonyl \}piperidin-3-yl]carbamate ($\mathbf{E V}$-AU3418-004) which was synthesised according to the procedures; described in Schemes, 1 and 1.1.

Scheme 1.4

[00153] (3R)-1-\{2-[1-(cyclopropylmethyl)-5-(2-phenylethyl)-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-amine hydrochloride (EV-AU3425-003) Step 1
[00154] To a solution of tert-butyl $\mathrm{N}-[(3 \mathrm{R})-1-\{2-[1-(c y c l o p r o p y l m e t h y l)-5-[(\mathrm{E})-2-$ phenylethenyl]-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-
yl]carbamate: (EV-AU3418-004, $17 \mathrm{mg}, 0.03 \mathrm{mmol}$) in ethanol (2 ml) was added $10 \% \mathrm{w} / \mathrm{w} \mathrm{Pd} / \mathrm{C}$ (2: mg, 0.02 mmol). The: mixture: was stirred for 5 h at room temperature under a hydrogen atmosphere: and filtered through Kieselguhr. The filter was washed with methanol (20 ml) and the: filtrate: was concentrated in vacuo. The obtained material was dissolved in DCM (2 ml) and 2 M hydrogen chloride: in diethyl ether $(0.5 \mathrm{ml})$ was added. The mixture was stirred for 2 h at room temperature. The solvents, were then removed under a stream of nitrogen and the material further dried in a vacuum oven for 16 h to obtain 13 mg (85%) of (3R)-1-\{2-[1-(cyclopropylmethyl)-5-(2-phenylethyl)-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-amine hydrochloride (EV-AU3425-003) as a white powder. LCMS (method A): retention time $2.48 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{i}=482(\mathrm{M}+1)$.
[00155] I-21
[00156] (3R)-1-\{2-[1-(Cyclopropylmethyl)-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5carbonyl \}piperidin-3-amine hydrochloride I-21 EV-AS5766-001 (EOAI3437830) was obtained from boc-deprotection of tert-butyl N -[(3R)-1-\{2-[1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-yl]carbamate (EV-AS5765-002) obtained according, to Scheme: 1.5 starting from of tert-butyl $\mathrm{N}-[(3 \mathrm{R})-1-\{2-[5-$ bromo-1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3yl]carbamate: (EV-AS5763-002), which was, synthesised according to the procedures described in Scheme: 1.

Scheme 1.5

[00157] Tert-butyl N -[(3R)-1-\{2-[1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-yl]carbamate (EV-AS5765-001) - Step 1
[00158] To a solution of tert-butyl N-[(3R)-1-\{2-[5-bromo-1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-yl]carbamate (EV-AS5763-002, 50 $\mathrm{mg}, 0.09^{\prime} \mathrm{mmol}$, synthesised according to procedures described in Scheme 1) in ethanol (2 ml) was: added. $10 \% \mathrm{w} / \mathrm{w} \mathrm{Pd} / \mathrm{C}(5 \mathrm{mg}, 0.05 \mathrm{mmol})$. The mixture was stirred for 17 h at room temperature: under a hydrogen atmosphere: and filtered through Kieselguhr. The filter was washed with methanol $(40 \mathrm{ml})$ and the: filtrate was concentrated in vacuo to obtain $43 \mathrm{mg}(99 \%)$ of: tert-butyl N -[(3R)-1-\{2-[1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-yl]carbamate (EV-AS5765-002) as a white powder. LCMS $(\operatorname{method} D):$ retention time $1.07 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{i}=478(\mathrm{M}+1)$.
[00159] (3R)-1-\{2-[1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-amine hydrochloride (EV-AS5766-002) - Step 2
[00160] To a solution of tert-butyl N-[(3R)-1-\{2-[1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-yl]carbamate (EV-AS5765-002, 40 mg , 0.08 mmol) in ethanol (1 ml), was added 1.25 M hydrogen chloride in ethanol (1 ml). The mixture was; stirred for 4.5 h at $40^{\circ} \mathrm{C}$. The solvent was, removed under a stream of nitrogen and the residue was; purified by basic: HPLC preparative method. The residue was dissolved in 2 M aqueous hydrogen chloride ($(1 \mathrm{ml})$ and the solvent was removed in vacuo. The residue was dissolved in water $(4 . \mathrm{ml})$, and dried on a freeze dryer to obtain 31 mg (89%) of (3R)-1-\{2-[1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-
amine: hydrochloride: (EV-AS5766-002) as a yellow powder. LCMS (method A): retention time $1.46 \mathrm{~min}, \mathrm{M} / \mathrm{z}=378(\mathrm{M}+1)$.
[00161] I-6 and I-7
[00162] (3R)-1-[2-(1-Cyclobutyl-3-cyclopropyl-1H-pyrazol-5-yl)-1-methyl-1H-1,3-benzodiazole-5-carbonyl]piperidin-3-amine I-6 EV-AR0050-002 (EOAI3427617) was synthesised according to the procedures described in Scheme 1 via synthesis of methyl 1-cyclobutyl-3-cyclopropyl-1H-pyrazole-5-carboxylate (EV-AR0034-003) as described in Scheme 1.6. (3R)-1-[2-(1-cyclobutyl-5-cyclopropyl-1H-pyrazol-3-yl)-1-methyl-1H-1,3-benzodiazole-5-carbonyl]piperidin-3-amine I-7 EV-AR0051-002 (EOAI3427618) was synthesised according to the: procedures described in Scheme: 1 via synthesis of methyl 1-cyclobutyl-5-cyclopropyl-1H-pyrazole-3-carboxylate (EV-AR0034-004) as described in Scheme 1.6.

Scheme 1.6

[00163] Methyl 1-cyclobutyl-3-cyclopropyl-1H-pyrazole-5-carboxylate (EV-AR0034-003) and methyl 1-cyclobutyl-5-cyclopropyl-1H-pyrazole-3-carboxylate (EV-AR0034-004) Step 1
[00164] Toa a solution of methyl 3-cyclopropyl-1H-pyrazole-5-carboxylate (CAS 1036733-115, $500 \mathrm{mg}, 3.01 \mathrm{mmol}$) in DMF (5 ml) were added potassium carbonate ($832 \mathrm{mg}, 6.02 \mathrm{mmol}$), potassium iodide: ($750 \mathrm{mg}, 4.52 \mathrm{mmol}$) and bromocyclobutane (CAS 4399-47-7, $315 \mu \mathrm{l}, 3.35$ mmol). The: resulting; mixture: was, stirred for 17 h at $80^{\circ} \mathrm{C}$. Additional bromocyclobutane ($70 \mu \mathrm{l}$, $0.74 \mathrm{mmol})$, was; added and the mixture stirred for 24 h at $80^{\circ} \mathrm{C}$. The solvent was removed in vacuo, the residue was dissolved in ethyl acetate $(100 \mathrm{ml})$, washed with water $(3 \times 10 \mathrm{ml})$ then saturated sodium chloride $(10 \mathrm{ml})$. The organic extract was dried over sodium sulfate and concentrated in, vacuo. The crude material was purified by flash column chromatography (25% ethyl acetate/heptane) to obtain 2 products.

First eluting; isomer: 230 mg (31%) of methyl 1-cyclobutyl-3-cyclopropyl-1H-pyrazole-5carboxylate: (EV-AR0034-003) as a yellow oil. LCMS (method D): retention time $1.26 \mathrm{~min}, \mathrm{M} / \mathrm{z}$ $=221(M+1)$.
Second eluting; isomer: 130 mg ; (19\%) of methyl 1-cyclobutyl-5-cyclopropyl-1H-pyrazole-3carboxylate: (EV-AR0034-004) as a colourless oil. LCMS (method D): retention time 1.12min, $\mathrm{M} / \mathrm{z}=: 221(\mathrm{M}+1)$.
[00165] I-36
[00166] (3R)-1-\{2-[1-(Cyclopropylmethyl)-4-methyl-2-phenyl-1H-imidazol-5-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-amine EV-AU7213-001 (EOAI3447871) was synthesised according to the: procedures described in Scheme 1 via 1-(cyclopropylmethyl)-4-methyl-2-phenyl-1H-imidazole-5-carboxylic: acid EV-AT8656-001 synthesised according to Scheme: 1.7.
Scheme: 1.7

CAS 51605-32-4

EV-AT8650-001

EV-AT8656-001
[00167] Ethyl 2-bromo-4-methyl-1H-imidazole-5-carboxylate (EV-AT8648-001) - Step 1
[00168] To, a stirred solution of ethyl 4-methyl-1H-imidazole-5-carboxylate (CAS 51605-324, $500 \mathrm{mg}, 3.24 \mathrm{mmol}$) in acetonitrile (10 ml) and chloroform (10 ml) was added N bromosuccinimide: $(577 \mathrm{mg}, 3.24 \mathrm{mmol})$ and the reaction stirred under a nitrogen atmosphere at
room temperature for 18 h . The reaction mixture was concentrated and the residue was purified by flash column chromatography ($10-100 \%$ ethyl acetate/heptane) to afford 560 mg (73%) of ethyl 2-bromo-4-methyl-1H-imidazole-5-carboxylate (EV-AT8648-001) as an off-white solid. LCMS (method D): retention time $0.87 \mathrm{~min}, \mathrm{M} / \mathrm{z}=233 / 235(\mathrm{M}+1)$.
[00169] Ethyl 2-bromo-1-(cyclopropylmethyl)-4-methyl-1H-imidazole-5-carboxylate (EV-AT8650-001)-Step 2
[00170] To ethyl 2-bromo-4-methyl-1H-imidazole-5-carboxylate (EV-AT8648-001, 550 mg , $2.36 \mathrm{mmol})$ in DMF (10 ml), was added potassium carbonate ($652 \mathrm{mg}, 4.72 \mathrm{mmol}$) followed by (bromomethyl)cyclopropane: $(0.25 \mathrm{ml}, 2.60 \mathrm{mmol})$ and the reaction mixture stirred at room temperature: for 16 h . Saturated aqueous ammonium chloride $(150 \mathrm{ml})$ was added to the reaction mixture: and the: aqueous layer was extracted with ethyl acetate ($2 \times 150 \mathrm{ml}$). The combined organics; were then dried over sodium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography ($0-100 \%$ ethyl acetate/heptane) to afford 543 mg (80%) of ethyl 2-bromo-1-(cyclopropylmethyl)-4-methyl-1H-imidazole-5-carboxylate (EV-AT8650-001) as: a. colourless, oil. LCMS (method D): retention time $1.23 \mathrm{~min}, \mathrm{M} / \mathrm{z}=287 / 289$ $(\mathrm{M}+1)$.
[00171] 1-(Cyclopropylmethyl)-4-methyl-2-phenyl-1H-imidazole-5-carboxylic acid (EV-AT8656-001)-.Step 3
[00172] A pressure: tube was charged with ethyl 2-bromo-1-(cyclopropylmethyl)-4-methyl-1H-imidazole-5-carboxylate: (EV-AT8650-001, $200 \mathrm{mg}, 0.70 \mathrm{mmol}$), phenylboronic acid (127 $\mathrm{mg}, 1.04 \mathrm{mmol})$, tetrakis(triphenylphosphine)palladium(0) $(20 \mathrm{mg}, 0.017 \mathrm{mmol})$ and potassium carbonate: $(154 \mathrm{mg}, 1.11 \mathrm{mmol})$ in dioxane $(2 \mathrm{ml})$ and water $(0.67 \mathrm{ml})$. The mixture was purged with nitrogen for 10 minutes, and stirred at $100^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was partitioned between ethyl acetate: $(100 \mathrm{ml})$, and water $(80 \mathrm{ml})$. The organic extract was dried over sodium sulfate: and concentrated. The: residue was purified using flash column chromatography ($0-35 \%$ ethyl acetate/heptane) to afford $172 \mathrm{mg}_{\text {; }}$ (82%) of 1-(cyclopropylmethyl)-4-methyl-2-phenyl-1H-imidazole-5-carboxylic acid (EV-AT8656-001) as a yellow oil. LCMS (method D): retention time: $1.05 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=285(\mathrm{M}+1)$.
[00173] I-43
[00174] 5-\{5-[(3R)-3-Aminopiperidine-1-carbonyl]-7-methoxy-1-methyl-1H-1,3-benzodiazol-2-yl\}-N-benzyl-1-
(EOAI3450849) was synthesised according to the procedures described in Scheme 1 via synthesis of" 5-[benzyl(phenyl)carbamoyl]-1-(cyclopropylmethyl)-1H-pyrrole-2-carboxylic acid (EV-AU3461-003) asi described in Scheme 1.8.

Scheme: 1.8

[00175] Ethyl 5-[benzyl(phenyl)carbamoyl]-1H-pyrrole-2-carboxylate (EV-AU3459-003) -Stepi 1
[00176] To a solution of 5-(ethoxycarbonyl)-1H-pyrrole-2-carboxylic acid (CAS 952569-583, $200 \mathrm{mg}, 1.09 \mathrm{mmol}$) in DMF (5 ml) was added DIPEA ($190 \mu \mathrm{l}, 1.15 \mathrm{mmol}$) followed by HATU ($436 \mathrm{mg}, 1.15 \mathrm{mmol}$). The reaction was stirred for 30 minutes and N -benzylaniline (CAS $\mathbf{1 0 3 - 3 2 - 2}, 220 \mathrm{mg}, 1.20 \mathrm{mmol})$ was added. The mixture was stirred under nitrogen for 17 h at room temperature: then for 23 h at $50^{\circ} \mathrm{C}$. The: reaction mixture was concentrated in vacuo and the residue: diluted with $\operatorname{DCM}(30 \mathrm{ml})$ and water $(25 \mathrm{ml})$. The aqueous layer was extracted with DCM $(2 \times 30 \mathrm{ml})$ and the combined organic extracts were washed with water $(2 \times 10 \mathrm{ml})$, saturated aqueous; sodium chloride $(10 \mathrm{ml})$, dried over sodium sulfate and concentrated in vacuo. The crude; material was; purified by flash column chromatography (100% DCM) to obtain 174 mg (46\%), of ethyl 5-[benzyl(phenyl)carbamoyl]-1H-pyrrole-2-carboxylate EV-AU3459-003 as a white: powder. LCMS (method D): retention time: $2.28 \mathrm{~min} . \mathrm{M} / \mathrm{z}=349(\mathrm{M}+1)$.

[00177] 5-[benzyl(phenyl)carbamoyl]-1-(cyclopropylmethyl)-1H-pyrrole-2-carboxylic acid (EV-AU3461-003) - Step 2

[00178] To, a solution of ethyl 5-[benzyl(phenyl)carbamoyl]-1H-pyrrole-2-carboxylate (174 $\mathrm{mg}, 0.50 \mathrm{mmol})$ in anhydrous, DMF (3 ml) was added sodium hydride $(60 \%, 30.1 \mathrm{mg}, 0.75$ mmol) followed by (bromomethyl)cyclopropane: ($73 \mu \mathrm{l}, 0.75 \mathrm{mmol}$). The resulting mixture was stirred for 17 h under nitrogen at room temperature then for 8 h at $50^{\circ} \mathrm{C}$ then for 52 h at room
temperature. The: reaction mixture was concentrated in vacuo and the residue was dissolved in methanol (5 ml). 5 M aqueous sodium hydroxide $(0.86 \mathrm{ml})$ was added and the reaction was stirred for 6 h at $50^{\circ} \mathrm{C}$. The reaction was allowed to cool to room temperature and acidified with 5 N aqueous hydrogen chloride (6 ml). The: resulting suspension was concentrated in vacuo and taken up in water (3 ml). The: suspension was then filtered and the solid allowed to air dry to obtain 55 mg ; (83\%) of ${ }^{\prime} 5$-[benzyl(phenyl)carbamoyl]-1-(cyclopropylmethyl)-1H-pyrrole-2carboxylic: acid (EV-AU3461-003) as. a pale yellow solid. LCMS (method D): retention time $1.23 \mathrm{~min} . \mathrm{M} / \mathrm{z}=375(\mathrm{M}+1)$.
[00179] I-48
[00180] 5-\{5-[(3R)-3-Aminopiperidine-1-carbonyl]-7-methoxy-1-methyl-1H-1,3-benzodiazol-2-yl\}-1-(cyclopropylmethyl)-N-phenyl-1H-pyrrole-2-carboxamide I-48 EV-AU3491-002. (EOAI3454072) was. synthesised according to the procedures described in Scheme 1 viaı synthesis: of ethyl 1-(cyclopropylmethyl)-5-(phenylcarbamoyl)-1H-pyrrole-2-carboxylate (EV-AU3483-002) asi described in Scheme 1.9.

Scheme: 1.9

[00181] Ethyl 5-(phenylcarbamoyl)-1H-pyrrole-2-carboxylate (EV-AU3481-004) - Step 1
[00182] To, a solution of 5-(ethoxycarbonyl)-1H-pyrrole-2-carboxylic acid (CAS 952569-583, $100 \mathrm{mg}, 0.55 \mathrm{mmol}$) in DMF (2 ml) was added DIPEA ($110 \mu \mathrm{l}, 0.67 \mathrm{mmol}$) followed by HATU ($250 \mathrm{mg}, 0.66 \mathrm{mmol}$). After stirring for 15 minutes, aniline (CAS 62-53-3, $60 \mu \mathrm{l}, 0.66$ $\mathrm{mmol})$, was added and the mixture; was stirred under nitrogen for 1.5 h at room temperature. The reaction mixture: was, concentrated in vacuo, the residue was diluted with ethyl acetate (100 ml) and washed with 1 N aqueous, hydrogen chloride $(2 \times 20 \mathrm{ml})$, water $(3 \times 20 \mathrm{ml})$ then saturated aqueous; sodium chloride $(20 \mathrm{ml})$. The organic extract was dried over sodium sulfate and concentrated in vacuo, to, afford the crude material which was purified by flash column
chromatography ($0-1 \% \mathrm{MeOH} / \mathrm{DCM}$) to obtain 114 mg (81%) of ethyl 5 -(phenylcarbamoyl)-1H-pyrrole-2-carboxylate (EV-AU3481-004) as a white powder. LCMS (method D): retention time: $1.08 \mathrm{~min}, \mathrm{M} / \mathrm{z}=259(\mathrm{M}+1)$.
[00183] Ethyl 1-(cyclopropylmethyl)-5-(phenylcarbamoyl)-1H-pyrrole-2-carboxylate (EV-AU3483-002) - Step 2
[00184] To a solution of DIAD ($174 \mu \mathrm{l}, 0.88 \mathrm{mmol}$) in anhydrous THF (5 ml) was added triphenylphosphane: $(232 \mathrm{mg}, 0.88 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. After stirring for 30 minutes a solution of ethyl 5-(phenylcarbamoyl)-1H-pyrrole-2-carboxylate (EV-AU3481-004, $114 \mathrm{mg}, 0.44 \mathrm{mmol}$) in anhydrous THF (5 ml) was added. The solution was stirred for a further 30 minutes, then cyclopropylmethanol ($54 \mu \mathrm{l}, 0.67 \mathrm{mmol}$) was added and the mixture was allowed to reach room temperature: over 17 h under an atmosphere of nitrogen. The solvent was removed in vacuo and the: crude: material was purified by flash column chromatography (5-25\% ethyl acetate/heptane) to obtain 150 mg ; (80%) of ethyl 1-(cyclopropylmethyl)-5-(phenylcarbamoyl)-1H-pyrrole-2carboxylate: (EV-AU3483-002) as a white powder. LCMS (method D): retention time 1.29 min , $\mathrm{M} / \mathrm{z}_{\mathrm{i}}=313(\mathrm{M}+1)$.
[00185] I-23
[00186] (3R)-1-\{2-[1-(cyclopropylmethyl)-2-phenyl-1H-imidazol-5-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-amine: I-23 EV-AT8676-001 (EOAI3441286) was synthesised according; to, the procedures described in Scheme 1 via synthesis of methyl 1-(cyclopropylmethyl)-2-phenyl-1H-imidazole-5-carboxylate (EV-AT8667-001) as described in Scheme: 1.10.

Scheme 1.10

[00187] Methyl 2-phenyl-1H-imidazole-5-carboxylate (EV-AT8666-001) = Step 1
[00188] To a suspension of N -hydroxybenzenecarboximidamide (CAS 613-92-3, $3.91 \mathrm{~g}, 28.7$ $\mathrm{mmol})^{\prime}$ in methanol ($20^{\prime} \mathrm{ml}$)' was added methyl prop-2-ynoate (CAS 922-67-8, 2.55 ml , 28.7 $\mathrm{mmol})$. The mixture was stirred at $60^{\circ} \mathrm{C}$ under nitrogen for 1 h , concentrated in vacuo, azeotroped with toluene $(20 \mathrm{ml})$) and the solvents were removed in vacuo. Diphenyl ether was added to the resulting; solid and the mixture: was stirred at $200^{\circ} \mathrm{C}$ for 30 minutes. The reaction was allowed to cool to room temperature: and diethyl ether $(100 \mathrm{ml})$ was added. The resulting solid was filtered off"and purified by flash column chromatography ($10-80 \%$ ethyl acetate/heptane) to obtain 0.52 g ; (8.6\%) of methyl 2-phenyl-1H-imidazole-5-carboxylate (EV-AT8666-001) as an off" white powder. LCMS (method D): retention time $0.80 \mathrm{~min}, \mathrm{M} / \mathrm{z}=203(\mathrm{M}+1)$.
[00189] Methyl 1-(cyclopropylmethyl)-2-phenyl-1H-imidazole-5-carboxylate (EV-AT8667-001) - Step 2
[00190] To a suspension of methyl 2-phenyl-1H-imidazole-4-carboxylate (EV-AT8666-001, $624 \mathrm{mg}, 3.09 \mathrm{mmol})$ and potassium carbonate $(853 \mathrm{mg}, 6.17 \mathrm{mmol})$ in DMF $(10 \mathrm{ml})$ was added (bromomethyl)cyclopropane $(0.36 \mathrm{ml}, 3.70 \mathrm{mmol})$. The mixture was left stirring for 16 h at room temperature: then the: mixture: was partitioned between ethyl acetate $(100 \mathrm{ml})$ and water $(100 \mathrm{ml})$. The: organic: extract was dried over sodium sulfate, filtered and concentrated. The residue was purified by flash column chromatography ($10-60 \%$ ethyl acetate/heptane) to obtain 235 mg (29\%), of methyl 1-(cyclopropylmethyl)-2-phenyl-1H-imidazole-5-carboxylate (EV-AT8667001) as a yellow oil. LCMS (method D): retention time $1.05 \mathrm{~min}, \mathrm{M} / \mathrm{z}=257(\mathrm{M}+1)$.
[00191] I-58
[00192] (3R)-1-[2-(1-Benzyl-2-methyl-1H-imidazol-4-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]piperidin-3-amine I-58 EV-AW5508-001 (EOAI3456187) was synthesised according; to the procedures, described in Scheme 1 via the synthesis of methyl 1-benzyl-2-methyl-1H-imidazole-4-carboxylate (EV-AV3888-001) as described in Scheme 1.11.

