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Rare disruptive mutations in ciliary function genes
contribute to testicular cancer susceptibility
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Castro2,6, Simon O’Connor2, Rachel H. Giles3, Richard S. Houlston1,7 & Clare Turnbull1,8,9

Testicular germ cell tumour (TGCT) is the most common cancer in young men. Here we

sought to identify risk factors for TGCT by performing whole-exome sequencing on 328

TGCT cases from 153 families, 634 sporadic TGCT cases and 1,644 controls. We search for

genes that are recurrently affected by rare variants (minor allele frequency o0.01) with

potentially damaging effects and evidence of segregation in families. A total of 8.7% of TGCT

families carry rare disruptive mutations in the cilia-microtubule genes (CMG) as compared

with 0.5% of controls (P¼ 2.1� 10�8). The most significantly mutated CMG is DNAAF1 with

biallelic inactivation and loss of DNAAF1 expression shown in tumours from carriers. DNAAF1

mutation as a cause of TGCT is supported by a dnaaf1hu255h(þ /� ) zebrafish model, which

has a 94% risk of TGCT. Our data implicate cilia-microtubule inactivation as a cause of TGCT

and provide evidence for CMGs as cancer susceptibility genes.
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T
esticular germ cell tumour (TGCT) is the most common
cancer in men aged 15–45 years, with over 18,000 new
cases diagnosed annually in Europe1–3. Cure rates for

TGCT are typically high because of the extreme sensitivity of
malignant testicular germ cells to chemotherapy; however, an
increased risk of metabolic syndrome, infertility and secondary
cancer associated with survivorship is now recognized4–6.
Furthermore, there are limited options for patients with
platinum-resistant tumours, for whom long-term survival
remains poor. It is therefore anticipated that an increased
understanding of TGCT pathogenesis will generate new
therapeutic targets.

Family, twin and migrant studies support a strong inherited
genetic basis to TGCT susceptibility, with brothers of cases
having a four- to eightfold increased risk of TGCT7–10. While
Mendelian susceptibility to TGCT has been inferred from the
combination of the high familial risks and reports of multiplex
TGCT families, no rare high-impact alleles have so far been
identified11. In contrast to associations identified through
genome-wide association studies, the identification of this class
of susceptibility is especially important since such mutations are
causal and thus provide direct insight into TGCT biology.

Here, we use whole-exome sequencing (WES) of germline
DNA to identify novel high-impact TGCT risk variants, focusing
our analysis on familial TGCT as such cases are enriched for
genetic susceptibility. We identify rare disruptive mutations in
cilia-microtubule function genes as determinants of susceptibility
to TGCT. This is further supported by evidence of second somatic
mutation in tumour tissue and functional data from zebrafish,
which collectively suggest a model of cilia inactivation in
promoting TGC tumorigenesis.

Results
Whole-exome sequencing of familial TGCT cases. To identify
rare germline variants involved in TGCT we performed WES of
328 TGCT cases from 153 independent families of European
ancestry (Methods). For comparison we analysed WES data on
1,644 UK population controls from the 1958 Birth Cohort
(1958BC) with no personal history of malignancy (Fig. 1).
DNA from germline blood samples from cases and controls
was sequenced using Illumina TruSeq exon capture or Nextera
Rapid Capture in conjunction with Illumina Hi-Seq 2000 or
2500 technology (Methods). To avoid erroneous findings
we performed alignment and variant calling of all samples
simultaneously (Methods). Each captured base was sequenced to
an average depth of 49� across samples.

Gene burden analysis of familial TGCT data. We searched in
familial cases for genes that were recurrently affected by rare