Scheme 1.11

[00193] (Z)-N-hydroxyethenecarbonimidoyl chloride (EV-AV3883-001) - Step 1

[00194] Toia solution of (E)-N-ethylidenehydroxylamine (CAS 107-29-9, $0.50 \mathrm{~g}, 8.46 \mathrm{mmol}$) in DMF (20 mL) was added 1-chloropyrrolidine-2,5-dione ($685.06 \mu \mathrm{l}, 8.46 \mathrm{mmol}$) and the reaction was: left to stir at room temperature: for 2 h . The mixture was diluted with water (10 ml) and extracted with ethyl acetate: $(2 \times 10 \mathrm{ml})$. The combined organic extracts were washed with water ($3 \times 10 \mathrm{ml}$), saturated aqueous, sodium chloride (10 ml), dried over sodium sulfate and concentrated in vacuo to obtain 0.79 g. (assumed quantitative) of (Z)-Nhydroxyethenecarbonimidoyl chloride (EV-AV3883-001) as a colourless oil.
[00195] (Z)-N-benzyl-N'-hydroxyethenimidamide (EV-AV3886-001) - Step 2
[00196] Toia solution of (Z)-N-hydroxyethenecarbonimidoyl chloride (EV-AV3883-001, 0.80 $\mathrm{g}, 8.56 \mathrm{mmol})$ in diethyl ether $(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added triethylamine $(1.19 \mathrm{ml}, 8.56 \mathrm{mmol})$ and phenylmethanamine $(0.93 \mathrm{ml}, 8.56 \mathrm{mmol})$ and the reaction was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The mixture: was; then diluted with water (10 ml) and extracted with DCM ($3 \times 10 \mathrm{ml}$). The combined organic; extracts; were washed with water (10 ml), saturated aqueous sodium chloride (10 ml), dried over sodium sulfate and concentrated in vacuo to obtain 730 mg (52\%) of (Z)-N-benzylN '-hydroxyethenimidamide: (EV-AV3886-001) as a white powder. LCMS (method D): retention time: $0.37 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=165(\mathrm{M}+1)$.
[00197] Methyl 1-benzyl-2-methyl-1H-imidazole-4-carboxylate (EV-AV3888-001) - Step 3
[00198] To, a solution of (Z)-N-benzyl-N'-hydroxyethenimidamide (EV-AV3886-001, 730 $\mathrm{mg}, 4.45 \mathrm{mmol}$) in methanol (12 ml) was added methyl prop-2-ynoate (CAS 922-67-8, 404.26 $\mu \mathrm{l}, 4.54 \mathrm{mmol}$). The; mixture; was, stirred at $65^{\circ} \mathrm{C}$ under nitrogen for 5 h . The mixture was then
concentrated in' vacuo, toluene: (3 ml) was added and the mixture was concentrated in vacuo to afford an orange: oil. Diphenyl ether (12 ml) was added and the mixture was left stirring at $200^{\circ} \mathrm{C}$ for 20 minutes. The reaction was cooled to room temperature and the mixture was purified by flash column chromatography ($10-100 \%$ ethyl acetate/heptanes then $0-20 \%$ $\mathrm{MeOH} /$ ethyl acetate) to obtain 320 mg , (30\%) of methyl 1-benzyl-2-methyl-1H-imidazole-4carboxylate: (EV-AV3888-001) as a brown oil. LCMS (method D): retention time $0.77 \mathrm{~min}, \mathrm{M} / \mathrm{z}$ $=231(M+1)$.

[00199] I-55

[00200] 5-\{5-[(3R)-3-Aminopiperidine-1-carbonyl]-7-methoxy-1-methyl-1H-1,3-benzodiazol-2-yl\}-1-benzyl-1H-pyrrole-2-carbonitrile: I-55 EV-AW5300-001 (EOAI3455897) wasi synthesised according; to the procedures described in Scheme 1 via the synthesis of methyl 1-benzyl-5-cyano-1H-pyrrole-2-carboxylate: (EV-AU7292-001) as described in Scheme 1.12.

Scheme 1.12

[00201] Methyl 1-benzyl-5-bromo-1H-pyrrole-2-carboxylate (EV-AU7290-001) - Step 1
[00202] To, a solution of DIAD ($1.03 \mathrm{ml}, 4.90 \mathrm{mmol}$) in dry THF (5 ml) under nitrogen at $20^{\circ} \mathrm{C}$ was, added a solution of triphenylphosphine ($1.30 \mathrm{~g}, 4.90 \mathrm{mmol}$) in dry THF (10 ml). The mixture: was, stirred for 30 minutes and a solution of methyl 5 -bromo- 1 H -pyrrole-2-carboxylate (CAS 934-07-6, $500 \mathrm{mg}, 2.45 \mathrm{mmol}$) in dry THF (5 ml) was added. The mixture was stirred at $20^{\circ} \mathrm{C}$ for a further 30 minutes and phenylmethanol (CAS 100-51-6, $0.38 \mathrm{ml}, 3.67 \mathrm{mmol}$) in dry THF (5 ml) was, added dropwise $\mathrm{at}-20^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm to room temperature and stirred for 62 h . The; solvent was removed in vacuo and the crude material was purified by flash column chromatography (5-30\% ethyl acetate/heptane) to obtain 730 mg
(99\%)' of ${ }^{\text {º }}$ methyl 1-benzyl-5-bromo-1H-pyrrole-2-carboxylate (EV-AU7290-001) as a pale yellow oil. LCMS (method D): retention time $1.32 \mathrm{~min}, \mathrm{M} / \mathrm{z}=294 / 296(\mathrm{M}+1)$.
[00203] Methyl 1-benzyl-5-cyano-1H-pyrrole-2-carboxylate (EV-AU7292-001) - Step 2
[00204] To a solution of methyl 1-benzyl-5-bromo-1H-pyrrole-2-carboxylate (EV-AU7290$\mathbf{0 0 1}, 300 \mathrm{mg}, 1.00 \mathrm{mmol})$ in NMP (5 ml) was added copper cyanide ($107 \mathrm{mg}, 1.2 \mathrm{mmol}$). The resulting; mixture: was heated at $160^{\circ} \mathrm{C}$ in a sealed tube for 16 h . The reaction was allowed to cool to room temperature and poured into an aqueous 10% EDTA solution in 1M sodium hydroxide (30 ml). The resulting; mixture was stirred at room temperature for 30 minutes. The aqueous mixture: was extracted with ethyl acetate ($3 \times 20 \mathrm{ml}$) and the combined organic extracts were washed with saturated aqueous sodium chloride (10 ml), dried over sodium sulfate and concentrated in: vacuo. The: crude material was. purified by flash column chromatography (5$30 \%$ ethyl acetate/heptane) to obtain 142 mg (58%) of methyl 1-benzyl-5-cyano-1H-pyrrole-2carboxylate: (EV-AU7292-001) as a colourless oil. LCMS (method D): retention time 1.21 min , $\mathrm{M} / \mathrm{z}_{\mathrm{i}}=241(\mathrm{M}+1)$.
[00205] I-56
[00206] 5-\{5-[(3R)-3-Aminopiperidine-1-carbonyl]-7-methoxy-1-methyl-1H-1,3-benzodiazol-2-yl\}-1-benzyl-1H-pyrrole-2-carboxamide: I-56 EV-AW5302-001 (EOAI34558898) was; synthesised from a byproduct of the synthetic route to $\mathbf{I}-55$ (Scheme 1.12)
[00207] I-57
[00208] (3R)-1-[7-Methoxy-1-methyl-2-(1-phenyl-1H-pyrrol-2-yl)-1H-1,3-benzodiazole-5-carbonyl]piperidin-3-amine I-57 EV-AW1377-001 (EOAI3456183) was synthesised according to, the: procedures, described in Scheme 1 via synthesis of methyl 1-phenyl-1H-pyrrole-2carboxylate: (EV-AW1367-001) as described in Scheme 1.13.

Scheme 1.13

CAS 1193620

CAS 531-50-4

$\mathrm{Ev}-\mathrm{BH} 1367 \mathrm{Con}$
[00209] Methyl 1-phenyl-1H-pyrrole-2-carboxylate (EV-AW1367-001) - Step 1
[00210] Methyl 1H-pyrrole-2-carboxylate (CAS 1193-62-0, $100 \mathrm{mg}, 0.80 \mathrm{mmol}$) and iodobenzene: (CAS 591-50-4, $107 \mathrm{\mu l}, 0.96 \mathrm{mmol}$) were dissolved in toluene (2 ml) and N, N '-dimethylethane-1,2-diamine: ($35 \mu \mathrm{l}, 0.32 \mathrm{mmol}$) and potassium phosphate ($356 \mathrm{mg}, 1.68 \mathrm{mmol}$) were: added. The: reaction was purged with nitrogen for 5 minutes then copper(I) iodide (30 mg , $0.16 \mathrm{mmol})$ was added. The mixture was stirred at $110^{\circ} \mathrm{C}$ for 17 h . The reaction was allowed to cool to room temperature, diluted with ethyl acetate $(20 \mathrm{ml})$ and washed with water ($5 \times 10 \mathrm{ml}$). The: organic layer was dried over sodium sulfate and concentrated in vacuo. The crude material was purified by flash column chromatography ($0-100 \%$ ethyl acetate/heptane) to obtain 127 mg (79\%), of methyl 1-phenyl-1H-pyrrole-2-carboxylate (EV-AW1367-001) as a white powder. LCMS (method D): retention time: $1.15 \mathrm{~min}, \mathrm{M} / \mathrm{z}=202(\mathrm{M}+1)$.
[00211] I-13
[00212] (3R)-1-\{2-[1-(Cyclopropylmethyl)-5-phenyl-1H-imidazol-2-yl]-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}piperidin-3-amine: I-13 EV-AS5448-002 (EOAI3435745) was synthesised according; to the procedures described in Scheme 1 via synthesis of ethyl 1-(cyclopropylmethyl)-5-phenyl-1H-imidazole-2-carboxylate (EV-AS5437-001) as described in Scheme: 1.14.

Scheme 1.14

[00213] 1-(Cyclopropylmethyl)-5-phenyl-1H-imidazole (EV-AS5429-002) - Step 1
[00214] To a solution of 5-phenyl-1,3-oxazole (CAS 1006-68-4, $1.00 \mathrm{~g}, 6.90 \mathrm{mmol}$) and cyclopropyl-methylamine: (CAS 2516-47-4, $980 \mathrm{mg}, 13.8 \mathrm{mmol}$) in o-dichlorobenzene (10 ml) was: added trifluoroacetic: acid ($1.054 \mathrm{ml}, 13.78 \mathrm{mmol}$). The reaction was stirred at $200^{\circ} \mathrm{C}$ under microwave: irradiation for 1.5 h . The: mixture: was poured into a mixture of 1 M aqueous sodium hydroxide: (20 ml) and saturated aqueous sodium chloride (40 ml) and extracted with ethyl acetate: $(3 \times 20 \mathrm{ml})$. The combined organic extracts were dried over sodium sulfate and concentrated in vacuo. The crude material was purified with an SCX-II cartridge. The cartridge was; washed sequentially with MeOH then with 2 M ammonia in MeOH . The ammonia/ MeOH washings; were: concentrated in vacuo to obtain 250 mg of 1-(cyclopropylmethyl)-5-phenyl-1Himidazole: (EV-AS5429-002) as, a brown solid. LCMS (method D): retention time $0.71 \mathrm{~min}, \mathrm{M} / \mathrm{z}$ $=1991(\mathrm{M}+1)$.
[00215] Ethyl 1-(cyclopropylmethyl)-5-phenyl-1H-imidazole-2-carboxylate (EV-AS5437-001)-Step 2
[00216] To, a solution of 1-(cyclopropylmethyl)-5-phenyl-1H-imidazole (EV-AS5429-002, 50 $\mathrm{mg}, 0.25 \mathrm{mmol})$ in anhydrous, THF $(5 \mathrm{ml})$ at $-60^{\circ} \mathrm{C}$ under nitrogen was added a 2.5 M solution of $\mathrm{n}-\mathrm{BuLi}$ in hexane: $(119 \mu \mathrm{l}, 0.30 \mathrm{mmol})$. After stirring for 30 minutes, ethylchloroformate $(47 \mu \mathrm{l}$, 0.50 mmol), was; added. The mixture was, stirred at room temperature for 16 h , quenched by addition of water $(10 \mathrm{ml})$ and then extracted with ethyl acetate ($2 \times 20 \mathrm{ml}$). The combined organic extracts; were: dried over sodium sulfate; and concentrated in vacuo to obtain $66 \mathrm{mg}(85 \%)$ of ethyl 1-(cyclopropylmethyl)-5-phenyl-1H-imidazole-2-carboxylate (EV-AS5437-001) as a yellow oil. LCMS (method D): retention time $1.17 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=271(\mathrm{M}+1)$.

[00217] I-62

[00218] 5-\{5-[(3R)-3-Aminopiperidine-1-carbonyl]-7-methoxy-1-methyl-1H-1,3-benzodiazol-2-yl\}-1-(cyclopropylmethyl)-1H-pyrrole-2-carbonitrile, I-62, EV-AW1394-001 (EOAI3458420) 'was' synthesised according to procedures described in Scheme 1 via synthesis of ${ }^{\prime}$ methyl 7-cyano-2-\{1-ethyl-1H-pyrrolo[2,3-b]pyridin-2-yl\}-1-methyl-1H-1,3-benzodiazole-5carboxylate: (EV-AW1386-001) as described in Scheme 1.15.

[00219] Scheme 1.15

[00220] Methyl 7-cyano-2-\{1-ethyl-1H-pyrrolo[2,3-b]pyridin-2-yl\}-1-methyl-1H-1,3-benzodiazole-5-carboxylate (EV-AW1386-001) - Step 1
[00221] Copper(I) cyanide: ($31 \mathrm{mg}, 0.35 \mathrm{mmol}$) was added to a stirred solution of methyl 2-[5-bromo-1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5carboxylate: (EV-AW1383-001 synthesised according to Scheme 1, step 1-5, 90\%, $162 \mathrm{mg}, 0.35$ $\mathrm{mmol})$ in NMP $(3 \mathrm{ml})$. The reaction mixture was stirred at $16^{\circ} \mathrm{C}$ for 17 h , cooled down to room temperature and further copper(I) cyanide $(16 \mathrm{mg}, 0.17 \mathrm{mmol})$ was added. The reaction was stirred at for 5 h . The: reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and water $(30 \mathrm{ml})$ was added followed by ethyl acetate: $(30 \mathrm{ml})$. The: organic phase: was isolated and the aqueous extracted with ethyl acetate: $(2 \times 10 \mathrm{ml})$. The: combined organics, were dried over sodium sulfate and concentrated in vacuo. The: crude material was purified by flash column chromatography ($0-100 \%$ ethyl acetate/heptane), to, obtain 88 mg ; (49\%), of 'ethyl 7-cyano-2-\{1-ethyl-1H-pyrrolo[2,3-b]pyridin-2-yl\}-1-methyl-1H-1,3-benzodiazole-5-carboxylate (EV-AW1386-001) as a white powder. LCMS $(\operatorname{method} \mathrm{D})$: retention time $1.25 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{i}=365(\mathrm{M}+1)$.
[00222] I-71
[00223] (1R,4R,7R)-2-\{2-[1-(Cyclopropylmethyl)-2-(1-methyl-1H-pyrazol-4-yl)-1H-
imidazol-5-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-
azabicyclo[2.2.1]heptan-7-amine, I-71, EV-AW6285-001 (EOAI3461374) was synthesised
according; to the: procedures described in Scheme 1 via synthesis of 1-(cyclopropylmethyl)-2-(1-methyl-1H-pyrazol-4-yl)-1H-imidazole-5-carboxylic acid (EV-AW6268-002) as described in Scheme: 1.16.
[00224] Scheme 1.16

[00225] Methyl 2-[(cyclopropylmethyl)amino]acetate EV-AW6256-001 - Step 1

[00226] To, a, stirred solution of cyclopropylmethanamine (CAS 2516-47-4, $4.00 \mathrm{~g}, 56.2$ $\mathrm{mmol})$ in acetonitrile: $(40 \mathrm{ml})$, was added potassium carbonate $(7.77 \mathrm{~g}, 56.2 \mathrm{mmol})$ followed by methyl 2-chloroacetate (CAS 96-34-4, $4.93 \mathrm{ml}, 56.2 \mathrm{mmol}$) in acetonitrile (20 ml) dropwise. The mixture: was left stirring; for 17 h at room temperature. The reaction mixture was filtered and the solid was; washed with further acetonitrile (60 ml), the filtrate was concentrated in vacuo to yield $8.07^{\circ} \mathrm{g}$; (82%) of methyl 2-[(cyclopropylmethyl)amino]acetate (EV-AW6256-001) as a pale yellow solid. LCMS (method D): retention time solvent front, $\mathrm{M} / \mathrm{z}=143.9(\mathrm{M}+1)$.

[00227] Methyl 2-[N-(cyclopropylmethyl)-1-(1-methyl-1H-pyrazol-4-

 yl)formamido]acetate EV-AW6260-002 - Step 2[00228] Triethylamine; ($2.98 \mathrm{ml}, 21.4 \mathrm{mmol}$) was added dropwise to a stirred solution of methyl 2-[(cyclopropylmethyl)amino]acetate: (EV-AW6256-001, $2.00 \mathrm{~g}, 10.2 \mathrm{mmol}$) in dry THF $(80, \mathrm{ml})$, at $0^{\circ} \mathrm{C}$ under an atmosphere of nitrogen and stirring was continued for 5 minutes. 1-Methyl-1H-pyrazole-4-carbonyl chloride (CAS 79583-19-0, $1.62 \mathrm{~g}, 11.2 \mathrm{mmol}$) was added portionwise to the reaction mixture at $0^{\circ} \mathrm{C}$ and stirring was continued for 1 h at this temperature.

The: reaction was quenched with water $(80 \mathrm{ml})$ and the mixture was concentrated under reduced pressure. The: resulting aqueous residue was extracted with ethyl acetate ($2 \times 80 \mathrm{ml}$). The combined organic layers were: washed with saturated aqueous sodium chloride, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by column chromatography ($0-5 \%$ methanol/DCM) to obtain 1.82 g (65%) of methyl $2-[\mathrm{N}-$ (cyclopropylmethyl)-1-(1-methyl-1H-pyrazol-4-yl)formamido]acetate (EV-AW6260-002) as a pale: yellow oil. LCMS (method D): retention time $0.86 \mathrm{~min}, \mathrm{M} / \mathrm{z}=252(\mathrm{M}+1)$.
[00229] Sodium
2-[N-(cyclopropylmethyl)-1-(1-methyl-1H-pyrazol-4yl)formamido]acetate EV-AW6261-001 - Step 3
[00230] To methyl 2-[N-(cyclopropylmethyl)-1-(1-methyl-1H-pyrazol-4yl)formamido]acetate: (EV-AW6260-002 and EV-AW6257-003 obtained as EV-AW6260-002, $2.23 \mathrm{~g}, 8.25 \mathrm{mmol})$ in THF (15 ml) was added 2 M sodium hydroxide (10.3 ml). The reaction mixture: was heated at $50{ }^{\circ} \mathrm{C}$ with stirring for 2.5 h . The mixture was concentrated to dryness to obtain $3.00 \quad \mathrm{~g}$; (98\%) of sodium 2-[N-(cyclopropylmethyl)-1-(1-methyl-1H-pyrazol-4yl)formamido]acetate: (EV-AW6261-001). LCMS (method D): retention time $0.79 \mathrm{~min}, \mathrm{M} / \mathrm{z}=$ $238(\mathrm{M}+1)$.
[00231] 1-[1-(Cyclopropylmethyl)-2-(1-methyl-1H-pyrazol-4-yl)-1H-imidazol-5-yl]-2,2,2-trifluoroethan-1-one EV-AW6265-002-Step 4
[00232] To a stirred solution of sodium 2-[N-(cyclopropylmethyl)-1-(1-methyl-1H-pyrazol-4yl)formamido]acetate: (EV-AW6261-001, $2.74 \mathrm{~g}, 7.40 \mathrm{mmol}$) in DCM (30 ml) was added trifluoroacetic; anhydride: $(4.12 \mathrm{ml}, 29.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature: for 2 h . Further trifluoroacetic anhydride $(4.12 \mathrm{ml}, 29.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and stirring at room temperature was continued for 17 h . The solvent was removed in vacuo and the residue was dissolved in DMF (50 ml), the: mixture was cooled to $0^{\circ} \mathrm{C}$ and methanimidamide acetic acid $(2.31 \mathrm{~g}, 22.2 . \mathrm{mmol})$ and potassium carbonate $(3.07 \mathrm{~g}, 22.2 \mathrm{mmol})$ were added. The mixture was heated at $70^{\circ} \mathrm{C}$ for 3 h , diluted with water (30 ml) and extracted with ethyl acetate ($2 \times 30 \mathrm{ml}$). The: combined organic extracts, were dried over sodium sulfate, filtered and concentrated in vacuo. The: residue: was, purified by column chromatography ($0-75 \%$ ethyl acetate/heptane) to obtain 1.32 g ; (60\%), of 1 -[1-(cyclopropylmethyl)-2-(1-methyl-1H-pyrazol-4-yl)-1H-imidazol-5-yl]-2,2,2-trifluoroethan-1-one; (EV-AW6265-002) as an off-white solid. LCMS (method D): retention time $1.18 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=299(\mathrm{M}+1)$.
[00233] 1-(Cyclopropylmethyl)-2-(1-methyl-1H-pyrazol-4-yl)-1H-imidazole-5-carboxylic acid EV-AW6268-002-Step 5
[00234] To a solution of 1-[1-(cyclopropylmethyl)-2-(1-methyl-1H-pyrazol-4-yl)-1H-imidazol-5-yl]-2,2,2-trifluoroethan-1-one: (EV-AW6265-002, $1.31 \mathrm{~g}, 4.08 \mathrm{mmol}$) in DMF (20 $\mathrm{ml})$ under an atmosphere: of nitrogen was added portionwise $\mathrm{NaH}(60 \%, 0.65 \mathrm{~g}, 16.3 \mathrm{mmol})$ with ice-water cooling. The reaction mixture was heated at $70^{\circ} \mathrm{C}$ and stirred at this temperature for 3 h . The solvent was removed in vacuo and the residue was dissolved in water (60 ml) and acidified to pH 4 with 1 M HCl . The: aqueous layer was extracted with a solution of 1:4 2-propanol: chloroform ($2 \times 60 \mathrm{ml}$). The: combined organic layers were dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude product and the concentrated aqueous layer were: purified by reverse phase: chromatography ($5-30 \%$ acetonitrile/water with 0.1% formic acid additive) to obtain 0.90 g (89%) of 1-(cyclopropylmethyl)-2-(1-methyl-1H-pyrazol-4-yl)-1H-imidazole-5-carboxylic acid (EV-AW6268-002) as a creamy coloured solid. LCMS (method D): retention time $0.74 \mathrm{~min}, \mathrm{M} / \mathrm{z}=247(\mathrm{M}+1)$.
[00235] I-109
[00236] (1R,4R,7R)-2-[2-(2-Cyclobutyl-1-ethyl-1H-imidazol-5-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-amine, I-109, EV-AY4676-001 (EOAI3482311), was synthesised according to the procedures described in Scheme 1 via synthesis of methyl 2-cyclobutyl-1-ethyl-1H-imidazole-5-carboxylate (EV-AY4663-002) as described in Scheme: 1.17.

[00237] Scheme 1.17

EV-A 46663002
[00238] Methyl 2-cyclobutyl-1-ethyl-1H-imidazole-5-carboxylate (EV-AY4663-002) = Step 1
[00239] To a suspension of silver ($1+$) nitrate ($161 \mathrm{mg}, 0.95 \mathrm{mmol}$) and cyclobutanecarboxylic acid (CAS 3721-95-7, $473 \mathrm{mg}, 4.73 \mathrm{mmol}$) in 10% aqueous $\mathrm{H} 2 \mathrm{SO} 4(15 \mathrm{ml})$ was added methyl 1-ethyl-1H-imidazole-5-carboxylate : (EV-AY4659-001, $243 \mathrm{mg}, 1.58 \mathrm{mmol}$) and the reaction mixture: was heated at $70^{\circ} \mathrm{C}$. A 0.2 M aqueous solution of ammonium persulfate (23.6 ml) was added in small portions during; a period of 10 minutes. The reaction mixture was cooled down to room temperature : and was stirred for 10 minutes, poured into ice and basified using aqueous ammonia.ca. 33%, then extracted with ethyl acetate ($2 \times 20 \mathrm{ml}$). The combined extracts were washed with saturated aqueous sodium chloride: ($2 \times 20 \mathrm{ml}$), dried over magnesium sulfate and concentrated in:vacuo. The:crude: material was purified by flash column chromatography (5-50\% ethyl acetate/heptane) 'to obtain 72 mg ; (22%) of methyl 2-cyclobutyl-1-ethyl-1H-imidazole-5carboxylate: (EV-AY4663-002) as a pale oil. LCMS (method D): retention time $0.82 \mathrm{~min}, \mathrm{M} / \mathrm{z}=$ 209 (M+1).
[00240] I-112.
[00241] 6-\{5-[(1R,4R,7R)-7-Amino-2-azabicyclo[2.2.1]heptane-2-carbonyl]-7-methoxy-1-methyl-1H-1,3-benzodiazol-2-yl\}-1-(cyclopropylmethyl)-3-methyl-1,2-dihydropyridin-2-one, 112, EV-AY2080-001 (EOAI3655173) was, synthesised according to the procedures described in Scheme: 1 and Scheme: 1.18.
[00242] Scheme 1.18

[00243] Tert-butyl N-[(1R,4R,7R)-3-[2-[1-(cyclopropylmethyl)-5-methyl-6-oxo-2-pyridyl]-7-methoxy-1-methyl-benzimidazole-5-carbonyl]-3-azabicyclo[2.2.1]heptan-7yl]carbamate: (EV-AY2075-002) - Step 1
[00244] To, a solution of tert-butyl N-[(1R,4R,7R)-3-[2-[5-bromo-1-(cyclopropylmethyl)-6-oxo-2-pyridyl]-7-methoxy-1-methyl-benzimidazole-5-carbonyl]-3-azabicyclo[2.2.1]heptan-7yl]carbamate : (EV-AY2072-002 synthesised according to Scheme $1,142 \mathrm{mg}, 0.12 \mathrm{mmol}$) in
dioxane: (1.5 ml) and water (0.15 ml) was added methylboronic acid (CAS 10043-35-3, 14 mg , 0.23 mmol), tripotassium phosphate ($19 \mu \mathrm{l}, 0.23 \mathrm{mmol}$) and tricyclohexylphosphane ($7 \mu \mathrm{l}, 0.02$ $\mathrm{mmol})$. The: reaction mixture: was purged with nitrogen for 5 minutes and palladium $(2+)$ diacetate: ($3 \mathrm{mg}, 0.01 \mathrm{mmol}$) was added in one portion. The reaction vessel was sealed and heated to $120^{\circ} \mathrm{C}$ for 16 h . The mixture: was diluted with water (5 ml), extracted with DCM ($2 \times 15 \mathrm{ml}$). The: combined organics: were: concentrated and purified by column chromatography ($0-10 \%$ methanol lethyl acetate) to obtain 37 mg (46\%) of tert-butyl $\mathrm{N}-[(1 \mathrm{R}, 4 \mathrm{R}, 7 \mathrm{R})-3-[2-[1-$ (cyclopropylmethyl)-5-methyl-6-oxo-2-pyridyl]-7-methoxy-1-methyl-benzimidazole-5-carbonyl]-3-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AY2075-002) as a yellow oil. LCMS (method D): retention time $1.15 \mathrm{~min}, \mathrm{M} / \mathrm{z}:=562(\mathrm{M}+1)$.
[00245] Tert-butyl N-[(1R,4R,7R)-3-[2-[1-(cyclopropylmethyl)-5-methyl-6-oxo-2-pyridyl]-7-methoxy-1-methyl-benzimidazole-5-carbonyl]-3-azabicyclo[2.2.1]heptan-7yl]carbamate: (EV-AY2080-001) - Step 2
[00246] Tert-butyl N-[(1R,4R,7R)-3-[2-[1-(cyclopropylmethyl)-5-methyl-6-oxo-2-pyridyl]-7-methoxy-1-methyl-benzimidazole-5-carbonyl]-3-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AY2075-002, $37 \mathrm{mg}, 0.07 \mathrm{mmol}$) was dissolved in DCM (1 ml) and treated with trifluoroacetic acid $(0.22 \mathrm{ml}, 2.83 \mathrm{mmol})$ under an atmosphere: of nitrogen and stirred at room temperature for 1 h . The: mixture: was; concentrated in vacuo and azeotroped with toluene/acetonitrile. The residue was; purified by prep. HPLC (basic method), treated with Smopex-105 (5 mg) for 1 hour and freeze: dried to obtain 0.016 g (49%) of 6 -[5-[(1R,4R,7R)-7-amino-3-azabicyclo[2.2.1]heptane-3-carbonyl]-7-methoxy-1-methyl-benzimidazol-2-yl]-1-(cyclopropylmethyl)-3-methyl-pyridin-2one: $\mathbf{I - 1 1 2}$ (EV-AY2080-001) as, a white powder. LCMS (method H): retention time 2.28 min , $\mathrm{M} / \mathrm{z}_{\mathrm{i}}=462(\mathrm{M}+1)$.
[00247] I-118
[00248] (1R,4R,7R)-2-[2-(3-Ethylpyridin-4-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-amine, I-118, EV-BA1121-001 (EOAI3694084) was synthesised according; to, the procedures described in Scheme 1 via synthesis of methyl 3-ethylpyridine-4-carboxylate:(EV-BA1108-001) as described in Scheme 1.19.
[00249] Scheme 1.19

[00250] Methyl 3-ethenylpyridine-4-carboxylate (EV-BA1103-002) - Step 1
[00251] A suspension of methyl 3-bromopyridine-4-carboxylate (CAS 59786-31-1, 0.50 g , 2.31 mmol), caesium fluoride ($1.05 \mathrm{~g}, 6.94 \mathrm{mmol}$) and 2,4,6-ethenylboroxin-pyridine complex (CAS 95010-17-6, $1.39 \mathrm{~g}, 5.79 \mathrm{mmol}$) in THF (20 ml) was purged with nitrogen for 5 minutes. $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(0.34 \mathrm{~g}, 0.46 \mathrm{mmol})$ was added and the reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 2 h . The: mixture: was cooled down to room temperature and filtered through Celite washing the solid with ethyl acetate. The filtrate: was washed with saturated aqueous sodium chloride, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography ($12-100 \%$ ethyl acetate/heptane) to obtain 0.37 g (97%) of methyl 3-ethenylpyridine-4-carboxylate (EV-BA1103-002). LCMS (method D): retention time 0.88 min , $\mathrm{M} / \mathrm{z}_{\mathrm{i}}=137^{\prime}(\mathrm{M}+1)$.
[00252] Methyl 3-ethenylpyridine-4-carboxylate (EV-BA1108-001) - Step 2
[00253] A suspension of methyl 3-ethenylpyridine-4-carboxylate (EV-BA1103-002, 100 mg , $0.61 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(10 \%, 33 \mathrm{mg}, 0.03 \mathrm{mmol})$ in ethanol $(2 \mathrm{ml})$ was stirred at room temperature under an atmosphere of hydrogen for 16 h . The reaction mixture was filtered through Celite: and the: filtrate was concentrated to obtain 140 mg (55\%) of methyl 3-ethylpyridine-4-carboxylate: (EV-BA1108-001). LCMS (method D): retention time $0.85 \mathrm{~min}, \mathrm{M} / \mathrm{z}$ $=166 i(M+1)$.
[00254] Scheme 2

HATU. DFEA,
DLWF

Ev-A0700.001

Step E
of ${ }^{\text {- }}$
(3R)-1-[1-methyl-2-(5-phenyl-1H-pyrazol-1-yl)-1H-1,3-benzodiazole-5-carbonyl]piperidin-3-amine hydrochloride, I-59, EOAI3426751 (EV-AO7894-001)

[00256] Methyl 1-methyl-2-oxo-2,3-dihydro- 1H-1,3-benzodiazole-5-carboxylate (EV-AP4075-001)--Step 1
[00257] To a solution of methyl 3-amino-4-(methylamino)benzoate (EV-AN2487-001, synthesised as described in Scheme : $1,100 \mathrm{mg}, 0.54 \mathrm{mmol}$) in anhydrous DCM (3 ml) was added 1,1'-carbonyldiimidazole: $(110 \mathrm{mg}, 0.68 \mathrm{mmol})$. The mixture was stirred at room temperature for 16h. The precipitate was; collected by vacuum filtration and washed with ice-cold diethyl ether (2 x 2 ml). The solid was air dried for 2 h to obtain 82 mg (73\%) of methyl 1-methyl-2-oxo-2,3-dihydro- 1H-1,3-benzodiazole-5-carboxylate (EV-AP4075-001) as a white powder. LCMS (method D): retention time: $0.94 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{i}=207(\mathrm{M}+1)$.
[00258] Methyl 2-bromo-1-methyl-1H-1,3-benzodiazole-5-carboxylate (EV-AP4076-001) - Step 2
[00259] Toa, solution of phosphorus oxybromide ($217 \mathrm{mg}, 0.76 \mathrm{mmol}$) in dichloroethane (3 ml) in $_{\perp}$ a pressure: tube was added methyl 1-methyl- 2-oxo-2,3-dihydro-1H-1,3-benzodiazole-5carboxylate: (EV-AP4075-001, $78 \mathrm{mg}, 0.38 \mathrm{mmol}$). The vessel was sealed and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h . The: mixture: was allowed to cool to room temperature and phosphorus oxybromide: ($217 \mathrm{mg}, 0.76 \mathrm{mmol}$) was added. The mixture was heated at $80^{\circ} \mathrm{C}$ for 5 h then at room temperature: for 62 h . Phosphorus oxybromide ($434 \mathrm{mg}, 1.52 \mathrm{mmol}$) was added and the reaction heated at $80^{\circ} \mathrm{C}$ for 20 h . The: reaction was allowed to cool to room temperature and neutralised with water (10 ml) and 2 M aqueous sodium carbonate (10 ml). The aqueous mixture was; extracted with DCM ($3 \times 8 \mathrm{ml}$) and the: combined organic extracts were washed with water ($3 \times 5 \mathrm{ml}$), saturated aqueous, sodium chloride: $(10 \mathrm{ml})$, dried over magnesium sulfate and concentrated in: vacuo, to obtain 72 mg (68%) of methyl 2-bromo-1-methyl-1H-1,3-benzodiazole-5-carboxylate: (EV-AP4076-001) as, a white powder. LCMS (method D): retention time 1.09min, $\mathrm{M} / \mathrm{z}_{i}=269 / 271(\mathrm{M}+1)$.
[00260] Methyl 1-methyl-2-(5-phenyl-1H-pyrazol-1-yl)-1H-1,3-benzodiazole-5carboxylate: (EV-AQ1926-001) - Step 3
[00261] Toi a solution of methyl 2-bromo-1-methyl-1H-1,3-benzodiazole-5-carboxylate (EV-AP4096-001, $57 \mathrm{mg}, 0.20 \mathrm{mmol}$) in DMF (1 ml) in a pressure tube was added potassium carbonate: ($56.2 \mathrm{mg}, 0.41 \mathrm{mmol}$) followed by 3-phenyl-1H-pyrazole (CAS 2458-26-6, 44.0 mg , 0.31 mmol). The: vessel wasi sealed and the reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 3 h . The mixture: was allowed to cool to room temperature and partitioned between ethyl acetate (5 ml) and water (5 ml). The: aqueous. layer was extracted with ethyl acetate $(5 \mathrm{ml})$ then the combined organic: extracts. were evaporated to dryness and azeotroped with heptane. The crude material wasi purified by flash column chromatography ($0-60 \%$ ethyl acetate/heptane) to obtain 24 mg (35\%) of methyl 1-methyl-2-(5-phenyl-1H-pyrazol-1-yl)-1H-1,3-benzodiazole-5-carboxylate (EV-AQ1926-001) as a white solid. LCMS (method D): retention time $1.48 \mathrm{~min}, \mathrm{M} / \mathrm{z}=333$ ($\mathrm{M}+$ 1).
[00262] 1-Methyl-2-(5-phenyl-1H-pyrazol-1-yl)-1H-1,3-benzodiazole-5-carboxylic acid (EV-AO7889-001)-Step 4
[00263] To a solution of methyl 1-methyl-2-(5-phenyl-1H-pyrazol-1-yl)-1H-1,3-benzodiazole-5-carboxylate: (EV-AQ1926-001, $24 \mathrm{mg}, 0.07 \mathrm{mmol}$) in THF/water ($1: 1,4 \mathrm{ml}$) was added lithium hydroxide: $(6.0 \mathrm{mg}, 0.25 \mathrm{mmol})$. The resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h . The: solvent was; removed in vacuo to obtain 23 mg (assumed quantitive) of 1-methyl-2-(5-phenyl-1H-pyrazol-1-yl)-1H-1,3-benzodiazole-5-carboxylic acid (EV-AO7889-001) as a white solid. LCMS (method D): retention time $1.31 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=319(\mathrm{M}+1)$.
[00264] Tert-butyl N -[(3R)-1-[1-methyl-2-(5-phenyl-1H-pyrazol-1-yl)-1H-1,3-benzodiazole-5-carbonyl]piperidin-3-yl]carbamate (EV-AO7890-001) - Step 5
[00265] To, a solution of 1-methyl-2-(5-phenyl-1H-pyrazol-1-yl)-1H-1,3-benzodiazole-5carboxylic; acid (EV-AO7889-001, $22 \mathrm{mg}, 0.07 \mathrm{mmol}$) and DIPEA ($14 \mu \mathrm{l}, 0.08 \mathrm{mmol}$) in anhydrous; DMF (3 ml) was added HATU ($31 \mathrm{mg}, 0.08 \mathrm{mmol}$). The reaction was stirred at room temperature: for 10 minutes, tert-butyl (3R)-piperidin-3-ylcarbamate ($14 \mathrm{mg}, 0.07 \mathrm{mmol}$) was added and the reaction was continued for 60 h . Further HATU ($31 \mathrm{mg}, 0.08 \mathrm{mmol}$), DIPEA (14 $\mu 1,0.08 \mathrm{mmol}$) and tert-butyl (3R)-piperidin-3-ylcarbamate ($14 \mathrm{mg}, 0.07 \mathrm{mmol}$) were added. The reaction was, stirred at $60^{\circ} \mathrm{C}$ for 2.5 h . The mixture was concentrated in vacuo and the residue was purified by acidic; HPLC preparative: method to obtain $16 \mathrm{mg}(47 \%)$ of tert-butyl N-[(3R)-1-[1-
methyl-2-(5-phenyl-1H-pyrazol-1-yl)-1H-1,3-benzodiazole-5-carbonyl]piperidin-3-yl]carbamate (EV-AO7890-001) as a white powder.
[00266] (3R)-1-[1-Methyl-2-(5-phenyl-1H-pyrazol-1-yl)-1H-1,3-benzodiazole-5-carbonyl]piperidin-3-amine hydrochloride, I-59, (EV-AO7894-001) - Step 6
[00267] 4 M HCl in dioxane: $(2 \mathrm{ml})$ was added to a solution of tert-butyl $\mathrm{N}-[(3 \mathrm{R})-1-[1-m e t h y l-$ 2-(5-phenyl-1H-pyrazol-1-yl)-1H-1,3-benzodiazole-5-carbonyl]piperidin-3-yl]carbamate (EV-AO7890-001, $16 \mathrm{mg}, 0.03 \mathrm{mmol}$) in dioxane $(2 \mathrm{ml})$ at room temperature. The mixture was stirred at room temperature for 2 h . The: solvent was removed in vacuo and the residue was freeze dried from acetonitrile:water (1:1, 2 ml) to obtain 14 mg (99\%) of (3R)-1-[1-methyl-2-(5-phenyl-1H-pyrazol-1-yl)-1H-1,3-benzodiazole-5-carbonyl]piperidin-3-amine hydrochloride, I-59, (EV-AO7894-001) as a colourless crystalline solid. LCMS (method A): retention time $2.04 \mathrm{~min}, \mathrm{M} / \mathrm{z}$ $=401.2(\mathrm{M}+1)$.
[00268] Scheme 3