variants with presumptive damaging effects (nonsense, splice
acceptor/donor and indel frameshift changes) that had a low
burden of comparable variants in controls. We did not include
potentially damaging missense variants because of the limited
accuracy of in silico prediction tools in predicting pathogenicity of
missense variants for human disease (American College of
Medical Genetics12). We performed a collapsing T1 gene burden
test imposing a maximal minor allele frequency (MAF) threshold
of 1%, to select for rare high-impact variants. To ensure
independent events, case counts were based on one individual
per pedigree, which was randomly assigned as the proband.
Significance was assessed by permutation. To prioritize genes for
high-impact variants we filtered results to select only genes
containing rare disruptive mutations which segregated with
TGCT in at least two families (Table 1). There was no gene for
which mutations were detected in more than three of the 153
families when the filters described for mutation type, frequency
and segregation were applied. The top ranked gene exome-wide
was DNAAF1/LRRC50 (Dynein, Axonemal, Assembly Factor
1/Leucine-rich repeat containing 50), with the rare disruptive
mutations p.Arg636Ter and p.Gly434ProfsTer4 (Fig. 2a)
segregating with TGCT in PED-2331 and PED-2152 families
(Fig. 3). DNAAF1 forms a component of the microtubule outer
dynein arm, stabilizing microtubule-based cilia13. A deleterious
phenotype in humans for disruptive DNAAF1 mutations
has previously been established, with biallelic mutations causing
recessive primary ciliary dyskinesia (PCD)14, which is
characterized by impaired primary cilia function, chronic lung
disease, male infertility and hearing impairment15,16. In addition
to DNAAF1, mutations in the paralogue genes LRRC6 (ref. 17)
and CNTRL (centriolin; ref. 18) were identified in TGCT cases in
three additional families. In total DNAAF1 and its paralogues
were mutated in nine cases, from five families with segregation of
mutations detected in four families (Fig. 3).

Gene set enrichment analysis of familial TGCT data. To com-
plement our T1 burden analysis of single genes, we conducted
a Gene-Set-Enrichment-Analysis based on the GO Biological
Process ontology in order to identify groups of genes based on
specified biological processes/pathways associated with TGCT the
signal for which would not have individually been detectable in
exome-wide analysis. The top ranked set from analysis of 1,090
canonical gene sets was the gene set related to cilia-microtubule
function (P¼ 2.1� 10� 8, Q¼ 0.01, permutation test), containing
genes DNAAF1, DYNC2H1, DRC1, CEP290 and MAP4 (Table 2
and Supplementary Table 1) which are each a cause of recessive
ciliopathy (PCD—DNAAF1/DRC1 (refs 14,19); asphyxiating
thoracic dystrophy—DYNC2H1 (ref. 20); Joubert syndrome—
CEP290 (refs 21,22); and Senior-Loken syndrome—MAP4 via
TRAF3IP1 mutation23). Moreover, even excluding DNAAF1,
the cilia-microtubule gene set remained the most significantly
associated of the 1,090 gene sets (P¼ 9.1� 10� 6, Q¼ 0.1,
permutation test). The mutations we identified in the TGCT
cases cluster predominantly in the same ciliopathic-associated
protein domains as mutations causing the recessive diseases
(Fig. 2b)24.

Replication sequencing of unselected TGCT cases. We next
performed WES of 634 sporadic TGCT cases from the UK,
comparing mutation frequencies with 27,173 ExAC non-Finnish
European, cancer-free controls25. In gene-set enrichment analysis
(GSEA), association was replicated in this data set for the
cilia-microtubule gene set (P¼ 0.024, Fisher’s Exact Test), with
additional rare disruptive case variants identified in DNAAF1,
MAP4, DRC1, DYNC2H1 and CEP290. Remarkably as well as an
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Figure 1 | Study design. Overview of patient samples and exome

sequencing study design.
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additional DNAAF1 mutation, an additional MAP4 mutation was
observed, taking the total number of MAP4 rare disruptive case
mutations to three; whereas no rare disruptive mutations in
MAP4 were observed in 27,173 ExAC controls (P¼ 1.9� 10� 5,
Fisher’s Exact Test), the 1,644 UK controls or 4,300 European
controls from the exome variant server project.

Somatic alterations in mutation carriers. Immunohistochem-
istry (IHC) staining for DNAAF1 showed complete absence in
3/3 tumours available from DNAAF1 mutation carriers, with
presence of the protein demonstrable in normal surrounding
tissue (Fig. 4). Evidence of inactivation of the second allele was
also demonstrated on sequencing of two of the three tumours
(Supplementary Fig. 1). Collectively these findings are compatible
with DNAAF1 having a tumour suppressor function.

Functional studies in zebrafish model. We have previously
implicated mutation of DNAAF1 as a cause of TGCT in zebrafish
(n¼ 30) with loss of heterozygosity of DNAAF1 demonstrated in
the tumours26. To further explore the link between disruptive
mutations in DNAAF1, ciliary function and TGCT, we conducted
additional studies in dnaaf1hu255h mutant and wild-type
zebrafish. We first examined the frequency and characteristics

of TGCTs in 136 heterozygotely mutated dnaaf1hu255h male
zebrafish compared with 114 age-matched male wild-type fish:
TGCT were observed in 94% (128/136) of dnaaf1hu255h (þ /� )
mutants as compared with 14% (16/114) of those with wild-type
genotype (P¼ 3.5� 10� 14, Fisher’s Exact Test) (Supplementary
Fig. 2a). Tumours were characterized by severely reduced
end-stage differentiated germ cells and an increase in early
spermatogonial-like cells thus closely resembling human
seminoma (Supplementary Fig. 2b). We have previously
extensively demonstrated a morphological and histological
analogy of zebrafish TGCTs to human TGCTs (Supplementary
Fig. 2b), specifically for the subtype seminoma, based on
established markers for early spermatogonia and spermatozoa.
Nevertheless, despite the recognized similarities between the
genera, we acknowledge there are discernible differences in
gametogenesis between zebrafish and human germ cells,
including distinct sex determination mechanisms of the germ
cell lineage and markedly different architectural composition of
the gonads in terms of somatic stem cell niche presence and a
cystic expansion versus progressive tubular differentiation,
respectively.

To explore the potential mechanism by which cilia
function promotes TGCT formation, electron microscopy of

Table 1 | Genes with rare MAFo1% disruptive mutations segregating in two or more familial TGCT pedigrees.

Gene TGCT Probands (n¼ 150) Controls (n¼ 1,609) OR P-value Total no. affected familial cases (n¼ 306) Rank

DNAAF1 2 1 21.3 9.9� 10� 3 4 1
ACSM1 2 6 3.6 6.4� 10� 2 4 2
TSNAXIP1 3 11 2.9 6.9� 10� 2 6 3
C1orf186 2 8 2.7 1.3� 10� 1 4 4
KIAA1586 2 8 2.7 1.3� 10� 1 4 5
ABCA10 2 8 2.7 1.6� 10� 1 4 6
PIK3C2G 3 13 2.5 2.4� 10� 1 6 7
C1orf168 2 9 2.4 2.5� 10� 1 5 8
RRP15 3 18 1.8 2.8� 10� 1 6 9
MUC4 3 22 1.5 2.9� 10� 1 7 10
OR6K2 2 15 1.4 3.0� 10� 1 5 11
KRTAP1-1 2 15 1.4 3.0� 10� 1 4 12
ABCC12 3 23 1.4 3.3� 10� 1 7 13
CALML4 2 16 1.3 3.4� 10� 1 5 14

Abbreviations: MAF, minor allele frequency; OR, odds ratio; TGCT, testicular germ cell tumour.
OR calculated based on proband vs control frequency. P-value from T1 gene burden test, with significance assessed by permutation test.

Table 2 | Gene set enrichment analysis results in familial TGCT data set.

Gene set Number of genes Enrichment Score P-value Q value Rank

Cilia-microtubule function 8 2.05 2.1� 10� 8 0.01 1
Reactome loss of nlp from mitotic centrosomes 27 1.93 3.1� 10�4 0.11 2
Chromosome segregation 16 1.84 1.8� 10� 3 0.37 3
Reactome recruitment of mitotic centrosome proteins and complexes 31 1.83 6.7� 10�4 0.34 4
Reactome glutathione conjugation 10 1.82 2.2� 10� 3 0.34 5
Response to light stimulus 23 1.81 2.1� 10� 3 0.33 6
Respiratory gaseous exchange 6 1.80 8.3� 10�4 0.31 7
Response to radiation 29 1.78 2.8� 10� 3 0.37 8
Kegg abc transporters 30 1.78 2.1� 10� 3 0.36 9
Response to ultraviolet 15 1.76 6.1� 10� 3 0.41 10
Photoreceptor cell maintenance 7 1.75 3.8� 10� 3 0.45 11
Chromosome organization and biogenesis 41 1.74 1.7� 10� 3 0.46 12
Regulation of endocytosis 6 1.72 4.4� 10� 3 0.55 13
Reactome mitotic g2 g2 m phases 35 1.72 4.1� 10� 3 0.54 14
Membrane fusion 11 1.71 9.4� 10� 3 0.52 15