[00269] 1-(Cyclopropylmethyl)-5-formyl-1H-pyrrole-2-carbonitrile (EV-AX5314-002) Step 1
[00270] To, a solution of 5-formyl-1H-pyrrole-2-carbonitrile (CAS 81698-01-3, $749 \mathrm{mg}, 6.24$ $\mathrm{mmol})$ in acetonitrile: $(25 \mathrm{ml})$, was added potassium carbonate $(2.15 \mathrm{~g}, 15.6 \mathrm{mmol})$ followed by (bromomethyl)cyclopropane: $(1.51 \mathrm{ml}, 15.6 \mathrm{mmol})$. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 17 h . The reaction mixture; was; cooled down to, room temperature, poured onto water (75 ml) and extracted
with ethyl acetate: (3 x .75 ml). The combined organic layers were washed with water (100 ml) and saturated aqueous sodium chloride $(100 \mathrm{ml})$, dried over sodium sulfate and concentrated in vacuo. The: crude product was. purified by flash column chromatography ($0-20 \%$ ethyl acetate/heptane) to obtain 898 mg ; 79%) of" 1-(cyclopropylmethyl)-5-formyl-1H-pyrrole-2carbonitrile: as a white solid (EV-AX5314-002) as a white solid. LCMS (method D): retention time: $1.08 \mathrm{~min}, \mathrm{M} / \mathrm{z}:=175(\mathrm{M}+1)$.
[00271] Tert-butyl N -[(3R,6S)-1-[3-methoxy-4-(methylamino)-5-nitrobenzoyl]-6-methylpiperidin-3-yl]carbamate (EV-AX5315-002) - Step 2
[00272] Toia solution of 3-methoxy-4-(methylamino)-5-nitrobenzoic acid (CAS 1549812-238, $264 \mathrm{mg}, 1.17 \mathrm{mmol}$) and HATU ($440 \mathrm{mg}, 1.17 \mathrm{mmol}$) in dry DMF (5 ml) was added DIPEA $(0.41 \mathrm{ml}, 2.33 \mathrm{mmol})$ and the: mixture was stirred at room temperature for 30 minutes. Tert-butyl $\mathrm{N}-[(3 \mathrm{R}, 6 \mathrm{~S})-6$-methylpiperidin-3-yl]carbamate (CAS 1227917-63-6, $250 \mathrm{mg}, 1.17 \mathrm{mmol}$) was added and the: reaction stirred for 17 h . The reaction mixture was concentrated in vacuo and partitioned between ethyl acetate (50 ml) and saturated aqueous sodium chloride (50 ml). The aqueous; layer was extracted with ethyl acetate (30 ml) and the combined organics were washed with water $(40 \mathrm{ml})$, dried over sodium sulfate and concentrated in vacuo. The crude material was purified by flash column chromatography ($0-100 \%$ ethyl acetate/heptane) to obtain 421 mg (85\%) of tert-butyl \quad-[(3R,6S)-1-[3-methoxy-4-(methylamino)-5-nitrobenzoyl]-6-methylpiperidin-3-yl]carbamate (EV-AX5315-002) as an orange foam. LCMS (method D): retention time $1.18 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=423(\mathrm{M}+1)$.
[00273] Tert-butyl N-[(3R,6S)-1-\{2-[5-cyano-1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-6-methylpiperidin-3-yl]carbamate (EV-AX5316-002) - Step 3
[00274] To \quad a mixture: of tert-butyl N -[(3R,6S)-1-[3-methoxy-4-(methylamino)-5-nitrobenzoyl]-6-methylpiperidin-3-yl]carbamate (EV-AX5315-002, $150 \mathrm{mg}, 0.36 \mathrm{mmol}$) and 1-(cyclopropylmethyl)-5-formyl-1H-pyrrole-2-carbonitrile (EV-AX5314-002, $64 \mathrm{mg}, 0.37 \mathrm{mmol}$) in_{e} ethanol (4. ml) was, added portionwise a solution of sodium hydrosulfite (CAS 7775-14-6, 185 $\mathrm{mg}, 1.07 \mathrm{mmol})$, in water $(2 \mathrm{ml})$. The mixture was purged with nitrogen and heated at $90^{\circ} \mathrm{C}$ for 17 h . The; reaction mixture was, cooled down to, room temperature and concentrated in vacuo. DCM ($30, \mathrm{ml}$) was added to the residue: and the: heterogeneous solution was dried over sodium sulfate. The; solid was filtered off and the filtrate was concentrated in vacuo. The crude material
was purified by preparative HPLC (acidic method) to obtain 143 mg (74%) of tert-butyl N -[(3R,6S)-1-\{2-[5-cyano-1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-6-methylpiperidin-3-yl]carbamate (EV-AX5316-002) as a white solid. LCMS (method D): retention time $1.28 \mathrm{~min}, \mathrm{M} / \mathrm{z}=547(\mathrm{M}+1)$.
[00275] EV-AX5316-002 was used to synthesise 5-\{5-[(2S,5R)-5-amino-2-methylpiperidine-1-carbonyl]-7-methoxy-1-methyl-1H-1,3-benzodiazol-2-yl\}-1-(cyclopropylmethyl)-1H-pyrrole-2-carbonitrile, I-69, EV-AX5318-001 (EOAI3460934) according to the procedures described in Scheme: 1.
[00276] Special cases for Scheme 3
[00277] I-73
[00278] 5-\{5-[(1R,4R,7R)-7-Amino-2-azabicyclo[2.2.1]heptane-2-carbonyl]-7-methoxy-1-\{[(1R,3S)-3-methoxy-3-methylcyclobutyl]methyl\}-1H-1,3-benzodiazol-2-yl\}-1-(cyclopropylmethyl)-1H-pyrrole-2-carbonitrile, I-73, EV-AX7827-001 (EOAI3461384) was synthesised according; to the procedures described in Scheme 3 and Scheme 1 via synthesis of methyl 2-[5-cyano-1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-7-methoxy-1-\{[(1R,3S)-3-methoxy-3-methylcyclobutyl]methyl\}-1H-1,3-benzodiazole-5-carboxylate (EV-AX7820-001) described in Scheme: 3.1
[00279] Scheme 3.1

[00280] Methyl-2-[5-cyano-1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-7-methoxy-1-
\{[(1R,3S)-3-hydroxy-3-methylcyclobutyl]methyl\}-1H-1,3-benzodiazole-5-carboxylate (EV-AX7819-001) - Step 1
[00281] Methyl-3-amino-5-methoxy-4-(\{[(1R,3S)-3-hydroxy-3methylcyclobutyl]methyl \}amino)benzoate (EV-AX2006-001, $91 \%, 557 \mathrm{mg}, 1.72 \mathrm{mmol}$) and 1-(cyclopropylmethyl)-5-formyl-1H-pyrrole-2-carbonitrile : (EV-AX5314-002, $300 \mathrm{mg}, 1.72 \mathrm{mmol}$) were: dissolved in DMF (3 ml) and $\mathrm{Na} 2 \mathrm{~S} 2 \mathrm{O} 5(982 \mathrm{mg}, 5.17 \mathrm{mmol}$) was added. The reaction mixture: was; stirred at $80^{\circ} \mathrm{C}$ for 17 h and cooled down to room temperature. The mixture was diluted with ethyl acetate: $(20 \mathrm{ml}$), washed with water ($3 \times 10 \mathrm{ml}$) and saturated aqueous sodium chloride: $(5 \mathrm{ml})$. The: combined organics were dried over sodium sulfate and concentrated in vacuo. The :crude: was, purified by flash column chromatography ($0-100 \%$ ethyl acetate/heptane) to, obtain $574 . \mathrm{mg}$; (70\%), of methyl-2-[5-cyano-1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-7-methoxy-1-\{[(1R,3S)-3-hydroxy-3-methylcyclobutyl]methyl\}-1H-1,3-benzodiazole-5-carboxylate:(EV-AX7819-001) as a yellow powder. LCMS (method D): retention time 1.19min, $\mathrm{M} / \mathrm{z}_{\mathrm{i}}=: 449(\mathrm{M}+1)$.

[00282] Methyl-2-[5-cyano-1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-7-methoxy-1-

\{[(1R,3S)-3-methoxy-3-methylcyclobutyl]methyl\}-1H-1,3-benzodiazole-5-carboxylate (EV-AX7820-002)-Step 2
[00283] Methyl-2-[5-cyano-1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-7-methoxy-1-\{[(1R,3S)-3-hydroxy-3-methylcyclobutyl]methyl\}-1H-1,3-benzodiazole-5-carboxylate (EV-AX7819-001, $574 \mathrm{mg}, 1.20 \mathrm{mmol})$ was dissolved in DMF (7 ml) and $\mathrm{NaH}(60 \%, 96 \mathrm{mg}, 2.41 \mathrm{mmol}$) was added. The: reaction mixture was stirred at room temperature for 10 minutes then iodomethane ($374 . \mu \mathrm{l}, 6.01 \mathrm{mmol}$) was added. The reaction was stirred at room temperature for 4 h then concentrated in vacuo. The residue was diluted with water (20 ml) and extracted intoeEthyl acetate: $(3 \times 30 \mathrm{ml})$. The:combined organics were dried over sodium sulfate and the evaporated to dryness. The: resulting; material was purified by flash column chromatography ($0-100 \%$ ethyl acetate/heptane) , then by preparative : HPLC (acidic method) to obtain 282 mg (50%) of methyl-2-[5-cyano-1-(cyclopropylmethyl)-1H-pyrrol-2-yl]-7-methoxy-1-\{[(1R,3S)-3-methoxy-3-
methylcyclobutyl]methyl\}-1H-1,3-benzodiazole-5-carboxylate (EV-AX7820-002) as a white powder.

[00284] I-81

[00285] 5-\{5-[(1R,4R,7R)-7-Amino-2-azabicyclo[2.2.1]heptane-2-carbonyl]-7-methoxy-1-methyl-1H-1,3-benzodiazol-2-yl\}-1-cyclopropyl-1H-pyrrole-2-carbonitrile, I-81, EV-AY4337001 (EOAI3468837), was synthesised according to procedures described in Scheme 3.1 via 1-cyclopropyl-5-formyl-1H-pyrrole-2-carbonitrile:EV-AY4323-001 synthesised as described in Scheme:3.2.
[00286] Scheme 3.2

CAS 61690-01-3

CAS $411235-57-9$

$\mathrm{EV}-\mathrm{A} 4323-001$
[00287] 1-Cyclopropyl-5-formyl-1H-pyrrole-2-carbonitrile (EV-AY4323-001) - Step 1
[00288] To, a solution of 5-formyl-1H-pyrrole-2-carbonitrile (CAS 81698-01-3, $250 \mathrm{mg}, 1.98$ mmol), cyclopropylboronic : acid (CAS 411235-57-9, 510 mg , 5.93 mmol) and Na 2 CO 3 (629 mg ,
$5.93 \mathrm{mmol})$ in DCE ($(1 \mathrm{ml})$ was added a suspension of copper(II) diacetate ($539 \mathrm{mg}, 2.97 \mathrm{mmol}$) and 2,2'-bipyridine ($463 \mathrm{mg}, 2.97 \mathrm{mmol}$) in DCE $(2 \mathrm{ml})$. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 4 h , cooled down to room temperature and quenched with $1 \mathrm{M} \mathrm{HCl}(15 \mathrm{ml})$. The resulting; material was extracted with ethyl acetate ($3 \times 10 \mathrm{ml}$). The combined organic fractions were: washed with $5 \mathrm{~N} \mathrm{NaOH}(10 \mathrm{ml}$), saturated aqueous sodium chloride (10 ml), dried over sodium sulphate: and concentrated in vacuo. The crude was purified by flash column chromatography (eluting; with $0-50 \%$ ethyl acetate/heptane) to obtain 120 mg (38%) of 1-cyclopropyl-5-formyl-1H-pyrrole-2-carbonitrile (EV-AY4323-001) as a white powder. LCMS (method D): retention time: $0.98 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=161(\mathrm{M}+1)$.
[00289] I-82
[00290] 5-\{5-[(1R,4R,7R)-7-Amino-2-azabicyclo[2.2.1]heptane-2-carbonyl]-7-methoxy-1-methyl-1H-1,3-benzodiazol-2-yl\}-1-(2,2,2-trifluoroethyl)-1H-pyrrole-2-carbonitrile, I-82, EV-AY4338-001 (EOAI3468838) was synthesised according to the procedures described in Scheme 3 vial synthesis: of 5-formyl-1-(2,2,2-trifluoroethyl)-1H-pyrrole-2-carbonitrile EV-AY4332-001 as; described in Scheme:3.3
[00291] Scheme 3.3

[00292] 5-Formyl-1-(2,2,2-trifluoroethyl)-1H-pyrrole-2-carbonitrile (EV-AY4332-001) Step 1
[00293] To, a solution of 5-formyl-1H-pyrrole-2-carbonitrile (CAS 81698-01-3, $300 \mathrm{mg}, 2.37$ $\mathrm{mmol})$ in DMF $^{\prime}(10 \mathrm{ml})$ were: added $\mathrm{NaH}(60 \%, 114 \mathrm{mg}, 2.85 \mathrm{mmol})$ and $2,2,2$-trifluoroethyl trifluoromethanesulfonate $(582 \mu \mathrm{l}, 4.03 \mathrm{mmol})$. The reaction was stirred at room temperature for 20h. The reaction mixture was diluted with water (10 ml) and extracted with ethyl acetate (3×10 ml). The; organic extracts; were; combined and washed with $5 \mathrm{~N} \mathrm{NaOH}(10 \mathrm{ml})$, saturated aqueous sodium chloride: $(10 \mathrm{ml})$, dried over sodium sulfate and concentrated in vacuo. The crude was
purified by flash column chromatography ($0-50 \%$ ethyl acetate/heptane) to obtain 406 mg (85%) ofः 5-formyl-1-(2,2,2-trifluoroethyl)-1H-pyrrole-2-carbonitrile (EV-AY4332-001) as a white solid. LCMS (method D) retention time 1.08 min , mass ion not observed.
[00294] I-86
[00295] (1R,4R,7R)-2-\{2-[1-(Cyclopropylmethyl)-2-phenyl-1H-imidazol-5-yl]-1-ethyl-7-methoxy-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7-amine, I-86, EV-AY4530-001 (EOAI3469925) was synthesised according to the procedures described in Scheme 3 via synthesis of 1-(cyclopropylmethyl)-2-phenyl-1H-imidazole-5-carbaldehyde (EV-AW6299002) as described in Scheme: 3.4.
[00296] Scheme 3.4

[00297] N^{\prime}-(Cyclopropylmethyl)benzenecarboximidamide (EV-AW6298-001) - Step 1
[00298] To, a solution of cyclopropylmethanamine (CAS 2516-47-4, $276 \mathrm{mg}, 3.88 \mathrm{mmol}$) and benzonitrile: (CAS 100-47-0, $400 \mathrm{mg}, 3.88 \mathrm{mmol}$) in THF (8 ml) was slowly added 1,4diazabicyclo[2.2.2]octane - trimethylaluminum (1:2) ($994 \mathrm{mg}, 3.88 \mathrm{mmol}$). The reaction mixture was, heated to $130^{\circ} \mathrm{C}$ under microwave condition for 6 h . The reaction was cooled down to $0^{\circ} \mathrm{C}$ and slowly quenched with ethyl acetate: $(40 \mathrm{ml})$. Saturated Rochelle: salt solution was added and the: organic; layer was separated, dried over magnesium sulfate, filtered and concentrated to obtain $594 \mathrm{mg}_{\text {; }}$ (88\%) of N^{\prime}-(cyclopropylmethyl)benzenecarboximidamide (EV-AW6298-001) as a_{i} colourless; oil. LCMS (method D): retention time $0.66 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=174(\mathrm{M}+1)$.
[00299] 1-(Cyclopropylmethyl)-2-phenyl-1H-imidazole-5-carbaldehyde (EV-AW6299$002)_{=S t e p}^{2}$
[00300] A mixture of isopropanol (4 ml), (Z)-N'-(cyclopropylmethyl)benzene-1carboximidamide: (EV-AW6298-001, $594 \mathrm{mg}, 3.41 \mathrm{mmol}$), triethylamine ($0.44 \mathrm{ml}, 3.14 \mathrm{mmol}$) and acetic: acid ($205 \mu \mathrm{l}, 3.58 \mathrm{mmol}$) was stirred for 5 minutes at room temperature. Bromopropanedial (CAS 2065-75-0, $514 \mathrm{mg}, 3.41 \mathrm{mmol}$) in isopropanol (4 ml) was added dropwise and the reaction mixture was heated for 16 h at $80^{\circ} \mathrm{C}$. The reaction mixture was cooled down to room temperature and retreated with further bromopropanedial ($154 \mathrm{mg}, 1.02 \mathrm{mmol}$) and stirring; at $80^{\circ} \mathrm{C}$ was continued for 3 h . The solvent was evaporated, the residue was diluted with water (25 ml) and extracted with ethyl acetate ($2 \times 25 \mathrm{ml}$). The combined organic phases were: dried over sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography ($10-70 \%$ ethyl acetate/heptane) to obtain $173 \mathrm{mg}(20 \%)$ of 1 -(cyclopropylmethyl)-2-phenyl-1H-imidazole-5-carbaldehyde (EV-AW6299-002) as an orange oil. LCMS (method D): retention time $1.08 \mathrm{~min}, \mathrm{M} / \mathrm{z}=227(\mathrm{M}+1)$.
[00301] I-89
[00302] 5-\{5-[(1R,4R,7R)-7-Amino-2-azabicyclo[2.2.1]heptane-2-carbonyl]-7-methoxy-1-methyl-1H-1,3-benzodiazol-2-yl\}-1-\{[(1R,3S)-3-methoxy-3-methylcyclobutyl]methyl\}-1H-pyrrole-2-carbonitrile, I-89, EV-AY4541-001 (EOAI3470261) was synthesised according to the procedures described in Scheme: 3 via synthesis of 5-formyl-1-[(3-hydroxy-3-methylcyclobutyl)methyl]-1H-pyrrole-2-carbonitrile (EV-AZ4535-001) as described in Scheme 3.5 .
[00303] Scheme 3.5

[00304] Methyl (1R,3S)-3-hydroxy-3-methylcyclobutane-1-carboxylate (EV-AY4513-002)-Step 1
[00305] Toa a solution of methyl 3-oxocyclobutane-1-carboxylate (CAS 695-95-4, 4.00 g, 31.2 $\mathrm{mmol})$ in THF $(100 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$, was added 1 M methyl magnesium bromide in THF (35.9 ml , 35.9 mmol). The: mixture; was stirred at $-78^{\circ} \mathrm{C}$ for 2 h then allowed to warm to room temperature and stirred for 16 h . The reaction mixture was cooled down to $-78^{\circ} \mathrm{C}$ and a saturated solution of ammonium chloride: (10 ml) was added. The resulting mixture was diluted with water (200 ml) and extracted with ethyl acetate: ($2 \times 200 \mathrm{ml}$). The combined organic extracts were dried over sodium sulfate, filtered and concentrated. The residue was purified by column chromatography (0-100\% ethyl acetate/heptane) to, obtain 2.05 g (46%) of methyl (1R,3S)-3-hydroxy-3-methylcyclobutane-1-carboxylate: (EV-AY4513-002) as a colourless oil. 1 H NMR (500 MHz , Chloroform-d), $\boldsymbol{\delta}_{3.70}-3.68(\mathrm{~m}, 3 \mathrm{H}), 2.74-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.25(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.36(\mathrm{~m}$, 3H). No, LCMS data. No, LCMS data.
[00306] (1R,3S)-3-(Hydroxymethyl)-1-methylcyclobutan-1-ol (EV-AY4522-001) - Step 2
[00307] To methyl (1R,3S)-3-methoxy-3-methylcyclobutane-1-carboxylate (EV-AY4513$\mathbf{0 0 2}, 250 \mathrm{mg}, 1.73 \mathrm{mmol}$) and sodium hydride ($60 \%, 73 \mathrm{mg}, 1.82 \mathrm{mmol}$) was added dry DMF (3 $\mathrm{ml})$ at: $0^{\circ} \mathrm{C}$ and the: mixture: was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes. Methyl iodide $(0.22 \mathrm{ml}$, $3.47^{\prime} \mathrm{mmol}$)' was added, the mixture was warmed up to room temperature and stirred for 48 h . The reaction mixture: was: partitioned between ethyl acetate: (80 ml) and water (80 ml). The aqueous extract was: washed with further ethyl acetate (80 ml), the combined organic extracts were dried over sodium sulfate, filtered and concentrated. The residue was diluted with THF (3 ml) and methanol (0.3 ml) and sodium borohydride ($197 \mathrm{mg}, 5.20 \mathrm{mmol}$) was added. The mixture was stirred at: room temperature for 16 h , concentrated in vacuo and purified by column chromatography ($0-100 \%$ ethyl acetate/heptane) to obtain 107 mg (48%) of ${ }^{\prime}[(1 R, 3 S)$-3-methoxy-3-methylcyclobutyl]methanol (EV-AY4522-001) as a colourless oil. 1H NMR (500 MHz , Chloroform-d) $\delta 3.63(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 2 \mathrm{H})$, $1.89-1.81$ (m, 2H), 1.33 (s, 3H). No LCMS data.
[00308] [(1R,3S)-3-Methoxy-3-methylcyclobutyl]methyl 4-methylbenzene-1-sulfonate (EV-AY4533-001)-Step 3
[00309] To a solution of [(1R,3S)-3-methoxy-3-methylcyclobutyl]methanol (EV-AY4529$\mathbf{0 0 1}, 305 \mathrm{mg}, 1.76 \mathrm{mmol})$ in DCM (10 ml) with ice cooling were added triethylamine $(0.32 \mathrm{ml}$, 2.28 mmol), DMAP ($11 \mathrm{mg}, 0.088 \mathrm{mmol}$) and 4-methylbenzene-1-sulfonyl chloride (352 mg , 1.84 mmol). The: reaction mixture: was allowed to warm to room temperature and stirred for 4 h . The: mixture: was; partitioned between DCM (30 ml) and water (30 ml). The organic extract was dried over sodium sulfate, filtered and concentrated to obtain $480 \mathrm{mg}(96 \%)$ of [(1R,3S)-3-methoxy-3-methylcyclobutyl]methyl 4-methylbenzene-1-sulfonate: (EV-AY4533-001) as a viscous; colourless, oil. LCMS (method D): retention time $1.29 \mathrm{~min}, \mathrm{M} / \mathrm{z}=307(\mathrm{M}+23)$.
[00310] 5-Formyl-1-\{[(1R,3S)-3-methoxy-3-methylcyclobutyl]methyl\}-1H-pyrrole-2carbonitrile: (EV-AY4535-001)-Step 4
[00311] To, a solution of 5-formyl-1H-pyrrole-2-carbonitrile (EV-AY4533-001, $100 \mathrm{mg}, 0.83$ $\mathrm{mmol})$ in acetonitrile; $(2 \mathrm{ml})$ was added potassium carbonate ($288 \mathrm{mg}, 2.08 \mathrm{mmol}$) followed by [(1R,3S)-3-methoxy-3-methylcyclobutyl]methyl 4-methylbenzene-1-sulfonate (EV-AY4533$001,272 \mathrm{mg}, 0.96 \mathrm{mmol}$). The mixture was stirred at $60^{\circ} \mathrm{C}$ for 16 h , heated at $80^{\circ} \mathrm{C}$ and left stirring; at this, temperature for 6 h . The mixture was poured into water (30 ml) and extracted with ethyl acetate ($2, x: 30 \mathrm{ml}$). The combined organic layers were dried over sodium sulfate, filtered
and concentrated. The: mixture : was then retreated with potassium carbonate ($288 \mathrm{mg}, 2.08 \mathrm{mmol}$) and acetonitrile : $(2 \mathrm{ml})$ and stirred at $80^{\circ} \mathrm{C}$ for 24 h . The mixture was poured into water (30 ml) and extracted with $\mathrm{DCM}(2 \times 30 \mathrm{ml})$. The combined organic layers were washed with 2 M NaOH ($20^{\prime} \mathrm{ml}$), dried over sodium sulfate, filtered and concentrated. The residue was purified by column chromatography ($0-60 \%$ ethyl acetate/heptane) to obtain 68 mg (35%) of 5 -formyl-1-\{[(1R,3S)-3-methoxy-3-methylcyclobutyl]methyl\}-1H-pyrrole-2-carbonitrile (EV-AY4535-001) asi an off-white :powder. LCMS (method D): retention time $1.29 \mathrm{~min}, \mathrm{M} / \mathrm{z}=249$ ($\mathrm{M}+$ water -1).
[00312] I-91
[00313] (1R,4R,7R)-2-\{2-[6-(cyclopropylmethoxy)pyridin-2-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7-amine, I-91, EV-AY2043-002 (EOAI3476158) wasi synthesised according to the procedures described in Scheme 3.6 via synthesis of tert-butyl N-[(1R,4R,7R)-2-[7-methoxy-1-methyl-2-(6-oxo-1,6-dihydropyridin-2-yl)-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AY2038001) as described in Scheme: 3.6.
[00314] Scheme 3.6