Abbreviations: TGCT, testicular germ cell tumour.
P-value significance assessed by permutation test.
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Figure 2 | Disruptive germline mutations in cilia-microtubule pathway genes identified in TGCT cases. (a) DNAAF1 and paralogue genes;

(b) cilia-microtubule gene set. Red dots denote mutations identified in familial TGCTcases, blue dots denote mutations in unselected TGCTcases and white

dots denote mutations in UK controls. Grey dots denote mutations catalogued by ClinVar24 as a cause of recessive ciliopathy. Domain abbreviations:

LRR, leucine-rich repeat; LRRCT, leucine-rich repeat C-terminal; CS, CHORD-containing proteins and SGT1; NYD-SP28, NYD-SP28 sperm tail; NYD..,
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region of centrosome protein; M1-4, Tau/MAP 1–4.
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spermatogonia intercellular bridges in wild-type fish was performed.
We noted that the intercellular bridges of early spermatogonia in
wild-type zebrafish are flanked by ciliary structures (Supplementary
Fig. 3), suggesting a role for cilia in spermatogonial stem cell
differentiation, the failure of which is considered to be a fundamental
precursor step in TGCT oncogenesis. This observation is also
consistent with a model whereby impaired cilia function, for
example through loss of DNAAF1, triggers structural instability
preceding premature dissociation of early germ cells and
concomitant differentiation disruption. Further functional studies
are needed to confirm this hypothesis.

Analysis of the cancer genome atlas data. More than 40% of
cancer susceptibility genes are found to be tumorigenic when
mutated only in tumour DNA27, accordingly we sought to assess
whether DNAAF1 was also frequently lost somatically. Analysis
of 150 human TGCTs publically available through the
cancer genome atlas project (http://cancergenome.nih.gov/)
showed significant focal somatic deletion at 16q23-16q24.3
(Q¼ 1.6� 10� 4, from GISTIC2 with significance assessed by
permutation, corrected for multiple testing using the Benjamini–
Hochberg method), encompassing DNAAF1, is a feature in 24.7%
of tumours, which predominantly have seminoma histology.
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Figure 3 | Segregating TGCT pedigrees of cilia-microtubule pathway gene carriers. Circles, female; and squares, male. TGCT cases denoted by

shaded symbols; ages refer to age at diagnosis of TGCT.
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In addition DNAAF1 is highly methylated in seminomas, as
compared with non-seminomas (P¼ 2.3� 10� 7, Kruskal–Wallis
test), and this is accompanied by downregulation of DNAAF1
expression as compared with normal testis (P¼ 2.2� 10� 16,
Kruskal–Wallis test). Intriguingly all of the five cases we identified
with rare germline DNAAF1 mutation had either seminoma
(n¼ 4) or mixed histology (n¼ 1). Collectively these data are
consistent with loss of DNAAF1 having a more general impact on
seminoma oncogenesis.

Discussion
Here we report the largest WES study to date of familial and
sporadic TGCT, identifying rare mutations in CMGs as
determinants of disease susceptibility. A pertinent question
relates to the overlapping phenotypic impact of CMG mutation,
with the genetic and functional data presented here linking
heterozygote mutation to TGCT risk, while homozygote
mutations have been previously associated with a range of rare
autosomal recessive ciliopathies. While we have identified
descriptive case reports of TGCT coincident with PCD28,29,
a robust statistical assessment of disease coincidence is not
currently possible due to the rare nature of both conditions and
the lack of systematic registry data. A model whereby
heterozygote but not homozygote CMG mutation is primarily
associated with TGCT risk is reconcilable, owing to the
importance of timing in TGCT oncogenesis, with proliferative
growth occurring in a specific post-pubertal time window. Under
such a model, biallelic loss of function present at birth may trigger
differing phenotypic consequences to heterozygote germline
mutation followed by a second later somatic event. Finally
infertility features as a common factor associated with both
TGCT and PCD16,17, further supporting a potential phenotypic
relationship, and while we cannot discount infertility as an
intermediate phenotype promoting TGCT risk, the combined
human and zebrafish rare deleterious mutational data strongly
support genetic causality. In terms of functional mechanisms,
we note that loss of cilia function is emerging more broadly
as an important pathway in tumorigenesis in multiple cancer
types30–32. The functional basis of inactivation of CMGs in
oncogenesis remains to be established; however, ciliation and the
cell cycle are mutually exclusive with both processes competing
for the centrosome33. Hence cilia inactivation may bias towards
cell cycle progression and proliferative growth.

The focus of our study was on disruptive, protein truncating
mutations; with missense variants not included on account of
insufficient tools to reliably predict pathogenicity12. This issue is
exemplified by a previous study of DNAAF1 (ref. 26), in which
candidate missense variants in human TGCT cases were proposed
as pathogenic; case–control analysis of these variants confirms that
they are of equivalent frequency between cases and control series
(Supplementary Table 2). In the broader context of understanding
the genetic architecture of TGCT, while providing evidence for the
role of rare variants as risk factors, our analysis is consistent with
the previously proposed model of polygenic susceptibility, in which
much of the heritable risk of TGCT is associated with common
genetic variants34. Such a model is supported by the recent GWAS
which have so far identified 25 risk loci which collectively account
for 19% of the familial TGCT risk34–47.

In conclusion, we have provided evidence for the role of
inherited mutations in CMGs as determinants of TGCT,
identifying germline disruptive mutations in 9% of familial
pedigrees, with additional evidence implicating disruptive
mutations in DNAAF1 in TGC tumorigenesis from IHC and
sequencing studies of human tumours and a dnaaf1hu255h

(þ /� ) zebrafish model displaying a 94% frequency of TGCT.
As well as revealing insights into disease pathways, our data
provides a resource for contextualizing the impact of future
candidate TGCT genes.

Methods
Ethics. Written informed consent was obtained from all individuals with ethical
review board approval (UK National Cancer Research Network Multi-Research
Ethics Committee—MREC02/06/66, 06/MRE06/41) and the study was conducted
in accordance with the declaration of Helsinki.

Subjects and data sets. TGCT cases were ascertained from (i) ‘The UK Genetics
of Testicular Cancer Study’ and (ii) ‘Identification, epidemiological and molecular
analyses of families with susceptibility to TGCT’ (recruitment via the UK Testicular
Cancer Collaboration and International Testicular Cancer Linkage Consortium;
Supplementary Notes 1 and 2) which were coordinated by The Institute of Cancer
Research. All cases had self-reported European ancestry. Of the 328 familial cases
289 were of UK origin, and 39 were of non-UK European ancestry. All 634
sporadic cases were from the UK. The controls comprised 1,644 healthy individuals
from the UK 1958 Birth Cohort48—974 from the ICR1000 data set
(EGAD00001001021) and an additional 670 individuals (EGAS00001001667)
also sequenced at Institute of Cancer Research under the same protocol.

Whole-exome sequencing. 1ug of DNA from each individual was fragmented
using a Covaris E Series instrument (Covaris Inc. Woburn, MA, USA). Indexed
paired-end libraries were prepared using Illumina TruSeq 62 Mb expanded
exome enrichment kit (Illumina, San Diego, CA, USA). Forty-nine samples with
insufficient input DNA were prepared using Illumina Nextera Rapid Capture
37 Mb exome enrichment kit. The 2� 100 bp sequencing was performed using
Illumina HiSeq2000 or 2500 technology.

Read mapping and variant analysis. Paired-end fastq files were extracted using
CASAVA software (v.1.8.1, Illumina) and aligned to build 37 (hg19) of the human
reference genome using Stampy and BWA software49. Alignments were processed
using the Genome Analysis Tool Kit (GATKv3) pipeline according to best
practices50,51. Analysis was restricted for all samples to the capture regions defined in
the Truseq 62 Mb bed file plus 100 bp padding. The Variant Effect Predictor (VEP)
was used to provide annotations on the predicted impact of each variant. We
additionally annotated with alignability of 100mers and distance from simple repeats
defined by University of California, Santa Cruz (UCSC) browser tracks. Mean
coverage of 49� was achieved across targeted bases with 83% being covered at
Z15� ; cases and controls had similar technical sequencing metrics. We excluded
57 subjects with low-quality data (o50% of bases covered with minimum 15� ) or
non-European ancestry. An additional 21 controls samples were excluded due to sex
discrepancy and detection of cancer history during the course of the analysis.