[00315] Tert-butyl N-[(1R,4R,7R)-2-\{2-[6-(cyclopropylmethoxy)pyridin-2-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7-yl]carbamate(EV-AY2040-001)--Step 1
[00316] Tert-butyl N-[(1R,4R,7R)-2-[7-methoxy-1-methyl-2-(6-oxo-1,6-dihydropyridin-2-yl)$1 \mathrm{H}-1,3$-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate $\quad(137 \mathrm{mg}, 0.25$ mmol) , was; dissolved in dry DMF (2 ml) under an atmosphere of nitrogen and treated with $\mathrm{Cs} 2 \mathrm{CO} 3 .(98 \mathrm{mg}, 0.30 \mathrm{mmol}$). The resulting mixture was stirred at room temperature for 2-3 minutes, (bromomethyl)cyclopropane (CAS 7051-34-5, $27 \mu \mathrm{l}, 0.27 \mathrm{mmol}$) was added in one
portion and the reaction mixture was stirred at room temperature for 16 h . The mixture was diluted with water (10 ml), saturated ammonium chloride (6 ml) and extracted with ethyl acetate ($3 \times 20 \mathrm{ml}$). The combined organic extracts were dried over sodium sulfate, filtered and concentrated. The residue was purified by column chromatography ($0-15 \%$ methanol/DCM) to obtain $184 . \mathrm{mg}$; of" tert-butyl $\mathrm{N}-[(1 \mathrm{R}, 4 \mathrm{R}, 7 \mathrm{R})-2-\{2-[6-(c y c l o p r o p y l m e t h o x y) p y r i d i n-2-y l]-7-$ methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AY2040-001) as a pale: yellow glass. LCMS (method D): retention time $1.32 \mathrm{~min}, \mathrm{M} / \mathrm{z}=$ $548(\mathrm{M}+1)$.
[00317] Tert-butyl N-[(1R,4R,7R)-2-[7-methoxy-1-methyl-2-(6-oxo-1,6-dihydropyridin-2-yl)-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate
(EV-AY2043-002) - Step 2
[00318] Tert-butyl $\mathrm{N}-[(1 \mathrm{R}, 4 \mathrm{R}, 7 \mathrm{R})$-2-\{2-[1-(cyclopropylmethyl)-6-oxo-1,6-dihydropyridin-2-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7-
yl]carbamate: (EV-AY2040-001, 76\%, $184 \mathrm{mg}, 0.26 \mathrm{mmol}$) was dissolved in DCM (4 ml) under an_{a} atmosphere of nitrogen at room temperature and treated with trifluoroacetic acid (0.6 ml). The mixture: was; stirred at room temperature for 2 hours. The reaction mixture was concentrated and purified by prep HPLC (acidic method) to obtain 27 mg (23%) of (1R,4R,7R)-2-\{2-[6-(cyclopropylmethoxy)pyridin-2-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7-amine: (EV-AY2043-002) as a white glass/foam. LCMS (method A): retention time $2.03 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=448(\mathrm{M}+1)$.
[00319] I-102.
[00320] 6-\{5-[(1R,4R,7R)-7-Amino-2-azabicyclo[2.2.1]heptane-2-carbonyl]-7-methoxy-1-methyl-1H-1,3-benzodiazol-2-yl\}-1-(cyclopropylmethyl)-1,2-dihydropyridin-2-one, I-102, EV-AY2061-002 (EOAI3477377), was, synthesised according to the procedures described in Scheme 3 via, synthesis, of 5-formyl-1-[(3-hydroxy-3-methylcyclobutyl)methyl]-1H-pyrrole-2-carbonitrile (EV-AY2050-001) as, described in Scheme 3.7.
[00321] Scheme 3.7

[00322] 1-(Cyclopropylmethyl)-6-oxo-1,6-dihydropyridine-2-carbaldehyde (EV-AY2050-001)-Step 1
[00323] 6-Oxo-1,6-dihydropyridine-2-carbaldehyde (CAS 358751-77-6, $294 \mathrm{mg}, 2.39 \mathrm{mmol}$) wasi dissolved in dry DMSO (10 ml) under an atmosphere of nitrogen and treated with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($934 \mathrm{mg}, 2.87 \mathrm{mmol}$) and (bromomethyl)cyclopropane (CAS 7051-34-5, $0.25 \mathrm{ml}, 2.63 \mathrm{mmol}$). The reaction mixture: was stirred at room temperature for 16 h , diluted with water (20 ml) and extracted with ethyl acetate: ($3 \times 20 \mathrm{ml}$). The: combined organic extracts were washed with water, saturated aqueous, sodium chloride, dried over sodium sulfate, filtered and concentrated. The residue: was purified by column chromatography ($10-100 \%$ ethyl acetate/heptane) to obtain 0.16 $\mathrm{g}_{\text {; }}$ (38\%) of 1-(cyclopropylmethyl)-6-oxo-1,6-dihydropyridine-2-carbaldehyde (EV-AY2050001) asi a dark green gum, LCMS (method D): retention time $0.92 \mathrm{~min}, \mathrm{M} / \mathrm{z}=178(\mathrm{M}+1)$, and 0.21 g ;of:6-(cyclopropylmethoxy)pyridine-2-carbaldehyde (EV-AY2050-002) as a colourless oil, LCMS (method D): retention time: $1.18 \mathrm{~min}, \mathrm{M} / \mathrm{z}=178(\mathrm{M}+1)$.
[00324] I-106
[00325] (1R,4R,7R)-2-[2-(2-ethyl-5-methyl-1-phenyl-1H-pyrrol-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-amine, I-106, EV-AY4657-002 (EOAI3478191), was; synthesised from the Boc deprotection of tert-butyl N-[(1R,4R,7R)-2-[2-(2-ethyl-5-methyl-1-phenyl-1H-pyrrol-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AY2064-001) as described in Scheme 3.8.
[00326] Scheme 3.8

[00327] Ethyl 2-propanoylpent-4-enoate (EV-AY2058-002) - Step 1
[00328] Ethyl 3-oxopentanoate: (CAS 4949-44-4, $500 \mathrm{mg}, 3.47 \mathrm{mmol}$) was dissolved in dry DMF (2.5 ml), under an atmosphere of nitrogen and the resulting mixture was cooled to $0^{\circ} \mathrm{C}$. The reaction mixture: was treated with sodium hydride $(60 \%, 166 \mathrm{mg}, 4.16 \mathrm{mmol})$ and stirred at $0^{\circ} \mathrm{C}$ for 30 minutes; then 3-bromoprop-1-ene: (CAS 106-95-6, $360 \mu \mathrm{l}, 4.16 \mathrm{mmol}$) was added dropwise over 10 minutes. The reaction mixture was allowed to warm to room temperature and stirred for 17 h then diluted with water (20 ml) and extracted with TBME ($3 \times 25 \mathrm{ml}$). The combined organics, were: washed with saturated aqueous sodium chloride (30 ml), dried over sodium sulfate: and concentrated in vacuo. The crude product was purified by flash column chromatography ($0-5 \%$ ethyl acetate/heptane) to obtain 341 mg . (49%) of ethyl 2-propanoylpent-4-enoate: (EV-AY2058-002) as, a colourless oil. LCMS (method D): retention time 1.21 min , mass, ion not observed.
[00329] Ethyl 2-ethyl-5-methyl-1-phenyl-1H-pyrrole-3-carboxylate (EV-AY2062-001) = Step 2
[00330] Ethyl 2-propanoylpent-4-enoate: (EV-AY2058-002, $341 \mathrm{mg}, 1.68 \mathrm{mmol}$) was dissolved in dry toluene (3 ml) and aniline ($77 \mu \mathrm{l}, 0.84 \mathrm{mmol}$) and palladium(II) bis(trifluoroacetate) $(28 \mathrm{mg}, 0.08 \mathrm{mmol})$ were added. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 18 h , cooled down to room temperature, diluted with ethyl acetate (5 ml) and filtered through a pad of Kieselguhr, washing, with ethyl acetate (30 ml). The filtrate was concentrated in vacuo and purified by flash column chromatography ($0-40 \%$ ethyl acetate/heptane) to obtain 313 mg (38\%) of ethyl 2-ethyl-5-methyl-1-phenyl-1H-pyrrole-3-carboxylate (EV-AY2062-001) as a pale yellow oil. LCMS (method D): retention time $1.34 \mathrm{~min}, \mathrm{M} / \mathrm{z}=258(\mathrm{M}+1)$.
[00331] 2-Ethyl-5-methyl-1-phenyl-1H-pyrrole-3-carboxylic acid (EV-AY2063-001) Step 3
[00332] 1M aqueous. $\mathrm{NaOH}(0.95 \mathrm{ml})$ was added to a solution of ethyl 2-ethyl-5-methyl-1-phenyl-1H-pyrrole-3-carboxylate: (EV-AY2062-001, $313 \mathrm{mg}, 0.63 \mathrm{mmol}$) in methanol (5 ml) and the resultant mixture: was. stirred at $50^{\circ} \mathrm{C}$ for 2 h . Further $1 \mathrm{M} \mathrm{NaOH}(0.95 \mathrm{ml})$ was added and the: mixture: was stirred at $60^{\circ} \mathrm{C}$ for 16 h then $80^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was allowed to cool to room temperature and concentrated in vacuo. Water (7 ml) was added then 1 N HCl until pH^{2} 2. The: resulting precipitate: was, filtered off, washed with water ($2 \times 3 \mathrm{ml}$) and dried to obtain 87 mg ; (58\%) of 2-ethyl-5-methyl-1-phenyl-1H-pyrrole-3-carboxylic acid (EV-AY2063-001) as a pale; beige: solid. LCMS (method D): retention time $0.86 \mathrm{~min}, \mathrm{M} / \mathrm{z}=230(\mathrm{M}+1)$.
[00333] Tert-butyl $\mathrm{N}-[(1 \mathrm{R}, 4 \mathrm{R}, 7 \mathrm{R})$-2-[2-(2-ethyl-5-methyl-1-phenyl-1H-pyrrol-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7yl]carbamate: (EV-AY2064-001)-Step 4
[00334] 2-Ethyl-5-methyl-1-phenyl-1H-pyrrole-3-carboxylic acid (EV-AY2063-001, 87 mg , 0.36 mmol) was; dissolved in DMF (1 ml) under an atmosphere of nitrogen and treated with HATU $(166 \mathrm{mg}, 0.44 \mathrm{mmol})$ and DIPEA ($76 \mu \mathrm{l}, 0.44 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 15 minutes then tert-butyl N -[(1R,4R,7R)-2-[3-amino-5-methoxy-4-(methylamino)benzoyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate
(EV-AY8858-001, synthesised according to the procedures, described in Scheme $5,142 \mathrm{mg}, 0.36 \mathrm{mmol}$) was added and the reaction stirred at room temperature for 2.5 h then $50^{\circ} \mathrm{C}$ for 2 h . The reaction was left standing; at room temperature for 18 h then stirred at $40^{\circ} \mathrm{C}$ for 22 h . The reaction mixture was concentrated in, vacuo, and azeotroped with toluene (5 ml). The crude material was purified by flash column chromatography ($50-100 \%$ ethyl acetate/heptane) to obtain tert-butyl N -
[(1R,4R,7R)-2-[2-(2-ethyl-5-methyl-1-phenyl-1H-pyrrol-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AY2064-001) as a yellow glassy solid. LCMS (method D): retention time $1.19 \mathrm{~min}, \mathrm{M} / \mathrm{z}=584(\mathrm{M}+1)$.

[00335] I-97 and I-98

[00336] (1R,4R,7R)-2-[2-(1-benzyl-2-ethyl-1H-pyrrol-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-amine, I-97, EV-AY2056-002 (EOAI3476816) and (1R,4R,7R)-N-benzyl-2-[2-(1-benzyl-2-ethyl-1H-pyrrol-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-amine, I-98, EV-AY2057-002 (EOAI3476817) were: obtained via Boc deprotection of tert-butyl N-[(1R,4R,7R)-2-[2-(1-benzyl-2-ethyl-1H-pyrrol-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazol e-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AY2054-002) and tert-butyl N-benzyl-N-[(1R,4R,7R)-2-[2-(1-benzyl-2-ethyl-1H-pyrrol-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AY2054-003) respectively. These: were: synthesised according to the procedures described in Scheme 4.
[00337] Scheme 4.

[00338] N -[(1E)-furan-3-ylmethylidene]-4-methylbenzene-1-sulfonamide (EV-AY2033-006)-Step 1
[00339] 4-Methylbenzenesulfonamide: (CAS 70-55-3, $1.00 \mathrm{~g}, 5.84 \mathrm{mmol}$) and furan-3carbaldehyde: (CAS, $\mathbf{4 9 8 - 6 0 - 2}, 0.49 \mathrm{ml}, 5.84 \mathrm{mmol})$ were suspended in tetraethyl orthosilicate $(1.43 \mathrm{ml}, 6.42 \mathrm{mmol})$. The; vessel was, sealed and heated to $160^{\circ} \mathrm{C}$ for 4 h . The reaction was cooled down to, room temperature; and diluted with diethyl ether (4 ml), stirred and filtered to
obtain 0.81 g ; (52\%)' of $\mathrm{N}-[(1 \mathrm{E})$-furan-3-ylmethylidene]-4-methylbenzene-1-sulfonamide (EV-AY2033-006) as a brown solid. LCMS (method D): retention time $1.12 \mathrm{~min}, \mathrm{M} / \mathrm{z}=250(\mathrm{M}+1)$.
[00340] 2-Ethyl-1-(4-methylbenzenesulfonyl)-1H-pyrrole-3-carbaldehyde (EV-AY2041-001)-Step 2
[00341] 3M Bromo(ethyl)magnesium (1.90 ml) was added dropwise over 5 minutes to a stirred solution of N -[(1E)-furan-3-ylmethylidene]-4-methylbenzene-1-sulfonamide (EV-AY2033-006, $604 \mathrm{mg}, 2.28 \mathrm{mmol})$ in dry THF $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. The: mixture: was: left stirring; at room temperature for 3 h then cooled to $0^{\circ} \mathrm{C}$ and treated with 1 M HCl in water $(5.7 \mathrm{ml})$. The: reaction was diluted with THF (15 ml) and 1-bromopyrrolidine-2,5dione: $(405 \mathrm{mg}, 2.28 \mathrm{mmol})$ was added in one portion. The reaction mixture was stirred at room temperature: for 16 h , diluted with saturated ammonium chloride (12 ml) and water (5 ml) and extracted with ethyl acetate. The combined organics were washed with saturated aqueous sodium chloride, dried over sodium sulfate, filtered and concentrated. The residue was purified by column chromatography (10-20\% ethyl acetate/heptane) to obtain 348 mg (47\%) of 2-ethyl-1-(4-methylbenzenesulfonyl)-1H-pyrrole-3-carbaldehyde (EV-AY2041-001) as a colourless oil. LCMS (method D): retention time: $1.32 \mathrm{~min}, \mathrm{M} / \mathrm{z}=278(\mathrm{M}+1)$.
[00342] 2-Ethyl-1-(4-methylbenzenesulfonyl)-1H-pyrrole-3-carbaldehyde (EV-AY2044-002)-Step 3
[00343] Tert-butyl N-[(1R,4R,7R)-2-[3-methoxy-4-(methylamino)-5-nitrobenzoyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate: (EV-AY4011-002 synthesised according to Scheme 5 steps; 1-3, $0.78 \mathrm{~g}, \quad 1.57 \mathrm{mmol}$) and 2-ethyl-1-(4-methylbenzenesulfonyl)-1H-pyrrole-3carbaldehyde: (EV-AY2041-001, $0.43 \mathrm{~g}, 1.56 \mathrm{mmol})$ were dissolved in ethanol (15 ml) and water $(7.5 \mathrm{ml})$. Disodium dithionite: $(2.45 \mathrm{~g}, 14.1 \mathrm{mmol})$ was added in one portion and the reaction mixture; was, stirred at $90^{\circ} \mathrm{C}$ for 4 h . The mixture was cooled to room temperature, diluted with water (15 ml) and extracted with ethyl acetate. The combined organics were washed with saturated aqueous sodium chloride, dried over sodium sulfate, filtered and concentrated in vacuo. The, residue; was, purified by column chromatography ($0-5 \%$ methanol/DCM) to obtain 0.71 g of tert-butyl $\quad \mathrm{N}-[(1 \mathrm{R}, 4 \mathrm{R}, 7 \mathrm{R})$-2-\{2-[2-ethyl-1-(4-methylbenzenesulfonyl)-1H-pyrrol-3-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AY2044-002) as, a white foam. LCMS (method D): retention time $1.32 \mathrm{~min}, \mathrm{M} / \mathrm{z}=648.3$ (M $+1)$.

[00344] Tert-butyl N-[(1R,4R,7R)-2-[2-(2-ethyl-1H-pyrrol-3-yl)-7-methoxy-1-methyl-1H-

 1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AY2049-003) -Step 4[00345] Tert-butyl $\mathrm{N}-[(1 \mathrm{R}, 4 \mathrm{R}, 7 \mathrm{R})-2-\{2-[2-e t h y l-1-(4-m e t h y l b e n z e n e s u l f o n y l)-1 \mathrm{H}-\mathrm{pyrrol}-3-$ yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7yl]carbamate: (EV-AY2044-002, $573 \mathrm{mg}, 0.8 \mathrm{mmol}$) was dissolved in dry THF (15 ml) under an atmosphere: of nitrogen and treated with $1 \mathrm{M} \mathrm{N}, \mathrm{N}, \mathrm{N}$-tributylbutan-1-aminium fluoride in THF $(2.39 \mathrm{ml})$. The: mixture was stirred at room temperature for 16 h then at $40^{\circ} \mathrm{C}$ for 5 h . Further 1 M $\mathrm{N}, \mathrm{N}, \mathrm{N}$-tributylbutan-1-aminium fluoride in THF (1.1 ml) was added and stirring at $50^{\circ} \mathrm{C}$ was continued for 16 h . The mixture was diluted with saturated ammonium chloride (20 ml) and extracted with ethyl acetate. The combined organics were washed with saturated aqueous sodium chloride, dried over sodium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography ($0-10 \%$ methanol/DCM) followed by purification on SCX-2 cartridge: to obtain 313 mg of (77%) of tert-butyl N-[(1R,4R,7R)-2-[2-(2-ethyl-1H-pyrrol-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-
yl]carbamate: (EV-AY2049-003) as. a pink beige solid. LCMS (method D): retention time $1.03 \mathrm{~min}, \mathrm{M} / \mathrm{z}=494(\mathrm{M}+1)$.
[00346] Tert-butyl $\mathrm{N}-[(1 R, 4 R, 7 R)$-2-[2-(1-benzyl-2-ethyl-1H-pyrrol-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AY2054-002) and tert-butyl N-benzyl-N-[(1R,4R,7R)-2-[2-(1-benzyl-2-ethyl-1H-pyrrol-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7yl]carbamate: (EV-AY2054-003) - Step 5
[00347] Tert-butyl N-[(1R,4R,7R)-2-[2-(2-ethyl-1H-pyrrol-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AY2049-003, 100 $\mathrm{mg}, 0.19 \mathrm{mmol}$), was; dissolved in dry DMF (2 ml) under an atmosphere of nitrogen and cooled to $0^{\circ} \mathrm{C}$. The reaction mixture was treated with sodium hydride $(60 \%, 11 \mathrm{mg}, 0.27 \mathrm{mmol})$ in one portion and stirred at $0^{\circ} \mathrm{C}$ for 15 minutes. The reaction mixture was treated with (bromomethyl)benzene: (CAS, 100-39-0, $23 \mu \mathrm{l}, 0.19 \mathrm{mmol}$) and stirred for a further 3h at room temperature. The; mixture; was diluted with saturated ammonium chloride (12 ml) and water (3 $\mathrm{ml})$, heptane: $(8 \mathrm{ml})$, was added, the: mixture was stirred and filtered and the solid was purified by column chromatography ($0-5 \%$ methanol/ethyl acetate) to obtain 74 mg (57%) of tert-butyl N -
[(1R,4R,7R)-2-[2-(1-benzyl-2-ethyl-1H-pyrrol-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate :(EV-AY2054-002) as a pale yellow glass, LCMS (method D): retention time $1.24 \mathrm{~min}, \mathrm{M} / \mathrm{z}=584(\mathrm{M}+1)$.
[00348] 21 mg ; (15.1%) of tert-butyl N-benzyl-N-[(1R,4R,7R)-2-[2-(1-benzyl-2-ethyl-1H-pyrrol-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate: (EV-AY2054-003) were: also isolated as a pale yellow glass. LCMS (method D): retention time $1.37 \mathrm{~min}, \mathrm{M} / \mathrm{z}:=674(\mathrm{M}+1)$.
[00349] Scheme 5

$645686060-10-8$

$\mathrm{E}, 47248 \mathrm{OW}$

Ex-4 4 di-40

[00350] Methyl 3-methoxy-4-(methylamino)-5-nitrobenzoate (EV-AX9482-002) - Step 1
[00351] Potassium carbonate ($11.3 \mathrm{~g}, 81.4 \mathrm{mmol}$) and 2 M MeNH 2 in THF (61 ml) were added at room temperature to, a, stirred solution of methyl 4-chloro-3-methoxy-5-nitrobenzoate (CAS; 63603-09-8, 10.0 g, and 40.71 mmol) in THF (180 ml). The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h and concentrated in vacuo. The residue was re-dissolved in ethyl acetate (500 $\mathrm{ml})$, washed with water $(2 \times 250 \mathrm{ml})$ and saturated aqueous sodium chloride (200 ml). The organic; extracts, were dried over sodium sulfate and concentrated in vacuo to afford $9.38 \mathrm{~g}(96 \%)$
of methyl 3-methoxy-4-(methylamino)-5-nitrobenzoate (EV-AX9482-001) as an orange powder. LCMS (method D): retention time $1.30 \mathrm{~min}, \mathrm{M} / \mathrm{z}=241(\mathrm{M}+1)$.
[00352] 3-Methoxy-4-(methylamino)-5-nitrobenzoic acid (EV-AX9487-001) - step 2
[00353] 2M aqueous. $\mathrm{LiOH}(58.2 \mathrm{ml}$) was added to a solution of methyl 3-methoxy-4-(methylamino)-5-nitrobenzoate (EV-AX9482-002, $9.32 \mathrm{~g}, 38.8 \mathrm{mmol}$) in THF:methanol (4:1) $(75 \mathrm{ml})$ and the: resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was concentrated in vacuo, re-dissolved in water (50 ml , and acidified to pH 2 using 2 M aqueous HCl . The: precipitate: was filtered under vacuum to afford 9.75 g (quantitative) of 3-methoxy-4-(methylamino)-5-nitrobenzoic acid (EV-AX9487-001) as a bright orange powder. LCMS $(\operatorname{method} \mathrm{D})$: retention time $1.01 \mathrm{~min}, \mathrm{M} / \mathrm{z}=227(\mathrm{M}+1)$.
[00354] Tert-butyl N -[(1R,4R,7R)-2-[3-methoxy-4-(methylamino)-5-nitrobenzoyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AX9493-002) - Step 3
[00355] DIPEA ($6.58 \mathrm{ml}, 39.79 \mathrm{mmol}$) and HATU ($11.4 \mathrm{~g}, 29.8 \mathrm{mmol}$) were added to a solution of 3-methoxy-4-(methylamino)-5-nitrobenzoic acid (EV-AX9487-001, 90\%, 5.00 g , $19.9 \mathrm{mmol})$ in DMF $^{\prime}(60 \mathrm{ml})$ and the resulting mixture was stirred at room temperature for 10 minutes. Tert-butyl $\mathrm{N}-[(1 \mathrm{R}, 4 \mathrm{R}, 7 \mathrm{R})$-2-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AX2051$\mathbf{0 0 1}, 4.43 \mathrm{~g}, 20.89 \mathrm{mmol})$ ((synthesised as in Adv. Synth. Catal. 2005, 347, 1242 - 1246) was added to the reaction mixture and stirring; at room temperature was continued for 2 h . The reaction mixture was concentrated in vacuo and the resulting residue was dissolved in ethyl acetate: $(250 \mathrm{ml})$, washed with water $(2 \times 100 \mathrm{ml})$ and saturated aqueous sodium chloride (100 $\mathrm{ml})$. The: organic extracts; were dried over sodium sulfate, concentrated in vacuo and purified by flash column chromatography ($0-100 \%$ ethyl acetate/heptane) to obtain $6.39 \mathrm{~g}(76 \%)$ of tertbutyl N-[(1R,4R,7R)-2-[3-methoxy-4-(methylamino)-5-nitrobenzoyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate: (EV-AX9493-002) as a red powder. LCMS (method D): retention time 1.19 min , $\mathrm{M} / \mathrm{z}_{\mathrm{i}}=421(\mathrm{M}+1)$.
[00356] Tert-butyl $\mathrm{N}-[(1 R, 4 R, 7 R)$-2-[3-amino-5-methoxy-4-(methylamino)benzoyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AY8858-001) - Step 4
[00357] $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} .(85 \%, 14.6 \mathrm{~g}, 71.4 \mathrm{mmol})$ was added to a solution of tert-butyl N -[(1R,4R,7R)-2-[3-methoxy-4-(methylamino)-5-nitrobenzoyl]-2-azabicyclo[2.2.1]heptan-7-
yl]carbamate: (EV-AX9493-002, $3.00 \mathrm{~g}, 7.14 \mathrm{mmol})$ in ethanol $(20 \mathrm{ml})$ and water $(10 \mathrm{ml})$ and the resulting; mixture; was stirred at $90^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was diluted with water (50
$\mathrm{ml})$ ' and the: resulting; solution was extracted with ethyl acetate $(2 \times 100 \mathrm{ml})$. The combined organice extracts were: dried over sodium sulfate and concentrated in vacuo to afford $2.71 \mathrm{~g}(97 \%)$ of \quad tert-butyl $\quad \mathrm{N}-[(1 R, 4 R, 7 R)$-2-[3-amino-5-methoxy-4-(methylamino)benzoyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate: (EV-AY8858-001) as an off-white powder. LCMS $(\operatorname{method} \mathrm{D})$: retention time $0.82 \mathrm{~min}, \mathrm{M} / \mathrm{z}=391(\mathrm{M}+1)$.
[00358] Scheme 6

Ewhen-0it
(E.543476896)
[00359] Methyl 2-ethylpyridine-3-carboxylate (EV-AY8832-002) - Step 1
[00360] $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(299 \mathrm{mg}, 0.41 \mathrm{mmol})$ and 1 M diethylzinc in hexane $(4.9 \mathrm{ml})$ were added to, a solution of $\because m e t h y l$ 2-chloropyridine-3-carboxylate (CAS 2942-59-8, $532 \mu \mathrm{l}, 4.08 \mathrm{mmol}$) in dry dioxane: $(7 \mathrm{ml})$ and the: resulting mixture was stirred under nitrogen at $60^{\circ} \mathrm{C}$ for 2 h . The reaction mixture: was, diluted with water (20 ml) and extracted with ethyl acetate ($3 \times 50 \mathrm{ml}$). The combined organic extracts were dried over sodium sulfate, concentrated in vacuo and purified by column chromatography ($0-100 \%$ ethyl acetate/heptane) to afford 647 mg (96%) of methyl 2-ethylpyridine-3-carboxylate: (EV-AY8832-002) as a colourless volatile oil. LCMS (method D): retention time $0.79 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=166(\mathrm{M}+1)$.
[00361] 2-Ethylpyridine-3-carboxylic acid (EV-AY8835-001) - Step 2
[00362] 1 M aqueous $\mathrm{NaOH}(5.51 \mathrm{ml})$ was added to a solution of methyl 2-ethylpyridine-3carboxylate: (EV-AY8832-002, $607 \mathrm{mg}, 3.67 \mathrm{mmol}$) in methanol (5 ml) and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was concentrated in vacuo, the residue was dissolved in water $(10 \mathrm{ml})$ and acidified to pH 3 using, 2 M aqueous HCl solution. The solution was extracted with ethyl acetate $(2 \times 50 \mathrm{ml})$, the combined organic extracts were dried over sodium sulfate: and concentrated in vacuo to afford 354 mg (64\%) of 2-ethylpyridine-3carboxylic: acid. (EV-AY8835-001) as an off-white powder. LCMS (method D): retention time $0.22 \mathrm{~min}, \mathrm{M} / \mathrm{z}:=152(\mathrm{M}+1)$.
[00363] Tert-butyl N-[(1R,4R,7R)-2-[2-(2-ethylpyridin-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AY8830-002) Step 3
[00364] HATU ($224 \mathrm{mg}, 0.59 \mathrm{mmol}$) and DIPEA ($103 \mu \mathrm{l}, 0.59 \mathrm{mmol}$) were added to a solution of 2-ethylpyridine-3-carboxylic acid (EV-AY8835-001, $77 \mathrm{mg}, 0.51 \mathrm{mmol}$) in DMF (3 $\mathrm{ml})$ and the: resulting; mixture: was stirred at room temperature for 10 minutes. Tert-butyl N -[(1R,4R,7R)-2-[3-amino-5-methoxy-4-(methylamino)benzoyl]-2-azabicyclo[2.2.1]heptan-7yl]carbamate: (EV-AY8858-001 synthesised according to Scheme $5,200 \mathrm{mg}, 0.51 \mathrm{mmol}$) was added and the reaction mixture: was, stirred at room temperature for 24 h . The reaction mixture was; concentrated in vacuo, dissolved in acetic acid (3 ml) and stirred at $80^{\circ} \mathrm{C}$ for 4 h . The reaction mixture: was; concentrated in vacuo and the resulting residue was purified by preparative HPLC (basic; method) to afford $153 \mathrm{mg}_{\text {; }}$ (59\%) of tert-butyl N-[(1R,4R,7R)-2-[2-(2-ethylpyridin-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-
yl]carbamate: (EV-AY8830-002) as, an off-white powder. LCMS (method D): retention time $1.10 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{:}=506,(\mathrm{M}+1)$.
[00365] ($1 R, 4 R, 7 R)$-2-[2-(2-Ethylpyridin-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-amine hydrochloride, I-96 (EV-AY8837-001) Step 4.
[00366] 1.25 M HCl in ethanol (2 ml) was added to a solution of tert-butyl $\mathrm{N}-[(1 R, 4 R, 7 R)-2-$ [2-(2-ethylpyridin-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate: (EV-AY8830-002, $95 \mathrm{mg}, 0.19 \mathrm{mmol}$) in ethanol (4 ml) and the; resulting mixture; was, stirred at $50^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was concentrated in
vacuo to afford a white powder. The compound was taken up in methanol (10 ml) and treated with Smopex-105 (CAS 527751-99-1) metal scavenger (95 mg) and stirred at room temperature for 2 h . The: fibres were: removed by vacuum filtration and the filtrate concentrated in vacuo to afford 83 mg ((quantitative) of $(1 R, 4 R, 7 R)$-2-[2-(2-Ethylpyridin-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-amine hydrochloride, I-96 (EV-AY8837-001) as: a white powder. LCMS (method H): retention time $2.13 \mathrm{~min}, \mathrm{M} / \mathrm{z}=406$ ($\mathrm{M}+$ $1)$.

[00367] Special cases for Scheme 6

[00368] I-103
[00369] (1R,4R,7R)-2-[2-(2-Ethyl-5-methoxypyridin-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-amine, I-103, EV-AY8854-001 (EOAI3477379) , was synthesised according to the procedures described in Scheme 6 via synthesis of 2-ethyl-5-methoxypyridine-3-carboxylic acid (EV-AY8846-001) as described in Scheme: 6.1
[00370] Scheme 6.1

[00371] 2-Ethyl-5-methoxypyridine-3-carboxylic acid (EV-AY8846-001) - Step 1
[00372] NaOMe: (199 mg, 3.69 mmol) was added to a solution of EV-AY8841-001 (synthesised according; to, Scheme: 6, step 1 starting from CAS 1214351-19-5, $208 \mathrm{mg}, 1.23$ $\mathrm{mmol})$ in DMF (3 ml) and the resulting mixture was stirred at $140^{\circ} \mathrm{C}$ for 2 h . The reaction mixture: was diluted with water (20 ml) and acidified to pH 3 using 5 M aqueous HCl solution. The; resulting; solution was, extracted with ethyl acetate ($2 \times 100 \mathrm{ml}$), the combined organic extracts; were dried over sodium sulfate and concentrated in vacuo to afford 190 mg (85%) of 2-ethyl-5-methoxypyridine-3-carboxylic acid (EV-AY8846-001) as an off-white powder. LCMS
(method D): retention time: $0.37 \mathrm{~min}, \mathrm{M} / \mathrm{z}=182(\mathrm{M}+1)$.
[00373] I-99' and I-100
[00374] (1R,4R,7R)-2-[2-(2-Ethyl-6-methoxypyridin-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-amine, I-99, EV-AY8850-002 (EOAI3477015) and 5-\{5-[(1R,4R,7R)-7-amino-2-azabicyclo[2.2.1]heptane-2-carbonyl]-7-methoxy-1-methyl-1H-1,3-benzodiazol-2-yl\}-6-ethylpyridin-2-ol, I-100, EV-AY8850-003 (EOAI3477016) were synthesised according to the procedures described in Scheme 6 via synthesis of methyl 2-chloro-6-methoxypyridine-3-carboxylate (EV-AY8827-002) as described in Scheme: 6.2.
[00375] Scheme 6.2

[00376] Methyl 2-chloro-6-methoxypyridine-3-carboxylate (EV-AY8827-002) - Step 1
[00377] $\mathrm{Ag}_{2} \mathrm{CO}_{3}(11.0 \mathrm{~g}, 39.8 \mathrm{mmol})$ and methyl iodide $(3.77 \mathrm{ml}, 60.5 \mathrm{mmol})$ were added to a_{ι} solution of 2 -chloro-6-oxo-1,6-dihydropyridine-3-carboxylic acid (CAS 1805670-73-8, 3.00 g , $17.3 \mathrm{mmol})$, in chloroform (30 ml) and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 h . The reaction mixture: was filtered under vacuum (washing with chloroform) and the filtrate was concentrated in vacuo. The residue: was purified by flash column chromatography ($0-100 \%$ ethyl acetate/heptane), to afford 2.42 g , (69%) of methyl 2-chloro-6-methoxypyridine-3-carboxylate (EV-AY8827-002) as, a white powder. LCMS (method D): retention time $1.13 \mathrm{~min}, \mathrm{M} / \mathrm{z}=202$ ($\mathrm{M}+1$).
[00378] I-105
[00379] (1R,4R,7R)-2-\{2-[2-(Cyclopropylmethyl)pyridin-3-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7-amine,

I-105, EV-AY8871-001 (EOAI3478068), was, synthesised according to the procedures described in Scheme 6 via synthesis, of methyl 2-(cyclopropylmethyl)pyridine-3-carboxylate (EV-AZ9626-002) as
described in Scheme: 6.3.
[00380] Scheme 6.3

[00381] Methyl 2-(prop-2-en-1-yl)pyridine-3-carboxylate (EV-AZ9622-002) - Step 1
[00382] CsF $\quad(26.6 \quad \mathrm{~g}, \quad 174.8 \mathrm{mmol}), \quad 4,4,5,5$-tetramethyl-2-(prop-2-en-1-yl)-1,3,2dioxaborolane: (CAS 72824-04-5, $22.01 \mathrm{ml}, 116.6 \mathrm{mmol})$ and $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(4.26 \mathrm{~g}, 5.83 \mathrm{mmol})$ were: added to a solution of methyl 2-chloropyridine-3-carboxylate (CAS 2942-59-8, 7.61 ml , $58.3 \mathrm{mmol})$ in acetonitrile ($(750 \mathrm{ml})$ and the resulting mixture was stirred under nitrogen at $70^{\circ} \mathrm{C}$ for 1 h . A thick precipitate formed. The reaction mixture was diluted with water (300 ml) and extracted with ethyl acetate: $(3 \times 500 \mathrm{ml})$. The combined organic extracts were dried over sodium sulfate, concentrated in vacuo and purified by flash column chromatography ($0-80 \%$ ethyl acetate/heptane), to obtain 10.31 g (quantitative) of methyl 2-(prop-2-en-1-yl)pyridine-3carboxylate: (EV-AZ9622-002) as, a yellow volatile oil. LCMS (method D): retention time $0.88 \mathrm{~min}, \mathrm{M} / \mathrm{z}=178(\mathrm{M}+1)$.
[00383] Methyl 2-(cyclopropylmethyl)pyridine-3-carboxylate (EV-AZ9626-002) - Step 2
[00384] Trifluoroacetic acid ($8.64 \mathrm{ml}, 112.9 \mathrm{mmol})$ in DCM (50 ml) was added dropwise to a solution of 1 M diethylzinc: in heptane: $(112.9 \mathrm{ml})$ in $\mathrm{DCM}(150 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture; was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes. Diiodomethane: $(9.08 \mathrm{ml}, 112.9 \mathrm{mmol})$ was added to the; reaction mixture; and stirring; at $0^{\circ} \mathrm{C}$ was continued for 10 minutes. Methyl 2-(prop-2-en-1-yl)pyridine-3-carboxylate: (EV-AZ9622-002, $10 \mathrm{~g}, 56.4 \mathrm{mmol}$) in DCM (100 ml) was added dropwise and the resulting; mixture: was, allowed to reach room temperature over a period of 3 h . The: reaction was; quenched by addition of water (100 ml) and the organic layer was separated. The; aqueous; mixture; was, re-extracted with DCM ($3 \times 150 \mathrm{ml}$). The combined organic extracts were dried over sodium sulfate, concentrated in vacuo and purified by flash column
chromatography ($0-100 \%$ ethyl acetate/heptane) to afford 8.26 g (76%) of methyl 2-(cyclopropylmethyl)pyridine-3-carboxylate (EV-AZ9626-002) as a yellow volatile oil. LCMS $(\operatorname{method} \mathrm{D})$: retention time $0.88 \mathrm{~min}, \mathrm{M} / \mathrm{z}=192(\mathrm{M}+1)$.