We considered only canonical transcripts and for each variant, assuming the
most deleterious predicted effect for each transcript according to VEP. For all
analyses we imposed GATK internal calling thresholds excluding variants as per
current best practice guidelines50,51—in the 99.5th truth tranche for single-
nucleotide variants and 499th tranche for indels. To minimize false positives we
adopted an automated approach imposing: GQZ30, for a heterozygous call an
alternate depth Z3 and w2o 10.83 (that is, P40.0001) for the observed versus

Figure 4 | IHC staining for DNAAF1 expression in available tumour tissue

from mutation carriers. IHC showing positive DNAAF1 expression in

surrounding normal tissue (left) but loss of expression within the tumour

(middle and right). Data are shown for tumour from PED-2152

(p.Gly434ProfsTer4). A comparable pattern was found in PED-2331

(p.Arg636Ter) and S-1645 (c.1698þ 1G4A). Scale bar, 5mm.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13840

6 NATURE COMMUNICATIONS | 7:13840 | DOI: 10.1038/ncomms13840 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


expected distribution of alternate/reference alleles (alt-ref-ratio), UCSC alignability
(100 bp window size)¼ 1, not in simple repeat, Hardy–Weinberg equilibrium test
(P41.0� 10� 8) in cases and controls and an overall call rate Z75% in both cases
and controls. To eliminate false-positive associations caused by indels, genes
featuring only this class of mutation type were filtered out. To ensure a high-quality
variant set and reproducibility was verified for a subset of samples (n¼ 162) which
had also been genotyped using Illumina HumanCNV370-Duo bead arrays—499%
concordance was observed between platforms. Following QC the final data set
comprised 306 familial TGCT cases (from 150 independent pedigrees), 613
unselected TGCT cases and 1,609 controls. Variants previously known to cause
recessive ciliopathies (as displayed in Fig. 2) were extracted from ClinVar24,
filtering to select only ciliopathic phenotypes and to remove variants classified as
benign.

Statistical analyses. To test whether rare mutations contribute to TGCT we
performed a collapsing burden test imposing a maximal MAF threshold of 1%.
To ensure independent events, case counts were based on one individual per
pedigree randomly assigned as the proband. Significance levels were assessed using
105 permutations on case/control status. Study power to detect was calculated using
disease allele frequency in controls as the baseline allele frequency, while the
frequency in cases determined by a weighted average of the enrichment found in
cases with one, two and three affected first-degree relatives. Allele counts were then
sampled from frequencies between 0.00001 and 0.01 and relative risks between 1.75
and 10.0. A Fisher’s test was then performed for each sampling of cases and
controls. This process was performed 10,000 times for each frequency/relative risk
combination and for each instance the frequency of tests that were significant at an
exome-wide significance of 8.0� 10� 7 equated to study power. Statistical analyses
were carried out using R3.0.2 and Stata (v12) (StataCorp, Lakeway Drive College
Station, TX, USA) software.

Pathway analysis. To test for over-representation of damaging variants within
genes mapping to a specific pathways or biological process we performed a GSEA.
This comprised 1,090 canonical gene sets from KEGG, GO: biological processes
and Reactome pathways, supplemented by an OMIM search-term-driven method
including genes expressed in normal testicular tissue52 and genes with evidence of
somatic inactivation from TGCT. A pre-ranked GSEA was then performed for all
gene sets, with ranking of genes based on their permuted P values for familial cases
compared with controls. For replication only the significant (Qo0.1) cilia-
microtubule pathway was evaluated.

Immunohistochemistry. Sections for each case were cut at 4 mm and placed on
Superfrost plus slides. All slides were baked in the oven at 72 �C for 40 min before
staining. Slides were stained on the Ventana BenchMark ULTRA instruments using
the Ventana OptiView DAB detection kit. Slides underwent a heat mediated
antigen retrieval step using Ventana Cell Conditioning 1 reagent, heating slides
to 100 �C for 64 min. Following this, slides were incubated with the DNAAF1
polyclonal antibody (Abnova, catalogue number PAB23762)) for 32 min, using a
dilution 1:500.

Tumour sequencing. Rare disruptive variants in CMG found by WES were
confirmed by Sanger sequencing, and examined for loss of heterozygosity in
tumour samples relative to germline samples. Primers flanking variants were
designed using Primer3 (ref. 53) (Supplementary Table 3). PCR amplicons of
germline and tumour samples were bidirectionally sequenced using the BigDye
Terminator Cycle sequencing kit and an Applied Biosystems 3730xl DNA Analyzer
(Life Technologies). Sequence traces were inspected using Mutation Surveyor
software (SoftGenetics, State College, PA, USA). Heterozygote variants confirmed
in germline sequences were examined in corresponding tumour samples where
tumour blocks were available.

Zebrafish model. All animal experiments were ethically approved by the
Animal Care Committee of the Royal Dutch Academy of Science according to the
Dutch legal ethical guidelines. The human tumour samples were approved by an
institutional review board (MEC 02.981). Samples were used according to the
‘Code for Proper Secondary Use of Human Tissue in the Netherlands,’ developed
by the Dutch Federation of Medical Scientific Societies26. Embryos were generated
by natural pair-wise matings of heterozygous carriers and raised at 28.5 �C on a
14 h light/10 h dark cycle in a 100 mm2 petri dish containing aquarium water.
dnaaf1hu255h have a T/A mutation, changing a conserved leucine into a stop
codon (L88X; ENSEMBL gene: ZGC::56169) and randomly selected control
zebrafish of the same background were maintained according to standard
protocols. Before tissue isolation, zebrafish were euthanized by overdose of MS222
or ice bath. Sections for IHC were fixed overnight in 4% paraformaldehyde and 2%
acetic acid, embedded in paraffin and 6 mm obtained. Tissue for morphological
analysis was fixed using 4% glutaraldehyde and embedded in glycol methacrylate
(Technovit 7100, Hereaus Kulzer), and 4-mm sections stained with toluidine
blue. Images were captured using a Nikon Eclipse E800 equipped with a Nikon

DXM1200 digital camera and Plan Apo � 2/0.1, � 10/0.45, � 20/0.75 and
� 40/0.95 NA objectives.

Electron microscopy. Testes tissue was fixed in Karnovsky fixative
(2% paraformaldehyde, 2.5% glutaraldehyde, 0.08M Na-cacodylate (pH 7.4),
0.25 mM calcium chloride and 0.5 mM magnesium chloride (pH 7.4)) for at least
24 h at 4 �C. Samples were postfixed in 1% osmiumtetroxide and embedded in
Epon 812. Ultrathin sections (60nm) were contrasted with 3% uranyl magnesium
acetate and lead citrate and viewed with a Jeol (http://www.jeol.com/) JEM 1010 or
a Philips (Eindhoven, The Netherlands) CM10 transmission electron microscope.

Analysis of The Cancer Genome Atlas data. Copy number status, RNA-Seq
expression data (RPKM counts) and gene methylation data were extracted for
‘Testicular Germ Cell Tumours’ from the TCGA Broad Firehose pipeline run on 28
January 2016. Normal testicular tissue RNA-Seq expression data (RPKM counts)
were downloaded from GTEx54. Associations between differential methylation and
expression levels across seminoma, non-seminoma and normal testicular tissue
were quantified using the Kruskal–Wallis trend test.

Web addresses.
Genome Analysis Tool Kit (GATKv3): https://www.broadinstitute.org/gatk
Online Mendelian Inheritance in Man (OMIM): http://omim.org/
Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle,
WA, USA: http://evs.gs.washington.edu/EVS (accessed January 2016)
Exome Aggregation Consortium (EXAC): http://exac.broadinstitute.org/
Gene set enrichment analysis (GSEA): http://software.broadinstitute.org/gsea/
index.jsp
The cancer genome atlas (TCGA): http://cancergenome.nih.gov/
Broad Firehose: https://gdac.broadinstitute.org/

Data availability. The WES data that supports this study have been deposited at
the European Genome-phenome Archive (EGA), which is hosted by the European
Bioinformatics Institute (EBI); accession numbers EGAS00001001789,
EGAD00001001021 and EGAS00001001667. The TCGA data is available from the
database of Genotypes and Phenotypes (dbGaP), Study Accession:
phs000178.v9.p8. The remaining data are available within the article and its
Supplementary Information files or available from the authors upon request.
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