[00385] I-117

[00386] (1R,4R,7R)-2-\{2-[2-(Cyclopropylmethyl)-6-fluoropyridin-3-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7-amine, I-117, EV-AZ9647-002 (EOAI3694082) , was synthesised according to the procedures described in Scheme 6 via synthesis of methyl 2-(cyclopropylmethyl)-6-fluoropyridine-3-carboxylate (EV-AZ9632-002) as described in Scheme: 6.4.
[00387] Scheme 6.4

[00388] Methyl 2-(cyclopropylmethyl)-6-fluoropyridine-3-carboxylate (EV-AZ9632-002) -Step 1
[00389] $\mathrm{AgF}_{2},(6.87 \mathrm{~g}, 47.06 \mathrm{mmol})$ was added to a solution of methyl 2-(cyclopropylmethyl)pyridine-3-carboxylate (EV-AZ9626-002, synthesised according to Scheme $6.3,3.00 \mathrm{~g}, 15.7 \mathrm{mmol})$ in acetonitrile: $(25 \mathrm{ml})$ and the resulting mixture was stirred at room temperature: for 16 h . The: reaction mixture: was filtered under vacuum and the filtrate concentrated in vacuo to, afford an orange: oil which was purified by flash column chromatography ($0-80 \%$ ethyl acetate/heptane) to obtain 1.99 g (61%) of methyl 2-(cyclopropylmethyl)-6-fluoropyridine-3-carboxylate (EV-AZ9632-002) as a colourless volatile oil. LCMS (method D): retention time $1.19 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=210(\mathrm{M}+1)$.
[00390] I-116,
[00391] (1R,4R,7R)-2-\{2-[2-(Cyclopropylmethyl)-6-methoxypyridin-3-yl]-7-methoxy-1-
methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7-amine, I-116, EV-
AZ9628-002 (EOAI3689043), was, synthesised according to the procedures described in Scheme

6i vial synthesis' of 2-(cyclopropylmethyl)-6-methoxypyridine-3-carboxylic acid (EV-AZ9615002) as described in Scheme 6.5 .
[00392] Scheme 6.5

[00393] 2-(Cyclopropylmethyl)-6-methoxypyridine-3-carboxylic acid (EV-AZ9615-002) Step 1
[00394] Methanol ($35 \mu \mathrm{l}, 0.86 \mathrm{mmol}$) and ${ }^{\mathrm{t}} \mathrm{BuOK}(97 \mathrm{mg}, 0.86 \mathrm{mmol})$ were added to a solution of methyl 2-(cyclopropylmethyl)-6-fluoropyridine-3-carboxylate (EV-AZ9632-00 synthesised according to Scheme $6.4,150 \mathrm{mg}, 0.72 \mathrm{mmol})$ in THF (2 ml) and the resulting mixture: was, stirred at room temperature: for 2 h . The reaction mixture was diluted with water (20 ml) and acidified to pH 4 using 2 M aqueous. HCl . The resultant solution was extracted with ethyl acetate: $(2 \times 50 \mathrm{ml})$, the: combined organic extracts were dried over sodium sulfate and concentrated in: vacuo, to, afford a colourless, oil. The residue was dissolved in methanol (5 ml) and 1 M aqueous, $\mathrm{NaOH}(2.15 \mathrm{ml})$ was added. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 h , diluted with water (20 ml) and acidified to pH 3 using 2 M aqueous. HCl . The resulting solution was extracted with ethyl acetate $(2 \times 50 \mathrm{ml})$, the combined organic extracts were dried over sodium sulfate: and concentrated in vacuo to afford 129 mg (82%) of 2-(cyclopropylmethyl)-6-methoxypyridine-3-carboxylic acid (EV-AZ9615-002) as an off-white powder. LCMS (method D): retention time: $1.10 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=208(\mathrm{M}+1)$.
[00395] I-120
[00396] (1R,4R,7R)-2-\{2-[2-(cyclopropylmethyl)-6-(morpholin-4-yl)pyridin-3-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7-amine, I-120, EV-AZ9655-001 (EOAI3694317), was synthesised according to the procedures described in Scheme: 6, via synthesis, of methyl 2-[2-(cyclopropylmethyl)-6-(morpholin-4-yl)pyridin-3-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carboxylate (EV-AZ9651-002) as described in

Scheme 6.6.
[00397] Scheme 6.6

[00398] Methyl 2-[2-(cyclopropylmethyl)-6-(morpholin-4-yl)pyridin-3-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carboxylate (EV-AZ9651-002) - Step 1

[00399] DIPEA ($130 \mu \mathrm{l}, 0.73 \mathrm{mmol}$) and morpholine ($63 \mu \mathrm{l}, 0.73 \mathrm{mmol}$) were added to a stirred solution of methyl 2-[2-(cyclopropylmethyl)-6-fluoropyridin-3-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-car boxylate: (EV-AZ9645-002 synthesised according to Scheme 6.4 and Scheme 1, 90\%, 200 mg , $0.49 \mathrm{mmol})$ in DMSO (2 ml) and the resulting mixture: was stirred at $100^{\circ} \mathrm{C}$ for 2 h . Acetonitrile $(1 \mathrm{ml})$ was added to the reaction mixture and the resulting solution was purified by prep HPLC (basic; method) to afford 161 mg ; (76\%) of methyl 2-[2-(cyclopropylmethyl)-6-(morpholin-4-yl)pyridin-3-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carboxylate (EV-AZ9651-002) as an_{l} off-white powder. LCMS (method D): retention time $1.15 \mathrm{~min}, \mathrm{M} / \mathrm{z}=437(\mathrm{M}+1)$.
[00400] I-121
[00401] 5-\{5-[(1R,4R,7R)-7-Amino-2-azabicyclo[2.2.1]heptane-2-carbonyl]-7-methoxy-1-methyl-1H-1,3-benzodiazol-2-yl\}-6-(cyclopropylmethyl)pyridine-2-carbonitrile, I-121, EV-AZ9658-002 (EOAI3702812), was, synthesised according to the procedures described in Scheme 6; via synthesis; of tert-butyl N-[(1R,4R,7R)-2-\{2-[6-cyano-2-(cyclopropylmethyl)pyridin-3-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7yl]carbamate: (EV-AZ9657-002) as, described in Scheme 6.7.
[00402] Scheme 6.7

[00403] Tert-butyl $\mathrm{N}-[(1 R, 4 R, 7 R)-2-\{2-[6-c y a n o-2-(c y c l o p r o p y l m e t h y l) p y r i d i n-3-y l]-7-$ methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7yl]carbamate (EV-AZ9657-002) - Step 1
[00404] $\mathrm{KCN}(38 \mathrm{mg}, \quad 0.58 \mathrm{mmol})$ was added to a solution of tert-butyl N-[(1R,4R,7R)-2-\{2-[2-(cyclopropylmethyl)-6-fluoropyridin-3-yl]-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7-yl]carbamate
(EV-AZ9643-002 synthesised according to Scheme 6.5 and Scheme $1,80 \mathrm{mg}, 0.15 \mathrm{mmol}$) in DMF (2 ml) and the resulting; mixture: was stirred at $120^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was diluted with ethyl acetate $(50, \mathrm{ml})$ and washed with water $(2 \times 25 \mathrm{ml})$. The combined organic extracts were dried over sodium sulfate: and concentrated in vacuo to afford a yellow oil. The residue was purified by prep HPLC (basic method) to afford 58 mg ; (72\%) of tert-butyl $\mathrm{N}-[(1 R, 4 R, 7 R)-2-\{2-[6-\mathrm{cyano}-2-$ (cyclopropylmethyl)pyridin-3-yll-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl\}-2-azabicyclo[2.2.1]heptan-7-yl]carbamate: (EV-AZ9657-002) as an off- white powder. LCMS $(\operatorname{method} \mathrm{D})$: retention time $1.22 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{i}=557(\mathrm{M}+1)$.
[00405] I-114.
[00406] 2-[(3-\{5-[(1R,4R,7R)-7-Amino-2-azabicyclo[2.2.1]heptane-2-carbonyl]-7-methoxy-1-methyl-1H-1,3-benzodiazol-2-yl\}pyridin-2-yl)methyl]cyclopropane-1-carboxylic acid, I-114, EV-AZ9624-001 (EOAI3669062), was synthesised according to the procedures described in Scheme: 6 via, synthesis of methyl 2-(\{2-[(tert-butoxy)carbonyl]cyclopropyl\}methyl)pyridine-3carboxylate: (EV-AZ9605-002) described in Scheme 6.8.
[00407] Scheme 6.8

[00408] Methyl 2-(\{2-[(tert-butoxy)carbonyl]cyclopropyl\}methyl)pyridine-3-carboxylate (EV-AZ9605-002) - Step 1
[00409] $\mathrm{Cu}(\mathrm{OTf})_{2}(0.18 \mathrm{~g}, 0.51 \mathrm{mmol})$ and tert-butyl diazoacetate (CAS 35059-50-8, 1.95 ml , $\left.12.7^{\prime} \mathrm{mmol}\right)$, were: added to a solution of methyl 2-(prop-2-en-1-yl)pyridine-3-carboxylate (EV-AZ9622-002 synthesised according to Scheme 6.3, step 1, 90\%, $1.00 \mathrm{~g}, 5.08 \mathrm{mmol}$) in HFIP (10 $\mathrm{ml})$ at: $0^{\circ} \mathrm{C}$ and the resulting, mixture was stirred at room temperature for 2 h . The reaction mixture was; quenched with saturated aqueous ammonium chloride (50 ml) and extracted with DCM ($2 \times$ $100 \mathrm{ml})$. The combined organic extracts, were dried over sodium sulfate, concentrated in vacuo and purified by flash column chromatography ($0-80 \%$ ethyl acetate/heptane) to afford 1.23 g (81%), of methyl 2-(\{2-[(tert-butoxy)carbonyl]cyclopropyl\}methyl)pyridine-3-carboxylate (EV-AZ9605-002) as, a pale: yellow oil. LCMS (method D): retention time $1.20 \mathrm{~min}, \mathrm{M} / \mathrm{z}=292(\mathrm{M}+$ 1).
[00410] Scheme 7

Ev-A9493-m

stan 2 . 1.25 MHCl HE EtOH

Ev-Ar8802-001
iEOAB472B4
[00411] Tert-butyl N-[(1R,4R,7R)-2-[2-(2-bromopyridin-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate (EV-AX9488-002) -Step 1
[00412] 2-Bromopyridine-3-carbaldehyde (CAS 128071-75-0, $310 \mathrm{mg}, 1.67 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} \cdot(85 \%, 932 \mathrm{mg}, 4.55 \mathrm{mmol})$ were added to a solution of tert-butyl $\mathrm{N}-[(1 \mathrm{R}, 4 \mathrm{R}, 7 \mathrm{R})-2-[3-$ methoxy-4-(methylamino)-5-nitrobenzoyl]-2-azabicyclo[2.2.1]heptan-7-yl]carbamate

AX9493-002 synthesised as in Scheme 5, $85 \%, 750 \mathrm{mg}, 1.52 \mathrm{mmol}$) in ethanol (5 ml) and water $(3 \mathrm{ml})$ and the: resulting; mixture: was stirred at $90^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was filtered under vacuum and the: filtrate: concentrated in vacuo. The resulting residue was purified by prep HPLC (basic method) to obtain 360 mg (43\%) of tert-butyl N-[(1R,4R,7R)-2-[2-(2-bromopyridin-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-
azabicyclo[2.2.1]heptan-7-yl]carbamate: (EV-AX9488-002) as an off-white powder. LCMS (method D): retention time $1.13 \mathrm{~min}, \mathrm{M} / \mathrm{z}_{\mathrm{i}}=556,558(\mathrm{M}+1)$.
[00413] ($1 R, 4 R, 7 R)$-2-[2-(2-Bromopyridin-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-amine hydrochloride, I-90, (EV-AY8802-001) =Step 2
[00414] 1.25 M HCl in ethanol (2 ml), was added to a solution of tert-butyl $\mathrm{N}-[(1 \mathrm{R}, 4 \mathrm{R}, 7 \mathrm{R})-2-$ [2-(2-bromopyridin-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-
azabicyclo[2.2.1]heptan-7-yl]carbamate: (EV-AX9488-002, $105 \mathrm{mg}, 0.19 \mathrm{mmol}$) in ethanol (4 $\mathrm{ml})$ 'and the resulting; mixture was stirred at $5{ }^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was concentrated in: vacuo' to afford a white powder. The: compound was taken up in methanol (10 ml) and treated with Smopex-105 (CAS 527751-99-1) metal scavenger (105 mg) and stirred at room temperature for 2 h . The: fibres were: removed by vacuum filtration and the filtrate concentrated in vacuo to afford 93 mg ; (quantitative) of ${ }^{\prime}(1 R, 4 R, 7 R)$-2-[2-(2-bromopyridin-3-yl)-7-methoxy-1-methyl-1H-1,3-benzodiazole-5-carbonyl]-2-azabicyclo[2.2.1]heptan-7-amine hydrochloride, I-90, (EV-AY8802-001) asi a white: powder. LCMS (method H): retention time $2.14 \mathrm{~min}, \mathrm{M} / \mathrm{z}=457(\mathrm{M}+$ 1).
[00415] The: following; compounds were synthesized according to the procedures described above:

Compound\#	Mol Wt	LCMS $\mathrm{T}_{\text {rel }}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
I-1	352.433	1.18 min	353.3	A	N/A	N/A
I-2	428.529	3.84 min	429.3	B	HCl	1
I-3	454.566	4.07 min	455.4	B	HCl	1
I-4	418.534	1.76 min	419.3	A	HCl	1
I-5	420.550	1.86 min	421.3	A	HCl	1
I-6	418.534	1.80 min	419.3	A	HCl	1
I-7	418.534	1.74 min	419.3	A	HCl	1

Compound\#	Mol Wt	LCMS $\mathrm{T}_{\text {rel }}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
I-8	457.367	1.78 min	459.1	A	N/A	N/A
I-9	453.578	2.17 min	454.2	A	HCl	1
1-10	479.615	2.20 min	480.2	A	N/A	N/A
1-11	479.615	2.21 min	480.2	A	N/A	N/A
\-12	454.566	1.68 min	455.2	A	HCl	1
1-13	454.566	2.06 min	455.1	A	HCl	1
1-14	471.569	2.20 min	472.2	A	HCl	1
1-15	471.569	2.22 min	472.2	A	HCl	1

Compound\#	Mol Wt	$\begin{gathered} \text { LCMS } \\ \mathrm{T}_{\mathrm{re} 1} \end{gathered}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
[-16	481.512	2.36 min	482.1	A	HCl	1
[-17	454.566	1.39 min	455.2	A	HCl	1
[-18	454.556	1.16 min	455.2	A	HCl	1
1-19	511.538	2.53 min	512.1	A	HCl	1
1.20	456.379	2.02 min	456.1	A	HCl	1
1.21	377.482	1.46 min	378.2	A	HCl	1
I-22	454.566	1.60 min	455.2	A	HCl	1
1-23	454.566	1.33 min	455.2	A	HCl	1

Compound\#	Mol Wt	LCMS $\mathrm{T}_{\text {rel }}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
[-24.	429.517	1.31 min	430.2	A	HCl	1
[-25	443.544	1.48 min	444.3	A	HCl	1
「-26	440.540	1.40 min	441.2	A	HCl	1
$1-27$	454.566	1.54 min	455.2	A	HCl	1
I.28	484.592	1.90 min	485.2	A	HCl	1
1-29	467.605	2.23 min	468.2	A	HCl	1
1.30	479.615	2.47 min	480.2	A	HCl	1
1-31	392.497	3.17 min	393.3	B	HCl	1

Compound\#	Mol Wt	$\begin{gathered} \text { LCMS } \\ \mathrm{T}_{\mathrm{re} 1} \end{gathered}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
[-32	481.631	2.48 min	482.3	A	HCl	1
[-33	454.566	2.37 min	455.2	A	HCl	1
[-34.	442.556	1.68 min	443.3	A	Formic acid	1
1-35	378.470	3.19 min	379.3	B	HCl	1
1.36	468.593	1.23 min	469.2	A	HCl	1
1.37	497.631	2.43 min	498.2	A	HCl	1
1-38	485.595	2.29 min	486.2	A	HCl	1
1-39	468.593	2.43 min	469.2	A	HCl	1

Compound\#	Mol Wt	LCMS $\mathrm{T}_{\text {rel }}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
[-40	489.012	1.71 min	489.2	A	HCl	1
[-41	468.593	1.34 min	469.3	A	HCl	1
[-42	482.619	1.40 min	483.3	A	HCl	1
1-43	616.751	2.79 min	617.3	A	HCl	1
1.44.	480.604	1.42 min	481.2	A	HCl	1
1-45	468.593	1.45 min	469.3	A	HCl	1
1-46	484.592	1.49 min	485.3	A	HCl	1
1-47	383.51	1.32 min	384.2	A	HCl	1

Compound\#	Mol Wt	LCMS $\mathrm{T}_{\text {rel }}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
[-48	526.629	2.30 min	527.2	A	HCl	1
[-49	393.482	1.17 min	394.3	A	HCl	1
「-50	446.544	2.21 min	447.3	A	HCl	1
।-51	491.608	3.46 min	492.3	H	HCl	1
1-52	498.619	2.04 min	499.3	A	N/A	N/A
1.53	478.586	1.70 min	479.4	A	HCl	1
'.-54.	514.618	1.90 min	515.3	A	HCl	1
1-55	468.550	2.19 min	469.2	A	HCl	1

Compound\#	Mol Wt	LCMS $\mathrm{T}_{\text {rel }}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
[-56	486.565	1.62 min	487.2	A	HCl	1
[-57	429.514	1.74 min	430.2	A	HCl	1
[-58	458.555	1.44 min	459.2	A	HCl	1
1.59	400.476	2.04 min	401.2	A	HCl	1
1-60	496.603	1.78 min	497.3	A	HCl	2
1.61	510.630	1.99 min	511.3	A	HCl	2
$1-62$	432.518	2.96 min	433.3	H	HCl	1
1-63	476.571	1.85min	477.3	A	HCl	1

Compound\#	Mol Wt	LCMS $\mathrm{T}_{\text {rel }}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
1-64.	485.581	1.68 min	486.2	A	HCl	1
1.65	496.603	1.47 min	497.3	A	HCl	1
$1-66$	497.591	1.64 min	198.3	A	HCl	1
1-67	498.619	1.60 min	499.2	A	HCl	1
1-68	498.619	1.60 min	499.3	A	HCl	1
1-69	446.545	2.09 min	447.2	A	HCl	1
1.70	444.529	2.01 min	445.3	A	HCl	1
1.71	500.595	1.17 min	501.3	A	HCl	1

Compound\#	Mol Wt	LCMS $\mathrm{T}_{\text {rel }}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
1-72	488.585	1.20 min	489.3	A	HCl	1
1-73	542.672	2.27 min	543.2	A	HCl	1
1.74.	480.561	3.01 min	481.3	H	HCl	1
1.75	494.588	2.27 min	495.2	A	HCl	1
1.76	502.608	2.00 min	503.2	A	HCl	1
1.77	495.576	2.44 min	496.2	C	HCl	2
1.78	530.636	2.28 min	531.3	A	HCl	1
1.79	484.553	1.71 min	485.4	A	N/A	N/A

Compound\#	Mol Wt	LCMS $\mathrm{T}_{\text {rel }}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
1-80	481.549	1.49 min	482.2	A	HCl	1
1.81	430.502	1.73 min	431.3	A	HCl	1
$1-82$	472.463	1.99 min	473.2	A	HCl	1
1-83	486.490	2.15 min	487.2	A	HCl	1
1.84.	508.614	2.39 min	509.3	A	HCl	1
1.85	508.614	2.37 min	509.3	A	HCl	1
1.86	510.630	1.63 min	511.3	A	HCl	1
1.87	484.568	1.51 min	485.3	A	HCl	1

Compound\#	Mol Wt	LCMS $\mathrm{T}_{\text {rel }}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
$1-88$	407.466	1.71 min	408.3	A	N/A	N/A
1.89	502.608	2.08 min	503.3	A	HCl	1
1.90	456.336	2.14 min	457.2	H	HCl	1
1.91	447.530	2.03 min	448.3	A	N/A	N/A
1-92	547.668	2.17 min	548.3	A	N/A	N/A
1.93	506.598	2.31 min	507.4	A	N/A	N/A
1.94	535.639	2.14 min	536.4	A	N/A	N/A
1.95	535.639	2.12 min	536.4	A	N/A	N/A

Compound\#:	Mol Wt	$\begin{gathered} \text { LCMS } \\ \mathrm{T}_{\mathrm{re} 1} \end{gathered}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
1.96	405.493	2.14 min	406.3	H	HCl	1
1.97	483.605	3.36 min	484.4	H	N/A	N/A
1-98	573.727	4.26 min	574.5	H	N/A	N/A
1.99	435.519	1.63 min	436.3	C	N/A	N/A
1-100	421.492	1.75 min	422.3	H	N/A	N/A
I-101	423.483	2.36 min	424.3	H	HCl	1
1-102	447.530	2.08 min	448.4	H	N/A	N/A
1-103	435.519	1.35 min	436.3	A	HCl	1

Compound\#:	Mol Wt	$\begin{gathered} \text { LCMS } \\ \mathrm{T}_{\mathrm{rel}} \end{gathered}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
I-104.	419.519	1.35 min	420.4	A	HCl	1
I-105	431.530	1.31 min	432.2	A	HCl	1
1-106	483.605	1.76 min	484.4	A	N/A	N/A
I-107	422.480	1.99 min	423.3	H	HCl	1
I-108	445.557	2.51 min	446.4	H	HCl	1
1-109	448.561	1.03 min	449.4	A	Trifluoroacetic acid	1
I-110	445.557	1.48 min	446.4	C	HCl	1
1-111	526.426	2.44 min	528.3	H	N/A	N/A

Compound\#:	Mol Wt	$\begin{gathered} \text { LCMS } \\ \mathrm{T}_{\mathrm{rel}} \end{gathered}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
I-112	461.556	2.28 min	462.4	H	N/A	N/A
I-113	478.587	2.12 min	479.2	C	N/A	N/A
I-114	475.540	$1.13 \mathrm{~min} / 1.21 \mathrm{~min}$	476.4	H	HCl	1
I-115	445.557	1.21 min	446.3	A	HCl	1
I-116	461.556	1.79 min	462.2	A	N/A	N/A
I-117	449.521	1.71 min	450.3	A	N/A	N/A
I-118	405.493	1.15 min	406.3	A	N/A	N/A
1-119	405.493	1.17 min	406.2	A	HCl	1

Compound\#	Mol Wt	$\begin{gathered} \text { LCMS } \\ \mathbf{T}_{\mathrm{re} 1} \end{gathered}$	M/Z(+)	LCMS Method	Salt	Salt Stoichiometry
I-120	516.635	1.70 min	517.3	A	HCl	1
1-121	456.540	1.82 min	457.3	A	N/A	N/A
I-122	405.493	1.45 min	406.2	A	N/A	N/A

Biological'Assays'

[00416] Compounds of the present invention were assayed as inhibitors of PAD4 using the assay protocol described below.
[00417] Compounds were: solubilised in 100% DMSO to achieve 100 mM final compound concentration. Compound stock solutions were stored at RT. A series of dilutions were prepared in DMSO and mixed 8 times, with 20μ mixing volume. Final assay conditions were as follows:

Reaction volume: $20 \mu \mathrm{l}$
Assay buffer (as aforementioned): 100 mM Tris- HCl (pH 7.6), 2 mM DTT, 1 mM CaCl 2 Final concentrations:
-100 nM hPAD4 enzyme:
$-50 ~ \mu \mathrm{M}$ (8 -fold sub-Km) substrate : peptide
-0.5\% DMSO
Total incubation time: 65 mins at $37^{\circ} \mathrm{C}$
Stop solution: $40 \mu 15 \%$ TCA in ACN
$0.25 \mu \mathrm{~L}$ of compound solution was added to $10 \mu \mathrm{~L}$ of 200 nM PAD4 in assay buffer (100 mM Tris-HCl pH 7.6, 2 mM DTT). After $5 \mathrm{mins}, 10 \mu \mathrm{~L}$ of $100 \mu \mathrm{M}$ of substrate in buffer (100 mM Tris- $\mathrm{HCl} \mathrm{pH} 7.6,2 \mathrm{mM}$ DTT, 2 mM CaCl 2) was added and the reaction incubated for 60 mins at $37^{\circ} \mathrm{C}$. The enzymatic reaction was quenched by addition of $40 \mu 1$ of $5 \% \mathrm{TCA}$ in $\mathrm{ACN}(1.7 \%$ TCA final concentration), stop solution. Arginine containing substrate and citrulline containing product :(+1 Da mass; shift) were : subjected to solid phase extraction on Agilent RapidFire (RF) 300 system and detected on a coupled, triple: quadrupole Agilent 6460 QQQ mass spectrometry (MS), device: under application of multiple reaction monitoring (MRM) for quantitation.
[00418] Table 2, below, shows, the: activity of'selected compounds of this invention in the PAD4.assays; described above. The: compound numbers correspond to the compound numbers in Table 1. Compounds having; an activity designated as " A " provided an IC50 $\leq 1 \mu \mathrm{M}$; compounds having; an activity designated as, "B" provided an IC_{50} of $1.0-5.0 \mu \mathrm{M}$; compounds having an activity designated as; "C" provided an IC_{50} of $5.0-10.0 \mu \mathrm{M}$; and compounds having an activity designated as, "D" provided an IC50, of" $\geq 10.0 \mu \mathrm{M}$. The term pIC50 $=-\log ($ IC50 $)$. Compounds having; an activity designated as, "E" provided a pIC50 < 4; compounds having an activity designated as, " F " provided a pIC50 of 4.0 - -5.0 ; compounds having an activity designated as
"G" provided a pIC50 of 5.0-6.0; and compounds having an activity designated as "H" provided a pIC50 > 6. "NA" stands for "not assayed."
Table 2. PAD4 Activity

Compound \#	hPAD4 AR IC_{50} $\mu \mathrm{M}$	hPAD4 AR $\mathrm{plC}_{50} \mu \mathrm{M}$	$\begin{gathered} \text { hPAD4 } \\ \text { RFMS IC } 50 \\ \mu \mathrm{M} \\ \hline \end{gathered}$	$\begin{gathered} \text { hPAD4 } \\ \text { RFMS } \\ \text { pIC } 50 \\ \hline \end{gathered}$	$\begin{gathered} \text { mPAD4 } \\ \text { RFMS IC }{ }_{50} \\ \mu \mathrm{M} \\ \hline \end{gathered}$	$\begin{gathered} \text { mPAD4 } \\ \text { RFMS } \\ \text { pIC }_{50} \\ \hline \end{gathered}$
I-1	NA	NA	D	F	NA	NA
I-2	NA	NA	D	F	NA	NA
I-3	NA	NA	D	F	NA	NA
I-4	NA	NA	D	F	NA	NA
I-5	NA	NA	D	F	NA	NA
I-6	NA	NA	D	F	NA	NA
I-7	NA	NA	D	E	NA	NA
1-8	NA	NA	D	F	NA	NA
I-9	NA	NA	A	H	C	G
I-10	NA	NA	D	F	NA	NA
I-11	NA	NA	B	G	D	F
I-12	NA	NA	B	G	D	F
I-13	NA	NA	D	E	NA	NA
I-14	NA	NA	D	F	NA	NA
I-15	NA	NA	D	F	NA	NA
I-16	NA	NA	C	G	NA	NA
I-17	NA	NA	C	G	D	F
I-18	NA	NA	B	G	D	F
I-19	NA	NA	C	G	B	G
I-20	NA	NA	A	H	C	G
I-21	NA	NA	C	G	D	F
1-22	NA	NA	D	E	NA	NA
I-23	NA	NA	C	G	D	F
1-24	NA	NA	D	F	NA	NA
1-25	NA	NA	D	F	NA	NA
I-26	NA	NA	D	F	NA	NA
1-27	NA	NA	D	F	NA	NA
1-28	NA	NA	A	H	B	G
1-29	NA	NA	B	G	D	F
I-30	NA	NA	A	H	B	G
I-31	NA	NA	D	E	NA	NA
I-32	NA	NA	B	G	C	G
I-33	NA	NA	C	G	NA	NA
I-34	NA	NA	D	F	NA	NA
I-35	NA	NA	D	F	D	E
I-36	NA	NA	D	E	D	E

Compound \#	$\begin{gathered} \hline \text { hPAD4 } \\ \text { AR IC } 50 \\ \mu \mathrm{M} \\ \hline \end{gathered}$	hPAD4 AR $\mathrm{plC}_{50} \mu \mathrm{M}$	$\begin{gathered} \text { hPAD4 } \\ \text { RFMS IC } 50 \\ \mu \mathrm{M} \\ \hline \end{gathered}$	hPAD4 RFMS plC 50	$\begin{gathered} \text { mPAD4 } \\ \text { RFMS IC } 50 \\ \mu M \end{gathered}$	$\begin{gathered} \text { mPAD4 } \\ \text { RFMS } \\ \text { pIC }_{50} \\ \hline \end{gathered}$
I-37	NA	NA	A	H	B	G
I-38	NA	NA	B	G	B	G
I-39	NA	NA	B	G	B	G
l-40	NA	NA	C	G	D	F
I-41	NA	NA	C	G	D	F
I-42	NA	NA	D	F	D	F
I-43	B	G	A	H	A	H
l-44	NA	NA	D	F	D	E
I-45	NA	NA	B	G	D	F
I-46	A	H	A	H	C	G
I-47	NA	NA	D	F	D	E
I-48	NA	NA	B	G	A	H
1-49	NA	NA	D	F	D	F
I-50	NA	NA	B	G	B	G
I-51	D	E	D	E	D	E
I-52	D	E/F	D	E	D	E
I-53	NA	NA	D	F	D	F
1-54	NA	NA	D	F	D	F
I-55	NA	NA	C	G	B	G
I-56	NA	NA	D	F	D	F
I-57	NA	NA	D	F	D	F
I-58	NA	NA	D	E	D	E
I-59	NA	NA	D	F	NA	NA
I-60	D	E/F	D	F	D	F
I-61	D	F	D	F	D	F
I-62	A	H	B	G	B	G
I-63	B	G	D	F	D	F
I-64	A	H	B	G	NA	NA
I-65	A	H	A	H	NA	NA
I-66	NA	NA	B	G	B	G
I-67	NA	NA	B	G	C	G
I-68	NA	NA	B	G	B	G
I-69	A	H	A	H	B	G
1-70	A	H	A	H	B	G
1-71	A	H	B	G	B	G
1-72	NA	NA	B	G	C	G
1-73	A	H	B	G	B	G
1-74	B	G	B	G	C	G
1-75	B	G	B	G	D	F
1-76	B	G	C	G	D	F
1-77	C	G	D	F	D	F

Compound \#	hPAD4 AR IC_{50} $\mu \mathrm{M}$	hPAD4 AR $\mathrm{plC}_{50} \mu \mathrm{M}$	$\begin{gathered} \text { hPAD4 } \\ \text { RFMS IC } 50 \\ \mu M \end{gathered}$	hPAD4 RFMS plC_{50}	$\begin{gathered} \text { mPAD4 } \\ \text { RFMS IC } 50 \\ \mu \mathrm{M} \end{gathered}$	$\begin{gathered} \hline \text { mPAD4 } \\ \text { RFMS } \\ \text { pIC }_{50} \\ \hline \end{gathered}$
1-78	A	H	B	G	B	G
1-79	B	G	B	G	D	F
I-80	B	G	C	G	D	F
I-81	A	H	NA	NA	NA	NA
I-82	A	H	NA	NA	NA	NA
I-83	B	G	NA	NA	NA	NA
I-84	A	H	NA	NA	NA	NA
I-85	A	H	NA	NA	NA	NA
I-86	A	H	NA	NA	NA	NA
I-87	A	H	NA	NA	NA	NA
I-88	D	F	NA	NA	NA	NA
I-89	A	H	NA	NA	NA	NA
I-90	C/D	F/G	NA	NA	NA	NA
I-91	C/D	F/G	NA	NA	NA	NA
I-92	A	H	NA	NA	NA	NA
I-93	C	G	NA	NA	NA	NA
I-94	C/D	F/G	NA	NA	NA	NA
I-95	C/D	F/G	NA	NA	NA	NA
I-96	B	G	NA	NA	NA	NA
I-97	B	G	NA	NA	NA	NA
I-98	C/D	F/G	NA	NA	NA	NA
I-99	B	G	NA	NA	NA	NA
I-101	C/D	F/G	NA	NA	NA	NA
I-102	A	H	NA	NA	NA	NA
I-103	C/D	F/G	NA	NA	NA	NA
l-104	C/D	F/G	NA	NA	NA	NA
I-105	A	H	NA	NA	NA	NA
I-106	B	G	NA	NA	NA	NA
I-107	C/D	F/G	NA	NA	NA	NA
I-108	A	H	NA	NA	NA	NA
I-109	B	G	NA	NA	NA	NA
I-111	A	H	NA	NA	NA	NA
I-112	A	H	NA	NA	NA	NA
I-113	B	G	NA	NA	NA	NA
I-114	C/D	F/G	NA	NA	NA	NA
I-115	A	H	NA	NA	NA	NA
l-117	A	H	NA	NA	NA	NA
I-118	B	G	NA	NA	NA	NA

Claims

Weclaim:

1. A compound of formula \mathbf{I}^{\prime} :

I^{\prime}
or a pharmaceutically acceptable :salt thereof, wherein:
Ring
A

, or
 wherein Ring A is optionally substituted with 14. groups ; selected from fluorine, -CN, -OR, or C1-6 aliphatic optionally substituted with 1-3 fluorine : atoms;

Ring; B is, a 5-6, membered heteroaryl ring having ; 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
R^{1} is; hydrogen, -Cy, or C1-6 aliphatic optionally substituted with -Cy and optionally further substituted with 1-4 groups selected from fluorine, -CN, or -OR;
each -Cy is; independently a 6 -membered aryl ring containing $0-2$ nitrogen atoms, or a 4-7 membered saturated monocyclic ring having $0-2$ heteroatoms independently selected from
nitrogen, oxygen, or sulphur, wherein -Cy is optionally substituted with 1-4 groups selected from fluorine, -CN , or - OR ;
R^{2} is hydrogen, $-\mathrm{CN},-\mathrm{OR},-\mathrm{Cy}$, or C_{1-10} aliphatic optionally substituted with -Cy and optionally further 'substituted with 1-5 groups selected from fluorine, -CN , or -OR ; or:

n is 1,2 , or 3 ;
X^{1} is N or $\mathrm{C}\left(\mathrm{R}^{3}\right)$;
R^{3} is: -R , halogen, or -OR ;
each . R is independently hydrogen or C1-6 aliphatic optionally substituted with 1-3 fluorine atoms;
L. isi selected from a covalent bond or a C1-6 membered straight or branched, saturated or unsaturated hydrocarbon chain wherein one methylene : unit of L is optionally replaced by -$\mathrm{S}(\mathrm{O})_{2}-$ or $-\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{\mathrm{y}}\right)$-, wherein R^{y} is R or $-\mathrm{CH}_{2}$ phenyl; and
R^{4} is: halogen, R , phenyl, or a 5-6-membered heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulphur, wherein R^{4} is optionally substituted with 1-4 groups ; independently selected from halogen, $-\mathrm{CN},-\mathrm{OR},-\mathrm{C}(\mathrm{O}) \mathrm{OH}$, or C_{1-6} aliphatic optionally substituted with 1-3 fluorine atoms.
2. The:compound according ; to claim 1, wherein said compound is of formula \mathbf{I}-a:

I'- \mathbf{a}
or• a pharmaceutically acceptable : salt thereof.
3. The:compound according ; to claim 1, wherein said compound is of formula \mathbf{I} - \mathbf{b} :

or a pharmaceutically acceptable salt thereof.
4. The: compound according to any of claims 1 through 3, wherein Ring A is

5. The compound according to claim 4, wherein Ring A is

6. The: compound according to any of claims 1 through 5, wherein Ring B is a 6 -membered heteroaryl ring, having, 1-2 nitrogens.
7. The compound according; to any of claims 1 through 5, wherein Ring B is a 5-membered heteroaryl ring, having, 1-3 heteroatoms, independently selected from nitrogen, oxygen, or sulfur.
8. The:compound according;to, claim 6, wherein Ring B is pyridyl.
9. The compound according to claim 7, wherein Ring. B is imidazolyl, pyrazolyl, pyrrolyl, or thiazolyl.
10. The: compound according; to claim 9, wherein Ring B is pyrrolyl.
11. The: compound according; to any of claims 1 through 10 , wherein R^{4} is phenyl or pyridyl.
12. The: compound according to claim 1, wherein said compound is selected from those depicted in Table: 1.
13. A pharmaceutically acceptable composition comprising the compound according to any of claims 1 through 12 , and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
14. The: composition according; to claim 13, in combination with an additional therapeutic agent.
15. A method of inhibiting; PAD4 in a subject or in a biological sample comprising the step of contacting; the: PAD4 with a.compound according to any of claims 1 through 12 .
16. A method of treating; a PAD4-mediated disease, disorder, or condition in a subject in need thereof comprising; the step of administering to said subject the composition according to claim 13.
17. The: method according; to claim 16, wherein said subject is a human subject.
18. The: method according;to claim 16, wherein said subject is a veterinary subject.
19. The: method according, to claim 16, wherein the PAD4-mediated disease, disorder, or condition is, selected from the group consisting of`acid-induced lung injury, acne (PAPA), acute lymphocytic leukemia, acute, respiratory distress syndrome, Addison's disease, adrenal hyperplasia, adrenocortical insufficiency, ageing, AIDS, alcoholic hepatitis, alcoholic hepatitis, alcoholic liver disease, allergen induced asthma, allergic bronchopulmonary, aspergillosis, allergic; conjunctivitis, alopecia, Alzheimer's disease, amyloidosis, amyotropic lateral sclerosis,
and weight loss, angina pectoris, angioedema, anhidrotic ecodermal dysplasia-ID, ankylosing spondylitis, anterior segment, inflammation, antiphospholipid syndrome, aphthous stomatitis, appendicitis, arthritis, asthma, atherosclerosis, atopic dermatitis, autoimmune diseases, autoimmune: hepatitis, bee sting-induced inflammation, behcet's disease, Behcet's syndrome, Bells: Palsey, berylliosis, Blau syndrome, bone pain, bronchiolitis, burns, bursitis, cancer, cardiac hypertrophy, carpal tunnel syndrome, catabolic disorders, cataracts, cerebral aneurysm, chemical irritant-induced inflammation, chorioretinitis, chronic heart failure, chronic lung disease of prematurity, chronic lymphocytic leukemia, chronic obstructive pulmonary disease, colitis, complex regional pain syndrome, connective tissue disease, corneal ulcer, crohn's disease, cryopyrin-associated periodic syndromes, cyrptococcosis, cystic fibrosis, deficiency of the interleukin-1-receptor antagonist (DIRA), dermatitis, dermatitis endotoxemia, dermatomyositis, diffuse: intrinsic pontine glioma, endometriosis, endotoxemia, epicondylitis, erythroblastopenia, familial amyloidotic: polyneuropathy, familial cold urticarial, familial mediterranean fever, fetal growth retardation, glaucoma, glomerular disease, glomerular nephritis, gout, gouty arthritis, graft-versus-host disease, gut diseases, head injury, headache, hearing loss, heart disease, hemolytic: anemia, Henoch-Scholein purpura, hepatitis, hereditary periodic fever syndrome, herpes. zoster and simplex, HIV-1, Hodgkin's disease, Huntington's disease, hyaline membrane disease, hyperammonemia, hypercalcemia, hypercholesterolemia, hyperimmunoglobulinemia D with recurrent: fever (HIDS), hypoplastic and other anemias, hypoplastic anemia, idiopathic thrombocytopenic purpura, incontinentia pigmenti, infectious mononucleosis, inflammatory bowel disease, inflammatory lung disease, inflammatory neuropathy, inflammatory pain, insect bite-induced inflammation, iritis, irritant-induced inflammation, ischemia/reperfusion, juvenile rheumatoid arthritis, keratitis, kidney disease, kidney injury caused by parasitic infections, kidney injury caused by parasitic infections, kidney transplant rejection prophylaxis, leptospiriosis, leukemia, Loeffler's syndrome, lung injury, lung injury, lupus, lupus, lupus nephritis, lymphoma, meningitis, mesothelioma, mixed connective tissue disease, Muckle-Wells syndrome: (urticaria deafness, amyloidosis), multiple sclerosis, muscle wasting, muscular dystrophy, myasthenia gravis, myocarditis, mycosis fungiodes, mycosis fungoides, myelodysplastic: syndrome, myositis, nasal sinusitis, necrotizing enterocolitis, neonatal onset multisystem inflammatory disease (NOMID), nephrotic syndrome, neuritis, neuropathological diseases, non-allergen induced asthma, obesity, ocular allergy, optic neuritis, organ transplant,
osterarthritis, otitis media, paget's disease, pain, pancreatitis, Parkinson's disease, pemphigus, pericarditis, periodic: fever, periodontitis, peritoneal endometriosis, pertussis, pharyngitis and adenitis: (PFAPA syndrome), plant irritant-induced inflammation, pneumonia, pneumonitis, pneumosysts. infection, poison ivy/" urushiol oil-induced inflammation, polyarteritis nodosa, polychondritis, polycystic kidney disease, polymyositis, psoriasis, psoriasis, psoriasis, psoriasis, psychosocial stress diseases, pulmonary disease, pulmonary hypertension, pulmonayr fibrosis, pyoderma gangrenosum, pyogenic sterile arthritis, renal disease, retinal disease, rheumatic carditis, rheumatic disease, rheumatoid arthritis, sarcoidosis, seborrhea, sepsis, severe pain, sickle; cell, sickle: cell anemia, silica-induced disease, Sjogren's syndrome, skin diseases, sleep apnea, solid tumors, spinal cord injury, Stevens-Johnson syndrome, stroke, subarachnoid hemorrhage, sunburn, temporal arteritis, tenosynovitis, thrombocytopenia, thyroiditis, tissue transplant, TNF receptor associated periodic syndrome (TRAPS), toxoplasmosis, transplant, traumatic brain injury, tuberculosis, type: 1 diabetes, type 2 diabetes, ulcerative colitis, urticarial, uveitis, and Wegener's. granulomatosis.
20. The method according to claim 16, wherein the PAD4-mediated disease, disorder, or condition is: selected from rheumatoid arthritis, vasculitis, systemic lupus erythematosus, ulcerative colitis, cancer, cystic fibrosis, asthma, cutaneous lupus erythematosis, and psoriasis.

Category		-ate, oft ithe reieleantit pas		Reievanit
A	 	ĜRôìp LTTD B] : ÁÁRḰEKR 2014-01-30) Clams $1-24$	HAÁĖ.	$\overline{1}-20)$
A	acti vity is suffi cient and liuman $\angle \mathbb{N E T}$ formati vol̃ : 1.1., ño. 3, 226 January 20015 ($\overline{20} \overline{10} \overline{5}$.189-191, XP005529人3214, $.10 .110 \overline{3} 8 /$ nchembi $0.17 \overline{3} 5$ the whole document	bition of p di srupt ${ }^{\text {moo }}$ en $^{-`}$; pāâĝes		1-20)
LDate Cofthe	actual (completion 'of the international 'search 2 IMarch 2017		$\overline{\text { Date of }}$ mailing lof the international $I_{\text {search }} 1_{\text {report }} \mathbf{t}$$0 \overline{0} / 04 / 2017^{7}$	
Name tand			Āuthorized lofficer Seelmann, Ingo	

NTERNATIONAL SEARCH REPORT
Information on patent family members
International application No
PCT/US2017/018790

Patient doociument citied 'in seärch repôort		Puiblionation datio			$\begin{aligned} & \text { Publichation } \\ & \text { Publation } \\ & \text { daté } \end{aligned}$
	Ail $\hat{3} \hat{0}-0 \hat{1}-20 \hat{1} \hat{4}^{n}$		Â'u'		12-0 ${ }^{3}$-2015
			$\hat{C N A}^{\text {cha }}$	$287934^{\prime \prime} 1^{1}$ Âl	30-01-2014
			Con	104470919	25-033-2015)
			D̈K	28877467 T3	13-02-20 ${ }^{1} 17$
			EP	2877467 Al.	$03-06)-2015$
			HR J	P20161530	10-02-2017
			${ }^{\text {J }}$ P		
			K'R		0̂8-0 $01-201{ }^{\text {a }}$
			LT	208774667	100-011-20017
			Rư		20-0 $0^{3}-200^{-16}$
			Șil.	28777467 Ti'	208-02?-20117
			STM	†2a01700052.	08-033-2017
			Us	2015175600 Al .	25-06-2015
			WS	$201609716{ }^{\text {a }}$	$14-01-2016$ $30-01-2014$
			W	2140 仿	30-01-2014

